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Nonlocal symmetries are obtained for Maxwell's equations in three space—time
dimensions through the use of two potential systems involving scalar and vector
potentials for the electromagnetic field. Corresponding nonlocal conservation laws
are derived from these symmetries. The conservation laws yield nine functionally
independent constants of motion which cannot be expressed in terms of the con-
stants of motion arising from local conservation laws for space—time symmetries.
These nine constants of motion represent additional conserved quantities for the
electromagnetic field in three space—time dimensions.1997 American Institute

of Physics[S0022-24887)00706-9

I. INTRODUCTION

Conservation laws are important in the study of evolutionary partial differential equations
(PDES9 since they lead to constants of motion for the time evolution of field variables. The
familiar conservation laws such as energy, momentum, and angular momentum all involve local
expressions in terms of given field variables. Conservation laws given by nonlocal expressions can
yield additional constants of motion not obtainable from local conservation laws. As an example,
we have recently derived nonlocal conservation laws arising through nonlocal symmetries for the
scalar wave equation in two space—time dimensions with a spatially variable wave speed. For
physically interesting wave speeds these conservation laws yield new constants of motion which
cannot be linearly expressed in terms of the constants of motion yielded by local conservation
laws arising through any local symmetries.

The nonlocal conservation laws for the two-dimensional wave equation were obtained through
a general identitywhich generates conservation laws from symmetries, local or nonlocal, admit-
ted by any given self-adjoint system of PDEs. For local symmetries, the identity yields the same
conservation laws as those generated through Noether’s theorem, whereas for nonlocal symme-
tries, the identity yields additional conservation laws.

The nonlocal symmetries for the two-dimensional wave equation arise by a systematic method
which uses potentials as a starting p&ifftThe method can be extendedany PDEs in two or
more dimensions to find nonlocal symmetries systematically in terms of local symmetries of
associated potential systems. In three and higher dimensions the potentials have a natural gauge
arbitrariness. To obtain nonlocal symmetries in this case, we show that the associated potential
systems must be augmented by gauge constraints.

In this paper we focus on Maxwell's equations in three space—time dimensions. Through the
use of two self-adjoint potential systems, we obtain gauge-dependent nonlocal symmetries of
Maxwell’'s equations and derive corresponding nonlocal conservation laws which lead to six new
constants of motion. One system is given by the wave equation for a scalar potential, and the other
system involves an equivalent vector wave equation for scalar and vector potentials together with
a Lorentz gauge. In terms of these potentials the conservation laws have an essential nonlocal
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dependence on the electromagnetic field. The new constants of motion arising from these conser-
vation laws are shown to be functionally independent of the seven constants of motion arising
from the local conservation laws for space—time symmetries of Maxwell's equations.

In Sec. Il we present the basic formulation for obtaining nonlocal symmetries for systems of
PDEs by use of potential systems. Nonlocal symmetries are then found for Maxwell's equations.
Corresponding nonlocal conservation laws are derived in Sec. lll. The functional independence of
the associated constants of motion is discussed in Sec. IV. In Sec. V we summarize the main
results of the paper, with three tables presenting the symmetries, conservation laws, and constants
of motion for Maxwell's equations. Some concluding remarks expanding on the results are made
in Sec. VI.

II. BASIC FORMULATION

Consider a system of PDEs given by divergence expressions

G,(x,u,u,....u)=D;H (x,u,u,..., u )=0, o=1,...M, (2.3
1 K 1 K

for N field variablesu=(ul,...,uN) on a space of three independent variabtes(x®,x*,x?).
Hereu denotes allth-order derivatives ofi with respect to«, andD; denotes total differentiation
with rJespect toax', wherei=0,1,2. We use the index notatim:ﬁl___ij:Dil-~-Dijuf for differen-
tiations of u”, wherer=1,...N, i;=0,1,2, andJ=1,2,... . Wealso use the convention that
summation is assumed over any repeated index in all expressions. All lower case latin indices run
over 0,1,2 unless otherwise stated.

It is important to note that any given linear system of PDEs can be transformed to the form

(2.4
Definition 2.1: The Frehet derivative associated with system (2.1) is the matrix linear op-
erator
G, G, G,
.fa.p—W-i-a—uf) i+"'+mDil"'DiK. (22)
1 K

Definition 2.2: A symmetry admitted by system (2.1) is characterized by an infinitesimal
generator

X=n*dl Ju*, (2.3
where »* satisfies
T epm’=0 (2.9
for every solution (x) of system (2.1).
Definition 2.3: A local symmetry admitted by system (2.1) is a symmetry with an infinitesimal

generator of the form

in“(x,u,llj,...,lpj)a/&u”, (2.5

such that, for each value of, xp* depends on w,...,u only through x),u(x),...,u(x) evalu-
ated at x ! P ! P

Definition 2.4: A point symmetry admitted by system (2.1) is a local symmetry with an infini-
tesimal generator of the form
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X=(ak(x,u)— & (x,u)u)al u*, (2.6)

wherea* and ¢ depend only on x and.u

Definition 2.5: A nonlocal symmetry admitted by system (2.1) is a symmetry with an infini-
tesimal generatoiX= »*d/du* not of the form (2.5), i.e.yp* has other than just a local depen-
dence on (x) and derivatives of (X) to some finite order

All local symmetries of systert2.1) can be determined by Lie’s algorithit.No correspond-
ing algorithm exists to finall nonlocal symmetries of syste(@.1).

We now present a general method to find special classes of nonlocal symmetries, called
potential symmetriesof system(2.1).

Through Eq.(2.1) we introduce 3/ auxiliary potential variables=(vi1,...,vi'v') and form a
potential system given by PDEs

e

H,=€e*Djy, o=1..M, (2.7
where €¥ is the antisymmetric symbol witle®?>=1. The solution space of systef@.l) is
embedded in the solution space of the potential sys&i. In particular, if(u(x),v(x)) satisfies
system(2.7), thenu(x) satisfies systert.1); if u(x) satisfies syster(2.1), then there exists some
nonuniquev (x) such thaiu(x),v(x)) satisfies systertR.7). This nonuniqueness is represented by
the invariance of systerf2.7) under the transformations

vg— v+ Dyod?” (2.9

for arbitrary functions¢?(x), o=1,... M.
Definition 2.6: A potential symmetry admitted by system (2.1) through potential system (2.7)
is a local symmetry of system (2.7) that does not project onto a local symmetry of system (2.1).
From this definition it immediately follows that a potential symmetry of syster) is a
nonlocal symmetry. In particular, suppose

X=n*(X,u,U,...,u,v,v,...,v)dlJu*+ {(x,u,u,....uv,v,...p)dl v, (2.9
1 P 1 Q 1 P 1 Q

is a local symmetry of potential systef®.7). Through Eq.(2.7), »* and ! depend orv only
through its symmetrized derivatives, since all antisymmetrized derivativesamid their differ-
ential consequences can be eliminated in terms ahd its derivatives. Consequently, ads
determined nonlocally in terms of from Eq.(2.7), the symmetry2.9) defines a potential sym-
metry of system(2.1) if and only if at least one component af* depends essentially an or
symmetrized derivatives af.

For the sequel we now assume that the given sysfef is determinedn the sense that it
does not admit any symmetries that involve an arbitrary functioallahe independent variables
x. We see immediately that the potential sysi@) is, in contrast, not determined since it admits
gauge symmetries

X 4= (D;$"(x))al dv?, (2.10

arising from the natural gauge freeddth8).

The following theorem now shows that unless gauge constraints are introduced, the potential
system(2.7) cannot yield potential symmetries of the given sysi@nl).

Theorem 2.7: Every local symmetry admitted by the nondetermined potential system (2.7)
projects onto a local symmetry of the determined system (2.1).

Proof: Suppose syster2.7) admits a symmetry2.9). Then the system must also admit the
commutator symmetryX,, ,X] which projects to the symmetry
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X'= FDi¢ (X)+—O.DkDi¢ (X)+"'+O_—
v I (i) 90 ik, -k
1

DkQ‘ ° e Dlei ¢U(X) (9/(7UM
Q)

(2.11

admitted by systent2.1), wherevj ..., =Dy, '+-Dyp{ denotes differentiations of/, with o
=1,...M, andJ=1,2,..., andound brackets denote symmetrization of the enclosed indices.

Since system(2.1) is assumed to be determined, the symmetry cannot depend on
¢?(X). Hence

ant*  Inp* ant

(9Uio- &U;’i'k) t?UETikl,,,k

) (2.12
)

and thus»* has no dependence onand its symmetrized derivatives. Consequently, the symme-
try (2.9 projects onto to a local symmet(®.5 admitted by systeni2.1). O

From Theorem 2.7 it follows that in order to use potential syst2r as a means to obtain
potential symmetries of systerf2.1) we must augment systeif2.7) with auxiliary constraint
equations relating the potentials without destroying the embedding of the solution space of system
(2.1) in the solution space of the augmented system. There is considerable freedom in choosing
suchgauge constraints.

Gauge constraints to consider include:

(1) algebraic constraints, such as tieenporal gauge

v5=0, o=1,...M (2.13
or axial gauges
n'v’=0, o=1,...M (2.14

wheren?! andn? are components of a fixed spatial vector afé=0, and
(2) differential constraints, such as tdévergence gauge

Diwi+D,w5=0, o=1,..M (2.15
or the Lorentz gauge
—Deg+Dwi{+Dyw5=0, o=1,..M (2.16

The gaugeg2.13—(2.16) preserve the embedding property of the solution space of system
(2.1 in the solution space of the potential systé7) augmented by any one of these gauge
constraints.

For any such augmented system there are equivalent subsystems involving a subset of the
(u,v) variables whose solution spaces each yield the complete solution space of §<stem
Examples of such equivalent subsystems naturally include the given sg&tBrand augmented
systems arising from algebraic constraints, and also include any systems only involving potential
variables arising in algebraic and differential consequences of a given augmented system. Defini-
tion 2.6 extends as follows to such equivalent subsystems: A potential symmetry admitted by
system(2.1) through an equivalent subsystem is a local symmetry of the equivalent subsystem that
does not project onto a local symmetry of systeir).

Most importantly, equivalent subsystems are useful since:

(1) The solution space of any equivalent subsystem yields the complete solution space of system
(2.2) and thereby inherits all symmetries of systéil);
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(2) Each equivalent subsystem provides a means of determining nonlocal symmetries of system
(2.2) in terms of local symmetries, which can be found by Lie’s algorithm.

A. Scalar wave equation
For later use, we first consider the scalar wave equation

in three space—time dimensions, whghe= gjj=diag(—1,1,1) is a diagonal Lorentz metric on the
space of independent variables: (x°,x*,x?). Here Eq.(2.17) is already of the form(2.1) with

Hi=g'Dju. (2.18

The corresponding potential systétn7) of three PDEs involving the potentials= (vg,v1,v5) is
given by

g''Dju=€"*Djuvy. (2.19

To obtain potential symmetries of the wave equatipri?) we consider augmented systems
arising from Eq.(2.19 through specific gauge constraints. No potential symmetries are yielded by
point symmetries of the augmented system arising through algebraic gauges of the form

n'v;=0 (2.20
for any components'(x).° In contrast, the augmented system arising through the Lorentz gauge
g'Div;=0 (2.22)

does yield potential symmetri@sn particular, the augmented system consisting of E49 and
(2.2 admits the following six point symmetries:

X=(a(x,u,v) = &(X)Dju)dldu+ (B;(x,u,v) — E(X)D;v;)dl Jv; . (2.22

Class I(three of conformal type

=Ngx*x' — 2\ kg xIx!, (2.233
a=— 3D u+ (D énvy, (2.23h
Bi=— 35 Dy&v;+ 39¥ (D &)vi+ 10k ™(D 1 Emu, (2.230

where{\'};_q , are arbitrary constants, agg=gé'.
Class Il (three of duality typg

{=0,
a=Ng "y, (2.24
Bi=Niu+ N\ i "M,
where{\;};_o 1, are arbitrary constants.

These two classes of point symmetries yield six potential symmetries of the wave equation
(2.17 sincea(x,u,v) depends explicitly on the potentials In Class | we call the symmetries
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conformal typesince they project to conformal transformations in the space of independent vari-
ablesx=(x%x*,x?). In Class Il we call the symmetrietuality typesince they represent rotations
on the space ofy,v;) variables.

All other nontrivial point symmetries admitted by the augmented sysd® and (2.21)
project onto point symmetries of the wave equation. For later reference we now list all the
nontrivial point symmetries admitted by the wave equation:

(i) three translations

X=(—\D;u)dldou (2.25

for arbitrary constant§A'};_q 1 »-
(i) one rotation and two boosts

X:(—)\jgmeiijIDiU)&/ﬂU (226)

for arbitrary constant$h j}i—q 1 »-
(iii) one dilation

X=(—x'D;u)dldu. (2.27)
(iv) three conformal transformations
X=(— § uDy&~&Dju)aldu, (2.28

where&X is given by Eq.(2.233.

B. Maxwell's equations

We now consider the source-free Maxwell's equations in three space—time dimensions

DoE!=D,B, (2.293
D,E?=-D;B, (2.29h
D,B=D,E*-D;E? (2.299
D,E+D,E?=0, (2.299

whereE! andE? are the components of the electric vector field &nig the magnetic scalar field.
These field equations represent the components of the tensorial equations

DiF!=0, (2.30
DiFij; =0,
for the antisymmetric electromagnetic field ten§dr= —FI' and F;; = gixg; F¥!, with
E'=F% FE’=F% B=F"% (2.31

whereg;;=g'! is the Lorentz metric on the space of independent variabtex’,x*,x?), and
square brackets denote antisymmetrization of the enclosed indices.
Here the field equation®.30) are of the form(2.1) with
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Hi :FiO,Hi :Fil,Hi :FiZ,
' ’ ’ 2.32

H|4: _ gOiF12+ gliFOZ_ g2i FOl: %Eiijjk ’

for ul=E?, u?=E?, andu®=B. The corresponding potential systét?) of 12 PDEs is given by

Fi=e“D,w],
(2.33
EiijjkzeijijWk,
involving the 12 potentials
v|1=W|0, v|2=W|1, v|3=W|2, v|4=W|. (2.39

In terms of the potential&2.34) the potential systen2.33 admits the gauge symmetries
X 4= (D¢ (X))l aw] + (D (x))al ow (2.39
for arbitrary functions{ ¢°(x), ¢*(x), $2(x),#(x)}. Since Maxwell’'s equation&2.30 are a de-
termined system, Theorem 2.7 shows that in order to obtain potential symmetries of Maxwell’'s

equations we must augment the potential system by choosing gauge constraints.
We now impose a Lorentz gauge on and an algebraic gauge ov| as follows:

w] — 3wkl =0. (2.37

From Eq.(2.37 it follows that the nine potentialsv{ can be expressed in terms of a single
potentialw through

wl= 18w, (2.38

Whereﬁf is the Kronecker symbol. As a result, from the augmented system given byZE33,
(2.36, and(2.38, we arrive at the following equivalent system of seven PDEs:

Fii=— 1 kD, (2.393
IKE = €D W, , (2.399

in terms of the electric and magnetic fielf§!,E?,B} and the potential§w,wg,w;,w,}. The
residual gauge freedom in this system is given by

W— W+ const, (2.403
where ¢ is an arbitrary solution of the wave equatigHDiquszo.
With the imposed gauge constraints, one can show that the sy2t88his determined. Most

importantly, the solution space of this system yields the complete solution space of Maxwell’'s
equationg2.30), as shown by the following more transparent way of arriving at sys&89).
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Since we are in three space—time dimensions, the antisymmetry of the electromagnetic field
tensor allows it to be expressed as

Fil = lkF) (2.41)
in terms of a dual field vectd%m with
Fo=B, F,=-E? F,=E! (2.42
Then Maxwell’'s equation§2.30 respectively become
€*D,F\, =0, (2.433
gD ,F=0, (2.43H

for the dual electromagnetic fielg,. Hence from the curl form of Eq2.433 it directly follows
that the dual electromagnetic field is the gradient of a scalar, which leads to the three PDEs
(2.39a. Similarly, the divergence form of E§2.43hH means that the dual electromagnetic field is
the curl of a vector, which directly gives the three POES39h.

Rather than continue to consider systéi89 we now algebraically eliminate the electro-
magnetic field tensor from Eq$§2.399 and (2.39h and obtain the equivalent subsystem of four
PDEs

gi|D|W: GijijWk, (244a
9''D;w;=0, (2.44Dh

in terms of the four potentialéw,wy,w,,w,} alone. From the differential consequences of Eq.
(2.443 we note thatwv satisfies the wave equation

g''D;D;w=0. (2.45

System(2.44) is identical to the augmented potential system given by Efj39 and(2.21)
for the wave equatiori2.17), under the correspondence~w andv;—w;. Through this corre-
spondence we now obtain point symmetries of syst@m4) corresponding to the six point
symmetries(2.22—(2.24 admitted by systeni2.19 and(2.21). We show that these point sym-
metries yield six potential symmetries of Maxwell's equati¢®s30.

The induced symmetries of E¢R.30 arising from point symmetries of E¢2.44) have the
form

X:%i(X1E01ElIE21W1WO1W11W2)(?/0Ei (24®

in terms of the dual electromagnetic fieE'd(, where all derivatives ofv and antisymmetrized
derivatives ofw, are expressed in terms Bf, through Eqs(2.393, (2.39b, and(2.41). From the
point symmetries(2.22—(2.24), we obtain two corresponding classes of induced symmetries

(2.406:
Class I
7=— 3D\ &F— %gkl(D[iék])El — &D\F— £K™(DDy )W
+3(DiDEYW— 3 (Dy&)Dw;) , (2.47)

where X is given by Eq.(2.233, and &,=g,¢'.
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Class Il
7= — B0 €F i+ gD gw)y), (2.48

where{\;}j_o 1. are arbitrary constants.

In both of these classes the components;ohave an essential dependence on the potentials
w andw; . Since these potentials are determined nonlocally in terms of the electromagnetic field
from Egs.(2.393, (2.39h, and(2.41), we see that each of the six induced symmet(z46)—
(2.48 is a potential symmetry of Maxwell's equatiof.30.

One can show that no other point symmetries of syst2d¥) yield potential symmetries of
Maxwell's equationg2.30.

[lI. NONLOCAL CONSERVATION LAWS

In Ref. 1 we derived an identity which generates conservation laws from symmetries admitted
by any given self-adjoint system of PDEs. Given a linear homogeneous self-adjoint system of
PDEs for field variablesi=(u?,...,uM),

Go(X,U,U,... u) =G, (X)UP+ Gl ()uf+---+ G 'K(x)uf . =0, o=1,..N, (3.
1 K 1 K

then for any nontrivial local or nonlocal symmet(g.3) admitted by systent3.1) we have a
corresponding conservation law on solutian),

D;®'[u, »]=0, (3.2
where
®'[u, 9]=~ Hu"G,, 7"+ (U7 —uD (G, n")+ -+ (U .+
+(=1)* WDy Dy, )(GL Y )b+ Hn G, U+ (D 7"~ 77D;) (G, u")
4Dy Dy 7 (=D Dy Dy (G ), (33

For each symmetry admitted by systé&l) we can obtain additional conservation laws through
any self-adjoint equivalent system related to syst@m), with expression(3.3) applied to the
corresponding induced symmetry of the equivalent system.

In particular, for symmetries of the wave equati¢@hl?), we can obtain conservation laws
from the wave equation itself as well as from its equivalent potential system given byZEt.
and(2.21), since both Eq2.17 and Eqs(2.19 and(2.21) are self-adjoint systems of PDEs. This
leads to two conservation laws for any admitted symm¥try»d/ Ju of the wave equatio(®2.17).

We obtain

®'[u, 7]=g" (uD; 7~ 7D;u) (3.4

directly through Eq(2.17), and using the induced symmet= 7d/du+ 5;d/dv; of Eqgs.(2.19
and(2.21) we obtain

®'[u,7]=g"(un;—vjn) — € v;m. (3.5

Now suppose we are given a linear homogeneous sy@elinthat is not self-adjoint. If there
exists an equivalent system that is self-adjoint, then any of its admitted symmetries yield conser-
vation laws for the given syster(8.1). Thus, since every such equivalent system inherits all
symmetries of the given system, we can obtain corresponding conservation laws for any symmetry
of the given systen(3.1).
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Maxwell’'s equationg2.30 and its potential systert?.33 are not self-adjoint. However, the
two equivalent system@.44) and(2.45 are self-adjoint. Hence we can use both systé?né4)
and (2.45 to obtain conservation laws for any symmetry, local or nonlocal, admitted by Max-
well's equations.

Most importantly, since the equivalent systef@s45 and (2.44) for Maxwell’s equations
correspond respectively to the wave equaft@ri?) and its augmented potential system consisting
of Egs.(2.19 and (2.21), all conservation law$3.4) and (3.5 obtained for symmetries of the
wave equation yield conservation laws for the induced symmetries of Maxwell's equations
through this correspondence.

Definition 3.1: A conservation law of system (3.1) is a local conservation law if and only if, on
solutions of system (3.1) it has the fOI‘mCDj(X,U,Llj,...,ll:I)=O such that for each value of,x

&' depends on u only through(x), u(x),...,u(x) evaluated at x Otherwise a conservation law
1 L
of system (3.1) is a nonlocal conservation law.

A. Nonlocal conservation laws for the wave equation

We now obtain conservation laws for the wave equati@ri?) from the two classes of
nonlocal symmetrie$2.22—(2.24). Each nonlocal symmetry yields two conservation ld®@<)
and(3.5) derived from the wave equation and its augmented potential system. These conservation
laws are nonlocal as shown by their explicit dependence on the potantials

1. Conservation laws derived from the wave equation

Class I: The nonlocal symmetries of conformal tyf@23 and the conformal point symme-
tries (2.28 both project to the same conformal transformations on the space of independent
variablesx. To obtain conservation law@8.4), we use symmetries given by subtracting the point
symmetrieg2.28 from the nonlocal symmetrie@.23. This leads to

O'[u,7]= _giju(%(DjDkfk)U_ %Eklm((Dlefm)Uk"‘(D|§m)D(jUk))_ %QKI(D[kfj])DN)
+9"Dju(EDu— 14 (D ém)vi), (3.6

where&; =g &, & is given by Eq.(2.233, and (,v;) is any solution of Eqs(2.19 and(2.21).
Class Il: Here we directly use the nonlocal symmetries of duality type24 to obtain
conservation law$3.4). This yields

®'[u, 7]=Ng"g" (UD(jv iy —viDju) — 3\ €UD,u, 3.7
where); is an arbitrary constant andi v;) is any solution of Eqs(2.19 and(2.21).

2. Conservation laws derived from the augmented potential system
Here we use the nonlocal symmetrig23 and(2.24) directly to obtain conservation laws

(3.5.

Class I
®'[u,7]=—(g'u+ €™ v ) (E'Dvj)+ 391 € ™EmD nU— 39" ™(Dméj))vi — 1951 € ™ (Dmén)U)
+0'v(EDyu— 2€™(D Emvi), (3.9

where&;=g; &, & is given by Eq.(2.233, and (,v;) is any solution of Eqs(2.19 and (2.21).
Class II:

@i[u, 77]=gij)\j(u2+ gklvkv|)+ZEijk)\jUkU_Zgijgkl)\kUjU| , (39)

where\; is an arbitrary constant andiv;) is any solution of Egs(2.19 and(2.21).
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B. Nonlocal conservation laws for Maxwell's equations

For Maxwell's equation$2.30, we now derive corresponding conservation laws from the two
classes of nonlocal symmetri€a46—(2.48. The conservation laws are obtained directly through
the conservation law$3.6)—(3.9) for the wave equatior(2.17) by using the correspondence
(u,v))—(w,w;) and eliminating all derivatives ofv as well as antisymmetrized derivatives of
w, in terms of the dual electromagnetic fieffg through use of expressiorn2.393 and(2.39H.
This leads to conservation laws which are nonlocal as shown by their essential dependence on
w andw; .

1. Conservation laws derived from the corresponding the wave equation for w
Class I

P[F,7]=— g”'W(%gk'(D[kéu)E. — 7€™(DD £m) Wi+ 5D D&YW — 3€K™(Dy ) D (W)
+gIF A& F it 3D Emw), (3.10

where¢j =g &, & is given by Eq.(2.233 and (Ek,w,wj) is any solution of systenf2.39).
Class Il

(Di[E,';]]:)\|gklgij(2WkEj +WD(jWk))+)\j€ijkWEk, (31])
where\; is an arbitrary constant anciz(,w,wj) is any solution of systen2.39.

2. Conservation laws derived from the corresponding equivalent system for (w,w))
Class I

®I[F,7]=(*wy + g''w)(g;, €MEF ot 39'"™(Dméj) Wy
+ 301 €™(Dnén)W— €D W) — glw; Q&F+1MDiEwY),  (3.12

where¢;=g; &, & is given by Eq.(2.233, and Q?k,w,wj) is any solution of systen2.39).
Class Il

@i[E,"ﬁ]=g‘jAJ(W2+ gwiwy) + 2N wiw — 297 g owwy (3.13
where\; is an arbitrary constant ancif(,w,wj) is any solution of systen2.39.

IV. NEW CONSTANTS OF MOTION

For the sequel we use the notatigh=t, x'=x, andx?=y to denote time and space vari-
ables, respectively.
Given a conservation laB.2) for a linear systen{3.1), we let

Cll= | @%u,ylaxay @2

evaluated for solutiona= (u?,...,uN) of the system. Iu(x,y,t),...,uN(x,y,t) have appropriate
asymptotic properties in terms of polar variabtes x>+ y? and §=arctany/x asr— o, then

dCl 7]

B im F”(cbl[u,n] cosh+ D[, ]sing)d6=0, 4.2
t 0

r—o

from which it follows thatC[ 7] defines a constant of motion for systégl).
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S. C. Anco and G. Bluman: Nonlocal symmetries and nonlocal conservation laws 3519

Definition 4.1: A simple conservation law on solutions u of a linear system (3.1) is a local
conservation law Bd'(x,y,t,u, u ..,u)=0 such that®' depends linearly on u and its deriva-
tives. :

If a given linear systen(3.1) is self-adjoint, then all of its simple conservation laws arise from
expression(3.3) applied to the trivial symmetriexX= n*d/du* where »* is any solution
(ut,...uMy=(7t,....5") of the system. For a linear syste®.1) that is not self-adjoint, we can
obtain its simple conservation laws by finding all factors for the system as well as for differential
consequences of the system, where the factors satisfy the adjoint of the system or differential
consequences of the systérh.

Remark 4.2: Since every linear system admits the scaling symietoy‘d/ Ju”, then with-
out loss of generality all nonsimple conservation lawsblx,y,t,u, u u) 0 for a linear

system can be assumed to havegiven by a homogeneous expressmn m u. u with scaling
degree of at least twb.

In general, for a given linear systef®.1), one is interested in finding nonsimple conservation
laws yielding constants of motion whose forms do not involve explicit solutions of the system.
Such constants of motion, e.g., energy, momentum, and angular momentum, are useful since they
give a priori constraints on all solutions.

Definition 4.3: A constant of motion of a linear system (3.1) is elementary if and only if it can
be expressed in terms of a finite number of constants of motion arising from simple conservation
laws for the system. Otherwise a constant of motion of a linear system (3.1) is nonelementary.

Let C[ 71],...,.C[ 7x] defineK constants of motior{4.1) arising for a linear systeni3.1).

Then any function ofC[ #4],...,C[ 7«] also defines a constant of motion of the system.

Definition 4.4: Suppose [Gy1],...,C[ 7k] are nonelementary constants of motion. Then
C[ 74],...,C[ n«] are functionally independent if and only if each one of the K constants of motion
cannot be expressed in terms of the other K constants of motion together with any finite
number of elementary constants of motion

We now obtain the constants of motion arising from the 12 nonlocal conservation laws
derived in Sec. Il for potential symmetries of the wave equation and Maxwell's equations, and
proceed to show that six of these constants of motion represent new nonelementary functionally
independent constants of motion of the wave equation and Maxwell's equations.

A. Constants of motion for the wave equation
Consider smooth compact support initial data
U(X,y,to)ZQD(X,y)a DOU(X!yytO):Ip(XIy)! (43)

for the wave equationi2.17). This data determines corresponding initial datéx,y,ty) for the
augmented potential system of the wave equation as follows.

The augmented potential system consisting of PBE$9 and (2.21) has a residual gauge
freedom given by

Ui—>Ui+Di¢ (44)

for an arbitraryé(x,y,t) satisfying the wave equatiqgijDiDj¢=O. This freedom allows one to
set

Uo(X,y,to):O, Dol)o(X,y,to):O, (45)
by fixing appropriate initial data fop. Then the PDE$2.19 and(2.21) evaluated at=t, lead to

D1v1+Dov=Dovg=0, (4.6a
J. Math. Phys., Vol. 38, No. 7, July 1997
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3520 S. C. Anco and G. Bluman: Nonlocal symmetries and nonlocal conservation laws

D,ov;—Djvy,=Dgou= 4, (4.6b
Dov1=Djvg+Dou=D,e, (4.60
Dov,=Dyvg—Du=—De. (4.60
From Eq.(4.6a we see that
v1(X,Y,t0) =D2p(Xy), va(X,Y,to)=—Dip(Xy), (4.7

for somep(x,y). Then Eq.(4.6b leads to

y=Ap, (4.8

whereA =(D;)?+(D,)? is the Laplace operator. Hence, from E¢&.7) and(4.8), we have the
initial data

v1(X,y,t)) =D A TH(X,Y),

va(X,Y,t) = — DA T(x,y),

whereA "1 is the inverse Laplace operator.

From the differential consequences of PDRsL9 and (2.2]) it follows that bothu(x,y,t)
andv;(x,y,t) satisfy the wave equation. One can then show that the initial(daBaand(4.9) for
v; along with the initial datd4.3) for u can be evolved by the wave equation to obtain a solution
(u(x,y,t),vi(x,y,t)) of PDEs(2.19 and(2.2) given by

4.9

vo(X,Y,t)=0,
v1(X,y,1)=D,A " IDgu(x,y,t), (4.10
vo(x,y,1)=—D;AIDou(x,y,t).

Expression$4.10 determinev; in terms of an arbitrary solution of the wave equatio(2.17)
with compact support initial data. Hence we have an explicit embedding of the solution space of
the wave equatiofi2.17) into the solution space of the augmented potential system RPRE9
and(2.21). It is useful to note that the time derivativesigfare expressed in terms offrom Eq.
(4.10 by

DOUO(XIylt) =0,
Dov1(X,y,t) =Dou(x,y,t), (4.10
DOUZ(va!t) = Dlu(X,y,t).

We can now evaluate, on solutionsof the wave equatiori2.17), the constants of motion
arising from the nonlocal conservation lay&6)—(3.9) derived through the wave equati@a 17
and the augmented potential system given by PDES9 and (2.21). In order to simplify the
resulting expression$4.1) for the constants of motion it is convenient to isolate divergences
D,S'+D,S? appearing in®%u,»], where the expressions' and S? involve u, Dyu,
A~'Dyu, and their spatial derivatives. The contribution of such divergences to the expressions
(4.1) consists of flux integrals

2w
lim (S cos9+S? sing)dé, (4.12
r—wd 0
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S. C. Anco and G. Bluman: Nonlocal symmetries and nonlocal conservation laws 3521

which can be simplified using the compact spatial suppori @nd Dyu, and the asymptotic
expansion ofA “'Dyu asr— . The flux integral appearing in conditidd.2) can be simplified
similarly.

1. Constants of motion derived through the wave equation

We use tildes to indicate constants of motion derived through the wave eq(atdah
Class t From Eq.(3.6) the three conservation laws correspondingX;_ ; » lead to

5'1=f ,(Dou(xDy +yD,)A™1Dou)dxdy, (4.133

R

Egz—f 2(uD1A*1D0u)dxdy+tf 2(DouDlA*lDou)dxdy, (4.13h
R R

Eg:—f 2(uDzAleou)dxdertf ,(DouD,A " Dou)dxdy. (4.139
R R

In Eq. (4.133, the expression fo[u, 7] can be manipulated into the form of a complete
divergence, yielding a flux integral. Simplifying the integral then leads to

~ 1 2
C'l:E(J'RZDOu dxdy) , (4.19

which is a constant of motion functionally depending on the well-known elementary constant of
motion [ g2Dgu dxdy.

Through similar manipulations, the second terms in E44.3h and(4.139 can be simplified
to flux integrals which are found to vanish when evaluated using the asymptotic expansion of
A~'Dyu. Hence

Egz—f ,(UD; A Dou)dxdy, (4.15
R

6'32—] L(UD,A ™ Dou)dxdy. (4.1
R

The expressions fo![u,»] and ®?[u, ] corresponding to the simplified expressions for
®%u, »] in Egs. (4.19 and (4.1 lead to vanishing flux integrals in conditio@.2) when
evaluated using the asymptotic expansioi\ofDu. Consequently(:'2 andC'3 define constants
of motion for the wave equation. Moreover, due to the compact spatial suppaortaod the
smoothness of both andA~1 in the simplified expressions f@ [ u, 5], it immediately follows
that bothC}, and C} arefinite.

Class It From Eq.(3.7) the conservation law corresponding\tghas®[ u, ]=0, and hence
yields an identically zero constant of motion. The conservation laws correspondixng aod
X\, lead to expressions fab[u, 7] identical to the expressions given by the second integrals in
Egs.(4.13b and(4.139, which each vanish. Hence we obtain two more identically zero constants
of motion.

2. Constants of motion derived through the augmented potential system

We use hats to indicate constants of motion derived through RRE9 and(2.21).
Class I: From Eq.(3.8) the three conservation laws correspondingX;_ ; » lead to

J. Math. Phys., Vol. 38, No. 7, July 1997
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3522 S. C. Anco and G. Bluman: Nonlocal symmetries and nonlocal conservation laws

éllzZJRZ(U(YDl_XDZ)A_lDOU)dXdy' (4.1

é;:f 2y(DouAleou—uz‘)olxdy—ztf ,(UD2A™*Dou)dxdy, (4.18
R R

E:'3=—f 2x(DouA‘lDou—uz)dxdy+2tf 2(uDlA_lDoU)dXdY- (4.19
R R

To arrive at these expressions we manipulab&u, 5] to isolate divergence terms and used the
asymptotic expansion af “!Dyu to find that the integrals contributed by these terms all vanish.
The expressions fob'[u, 7] and®?[u, 7] corresponding teb°[u, 7] in Eq. (4.17 lead to
flux integrals satisfying the conditiot4.2) similar to the ones arising frort, and C5. For
®%u, 7] in Egs.(4.18 and(4.19 the corresponding expressions fbf[u, »] and®?[u, ] have
an explicit dependence am andDu, leading directly to flux integrals satisfying the condition
(4.2. HenceC!, C}, andC} all define constants of motion for the wave equation. Moreover,
from the compact spatial support ofand the smoothness afandA ! in these expressions for
®[u, 5], it immediately follows thaC}, C,, andC} arefinite.

Class II: Here the conservation laws from E@®.9) corresponding ta., and\, respectively
yield

cl'=2c,, cli=2c!, (4.20
which are constants of motion obtained previously.

The remaining conservation law corresponding\toleads to

f L(DoUA™Dou—u?)dxdy+ lim clinr (4.20)
R

r—oe

after some manipulations similar to the ones used to simﬁhfy Since we see that the second
term in Eq.(4.2)) is an infinite constant, we now split it off in order to obtain a finite constant of
motion. One can then show that

cll= f ,(DouA™*Dou—u?)dxdy (4.22
R

satisfies conditiort4.2), since the expressions fdr'[u, 7] and®?[u, 7] arising from Eq.(4.22
have compact spatial support through an explicit dependence bhenceC'3' defines a constant
of motion for the wave equation. Most important%' is finite, due to the compact spatial support
of u andDou together with the smoothness mfand A~ in Eq. (4.22.

B. Constants of motion for Maxwell’'s equations

Now consider solutions of Maxwell’'s equation®.29 for B(x,y,t), E(x,y,t), and
E2(x,y,t) with smooth compact spatial support at any fixedCorresponding solutions of the
equivalent systeni2.49 given by the wave equation for the potentigx,y,t) are determined as
follows.

From the relations given by E¢2.393 it directly follows that

2B=—Dyw, 2E'=-D,w, 2E?=D,w. (4.23
J. Math. Phys., Vol. 38, No. 7, July 1997
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S. C. Anco and G. Bluman: Nonlocal symmetries and nonlocal conservation laws 3523

Through Maxwell’s equatior{2.299, one can then solve E¢4.23 for w in terms of E! and
E2 at any fixedt, up to a constant which can be set to zero by the residual gauge fredtda
in system(2.39. This leads to

W(x,y,t)=2f (E?(x,y’, tydx’ —EYX(x",y’,t)dy"), (4.24
Y

where y is any smooth curve ifR? from the point §,y) to any point withr —«. Maxwell’s
equation(2.299 shows thatv is independent of the choice of curge As a result, one can show
thatw has spatial support contained in the union of the spatial suppoE$ ahdE? at any fixed
t.

Thus we have the following explicit correspondence of solutions.

Lemma 4.5: Every solution of Maxwell’s equations (2.29) with compact spatial support yields
a corresponding solution of the wave equation (2.45) through expression (4.24). Conversely, every
solution of the wave equation (2.45) with compact spatial support yields a corresponding solution
of Maxwell's equations (2.29) through expressions (4.23). This correspondence between solution
spaces of Maxwell's equations and the wave equation is one-to-one

Through Lemma 4.5, it follows that the constants of motion arising from the nonlocal con-
servation lawg3.10—(3.13 on solutions B,E*, E?) of Maxwell's equations can be obtained from
the constants of motiod.14—(4.19 and (4.22 arising from the nonlocal conservation laws
(3.6—(3.9 for the wave equation witu—w. This correspondence leads to one elementary
constant of motion

~ 1 2
G| [ 0y 2
and the following six new constants of motion:
E'2=—4f L(E?A™'B)dxdy,
R
6'3:4f LJ(E'ATIB)dxdy,
R
é'1=8f L(YE?+xEH) A 1B)dxdy,
R (4.26
R R
c'3=—j2x(4BA‘1B—W2)dxdy—8tJ Z(EZA‘lB)dxdy,
R R
é'3'=j L(4BA™1B—w?)dxdy,
R

wherew is given in terms ofE! andE? by Eq. (4.24). In obtaining expressiong.26) we have
used relationg4.23 together with integrations by parts which use the compact spatial support of
w.

J. Math. Phys., Vol. 38, No. 7, July 1997
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3524 S. C. Anco and G. Bluman: Nonlocal symmetries and nonlocal conservation laws

Since B,E,E?) are solutions with compact spatial support and'B has spatial support
almost everywhere, it follows that the constants of motidr26 for Maxwell's equations are
finite and generically nonzero.

C. Independence of the new constants of motion

We now establish that the six constants of motiér26) obtained from nonlocal conservation
laws for Maxwell’'s equations are nonelementary, and that each one cannot be expressed in terms
of the others together with any finite number of constants of motion arising from the local
conservation laws for Maxwell’s equations.

In view of the correspondence Lemma 4.5, we first establish corresponding results for the six
constants of motiori4.15—(4.19 and (4.22 for the wave equation.

Theorem 4.6: For the wave equation (2.17), every constant of motion functionally depending
on at least one of the six constants of motion from nonlocal conservation laws as well as on at
most any finite number of constants of motion from local conservation laws is nonelementary

Proof: Let ¢, for k=1,...,6 denote respectively the constants of motidnl5H—(4.19 and
(4.22. Consider a function depending on at least one of the constants of n{atipn.; ¢ as
well as on a finite number + M of constants of motiofic,}x—1; , {Cilk=1....m arising respec-
tively from L nonsimple local conservation laws aMl simple conservation laws of the wave
equation(2.17). Suppose this function defines an elementary constant of motion, given by a
function depending on a finite numbérof constants of motio§Cy}x—m+1,...m+s arising from
J simple conservation laws of the wave equat{@rl7. Then we have

f(el,...,66,(:_1,...a,cl,...,CM):g(CM+1,...,CM+J) (4ZD

for some functiond of 6+ L+ M variables andj of J variables, which we assume to be smooth,
wheref has an essential dependence on at least one of its first six variables.

Now consider an arbitrary one-parameter family of solutiofis y,t;\) of the wave equation
(2.17) with smooth initial datg4.3) such that supports of

ou
Po(X,Y)=U(X,y,10:0)=0,  @1(X,y)= = (X,Y,19;0)=0,
(4.28
F?Dou

wO(va) = DoU(X:y,to 10)201 wl(xvy) = T (Xayvtoio)EO,

are compact and mutually disjoint. Evaluating E4.27) for this initial data then leads to

6 20
>t , (4.29
k=1 d

where f,=0df/9¢,|,-o for k=1,...,6, and f,=—0afldc|,—o for k=1,..L, while f,=
—oflacy|,—o for k=1,... M, andf,=dg/dcy|,—o for k=M +1,... M+J.

Since eachcy, appearing in Eq(4.29 arises from a simple conservation law, it can be
expressed linearly in terms of the initial data fofx,y,t;\), and hence we have

Jcy
2N

= | Puxy.t) oy + Quly.to) o xy)ixdly (4.30
0

A=

for some fixed functiongP(x,y,t),Qu(X,Y,t) }k=1,..m+. Furthermore, from Remark 4.2 it fol-
lows that, in terms of the initial data for(x,y,t;\), eachc, appearing in Eq4.29 must be given
by a homogeneous expression of scaling degree of at least two. Consequently, we have

J. Math. Phys., Vol. 38, No. 7, July 1997
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A (4.31)
x| _, '

since all the obtained terms are products of initial data and derivatives of initial data with respect
to \ having disjoint supports when evaluated\at O as given by Eq(4.28.
Through Eq.(4.3]) the relation(4.29 simplifies to

LTS M e
~ dC k
T R VI e 43
kzl <], gl <A, (4.32
Now, from Egs.(4.15—(4.19 and(4.22), we obtain
9Cy -1 -1
o R2(_<P1DlA Yot Y147 "D1go)dxdy,
A=0
9C, -1 -1
N RZ(“PlDzA Yot 1A "Dogo)dxdy,
A=0
dCq . .
o =2 R2(<P1()/Dl_XDz)A o= Y1477 (YD19o—XD2¢o))dxdy,
A=0 (4.33
0y s 9C,
N Rzlffl(yA Yot A" (yeo))dxdy+2to —= K
A=0 A=0
7 f P (XA~ Lo+ A~ H(xepg) )dxdy— 2t %
o~ =- 1(X 0 Xip))dXay— 2l — ,
2N A=0 R2 o\ A=0

% :2f (1A L) dxd
N| w2 V1 0 Y,

where, in terms of the initial dat@.28, we have integrated by parts so that! does not act on
¢1 and ¢, using the identity

QATO=0A"10+V-(VATIQ)ATIO—(VAT1O0)AT10Q) (4.39

together with the asymptotic expansion®f?! for r — .8
Hence, from Eq(4.33, we have

:f (%(Al(bDl@o_aD2<Po+C‘/f0)+dA1'/10)

r=0 YR
+(Pl(aD2A_1(/lo+bD1A_1l7//0) dXdy, (435)

where
a(x)= —f2—2 %3X—2 f4t0,
b(y)=—f,+2fay+2 fstq, .36
C(XaY):hy_%sX:
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d(x,y)=c(x,y)+2 fe.
From Eq.(4.30 we also have

M+J
JdCy

& oo

- f (1Pt paq)dxdy, (4.37)
A=0

where

M+J
POX,Y)= >, FiP(X,Y,to),
k=1
(4.38

M+J

q(x,y) = gl L QK(X,Y, to),

in terms of the fixed functiongPy(x,y,t),Qu(X,Y,t) }k=1,. . m+3-

Sinceg,; andy; are independent data, it follows from Bd.32) that the terms in Eq$4.35
and (4.37) involving these functions must be separately equal. This immediately leads to the
separating equations

| (ex(aDA "y DDA o~ paxay-0,

| 08 bD100—aD0+ co) +da o a))axay=0,

with A~ yg(x,y) having support almost everywhere, and bath(x,y) and 4(x,y) having
arbitrary compact support. Since we can vary eachppfand ¢, arbitrarily as non-negative
compactly supported functions, it follows that

aD,A " Yo +bDiA Tp=p, (4.393
A_l(bDlgDO_achpo"f‘Clﬂo)+dA_1lﬁ0:q. (4396

The expressiona, b, ¢, d, p, g appearing in Eq(4.39 have dependence on the initial data
¢©o and ¢, only throughf, andf, which are functions of the finite number of constants of motion

..........

placianA to Eq.(4.393 leads to the relation

a(x)Datho(X,y) +b(y)D1gho(X,y) =Ap(X,y). (4.40
By fixing the values of the constanS}x=1. ¢ {Citk=1....L » and{C}k=1. . m+3 Which comprise
a finite number of integrals involving,, we can varyy,(X,y) as a smooth compactly supported
function such that the values @f,¢, and D¢, at any chosen pointx(y) are arbitrary while

a(x), b(y), andAp(x,y) all remain fixed. Hence, from this arbitrarinessandb in Eq. (4.40
must be identically zero. As a result it follows that

?12%2:%3:?4:%520. (44])
Then Eq.(4.39h simplifies to

2 F6A () =a(x,y), (4.42
J. Math. Phys., Vol. 38, No. 7, July 1997
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from which one can show that
fe=0 (4.43

by a similar argument. A
Consequently, from Eg$4.41) and (4.43 we have that each, vanishes for the initial data
g and . Since this data is arbitrary, we thus have

of
o 0, (4.49
which shows thaf must have no dependence opfor k=1,...,6. Hence the functional relation
(4.27) cannot hold. O

From Theorem 4.6 it follows that the six constants of motion obtained from nonlocal conser-
vation laws for the wave equation are nonelementary, and that each one cannot be expressed in
terms of the others together with any finite humber of constants of motion arising from local
conservation laws for the wave equation. Hence, we have the following corollaries from Theorem
4.6.

Corollary 4.7: The six constants of motion (4.2%3.19) and (4.22) arising from nonlocal
conservation laws for the wave equation are nonelementary and functionally independent

Corollary 4.8: The six constants of motion (4.463.19) and (4.22) arising from nonlocal
conservation laws for the wave equation are functionally independent of honelementary constants
of motion arising from any finite number of local conservation laws for the wave equation

Corollaries 4.7 and 4.8 now lead to the following key theorem for the constants of motion
(4.26) for Maxwell's equations.

Theorem 4.9: For Maxwell's equations (2.29), the six constants of motion (4.26) obtained
from nonlocal conservation laws are nonelementary and functionally independent. Furthermore,
each of the six constants of motion (4.26) is functionally independent of nonelementary constants
of motion arising from any finite number of local conservation laws of Maxwell’'s equations

Proof: From the correspondence Lemma 4.5 and the form of relatidrzd, it directly
follows that any local conservation law for Maxwell’s equations yields a local conservation law
for the wave equation, and in particular any simple conservation law for Maxwell's equations
yields a simple conservation law for the wave equation. Moreover, since through Lemma 4.5 the
six constants of motior4.26) arising from the nonlocal conservation law3.10—(3.13 for
Maxwell’'s equations correspond to the six constants of mofbh5—(4.19 and (4.22 arising
from nonlocal conservation laws.6)—(3.9) for the wave equation, the proof of Theorem 4.9
reduces to the proof of Theorem 4.6. O

V. SUMMARY

We have obtained six potential symmetrigs46—(2.48 for Maxwell’s equations(2.29
through the point symmetrieg®.22—(2.24 admitted by the equivalent systef®.44). All other
point symmetries of this equivalent system yield only point symmetries of Maxwell’s equations, in
particular, translations, a rotation and boosts, and a dilation. One can show that Maxwell's equa-
tions admit no other nontrivial point symmetries in three space—time dimensions. Note that the
admitted point symmetries of Maxwell's equatiof&s29 do not include conformal transforma-
tions, unlike the case in four spacetime dimensions.

Since the wave equatiof2.49 is also an equivalent system for Maxwell's equati¢B=9),
we can use its point symmetries to obtain symmetries of Maxwell's equations. From the ten
nontrivial point symmetries admitted by the wave equation, one can easily show that the seven
point symmetries given by translatiof.25, a rotation and boost®.26), and a dilation(2.27)
yield the seven corresponding point symmetries admitted by Maxwell's equations, whereas the
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TABLE |. Symmetries of Maxwell's equation@.29.

Nonlocal symmetries Remarks
X = (£ B—4tB+ 2(XE2—yEL) + w— X(yD,.w. X1, X,, X3 are three conformal point symmetries of
=& 2l vE) 2(yDaWo) potential systen{2.44).
—XDyoWp)))d/ 3B+ (& D;E -~ 4tE~ 3yB H=—t2-x2—y? £=-2tx, &= -2yt

+ 3(Wy + YD Wyy— XD,W,))dl JE + (¢, D, E2— 4tE2
+3xB+ %(W2+xD(zwl)—yDlwl))&/&E2
X,= (€,D;B+4xB— StE2+ 3w, +tD owo g=2tx, &=t+x*—y?, £=2yx
+yDoWo))d/ 9B + (£,D;EL+ 4XE + 2y E?
+ 3(Wo+y D Woy+tD,W,))d/ JE + (£,D,E2+ 4X E
—3(tB+yEY) +w— %(tD(lwz)erD(lwo)))a/&Ez
X3= (€,D;B+4yB-+ StE — L(w, +1D ywp, =2yt £3=2yx, =" -x*+y?
+XDgWo))dl 9B+ (£5DEL+ 4y EL + 3(tB—XE?) —w
— 3(tD Wy, + XD Wpy))dl JE + (5D, E2+ 4y E?

+ 3XE+ (wo+ XD 1Wg)—tD1w,))dl IE?

X4:(%D0w0)0/&B+(%E2+ %D(zwo))&/aEl X4, X5, Xg are three duality point symmetries of potential

system(2.44).
+(— 3E + 3D ;Wpy) 9/ JE?
Xs=(— 3E*~ 3D 1Wq)) 9/ 3B+ (3B~ 3D ;W) 9l JE*

+(3D,w,)al9E?
Xo=(3E%— 3D ;Woy) 3/ 3B+ (— 3D W) 9l JE*

+(3B+ 3D ,Wy)) 9/ GE?

X7=(.§iD-B—3tB+2(xE2—yE1)+%W)&/&B+(§iD-El X7, Xg, Xq are three conformal point symmetries of
e _ = potential systen(2.45).
—3tE - 2yB)d/JE + (£,D,E2— 3tE2+ 2xB)al JE? &= —t2—x2—y?, £1=—2tx, &= —2yt

Xg=(£,D;B+3xB—2tE2) 3/ B+ (£,D,E1+ 3xEL 8£=2tx, H=t"+x"~y?, &=2yx
+2yE?) 0l 9B + (£,D;E?+ 3xE2— 2(tB+yE?)

=
Xo=(£,D;B+3yB+2tEL)9/aB+ (£,D,EL+ 3yEL+ 2(tB  £3=2yt, £3=2yX, &=t2—x?+y?

—XE?)— %W)(;/(;El+(§i3DiE2+3yE2+2xE1)(9/z9E2

The potential§w,w, ,w, ,w,} are determined nonlocally in terms of the fie{@& E*,E?} from relations(2.443 and(4.23
up to the residual gauge freedg@40.

Point symmetries Remarks
X10= (DoB)d/ IB+ (DoENa/ JE + (Do E?) 9/ JE? Xi0o X11, Xy, are three translations.
X11=(D;B)d/ 9B+ (D,EY) 9/ JEL+ (D ,E?) 9/ JE?
X1,=(D,B)d/ 3B+ (D,EY) g/ JE*+ (D ,E?) 9/ 9E?
X15=(yD;B—xD,B)d/dB+ (yD,;E'—xD,E*—E?)9/gEL X3S a rotation.

+(yD,E2—xD,E2+E')d/ 9E?
X14=(—tD,B—yDoB—EY/dB+(—tD,El—yD,E! X14, X15 are two boosts.
—B)dlJE+ (—tD,E2—yDyE?)a/ JE?
X15=(tD,B+xDyB+E?)d/ 9B+ (tD,E*+xDyE?

+B)al 9E 1+ (tD,E?+ xDyE?) o/ 9E?
X16= (tDoB+xD;B+yD,B)d/dB+ (tDoE*+xD;E* X, is a dilation.
+yD,EY) 9/ 9E + (tDoE?+ xD,E2+yD,E?) 9/ 9E?
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TABLE Il. Conserved densities for Maxwell's equatiof®.29 from conservation laws derived through the potential

system(2.44).
Symmetry Conserved density Remarks
X, 8(YEA(X,y,t) +XEX(X,y,1)A " IB(xX,y,t) 6 new quantitie§see(4.26] from Xy,....Xg;
v is any smooth curve from
(X.y) tor—o at fixedt.
Xz —4yB(Xy,HATB(XY.)
2
*4y( J(EZ(X’,Y’,t)dX’El(X’,y’,t)dy’))
Y

+8tEY(x,y,t) A" B(X,y,1)

X3 AXB(xy.HAB(XY,t)
2
+4x] f(Ez(x’,y’,t)dx’El(x’,y’,t)dy’))
Y

—BtE(x,y,HATIB(X,Y.1)

X4 —4B(xy.)AB(xY.)
2
+(f(Ez(x’,y’,t)dx’—El(x’,y’,t)dy’)>
Y

Xs —8E2(x,y,t)A"1B(x,y,1)
X 8EY(x,y,t) AT1B(x,y,t)
X5 trivial
Xg trivial
Xg trivial
X10 trivial
Xq1 trivial
X1z 8E2(x,y,t)AT1B(x,y,t) Duplicate of new quantity fronXs .
X13 —8EY(x,y,t)A"IB(x,y,1) Duplicate of new quantity fronXg .
X1a trivial
X15 trivial
X16 trivial

three point symmetries given by conformal transformati@i28 yield three potential symmetries
which aredifferentfrom the six potential symmetrig2.46—(2.48 admitted by Maxwell's equa-
tions. Consequently, we obtain three additional potential symmetries for Maxwell’s equations. The
generators of the seven point symmetries and these nine potential symmetries for Maxwell’'s
equations are exhibited in Table I.

Each symmetry of Maxwell’s equations yields two conservation laws derived through the
equivalent systemg.44) and(2.45. In Sec. Ill B we have obtained 12 conservation laws arising
for the six potential symmetrie€2.46—(2.48. We can likewise obtain 20 conservation laws
arising for the seven point symmetries and three other potential symmetries discussed above. It is
interesting to note that for each symmetry the conservation laws obtained from the two systems
(2.44) and(2.45 are distinct. However, some symmetries yield trivial or duplicate conservation
laws. The conserved densities arising from all 32 conservation laws are exhibited in Tables Il and
Tables Il

Altogether, these conserved densities yield 16 nonelementary functionally independent con-
stants of motion for Maxwell’'s equations: seven constants of motion arising for the seven point
symmetries, given by translations, a rotation and boosts, and a dilation, are obtained from local
conserved densities through systé245); six constants of motion arising for the six potential
symmetrieg2.46—(2.48 are obtained from nonlocal conserved densities through sy&ei);
three constants of motion arising for the three additional potential symmetries above are obtained
from nonlocal conserved densities through syst@m5. The functional independence of these 16
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TABLE lll. Conserved densities for Maxwell's equatiofi®.29 from conservation laws derived through the potential

system(2.45.

Symmetry

Conserved density

Remarks

><1_)(7
X2—Xg
X3—Xg

Xg

Xq

xll
X12

X14

4B(X,Y,t)(xD;+yD,)ATIB(x,y,t)
—4E?(x,y,t)A"B(x,y,t) +trivial
4EY(x,y,1)ATIB(x,y,t) + trivial

trivial

trivial

trivial

— 4+ 2+ (B(X,Y,1) 2+ EXx,y,1)2+ E2(x,y,1)?)

+16tB(x,y,t) (XE2(x,y,t) —YEX(X,y,1))

+4tB(x,y,t)( f (E2(x',y" ,tydx' —EX(x",y’ ,t)dy’))
Y

+

2
f(EZ(X’,V',t)dX’—El(X’,y’,t)dy'))
Y

8xt(B(x,y,t)2+ EX(x,y,t)?+E?(x,y,1)?)
—8(t2+ x2—y2)B(x,y,1) E2(X,y,t) + 16xy B(X,y,1) EX(X,y, 1)

—4xB(x,y,t)( f (E2(x",y’,t)dx' — El(x’,y’,t)dy’))
Y

8yt(B(x,y, )%+ EX(x,y,1)%+E?(x,y,1)?)
+8(t2—x2+y?)B(x,y,t) EX(x,y,t) — 16xy B(x,y,1) E3(X,y,t)

_4yB(X!yvt)( J’ (EZ(X, 1y, ,t)dX, - El(xlry, !t)dy,))
Y

4(B(x,y,1)%+ EX(x,y,1) 2+ E2(x,y,t)?)
—4B(x,y, 1) E2(x,y,t)
4B(x,y,t)EY(x,y,1)

—8B(X,y,1) (XE?(x,y,t) +YE (X, y,1))
—4y(B(x,y,1)2+EX(x,y,1)2+ E?(x,y,t)?)

—8tB(x,y,t)EX(x,y,t)
—4x(B(x,y, )2+ EL(x,y,1) 2+ E2(x,y,1)?)

+8tB(x,y,t)E2(x,y,t)
4t(B(x,y, )%+ EX(x,y,1) 2+ E2(x,y,1)?)

—8B(x,y,D(EA(x,y,t) —EX(x,y,1))

Not new[see(4.25)].
Duplicate of new quantity.
Duplicate of new quantity.

Three conformal quantities
(see Sec. Yfrom X;, Xg, Xq;
v is any smooth curve, from
(xy) tor—e at fixedt.

energy
spatial momentum

spatial momentum

rotation angular momentum
boost angular momentum

boost angular momentum

dilation quantity

constants of motion is established by a strengthing of Theorem 4.9, through the use of Lemma 4.5
and Corollaries 4.7 and 4.8 for the 16 corresponding constants of motion of the wave equation
arising for its ten nontrivial point symmetri€2.25—(2.28 and six potential symmetrig®.22)—

(2.24.

For Maxwell's equationg2.29), the ten constants of motion arising for the seven point
symmetries and the three additional potential symmetries represent energy, momentum, angular
momentum, dilation, and conformal quantities for the electromagnetic field. The six constants of
motion (4.26) arising for the potential symmetrig2.46)—(2.48 represent new additional con-
served quantities for the electromagnetic field.

VI. CONCLUDING REMARKS

(1) Maxwell's equationd2.29 in three space—time dimensions arise from Maxwell's equations
in four space—time dimensions when the electromagnetic field tdhdoas no essential
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dependence on one spatial dimension as follows: Fix spatial directigng, and letE
=EXx+E?y+E%z and B=B!X+ B?y+ B%Z represent the electric and magnetic fields. If the
z components oF, given byE3 B!,B?, are constant, while the other component§-pgiven

by E1,E?,B%, have no dependence anthen Maxwell's equations fdE andB reduce to Eq.
(2.29 for E', E?, andB3=B.

(2) Maxwell's equations in four space—time dimensions admit 15 point symmetries and corre-
sponding local conservation laws!? Through the above dimensional reduction of Maxwell's
equations, seven local conservation laws survive in three space—time dimensions. These local
conservation laws correspond to the three translations, one rotation and two boosts each not
involving the z direction, and one dilation, which are the point symmetries admitted by
Maxwell's equationg2.29 in three space—time dimensions. Interestingly, local conservation
laws corresponding to the four conformal transformations in four space—time dimensions are
lost since conformal transformations are not admitted as point symmetries by Maxwell’'s
equations in three space—time dimensions. Using a scalar potential for the electromagnetic
field, we have obtained a group of nonlocal conformal transformations and three correspond-
ing nonlocal conservation laws for Maxwell’'s equatid@s29. More importantly, through a
system of scalar and vector potentials for the electromagnetic field, we have found a new
group of nonlocal conformal transformations and three further nonlocal conservation laws for
Maxwell's equationg2.29. From the same system of scalar and vector potentials, we also
have found three additional nonlocal conservation laws corresponding to a group of nonlocal
duality transformations arising as rotations on the potentials. Altogether these nonlocal con-
servation laws yield nine gauge-invariant conserved quantities for the electromagnetic field in
three space—time dimensions.

(3) The results of this paper can be generalized to Maxwell's equations in three space-time
dimensions with a curved Lorentz metgg . Letg" denote the inverse metrie/ denote the
totally-skew tensor normalized with respectdg, and D; denote the derivative operator
determined byg;; . Then, the nonlocal symmetri¢2.46—(2.48 obtained in flat space—time
extend to curved space—time if and onlyAifis a covariantly constant vectdd,;A'=0, and
&' is a conformal Killing vector of special type such thay; £ =0 whereRy;; is the curva-
ture tensor ang'*D, &'+ g'*D &' = 29" D £". From these nonlocal symmetries, corresponding
nonlocal conservation laws and associated constants of motion can be derived by the methods
of Secs. Ill and IV.

(4) In a future paper we will apply our methods to Maxwell’s equations in four space—time
dimensions to seek nonlocal symmetries and corresponding nonlocal conservation laws, and
new constants of motion.

(5) It is important to emphasize that the basic formulation presented in Sec. Il can be applied to
any system of PDEs with three or more independent variables.
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