
Mathl. Comput. Modelling Vol. 18, No. 10, pp. 1-14, 1993 0895-7177/93 $6.00 + 0.00 
Printed in Great Britain. All rights reserved Copyright@ 1993 Pergamon Press Ltd 

Use and Construction of 
Potential Symmetries 

G. BLUMAN 
Department of Mathematics, University of British Columbia 

Vancouver, BC, Canada V6T 122 

Abstract-Group-theoretic methods based on local symmetries are useful to construct invariant 

solutions of PDEs and to linearize nonlinear PDEs by invertible mappings. Local symmetries include 
point symmetries, contact symmetries and, more generally, Lie-Biicklund symmetries. An obvious 

limitation in their utility for particular PDEs is the non-existence of local symmetries. 
A given system of PDEs with a conserved form can be embedded in a related auxiliary system of 

PDEs. A local symmetry of the auxiliary system can yield a nonlocal symmetry (potential symmetry) 
of the given system. The existence of potential symmetries leads to the construction of corresponding 
invariant solutions ss well as to the linearization of nonlinear PDBs by non-invertible mappings. 

Recent work considers the problem of finding all potential symmetries of given systems of PDEs. 

Examples include linear wave equations with variable wave speeds ss well ss nonlinear diffusion, 
reaction-diffusion, and gas dynamics equations. 

1. INTRODUCTION 

Grouptheoretic methods based on local symmetries are useful to construct invariant solutions 

(similarity solutions) of PDEs (see [l--11]), and to linearize nonlinear PDEs by invertible map 

pings [12,13]. Local symmetries include point symmetries, contact symmetries and, more gener- 

ally, Lie-Biicklund symmetries. An obvious limitation in their utility for particular PDEs is the 

non-existence of local symmetries. 

A given system of PDEs with a conserved form can be embeddded in a related auxiliary system 

of PDEs. A local symmetry of the auxiliary system can yield a nonlocal symmetry (potential 

symmetry) of the given system [3,14-161. The existence of potential symmetries leads to the 

construction of corresponding invariant solutions as well as to the linearization of nonlinear PDEs 

by non-invertible mappings [3,17]. 

In this article, we review the uses of symmetries for finding invariant solutions and linearizations 

of nonlinear systems, as well as literature on the use of symbolic manipulation to construct 

symmetries. Then we consider the problem of algorithmically finding nonlocal symmetries of 

given systems of PDEs. Examples will include nonlinear diffusion, reaction-diffusion, and gas 

dynamics equations. 

2. POINT SYMMETRIES AND THEIR USES 

Consider a system of m PDEs R{z, u} given by the relations 

> =O, ~=1,2 ,..., m, P-1) 

with independent variables 2 = (21, $2,. . . , z,), dependent variables r~ = (ui, u2, . . . , u”); 24 

denotes the set of coordinates corresponding to all jth order partial derivatives of u with respec. 
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Corresponding subsystems are 

11 

Rl {x, v) : vt = ($+bxy; 
S1{x,v,w) : w, = v, 

wt=-(;+bx2); 

S2{x, 21, w} : wt = - ( > + fbx2 ) 

W II = u; 

S3{x,w} : wt = - (&+b2). 

One can show that T{z, 2~, v, w} admits 

XT, = ,+-4 (F1 - bzF3)-$ + (2bs&” - u2F2 + bu(1 - bz2u)F3)$ 

+(vF1 - (1 + bsu)F3)& 
I 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

where F’ = F’(v,t), F2 = F2(v,t), F3 = F3(v,t) satisfy linear system (6.7). It is easy to 
check that the criteria of Theorems 2.1, 2.2 are satisfied and hence T{z,u,v,w} is linearizable 
by an invertible mapping. From the form of X2, we see that it projects to a point symmetry 
of &{z, v, w}; induces a contact symmetry of Ss{x, w}, a Lie-Bgcklund symmetry of SZ{Z, u, w} 
and a nonlocal symmetry of Rl{x, v}, R{z, u}, S{Z, u, v}. 

Hence Sl{x, v, w} and .93(x, w} are linearizable by invertible mappings, whereas all other sys- 
tems are linearizable by non-invertible mappings. (Consequently, although the point symmetries 
of S{r, 2~, v} yield the linearization of R{x, x~} when b = 0, this is not the case when 2 # 0 where 
the discovery of linearization requires consideration of the point symmetries of T(x, u, v, w} or 

Sl{GV,W).) 

Use of Theorem 2.2 yields the mapping 

21 = t, 

z2 = v, 

w1 = 2eb(“v-4 

w2 = bx2 + ; eb(-4, ( > 
w3 = $+=+4 

b 
- I), 

which invertibly transforms T{z, u, v, w} to the linear system 

dW3 
- ZWl, 

dV 

CYW3 
--g- =w2, 

dwl 2 
-=w. 

dV 

Conjectures (5.1), (5.2) are easily checked. 
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to x (a coordinate in u is denoted by uzliZ, ,.ij = 
aju-, 

j 
azi,az,2...ari, with Y = I,%. . . , m; ij = I,%. . . , n; 

j = 1,2 ,.*., k). 
A symmetry admitted by R{x,u} is a transformation which maps any solution of (2.1) into 

another solution of (2.1). Note that a symmetry transformation has no restriction to action on a 

particular set of coordinates. 

A point symmetry admitted by R(x, u} is characterized by infinitesimal generators of the form 

(2.2) 

(summation over a repeated index is assumed throughout this article) corresponding to one- 

parameter (e) Lie groups of point transformations 

zf = Xi + Eci(5, U) + O(e2), 

(up)* = up + qqx, u) + O(e2), 

Corresponding to point symmetry (2.2), admitted 

(similariiy) I t so u zons u = 19(x) of (2.1) satisfying 

i=1,2 ,..., 72, 

~=1,2 ,..., m. 

by R{x,u}, one can construct invariant 

v= 1,2 ,..., m. (2.3) 

Substituting (2.3) into R{x, u}, one obtains a reduced system of m PDEs in n - 1 independent 

variables. It is not necessary to solve explicitly (2.3) in order to accomplish this reduction 

(see [3, p. 1981). In the case of a specific boundary value problem (BVP), this reduced system is 

useful for obtaining its solution, provided the boundary conditions are also invariant. In the case 

of a BVP for a nonlinear system of PDEs, invariance of boundary conditions means that both 

the boundary of the domain as well as all boundary conditions specified on the boundary must 

be separately invariant. (The restriction is much less severe for BVPs posed for linear systems. 

See [3, Section 4.41 for details on applications to BVPs.) 

For each point symmetry admitted by R{x,u}, one can map any solution of (2.1) (provided 

it is not an invariant solution corresponding to (2.2)) into a one-parameter family of solutions 

of (2.1) (see [3, Section 4.2.21). 

If one knows all infinitesimal generators of point symmetries admitted by R{x, u} when m 2 2, 

(in the scalar case, m = 1, one must know all infinitesimal generators of admitted contact 

symmetries) one can determine whether or not R{x, u} can be linearized by an invertible mapping 

and construct such a mapping when it exists. This result follows from the following two theorems. 

THEOREM 2.1. (NECESSARY CONDITIONS). If there is an invertible mapping of R{x, u}, m 2 2, 

into a linear system with independent variables z = (zi, 22,. . . , z,) and dependent variables 

WJ = (wl, w2,. . . , wm), then 

(I) the mapping is a point transformation 

zj = 4j(X7U), j = 1,2 ,..., n, 

WY = $Y(x,u), y=1,2 ,..., m. 

(2) R{z, u} must admit infinitesimal generators of the form (2.2) with 

Ci(X, u) = 4(x, u)F”(x, u), i=1,2 ,..., n, 

77% u) = P,(z, u)FU(z:, u), /.L= 1,2 ,...,m, 
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where c$‘, /3; are specific functions of (x, u), and F = (F’, F2,. . . , Fm) is an arbitrary 
solution of some linear system 

L[X]F = 0, 

with L[X] a linear operator depending on independent variables 

THEOREM 2.2. (SUFFICIENT CONDITIONS). If the linear system of m first order PDEs 

cg+/?;~ =o, d = 1,2,. . . , m, 
* 

hasX1(x,u),X2(x,u),..., X,,(x, u), as n functionally independent solutions, and the linear sys- 
tem of m2 first order PDEs 

(6-f@ is the KronecJcer symbol: 677 = 1, 67” = 0 if 7 # CT) has a solution 

then the invertible mapping 

zj = c$j(X,U) = Xj(X,U), j = 1,2 ,...) n, 

w7 = $7(x, U), y=1,2 ,..., m, 

transforms R{x, u} to a linear system fi{z, w} given by 

WW = 9(z), 

for some nonhomogeneous term g(z). 

The proofs of Theorems 2.1, 2.2 and extensions to the scalar case m = 1 are found in (3,131. 

An earlier version of these theorems is discussed in [12]. 

3. DETERMINATION OF POINT SYMMETRIES 

Point symmetries acting on the space of independent and dependent variables naturally ex- 

tend to symmetry transformations acting on the space of independent and dependent variables 

and their derivatives to some fixed order by requiring the preservation of contact conditions 

(see [3,5-8,101). In terms of total derivative operators 

Di = -j$ i=1,2 )..., n, 
* 

the infinitesimal generator (2.2) extends to 

x(j) = x+#)P ( > x,y &+...+q$;..ij x,u,y,; ,.I. ,?j ( > a 
J &J;lia+..ij’ j = L2,**., (3.1) 

I 

where 
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and 
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i,=l,2,..., n for q=1,2 ,..., j with j=2,3 ,.... 

The jth extended infinitesimal generator (3.1) defines a one-parameter (E) Lie group of trans- 
formations acting on (z, u, y, y”, . . . , u)-space: 

3 

Consequently, the algorithm to find the point symmetries admitted by R{x,u} reduces to 
finding the components {&,~p} of the infinitesimal generators (2.2) admitted by R{x,u}. In 
particular, 

(3.2) 

must hold for any solution of R{z, u}. The conditions (3.2) impose severe restrictions on {&, 77“) 
and result in a set of over-determined linear PDEs (determining equations) satisfied by {&, VP}. 
The general solution of the determining equations yields the group of point symmetries admitted 

by R{x, ~1. 
In recent years, the development of symbolic manipulation programs has made the use of group 

methods more accessible to non-specialists. Programs have been developed which set up the de- 
termining equations automatically and sometimes yield all point symmetries of a given R{x, u} 
automatically (see [I&21]). Kersten [22] has developed an interactive symbolic manipulation 
program which can significantly simplify and often solve the determining equations. Unfortu- 
nately these programs may not succeed when symmetry groups are nontrivial and usually will 
not handle the group classification program. 

Reid [23,24] has developed a symbolic manipulation algorithm which automatically determines 
the dimension of the Lie algebra of infinitesimal generators admitted by R{z, u}, i.e., the number 
of linearly independent infinitesimal generators admitted by R{x, u}, without having to explicitly 
compute the generators themselves, when the dimension is finite. Moreover, Reid’s algorithm 
is able to handle the group classification problem where one is interested in finding the point 
symmetries of a system R{x, u} containing an arbitrary (model) function. Here different forms of 
the model function yield different groups of point symmetries. Reid is able to find all splittings of 
the model function (each splitting corresponds to a specific DE satisfied by the model function) 
and dimensions of the resulting symmetry groups. Related work appears in Topunov [11,25]. 

Often the calculations for the group classification problem, even using Reid’s algorithm, are 
too lengthy to go to completion. Recently, Lisle [26] has developed an algorithm to determine 
equivalent model functions, including how to find explicit equivalence transformations. Using 
ideas from differential geometry, Lisle is able to incorporate his group equivalence algorithm to 
Reid’s algorithm and handle previously intractable group classification problems. For example, 
Lisle obtains the (highly nontrivial) group classification of the nonlinear diffusion-convection 
equation with arbitrary model functions for both diffusion and convection. 

We conclude this section by giving all infinitesimal generators of admitted point symmetries 
for three examples (xi = x, 52 = t). 
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EXAMPLE 1. GROUP CLASSIFICATION FOR THE NONLINEAR DIFFUSION EQUATION. 

Here R{x, u} is given by 

ut = (L(u))15 = (K(u)%),, 

with K(U) = L’(u) # const. 

(3.3) 

Modulo scalings and translations in U, the following splittings arise: 

(1) K(U) arbitrary: 

X1=$ a 
x2=z, x3 = xg + St;. 

(3) K(u) = u-4/a: 

Xi,Xs,Xa,Xz, with x = -f, 

EXAMPLE 2. A REACTION-DIFFUSION EQUATION. 

Consider the reaction-diffusion equation 

U, = U2Uz, f 2bU2, 

(2) K(u) = z1x: 

b = const. # 0. (3.4) 

Multiply (3.4) by - & and let u = 3. Then, one can show 

ut = - , 
II 

that R{z,u}, given by 

(3.5) 

admits 
a 

Xl’&, x2=;, x3=x; - 2t; - 221;. 

(When b = 0, R{x, u} also admits X4 = x& + 2t$.) 

EXAMPLE 3. ONE-DIMENSIONAL PLANAR GAS DYNAMICS EQUATIONS. 

Let u = (v, p, p) where o, p, and p, respectively, are velocity, pressure, and density functions 
for a fluid. Then the equations of one-dimensional planar gas dynamics are 

Pt + VP, + PG! = 0, (3.6a) 

P(Vt + vvz) + P, = 0, (3.6b) 

P(Pt + VPZ) + B(P, P)Vz = 0, (3.6~) 

where B(p, p) satisfies some constitutive equation. If one multiplies (3.6a) by v and adds the 
resulting PDE to (3.6b), then (3.6a-c) is equivalent to 

Pt + (pv)z = 6, (3.7a) 

(pv)t + (P + PV2)z = 0, (3.7b) 

P(Pt + VP,) + B(P, P)% = 0. (3.7c) 

If B s 1, the corresponding system R{x, u} admits [27] 

x1=&, x2=;, X3=2&+&$ 

X4=g+$ X& 
a a 

-vap+pap> 

x,=$ 
Except for the symmetry X5 for the nonlinear diffusion equation with K(u) = ud4i3, the point 

symmetries for these three examples are ‘Lobvious” since they can be seen by inspection. 
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4. SYMMETRY EXTENSIONS; NONLOCAL SYMMETRIES; 
POTENTIAL SYMMETRIES 

In principle, from the definition of a symmetry transformation, every system of PDEs with 

topologically continuous solution sets admits symmetries. The problem is to find explicit sym- 

metries and to be able to exploit them to determine something concrete about the system such 

as particular solutions, linearization, conservation laws, variational principles, equivalences, etc. 

A first explicit generalization of point symmetry was due to Lie who showed that scalar PDEs 

could admit contact symmetries. Noether [‘28], in her celebrated paper on conservation laws, men- 

tioned the possibility of using symmetries whose infinitesimal generators allowed (E, 7) to depend 

on derivatives of u to some finite order. (Generators of Lie’s contact symmetries restricted depen- 

dence to first order derivatives of u.) Such symmetries are now commonly called Lie-Bticklund 

symmetries (higher symmetries) which are local symmetries, defined by infinitesimal generators 

of the form 

(4.1) 

They appear to have been first discovered for explicit PDEs by Anderson, Kumei, and Wulf- 

man [29]. Except in the special case of contact symmetries, some important properties of point 

symmetries are not inherited by Lie-Backlund symmetries. In particular, Lie-Backlund symme- 

tries cannot be integrated to global transformations by solving characteristic equations and in 
general cannot be used for linearizations. However, the existence of Lie-Backlund symmetries 
appears to be a characteristic property of the various evolutionary nonlinear scalar PDEs in two 

independent variables which exhibit soliton behaviour and are linearizable by an inverse scat- 

tering transform for particular initial data. Vinogradov [11,30] gives informal explanations of 

‘why differential equations with more than two independent variables generally have no higher 

symmetries.” For details on Lie-Backlund symmetries, see [3,5,6,11]. 

It turns out that PDEs can admit nonlocal symmetries whose infinitesimal generators are not 

of the form (4.1). A formal ad-hoc way to obtain such symmetries for some PDEs is to allow 

(6, n) to depend on integrals of u in some specific manner. 

Krasil’shchik and Vinogradov [11,31,32] give criteria which must be satisfied by a class of 

nonlocal symmetries of R{z,u} when realized as local symmetries of a system of PDEs which 

“covers” R{z, u}. Their papers appear to exhibit no new examples. 

Akhatov, Gazizov, and Ibragimov [27] give nontrivial examples of nonlocal symmetries gener- 

ated by heuristic procedures. Their paper is rich in examples. Exhibited calculations are sources 

of useful data for developing the following generalizations of our previous algorithms [3,14-161 to 

obtain nonlocal symmetries. 

Suppose one of the PDEs of system R{z, u}, given by (2.1), in particular G” = 0, is a conserved 

form 

&fi (x,u,yq ,...> p) =o. 
z 

Then R{z, u} is the system 

G” x,u,y,; ,..., t ( > =O, 0=1,2 ,..., m-l, 

-gfi(x7y’: ,..., p) =o. z 
(4.2b) 

Through (4.2b), we can introduce n - 1 auxiliary variables (potentials) vl, v2,. . . , vnml and form 
an auxiliary system S{x, u, v} of m+n- 1 PDEs with m+n-1 dependent variables. In particular, 
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S{x, u, u} is the system 

fe ( x,u,y,y 1..., p) =(-l)e-’ [E+E], 1<e<n, (*3) 

f” 
( 

x,u,u u i, 2 7”‘) & = (WE, 
) 

> 
=O,a=1,2 ,..., m-l. 

Now, consider the relationship between the solutions of the systems R(x, u}, S(x, u, v}: 

If (u(x), v(x)) solves S{ x, u, v), then u(x) solves R{x, u}, since (4.2a,b) is an integrability con- 

dition for (4.3). If u(x) solves R{x, u}, then there is some v(x) such that (u(x),v(x)) solves 

S{x, 21,~). Clearly v(x) is not unique. Hence it follows that even though all solutions of 

R{x, u} can be found from knowledge of all solutions of S{x,u, v} and, conversely, all solu- 

tions of S{x, u, v} can be determined from knowledge of all solutions of R{x, u}, the relationship 

between R{x, u} and S{x, u, v} is non-invertible. 

A symmetry of S{x, u, v} defines (induces) a symmetry of R{x, u}; conversely, any symmetry 

of R{x, u} determines a symmetry of S{x, u, v}. But, since the solutions of R{x, u} and S{x, u, v} 

are not in one-to-one correspondence, it follows that a point symmetry of S{x, u, v} could corre- 

spond to a nonlocal symmetry (potential symmetry) of R{x, u} and also that a point symmetry 

(or, more generally, a Lie-Backlund symmetry) of R{x,u} could yield a nonlocal symmetry of 

S{x, u, v). 
More generally, if (uil,ui2 ,..., uiQ,vj1,vj2 ,..., vi@),ii < is < ... < i, 5 m,ji < j2 < . . . < 

jp~n-1,a+p<m+n-1,solvesasubsystemofPDEsR{x,ui~,ui2,...,ui~,v~~,v~~,...,v~~}, 

arising from integrability conditions of S{x, u, v}, it follows that all solutions of any such subsys- 

tem yields all solutions of any other subsystem, as well as all solutions of R{x, u} = R{x, ul, u2, 

‘a’, urn} and S{x, u,v} = R{x, ul, u2,. . . , urn, v1,v2,. . . ,vnml}. (Note that a subsystem itself 

could play the role of a given system of PDEs which has no conserved forms!) 

Consequently all such subsystems of PDEs, R{x, u}, and S{x, u, v} have the same symmetries. 

But a local symmetry of one subsystem could induce a nonlocal symmetry of another subsystem. 

Since local symmetries and, in particular, point symmetries yield invariant solutions, it follows 

that invariant solutions constructed for one subsystem can yield solutions of another subsystem 

which are not invariant solutions for any local symmetries admitted by the second subsystem. 

Nonlocal symmetries arising through this process as point symmetries of a related subsystem can 

be useful for solving BVPs, since any BVP posed for one subsystem can be posed as a BVP for 

all other related subsystems. 

Suppose RI and Rz are distinct systems. Let Gi and Gz be their respective point symmetry 

groups. Then, the symmetries Gi U Gs (which do not necessarily form a group) represent a 

“symmetry covering” for both of the systems RI and Rs. 

To simplify matters, we specialize to the case when m = 1, although later on in this article we 

will consider examples when m > 1. Let R = R{x,u}, S = S{x,u,v}. Then, RI = Rl{z,v} is a 
related subsystem provided integrability conditions of S{x, u, v} lead to a PDE satisfied by v(x). 

Suppose 

(4.4) 

defines a point symmetry of S{x, u, v}. XS induces a nonlocal symmetry (potential symmetry) 
of R{x, u} if and only if (es, 77’) depends essentially on v; otherwise, Xs projects onto a point 

symmetry of R{x, u}. 
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Suppose 

(4.5) 

defines a point symmetry of R{x, u}. Then, XR yields a nonlocal symmetry of Six, u, v} if and 

Only if Xs = XR + <( x, u, v)& defines no point symmetry admitted by S{x, u, v} for any choice 

of C(x, u, v); otherwise XR induces a point symmetry of S{x, U, v}. 

For the rest of this section, we sssume that RI = Rl{x, v} is a related subsystem. 

Suppose 

XRI = tf%,vk& + cR1(& 
z 

defines a point symmetry of Rl{s,v}. Then XR~ yields a nonlocal (potential) symmetry of 

R{x, u} if and only if either (1) CR’ (x, v) depends essentially on u, or (2) CR1 3 tR1 (x) and 

XR = CR1 (xl& + 77(x, u> au 2 defines no point symmetry of R{x,u} for any choice of n(x,u); 

otherwise XR~ induces a point symmetry of R{x, u}. XR~ yields a nonlocal symmetry of S{x, u, v} 

if and only if Xs = XR~ + r](x, u, v) & defines no point symmetry admitted by S{x, u, v} for any 

choice of 7(x, u, v); otherwise Xnl induces a point symmetry admitted by S{x, U, v}. 

In turn, a point symmetry Xs of S{x,u,v}, given by (4.4), induces a symmetry of R~{x,v}, 

which is not an admitted point symmetry of Rl{x, v}, if and only if (ts, Cs) depends essentially 

on u; otherwise Xs projects onto a point symmetry of Rl{x, v}. A point symmetry XR admitted 

by R{x, u}, given by (4.5), yields a symmetry of Rl{x, v} which is not a point symmetry admitted 

by Rl{x, v} if and only if either 

(1) cR(x, u) depends essentially on u, 

(2) ; z CR(x), and XR1 = <p(Z) s at. + [(x, v)& defines no point symmetry admitted by 

RI{x, v} for any choice of C(x, v); otherwise XR induces a point symmetry of Rl{x, v}. 

5. FURTHER EXTENSIONS; TWO CONJECTURES 

One can extend the process described in the previous section to determine “potentially” more 

nonlocal symmetries admitted by given systems of PDEs. Let v(l) = v, S(l) = S(‘){x, U, v(l)} = 

S{z, U, v}. Suppose one of the PDEs of S(l) can be replaced by an equivalent conserved form, 

leading to the introduction of n - 1 more potential variables v(~) and another auxiliary system 

SC21 = S(2){x, u,v@),v(~)} of m + 2(n - 1) PDEs with m + 2(n - 1) dependent variables. Cor- 

respondingly, there may be more related subsystems of PDEs and further nonlocal symmetries, 

contact symmetries, and Lie-FGcklund symmetries could arise for R{x, u}, S{z, u, v} and previous 

subsystems. 
Suppose we can continue this process to some auxiliary system S(N) = S(N){x, u, v(l), ~(~1,. . . , 

dN)}. At any given step, the union of point symmetry groups for all subsystems will not neces- 

sarily yield a group-in particular commutation relations may not exist connecting infinitesimal 

generators of point symmetries for different subsystems. However, all known calculations to date 

lead to the following two conjectures which, if correct, result in a “complete” algorithm for finding 

nonlocal symmetries through conserved forms. 

CONJECTURE 5.1. 

The process of obtaining auxiliary systems S(l){x, u, v(i)}, S(2){x, u, v(l), v(~)}, . . . , StN) 

1 2, u, v(i), v(2), . . . ) v(~)} terminates at some finite N where either 

(1) ScN) has no conserved forms equivalent to one of its m + N(n - 1) PDEs (An equivalent 

conserved form has the property that its replacement of one of the PDEs of a system leads 
to no change in the solution set of the system with such a replacement) or 

(2) StN) can be linearized by some invertible point transformation. 

In particular, StN) has point symmetries which satisfy the criteria of Theorems 2.1, 2.2. 
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CONJECTURE 5.2. 

The group of all 

symmetries of any 

point symmetries of ScN) yields, through projections, the groups of all point 

subsystem of ScN) including R{x, u}, S(l), St2), . . . , S(N-l). (In other words, 

one only needs to find the point symmetries of ScN) in order to determine all nonlocal symmetries 

of the various related subsystems obtained through the use of conserved forms.) 

6. EXAMPLES 

We now seek nonlocal symmetries for the three examples considered in Section 3. 

EXAMPLE 1. NONLINEAR DIFFUSION EQUATION. 

R{z, U} is given by the conserved form (3.3). Then, system S(i) = S{x, u, V} is given by 

v, = u, (6.1a) 

vt = (Jq4)5. (6.lb) 

The conserved form (6.lb), with the introduction of potential w, yields system Sc2) = 

T(z, U, v, w} given by 
21, = u, 

w = L(‘11), 03.2) 

wz = v. 

The subsystem emanating from (6.la,b) is Ri{x, v} given by 

vt = (Uvz))z. (6.3) 

Subsystems emanating from (6.2) are 

Sl{X, v, w} : w, = 0, 

w = q%J; (6.4) 

S2{X,U,W} : Wt = L(u), 

w,, = u; (6.5) 

Ss(2,w) : Wt = L(t&). (6.6) 

It turns out, that for any choice of diffusion function K(u) = L’(U) # const., the group of 

point symmetries of T{z, U, v, 20) yields, through projections, the point symmetry groups of all 

subsystems: R{x, u}, S{ x,21, v}, RI{x, v}, Sl{x, v, w), S2{X, f4 w), S3{X, w). In ptiicul=, 

modulo scalings and translation in U, the group classification of T{s, U, v, w} is as follows: 

(1) K(u) arbitrary: 

XT=:, x;=g, x:=x& a 
2+2w 

a 
+2k&+Vdv g&. 

(All project to point symmetries for each subsystem.) 

(2) K(u) = z?: 

T T T Xi,Xs,X3,X T 

(All project to point symmetries for each subsystem.) 

(3) K(U) = u-4/s: 

XT, Xg, Xg, Xz with X = -i, 28 x:=x dx - - 3zu; + (w -XV); fxw-&. 
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(4 

(5) 

(6) 

(7) 

G. BLUMAN 

(XF projects to a point symmetry of R{x, u}, S 1 x,u, w), Sz{z, u, w}, S3{x, w}; X5 in- { 

duces a nonlocal (potential) symmetry admitted by S{x, u, w} and a nonlocal symmetry 

of J&(x, ~1.) 
K(U) = 21-V 

~‘f,~T,X%c with 
2 a a a 

X = -3,Xz = w- - 3uv-- - v2-. 
dX au C3V 

(Xz projects to a point symmetry admitted by Si{x, v, w}, Ss{x, w}; Xz induces a non- 

local (potential) symmetry of R{x, u}, S{x, u, w}, a nonlocal symmetry of Rl{x, w}, and a 

Lie-Backlund symmetry of Sz{x, u, w} since v = w,.) 

K(u) = i&r: 

T T &,X2,X F 
a 

z. 

(XT projects to a point symmetry of S{x, u, u}, Rl{x, v}, Sl{x, w, w}; XT induces a non- 

local (potential) symmetry of R{x, u}, a Lie-Backlund symmetry of Sz{x, u, w}, and a 

Lie-Backlund symmetry equivalent to a contact symmetry of Ss{x, w}.) 

K(u) = &e XarctanU, X # 0: This case admits four infinitesimal generators exhibiting the 

same symmetry properties for the various subsystems as when X = 0. 

K(u) = 2~~~: Here T{x, u, w, w} admits 

xz = F’(v& - U2F2(?J, tg + [vF’(v,t) - F3(u,t)l& 
where 

aF3 

dv 
= F1, 

(6.7) 

Prom the form of symmetry (6.7), it follows that it has the same symmetry properties for 

the various subsystems as XT. In addition, (6.7) satisfies the criteria of Theorems 2.1 and 2.2 

for systems T{x, u, v, w}, S{x, u, v}, RI{x, v}, &{x, v, w} and the extension of these theorems 

to the contact symmetries admitted by Ss{x, w}. Hence, using Theorem 2.2, and its extension 

to scalar PDEs, one can construct invertible mappings which linearize these five systems and 

non-invertible mappings which linearize R{x, u}, Ss{x, u, w}. One can check that Conjecture 5.1 

holds for R{x, u} with N = 2 (N = 1 when K(u) = um2 ) and that Conjecture 5.2 holds for 

all six subsystems related to SC21 = T{x, u, v, w}. (Note that if the original system had been 

R~{x,v}, then the only conserved form (6.3) would lead to the terminating potential system 

&{x, w,w}. Again, one can check that Conjectures 5.1, 5.2 hold for all forms of K(u) with 

N = l,S(‘) = Si{x,~,w}. Here subsystems are R~{x,w},&{x,~}.) 

EXAMPLE 2. REACTION-DIFFUSION EQUATION. 

Here R{x, u} is given by (3.5). Correspondingly, we obtain systems S(r) = S{z, u, v}: 

vz = u, 

( > (6.8) 
vt = - i+bx2 ( 

z 

and St2) = Z-(x, u, v, w}: 

Wt = - (6.9) 
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EXAMPLE 3. GAS DYNAMICS EQUATIONS. 

Now suppose R{x, u} = R{ z, v, p, p} is represented by system (3.7a-c). Then conserved forms 
(3.7a,b) yield systems SC’) = S{x, ‘u,P, p, V}: 

v, = P, 

vt = -p, 

(P>t + (P + PV2), = 0, 
(6.15) 

P(Pt + VPz> + B(P, P)% = 0, 
and Sc2) = T{x, w, p, p, V, W}: 

v, = P, 

v,=-pv, 

wz = PJ, (6.16) 

wt = -(P + pv2), 

Apt + ~Pd + B(P,p)% = 0. 

In this case, if B(p,p) is arbitrary, not all possible subsystems yield systems of PDEs. The ones 
that do are: 

Rl{x,~,p,W, R~{x,~,P,~}, Rs{z,p,V}, S { 1 z~u~P~v~W, Sz{X,P,P,P,W), S3{X,P,P,v,W), 
S4{z, ‘u, P, K W), Ss{z,P,P, W), Ss{z, V,P, W), S,{z,p, v, W}, Ss{x, 21, p, W}, Sg{x,p, v, W}, 
SlO{G UT v, ?I, Sll{X, v, W), 5i2{5,P, W), &3(x, p, W}, S14{2, v, W}. 

If B 5 1, T{z, v,p, p, V, W} admits 

xg =F$ +F2$ -F3; +4; +p&, 
where (Fi = Fi(t, V)} satisfies the linear system 

aF1 F2 
at= 9 

m1 =1;‘3 

dv ’ 

F4 = F3, (6.17) 

aF5 

dv 
= F2, 

aF5 F3 

dt= * 

Consequently, from the form of (6.17), and then using Theorems 2.1, 2.2, one can invertibly 

linearizesystemsT,S,R~,R2,Rs,S1,Ss,S4,S~,S9,S1o,SllwhereaSR,Sz,Ss,Ss,Ss,S12,S1srS14 
are non-invertibly linearized. 

For example, from the form of (6.17) and then application of Theorem 2.2, one can show that 
Rz{x,p, o, V}, given by the system of PDEs 

v, + WV, = 0, 

Vz(vt + wwu,) + Pz = 0, 

v,(Pt + VPZ) + % = 0, 

with p = V,, is invertibly transformed by the mapping 

Zi =t, 

Z2 = v, 

UJ1 =x , 

w2 =w, 

w3 = -p, 
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to the linear system 
dw’ 2 

-=w 
at ’ 

dW1 
y& = w3, 

dw2 dw3 
dt=dv’ 

7. DISCUSSION 

The problem of finding useful conserved forms to determine potential symmetries for given 

systems of PDEs will be discussed in a future paper. Attempts to find useful conserved forms 

through a change of coordinates are useless [33]. Moreover, one can show that most conservation 

laws (conserved forms) arising from invariance (Noether’s theorem) are of no value to obtain 

useful potential systems. 
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