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ON THE TRANSFORMATION OF DIFFUSION PROCESSES
INTO THE WIENER PROCESS*

GEORGE W. BLUMANT

Abstract. Necessary and sufficient conditions are given for transforming (constructively) a one-dimen-
sional diffusion process described by a Kolmogorov equation into the Wiener process. These conditions are
shown to be equivalent to invariance of a parabolic partial differential equation under a six-parameter Lie
group of point transformations. Moreover these conditions correspond to a significant generalization of
Cherkasov’s result; i.e., a much wider class of Kolmogorov equations can be derived from the Wiener process
than was previously realized.

1. Introduction. In this paper we find the most general one-dimensional diffusion
process, whose transition probability density function (transition pdf) satisfies a
Kolmogorov equation, which can be derived from the Wiener process. The one-to-one
transformation relating the processes is given explicitly, leading to the construction of
the corresponding transition pdf.

In his celebrated work, [4], Kolmogorov posed the problem we discuss. Cherkasov
[3] gave a partial solution to Kolmogorov’s question but he restricted himself to a
special class of point transformations used by Kolmogorov in [4]. A recent paper, [6],
interpreting Cherkasov’s result, unfortunately has given the impression that Cherkasov
found ‘“‘necessary and sufficient conditions for transforming into the Wiener process a
one-dimensional diffusion process described by a Kolmogorov equation”.

By considering general point transformations we find necessary and sufficient
conditions for relating the Wiener process to a one-dimensional diffusion process
describing a transition pdf. In § 4 Cherkasov’s restriction on the coefficients is demon-
strated to be a rather special case of our general result.

The Kolmogorov equation is a parabolic partial differential equation (p.d.e.). In
the course of this paper we consider the invariance of parabolic p.d.e.’s under Lie
groups of point transformations. It is shown that a one-dimensional linear parabolic
p.d.e. is invariant under at most a six-parameter Lie group of point transformations.
Moreover, as shown by Lie [5], a linear parabolic p.d.e. can be mapped, one-to-one,
into the heat equation (the governing p.d.e. of a Wiener process) if and only if it is
invariant under a six-parameter continuous group (Lie group) of point transformations.
However Lie’s proof corresponded to a classification scheme for parabolic p.d.e.’s.
Explicitly, Lie neither determined the class of parabolic p.d.e.’s equivalent to the heat
equation nor constructed the corresponding mapping. Here we give a direct proof
which explicitly determines the class of such p.d.e.’s and constructs the mapping.
Moreover our method of proof could be extended to other mapping problems.

As a consequence a diffusion process can be transformed into a Wiener process if
and only if the corresponding Kolmogorov equation is invariant under a six-parameter
Lie group of point transformations. In applying our results to a specific Kolmogorov
equation it may be easier to first check whether its coefficients lead to six-parameter
invariance rather than to check whether its coefficients satisfy the equations developed
in § 4.
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2. Some preliminaries. Let f(z, x; u, y) be the transition pdf of a Markov process
satisfying a Kolmogorov equation

of ¥f of _
(2.1) at+a(t‘,x ax2+b(t’x ax-O,

for x in some interval I, t <u, with initial condition

(2.2) ltiggf(t,x; u,y)=8(x-y),

where § is the Dirac delta function.
Our aim is to find all possible types of the coefficients {a(t, x), b(¢, x)} so that
{(2.1), (2.2)} can be transformed, in a one-to-one manner, to a Wiener process whose
transition pdf f(z, X; @, y) satisfies the “backward’ heat equation
-
2.3) JN

L =0
of  ox>

for x in some corresponding interval I, T < i1, with initial condition

(2.4) lim (7, %; 4, §) = 8(X — ).

>u

Cherkasov [3] solved a limited form of Kolmogorov’s problem where he restricted
himself to one-to-one point transformations of the form

— - — 9 u, -1
(2.5) f=y(tx), 1=¢0), f=f- [_‘/’(EJY_Y)J ‘
In this paper we seek the most general one-to-one point transformation of the form
(2.6) =T xf), =X x,f), f_=F(t, x, ),

and corresponding coefficients {a(¢, x), b(¢, x)}, so that {(2.1), (2.2)} is equivalent to

{(2.3), (2.4)}. In seeking such a mapping formula, (2.6), {y, u} are related to {y, i}
according to it.

If we let
(2.7 x'=¢(tx), =4
where
2.8) bx)= Talh 21 dz
for some arbitrary x, € I, then (2.1) becomes
of  f of
—+ +D(t',x")—=0,
2.9) at' a(x')? (', x )ax'
where
o ) 3¢
$x)=— —+ —.
(2.10) D(t', x") Py +a(tx e b(t, x)ax
If we let {C(¢', x'), f'} be such that
aC .
(2.11) —=—3D(t,x")

ax
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and
(2.12) f=e
we find that (2.1) is equivalent to

of | &f Cong
(2.13) at,+a(x,)2+G(t,x )f' =0,
where

, ., _8C ¥C aC>2
(2.14) G, x¥) =4 (ax, .

Our problem now reduces to finding the most general G(#, x') and mapping (2.6),
so that (2.13) with

(2.15) lim £ x5, y) = [ 2w ) ot -y,

can be transformed one-to-one into {(2.3), (2.4)}, where y'= ¢ (u, y), u' = u.

3. Construction of the mapping. In this section, for convenience of notation, we
unprime the primed variables of § 2. First we prove a theorem concerning a group
theoretical property of p.d.e.’s of the form (2.13).

THEOREM 1. (2.13) is invariant under a six-parameter Lie group of point trans-
formations if and only if G(t, x) is of the form

(3.1 G (1, x) = go(0) + 1 (1)x +q2(1)x?,

where {qo(t), q1(2), q2(t)} are arbitrary functions of t.
Proof. Say the one-parameter (¢) Lie group of point transformations,

t*=t+er(t, x, f)+O0(e?),
3.2) x*=x+ef(t, x f)+O0(?),
f* =f+€77'(ta X,f)+0(62),

leaves invariant (2.13). Then the determining equations [1] for the group infinitesimals
{7, & } reduce to

(3.3) r=7(t), §£=£&0x), w=gkx)f,
where (a prime corresponds to differentiation with respect to ¢),
(1, x)=2x7' (1) + A(D),

3.4
( ) x21_n(t)

glt,x)= +3xA'(1)+ B(¢),

and, with respect to a given G(t, x), {r(¢), A(¢), B(¢)} must satisfy the differential
equation
2
O+ 0+ A0+ B
(3.5)

+[3x7' (1) +A(t)]%§+ T(t)a—a?+ ()G =0.
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From (3.5) we see that at most a six-parameter Lie group of point transformations
leaves invariant (2.13) since, respectively, there are at most three arbitrary constants for
7(t), at most two for A(z), and at most one for B(t) in the solution of (3.5) for a given
G(t, x). Moreover it is clear that G(¢, x) must be analytic in x for six-parameter
invariance. After representing G(¢, x) in a power series in x, from (3.5) it is easy to show
that (2.13) is invariant under a six-parameter Lie group of point transformations if and
only if ‘

3
a_c?; =0;
ox
i.e., G(¢, x) satisfies (3.1). This completes the proof of Theorem 1.
If G (¢, x) satisfies (3.1), the resulting equations satisfied by {r(¢), A(¢), B(¢)} are:

(3.6) %+2qz(t)f’ +q3(t)T =0,
(3.7 3A"+2q2(0A = —Gq: ()7 + g1 (1)7),
(3.8) B'=—[i7"+qb ()t +qo(t)7' + g1 (1) A].

Next we prove a lemma concerning a necessary condition for the existence of a
mapping between a Kolmogorov equation (2.1) and the backward heat equation (2.3).

LEMMA. If it is possible to map (2.1) or, equivalently (2.13), into (2.3) by a
one-to-one point transformation, then G (t, x) must be of the form (3.1); i.e., (2.1) must be
invariant under a six-parameter Lie group of point transformations.

Proof. The backward heat equation (2.3) is invariant under the six-parameter

{a1, @z, *, ag} Lie group of point transformations [1], [2]:
O*=i+e7(F)+O0(e?),
3.9) (®)* =% +e€@, %)+ O(s?),
(Fy*=F+egt, f +O(c?),
where
7(f) = —ay +2a5f — as(f)?,
(3.10) E(F, %)= ark — skl +as—asl,

g(F, ) = as[3f —3(%)*] —3as% + as.

A one-to-one point transformation of the form (2.6) relating solutions of (2.13) to
those of (2.3) must in turn induce a one-to-one mapping which relates the Lie group of
point transformations of (2,13) to that of (2.3) by some appropriate representation of
their respective parameters. Hence the existence of such a mapping requires that point
Lie groups of (2.13) and (2.3) have the same number of parameters, completing the
proof of the lemma.

We are now ready to solve the problem posed at the end of § 2. In particular, in the
following theorem we show that the necessary condition of our lemma is also a sufficient
condition, so that a Kolmogorov equation can be mapped one-to-one into the backward
heat equation if and only if it is invariant under a six-parameter Lie group of point
transformations. Moreover we explicitly construct the mapping and show that we never
have to solve {(3.6), (3.7), (3.8)} in order to construct the mapping.

THEOREM 2. If G(t, x) is of the form (3.1) then we can transform (2.13) to (2.3),
constructively, by a one-to-one mapping.
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Proof. We prove this theorem by showing how to construct a one-to-one mapping
relating solutions of (2.13) to those of (2.3). The procedure we follow is first to demand
that a mapping (2.6) transform the group of (2.13) into the group of (2.3). This idea is
used to construct such a mapping. One can then demonstrate that this mapping does
indeed transform (2.13) into (2.3) in a one-to-one manner. We now proceed.

Clearly we must show how to construct the required mapping without explicitly
computing the solution of {(3.6), (3.7), (3.8)}, i.e., {r(¢), A(t), B(¢)}. Let

(3.11) T= i a;T(t)

represent the general solution of (3.6) where {r(¢), 72(¢), 73(¢)} are linearly independent
solutions of (3.6) and {a1, a,, a3} are arbitrary constants.
Assuming the form (3.11) for 7(¢), we let

(3.12a) A= i a;A;(1)
i=1

represent the general solution of (3.7), where
(3.12b)  3A7+2q2(NA; =0, i=4,5,
(3.120  JA! +2q:(DA = -Bq:()ri +qi(Dn),  i=1,2,3,

and {a4, @s} are additional arbitrary constants. Here {A.(¢), As(¢)} are linearly
independent solutions of the homogeneous part of (3.7); A;(¢) is a particular solution of
(3.7) corresponding to the input 7;(¢) for i =1, 2, 3.

Assuming (3.11) and (3.12abc), we let

(3.13a) B=Y aBi0)
i=1

represent the general solution of (3.8), where

(3.13b) Bs =0,

(3.13¢) B} =—-q:()A, i=4,5,

(3.13d)  Bi=-[qi(OAi+it! +qo(t)ri+qo(O)7i),  i=1,2,3,

and ag is an additional arbitrary constant. Here Bg(t) is a solution of the homogeneous
part of (3.8); B;(¢) is a particular solution of (3.8), corresponding to the input A;(#) for
i=4,5; and to the input 7;(¢) with corresponding A;(¢) fori=1, 2, 3.

Each of the parameters {a1, a3, * - + , as} corresponds to a one-parameter subgroup
of the six-parameter Lie group of point transformations.

It turns out that the mapping (2.6) reduces to the form

(3.14a,b, ¢) 1=T(), x=X(, x), f=F( x)f

If (3.14abc) maps (2.13) into (2.3) then, by some appropriate representation, it is
necessary that (3.14) maps, parameter by parameter, the group of (2.13) into the group
of (2.3). Hence after transforming (3.14abc) by the group of (2.13) the resulting
infinitesimals must be those of (2.3). This leads to differential equations satisfied by
{T(t), X(t,x), F(t,x)} whose solutions are shown to lead to our mapping. The
parameter representation we use is the direct one of associating respectively the
parameters {a1, a,, * * *, ae} With those used to describe the group of the backward heat
equation (3.10).
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After respectively equating the coefficients of each of the parameters {a,, a», as}
from the Of(e) terms in the expansion of (F)*=T(*), we find that
{r1(2), m2(1), 73(2), T (2)} satisty

_—dt 4T _dt  dT_-dt

= 5= .
- 2T T T3

The consistency relations corresponding to (3.6) and (3.15) lead to T'(¢) satisfying the
grand equation

(3.15) dT

(3.16) 2T"(T')? = 3(T")*(T")* = 164,(t)(T")* = 0.

Note that if M =T"/T' =d/dt(log |T’|), then (3.16) reduces to a Ricatti equation for
M(t), namely,

(3.17) 2M' = (3M)* +164,(1).

Hence if q-(¢) =0 for all ¢, then T'(¢) is a monotone function, and thus a solution 7'(¢) of
(3.16) defines a one-to-one mapping.

After respectively equating the coefficients of {a4, as, @2, a3, a;} from the O(e)
terms in the expansion of (¥)*=X(r* x*), we find that X (¢, x) must satisfy the
equations

0X_

(3.18) A, —==1,
ax
)
(3.19) Ao
ox
X X
(3.20) X —[3x75 +A2]§—_72§*‘=0,
0x ot
0X X
(3.21) TX +[bxrh + As] 2+ 7,22 = 0,
ox ot
(3.22) Bert + A1+ =0,
ox ot

The solution of {(3.18), (3.19), (3.20)} leads to

(3.23) X(t,x)=CoxNT'(t)+ Y (1),
where Y (t) satisfies

(3.24) 2% Y -Y=-CNT A,,
and C, is an arbitrary constant.

_After equating the coefficients of 4 and as from the O(¢) terms in the expansion of
(f)*=F(t*, x*)f*, we find that F(t, x) satisfies the equations

F
(3.25) A4-z—;+[%xA£ +BJF =0,
(3.26) A5%§+ BX +3xAs+Bs]F=0.
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This leads us to see that Co =1 and that

(3.27) X(t,x)=xVT' —2B,T —2Bs,

x> T —
(3.28) F(t,x)=W(t) - exp [? —7—,,-~xB4~/ T'],
where

Bs= j a() T T'(s)]™2 ds,
(3.29) N

B,= -I Q) T'(s)17""% ds,

and W(¢) is arbitrary.

_ The coefficient of the @, parameter in the O(e) terms in the expansion of
(F)* =F(t*, x*)f* results in W (¢) satisfying

(3.30) T2 W' +[Ba— ABANT'IW =0,
where

(3.31a) A, =2B,T(T")"V?>-2Bs(T")""?,
(3.31b) T =2T(T) "

B,(¢) satisfies (3.13d) for i =2,

(3.31¢) By = =415 —2B4Bs—qo(t) 2+ A,

where A is an arbitrary constant, so that

' [Az(s)BAs)ﬁ'“(s“)—Bz(s)] s
Tz(s) '

(3.32) W(t) =exp J

to

Since the constructed F(t, x)>0 for all ¢, x, and a.X/ox =T , we see that the
constructed mapping is one-to-one where we use a solution to the grand equation (3.16)
where T'(¢) >0 for all ¢. By direct calculation it is now easy to check that if A =3 our
constructed mapping is indeed a one-to-one mapping between (2.13) and (2.3),
completing the proof of Theorem 2.

We now close this section with a few remarks.

Remark 1. If q,(t)=0, then it is easy to show that T = (a; +a,t)/(t+ as) where
{a1, a,, as} are arbitrary constants.

Remark 2. There is still a further degree of freedom in our mapping, namely that
C*W (¢) solves (3.30) for an arbitrary constant C* so that f = C*F(¢, x)f. To map the
diffusion process {(2.1), (2.2)} into the Wiener process {(2.3), (2.4)} requires that the
source conditions map into each other. In terms of the variables of § 2, this leads to

-1
(333) C* = eC(u'.y') . [%f(u, y)] [Tl(ur)]—l/Z[F(ul’ y/)]—l.

Remark 3. Since every linear parabolic p.d.e. in one dimension can be mapped
into the form (2.13) it follows that such a p.d.e. is equivalent to the heat equation if and
only if it is invariant under a six-parameter Lie group of point transformations. This
appears to be the easiest way to apply Theorem 2 to a given parabolic p.d.e. and in
particular to Kolmogorov’s equation (2.1); i.e., instead of computing G (¢, x) for a given
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parabolic p.d.e. it is better to first check whether the given p.d.e. is invariant under a
six-parameter Lie group of point transformations. If this is the case then one should
compute G(t, x) and apply the mapping formulas.

Remark 4. There is a unique structure for the maximal six-parameter Lie group of
point transformations which can leave invariant a one-dimensional linear parabolic
partial differential equation, a result previously proved by Lie in his symmetry
classification scheme for linear p.d.e.’s [5].

4. Connection with Cherkasov’s result. Restricting himself to transformations of
the form (2.4), and setting

a(t,x)=[a(t, x)]'"?,

@D B =tal 07 [ lat 21 dz,

X0

aa(t x)

y(t, x)=2b(t x)— —[a(t, x)]'?

J‘ dat, z)[ (O dz,

X0

Cherkasov [3] showed that {(2.1), (2.2)} maps one-to-one into {(2.3), (2.4)} if and only if
{a(t, x), Bt x), (¢, x)} satisfy the determinant equation

a B v
(4.2) ax  Bx v |=0,
axx Bxx ‘Yxx

where o, = da/dx, etc.

We show that Cherkasov’s condition is a special case of the results of § 3; i.e., a
much wider class of diffusion processes can be mapped one-to-one into the Wiener
process than is indicated by the Cherkasov condition (4.2). First we reformulate
Cherkasov’s result in a more convenient way. In terms of Cherkasov’s variables (4.1),
one can show that D(¢, x') defined by (2.10) satisfies

y(& x)
4.3 )=,
(4.3) D(t, x") 20l x)
Then Cherkasov’s result reduces to {«, D} satisfying
2

(4.4) al, x)a D2+ax(t x)£=

But the operator 9/dx’'=a(t, x) d/dx, so that Cherkasov’s result (4.2) becomes
equivalent to

*D(, x") _
3()6',)2 - 0’
or
(4.5) —2% = po(t) +p1(1) - f la(t, 2)]V? dz,

X0

where {po(?), p1(¢)} are arbitrary functions of ¢.
In terms of D(¢', x'), using (2.11), (2.14) and (3.1), Theorem 2 can be restated to
say that a diffusion process can be mapped one-to-one into a Wiener process if and only
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if D(¢', x') satisfies the p.d.e.

9> [oD _ oD &°D
4.6 ——[—+ —+—] -
(4.6) a(x")Lar T ax' a(x)?

Note that Cherkasov’s result, corresponding to D (¢, x') satisfying 3’D/a(x")*=0, is a
special solution class of (4.6). It should also be noted that if n(¢, x') satisfies the
backward heat equation, then

2 9n/ax’
n

D=

solves (4.6), generating another special solution class of (4.6).
In terms of the original variables (4.6) is equivalent to {« (¢, x), b(¢, x), D} satisfying
the p.d.e.

3 2
—_— a:b + 5 a‘oy|—x
6x4 [ ] ax3

*D
ax2
*D . *D
Ay tTa—>=U.
*atox  ot(ax)*

4.7) +[2aby +ab +4ala)* +2a%ay]

a
+ [abxx + Cbex]_'—"k
ox
For the important special case where the coeflicients of Kolmogorov’s equation
(2.1) are independent of ¢,

2b(x)—a'(x)
2la(x)]*

Here Cherkasov’s result reduces to requiring

(4.8) D= x'= Ix [a(z)]V? dz.

xo0

4.9) D=potp: | [ale)] " dz,
where po and p; are arbitrary constants for some fixed x. Theorem 2 corresponds to the
generalization D =['/l, where /(x') satisfies the confluent hypergeometric type equa-
tion
d2l ' n2

(4.10) ——=+[ro+rix'+r(x)1=0,

d(x)
where {ro, r1, ro} are arbitrary constants. Here Theorem 2 allows D to have four
arbitrary constants whereas Cherkasov’s result allows two arbitrary constants. The

special subcase where a(x) = const., corresponds to D =b(x) and x' = x in (4.9) and
(4.10).
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