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Nonlocal symmetries and nonlocal conservation laws
of Maxwell’s equations

Stephen C. Ancoa) and George Blumanb)
Department of Mathematics, University of British Columbia, Vancouver,
British Columbia, Canada V6T 1Z2

~Received 12 August 1996; accepted for publication 18 February 1997!

Nonlocal symmetries are obtained for Maxwell’s equations in three space–time
dimensions through the use of two potential systems involving scalar and vector
potentials for the electromagnetic field. Corresponding nonlocal conservation laws
are derived from these symmetries. The conservation laws yield nine functionally
independent constants of motion which cannot be expressed in terms of the con-
stants of motion arising from local conservation laws for space–time symmetries.
These nine constants of motion represent additional conserved quantities for the
electromagnetic field in three space–time dimensions. ©1997 American Institute
of Physics.@S0022-2488~97!00706-8#

I. INTRODUCTION

Conservation laws are important in the study of evolutionary partial differential equa
~PDEs! since they lead to constants of motion for the time evolution of field variables.
familiar conservation laws such as energy, momentum, and angular momentum all involve
expressions in terms of given field variables. Conservation laws given by nonlocal expressio
yield additional constants of motion not obtainable from local conservation laws. As an exam1

we have recently derived nonlocal conservation laws arising through nonlocal symmetries
scalar wave equation in two space–time dimensions with a spatially variable wave spee
physically interesting wave speeds these conservation laws yield new constants of motion
cannot be linearly expressed in terms of the constants of motion yielded by local conser
laws arising through any local symmetries.

The nonlocal conservation laws for the two-dimensional wave equation were obtained th
a general identity1 which generates conservation laws from symmetries, local or nonlocal, ad
ted by any given self-adjoint system of PDEs. For local symmetries, the identity yields the
conservation laws as those generated through Noether’s theorem, whereas for nonlocal s
tries, the identity yields additional conservation laws.

The nonlocal symmetries for the two-dimensional wave equation arise by a systematic m
which uses potentials as a starting point.2–4 The method can be extended toanyPDEs in two or
more dimensions to find nonlocal symmetries systematically in terms of local symmetri
associated potential systems. In three and higher dimensions the potentials have a natura
arbitrariness. To obtain nonlocal symmetries in this case, we show that the associated p
systems must be augmented by gauge constraints.

In this paper we focus on Maxwell’s equations in three space–time dimensions. Throug
use of two self-adjoint potential systems, we obtain gauge-dependent nonlocal symmet
Maxwell’s equations and derive corresponding nonlocal conservation laws which lead to si
constants of motion. One system is given by the wave equation for a scalar potential, and th
system involves an equivalent vector wave equation for scalar and vector potentials togeth
a Lorentz gauge. In terms of these potentials the conservation laws have an essential n

a!Electronic mail: anco@math.ubc.ca
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dependence on the electromagnetic field. The new constants of motion arising from these
vation laws are shown to be functionally independent of the seven constants of motion a
from the local conservation laws for space–time symmetries of Maxwell’s equations.

In Sec. II we present the basic formulation for obtaining nonlocal symmetries for system
PDEs by use of potential systems. Nonlocal symmetries are then found for Maxwell’s equa
Corresponding nonlocal conservation laws are derived in Sec. III. The functional independe
the associated constants of motion is discussed in Sec. IV. In Sec. V we summarize the
results of the paper, with three tables presenting the symmetries, conservation laws, and co
of motion for Maxwell’s equations. Some concluding remarks expanding on the results are
in Sec. VI.

II. BASIC FORMULATION

Consider a system of PDEs given by divergence expressions

Gs~x,u,u
1
,...,u

K
!5DiHs

i ~x,u,u
1
,..., u

K21
!50, s51,...,M , ~2.1!

for N field variablesu5(u1,...,uN) on a space of three independent variablesx5(x0,x1,x2).
Hereu

J
denotes allJth-order derivatives ofu with respect tox, andDi denotes total differentiation

with respect toxi , wherei50,1,2. We use the index notationui1••• i j
t 5Di1

•••Di j
ut for differen-

tiations of ut, where t51,...,N, i J50,1,2, andJ51,2,... . Wealso use the convention tha
summation is assumed over any repeated index in all expressions. All lower case latin indic
over 0,1,2 unless otherwise stated.

It is important to note that any given linear system of PDEs can be transformed to the
~2.1!.4

Definition 2.1: The Fre´chet derivative associated with system (2.1) is the matrix linear
erator

F sr5
]Gs

]ur 1
]Gs

]ui
r Di1•••1

]Gs

]ui1••• i K
r Di1

•••DiK
. ~2.2!

Definition 2.2: A symmetry admitted by system (2.1) is characterized by an infinite
generator

X5hm]/]um, ~2.3!

wherehm satisfies

F srhr50 ~2.4!

for every solution u(x) of system (2.1).
Definition 2.3: A local symmetry admitted by system (2.1) is a symmetry with an infinite

generator of the form

X5hm~x,u,u
1
,...,u

P
!]/]um, ~2.5!

such that, for each value of x, hm depends on u,u
1
,...,u

P
only through u(x),u

1
(x),...,u

P
(x) evalu-

ated at x.
Definition 2.4: A point symmetry admitted by system (2.1) is a local symmetry with an i

tesimal generator of the form
J. Math. Phys., Vol. 38, No. 7, July 1997
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X5„am~x,u!2j i~x,u!ui
m
…]/]um, ~2.6!

wheream and j i depend only on x and u.
Definition 2.5: A nonlocal symmetry admitted by system (2.1) is a symmetry with an i

tesimal generatorX5hm]/]um not of the form (2.5), i.e.,hm has other than just a local depen
dence on u(x) and derivatives of u(x) to some finite order.

All local symmetries of system~2.1! can be determined by Lie’s algorithm.3,5 No correspond-
ing algorithm exists to findall nonlocal symmetries of system~2.1!.

We now present a general method to find special classes of nonlocal symmetries,
potential symmetries, of system~2.1!.

Through Eq.~2.1! we introduce 3M auxiliary potential variablesv5(v i
1,...,v i

M) and form a
potential system given by PDEs

Hs
i 5e i jkD jvk

s , s51,...,M , ~2.7!

where e i jk is the antisymmetric symbol withe01251. The solution space of system~2.1! is
embedded in the solution space of the potential system~2.7!. In particular, if„u(x),v(x)… satisfies
system~2.7!, thenu(x) satisfies system~2.1!; if u(x) satisfies system~2.1!, then there exists som
nonuniquev(x) such that„u(x),v(x)… satisfies system~2.7!. This nonuniqueness is represented
the invariance of system~2.7! under the transformations

vk
s→vk

s1Dkf
s ~2.8!

for arbitrary functionsfs(x), s51,...,M .
Definition 2.6: A potential symmetry admitted by system (2.1) through potential system

is a local symmetry of system (2.7) that does not project onto a local symmetry of system
From this definition it immediately follows that a potential symmetry of system~2.1! is a

nonlocal symmetry. In particular, suppose

X5hm~x,u,u
1
,...,u

P
,v,v

1
,...,v

Q
!]/]um1z i

m~x,u,u
1
,...,u

P
,v,v

1
,...,v

Q
!]/]v i

m , ~2.9!

is a local symmetry of potential system~2.7!. Through Eq.~2.7!, hm and z i
m depend onv only

through its symmetrized derivatives, since all antisymmetrized derivatives ofv and their differ-
ential consequences can be eliminated in terms ofu and its derivatives. Consequently, asv is
determined nonlocally in terms ofu from Eq. ~2.7!, the symmetry~2.9! defines a potential sym
metry of system~2.1! if and only if at least one component ofhm depends essentially onv or
symmetrized derivatives ofv.

For the sequel we now assume that the given system~2.1! is determinedin the sense that it
does not admit any symmetries that involve an arbitrary function ofall the independent variable
x. We see immediately that the potential system~2.7! is, in contrast, not determined since it adm
gauge symmetries

Xf5„Dif
s~x!…]/]v i

s , ~2.10!

arising from the natural gauge freedom~2.8!.
The following theorem now shows that unless gauge constraints are introduced, the po

system~2.7! cannot yield potential symmetries of the given system~2.1!.
Theorem 2.7: Every local symmetry admitted by the nondetermined potential system

projects onto a local symmetry of the determined system (2.1).
Proof: Suppose system~2.7! admits a symmetry~2.9!. Then the system must also admit th

commutator symmetry@Xf ,X# which projects to the symmetry
J. Math. Phys., Vol. 38, No. 7, July 1997
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X85S ]hm

]v i
s Dif

s~x!1
]hm

]v ~ ik !
s DkDif

s~x!1•••1
]hm

]v ~ ik1•••kQ!
s DkQ

•••Dk1
Dif

s~x!D ]/]um

~2.11!

admitted by system~2.1!, wherev ik1•••kJ
s 5Dk1

•••DkJ
v i

s denotes differentiations ofv i
s, with s

51,...,M , andJ51,2,..., andround brackets denote symmetrization of the enclosed indices
Since system~2.1! is assumed to be determined, the symmetryX8 cannot depend on

fs(x). Hence

]hm

]v i
s 5

]hm

]v ~ ik !
s 5•••

]hm

]v ~ ik1•••kQ!
s 50 ~2.12!

and thushm has no dependence onv and its symmetrized derivatives. Consequently, the sym
try ~2.9! projects onto to a local symmetry~2.5! admitted by system~2.1!. h

From Theorem 2.7 it follows that in order to use potential system~2.7! as a means to obtain
potential symmetries of system~2.1! we must augment system~2.7! with auxiliary constraint
equations relating the potentials without destroying the embedding of the solution space of s
~2.1! in the solution space of the augmented system. There is considerable freedom in ch
suchgauge constraints.

Gauge constraints to consider include:
~1! algebraic constraints, such as thetemporal gauge

v0
s50, s51,...,M ~2.13!

or axial gauges

niv i
s50, s51,...,M ~2.14!

wheren1 andn2 are components of a fixed spatial vector andn050, and
~2! differential constraints, such as thedivergence gauge

D1v1
s1D2v2

s50, s51,...,M ~2.15!

or theLorentz gauge

2D0v0
s1D1v1

s1D2v2
s50, s51,...,M ~2.16!

The gauges~2.13!–~2.16! preserve the embedding property of the solution space of sys
~2.1! in the solution space of the potential system~2.7! augmented by any one of these gau
constraints.

For any such augmented system there are equivalent subsystems involving a subse
(u,v) variables whose solution spaces each yield the complete solution space of system~2.1!.
Examples of such equivalent subsystems naturally include the given system~2.1! and augmented
systems arising from algebraic constraints, and also include any systems only involving po
variables arising in algebraic and differential consequences of a given augmented system.
tion 2.6 extends as follows to such equivalent subsystems: A potential symmetry admitt
system~2.1! through an equivalent subsystem is a local symmetry of the equivalent subsyste
does not project onto a local symmetry of system~2.1!.

Most importantly, equivalent subsystems are useful since:

~1! The solution space of any equivalent subsystem yields the complete solution space of
~2.1! and thereby inherits all symmetries of system~2.1!;
J. Math. Phys., Vol. 38, No. 7, July 1997
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~2! Each equivalent subsystem provides a means of determining nonlocal symmetries of
~2.1! in terms of local symmetries, which can be found by Lie’s algorithm.

A. Scalar wave equation

For later use, we first consider the scalar wave equation

gi jDiD ju50 ~2.17!

in three space–time dimensions, wheregi j5gi j5diag(21,1,1) is a diagonal Lorentz metric on th
space of independent variablesx5(x0,x1,x2). Here Eq.~2.17! is already of the form~2.1! with

H1
i 5gi jD ju. ~2.18!

The corresponding potential system~2.7! of three PDEs involving the potentialsv5(v0 ,v1 ,v2) is
given by

gi jD ju5e i jkD jvk . ~2.19!

To obtain potential symmetries of the wave equation~2.17! we consider augmented system
arising from Eq.~2.19! through specific gauge constraints. No potential symmetries are yielde
point symmetries of the augmented system arising through algebraic gauges of the form

niv i50 ~2.20!

for any componentsni(x).6 In contrast, the augmented system arising through the Lorentz g

gi jDiv j50 ~2.21!

does yield potential symmetries.6 In particular, the augmented system consisting of Eqs.~2.19! and
~2.21! admits the following six point symmetries:

X5„a~x,u,v !2j j~x!Dju…]/]u1„b i~x,u,v !2j j~x!Djv i…]/]v i . ~2.22!

Class I ~three of conformal type!:

j j5l jgklx
kxl22lkgklx

jxl , ~2.23a!

a52 1
3~Dkj

k!u1 1
4e

klm~Dljm!vk , ~2.23b!

b i52 1
2~Dkj

k!v i1
1
2g

kl~Dlj i !vk1
1
4gike

klm~Dljm!u, ~2.23c!

where$l i% i50,1,2 are arbitrary constants, andjk5gklj
l .

Class II ~three of duality type!:

z j50,

a5lkg
klv l , ~2.24!

b i5l iu1l lgike
klmvm ,

where$l i% i50,1,2 are arbitrary constants.
These two classes of point symmetries yield six potential symmetries of the wave eq

~2.17! sincea(x,u,v) depends explicitly on the potentialsv. In Class I we call the symmetrie
J. Math. Phys., Vol. 38, No. 7, July 1997
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conformal typesince they project to conformal transformations in the space of independent
ablesx5(x0,x1,x2). In Class II we call the symmetriesduality typesince they represent rotation
on the space of (u,v i) variables.

All other nontrivial point symmetries admitted by the augmented system~2.19! and ~2.21!
project onto point symmetries of the wave equation. For later reference we now list a
nontrivial point symmetries admitted by the wave equation:

(i) three translations

X5~2l iDiu!]/]u ~2.25!

for arbitrary constants$l i% i50,1,2.
(ii) one rotation and two boosts

X5~2l jgkle
i jkxlDiu!]/]u ~2.26!

for arbitrary constants$l j% i50,1,2.
(iii) one dilation

X5~2xiDiu!]/]u. ~2.27!

(iv) three conformal transformations

X5~2 1
6 uDkj

k2j jD ju!]/]u, ~2.28!

wherejk is given by Eq.~2.23a!.

B. Maxwell’s equations

We now consider the source-free Maxwell’s equations in three space–time dimensions

D0E
15D2B, ~2.29a!

D0E
252D1B, ~2.29b!

D0B5D2E
12D1E

2, ~2.29c!

D1E
11D2E

250, ~2.29d!

whereE1 andE2 are the components of the electric vector field andB is the magnetic scalar field
These field equations represent the components of the tensorial equations

DiF
i j50,

~2.30!

D [kFi j ]50,

for the antisymmetric electromagnetic field tensorFi j52F ji andFi j5gikgjl F
kl, with

E15F01, E25F02, B5F12, ~2.31!

wheregi j5gi j is the Lorentz metric on the space of independent variablesx5(x0,x1,x2), and
square brackets denote antisymmetrization of the enclosed indices.

Here the field equations~2.30! are of the form~2.1! with
J. Math. Phys., Vol. 38, No. 7, July 1997
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H1
i 5Fi0,H2

i 5Fi1,H3
i 5Fi2,

~2.32!

H4
i 52g0iF121g1iF022g2iF015 1

2e
i jkF jk ,

for u15E1, u25E2, andu35B. The corresponding potential system~2.7! of 12 PDEs is given by

Fi j5e iklDkwl
j ,

~2.33!

e i jkF jk5e i jkD jwk ,

involving the 12 potentials

v l
15wl

0, v l
25wl

1, v l
35wl

2, v l
45wl . ~2.34!

In terms of the potentials~2.34! the potential system~2.33! admits the gauge symmetries

Xf5„Dlf
j~x!…]/]wl

j1„Dlf~x!…]/]wl ~2.35!

for arbitrary functions$f0(x),f1(x),f2(x),f(x)%. Since Maxwell’s equations~2.30! are a de-
termined system, Theorem 2.7 shows that in order to obtain potential symmetries of Max
equations we must augment the potential system by choosing gauge constraints.

We now impose a Lorentz gauge onwj and an algebraic gauge onwl
j as follows:

gi jDiwj50, ~2.36!

wl
j2 1

3wk
kd l

j50. ~2.37!

From Eq. ~2.37! it follows that the nine potentialswl
j can be expressed in terms of a sing

potentialw through

wl
j5 1

2d l
jw, ~2.38!

whered l
j is the Kronecker symbol. As a result, from the augmented system given by Eqs.~2.33!,

~2.36!, and~2.38!, we arrive at the following equivalent system of seven PDEs:

Fi j52 1
2 e i jkDkw, ~2.39a!

e i jkF jk5e i jkD jwk , ~2.39b!

gi jDiwj50, ~2.39c!

in terms of the electric and magnetic fields$E1,E2,B% and the potentials$w,w0 ,w1 ,w2%. The
residual gauge freedom in this system is given by

w→w1const, ~2.40a!

wk→wk1Dkf, ~2.40b!

wheref is an arbitrary solution of the wave equationgi jDiD jf50.
With the imposed gauge constraints, one can show that the system~2.39! is determined. Most

importantly, the solution space of this system yields the complete solution space of Max
equations~2.30!, as shown by the following more transparent way of arriving at system~2.39!.
J. Math. Phys., Vol. 38, No. 7, July 1997
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Since we are in three space–time dimensions, the antisymmetry of the electromagnet
tensor allows it to be expressed as

Fi j5e i jk F̃k ~2.41!

in terms of a dual field vectorF̃k , with

F̃05B, F̃152E2, F̃25E1 ~2.42!

Then Maxwell’s equations~2.30! respectively become

e i jkD j F̃k50, ~2.43a!

gjkD j F̃k50, ~2.43b!

for the dual electromagnetic fieldF̃k . Hence from the curl form of Eq.~2.43a! it directly follows
that the dual electromagnetic field is the gradient of a scalar, which leads to the three
~2.39a!. Similarly, the divergence form of Eq.~2.43b! means that the dual electromagnetic field
the curl of a vector, which directly gives the three PDEs~2.39b!.

Rather than continue to consider system~2.39! we now algebraically eliminate the electro
magnetic field tensor from Eqs.~2.39a! and ~2.39b! and obtain the equivalent subsystem of fo
PDEs

gilDlw5e i jkD jwk , ~2.44a!

gi jDiwj50, ~2.44b!

in terms of the four potentials$w,w0 ,w1 ,w2% alone. From the differential consequences of E
~2.44a! we note thatw satisfies the wave equation

gi jDiD jw50. ~2.45!

System~2.44! is identical to the augmented potential system given by Eqs.~2.19! and~2.21!
for the wave equation~2.17!, under the correspondenceu→w andv i→wi . Through this corre-
spondence we now obtain point symmetries of system~2.44! corresponding to the six poin
symmetries~2.22!–~2.24! admitted by system~2.19! and ~2.21!. We show that these point sym
metries yield six potential symmetries of Maxwell’s equations~2.30!.

The induced symmetries of Eq.~2.30! arising from point symmetries of Eq.~2.44! have the
form

X5h̃ i~x,F̃0 ,F̃1 ,F̃2 ,w,w0 ,w1 ,w2!]/]F̃ i ~2.46!

in terms of the dual electromagnetic fieldF̃k , where all derivatives ofw and antisymmetrized
derivatives ofwk are expressed in terms ofF̃k through Eqs.~2.39a!, ~2.39b!, and~2.41!. From the
point symmetries~2.22!–~2.24!, we obtain two corresponding classes of induced symme
~2.46!:

Class I:

h̃ i52 2
3~Dkj

k!F̃ i2
5
4g

kl~D [ ijk] !F̃ l2jkDkF̃ i2
1
8e

klm~DiDljm!wk

1 1
6~DiDkj

k!w2 1
8e

jkl~Dkj l !D ( iwj ) , ~2.47!

wherejk is given by Eq.~2.23a!, andjk5gklj
l .
J. Math. Phys., Vol. 38, No. 7, July 1997
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Class II:

h̃ i52 1
2lk~gi j e

jkl F̃ l1gjkD ( iwj )!, ~2.48!

where$l j% j50,1,2 are arbitrary constants.
In both of these classes the components ofh̃ i have an essential dependence on the poten

w andwi . Since these potentials are determined nonlocally in terms of the electromagneti
from Eqs.~2.39a!, ~2.39b!, and ~2.41!, we see that each of the six induced symmetries~2.46!–
~2.48! is a potential symmetry of Maxwell’s equations~2.30!.

One can show that no other point symmetries of system~2.44! yield potential symmetries o
Maxwell’s equations~2.30!.

III. NONLOCAL CONSERVATION LAWS

In Ref. 1 we derived an identity which generates conservation laws from symmetries ad
by any given self-adjoint system of PDEs. Given a linear homogeneous self-adjoint syst
PDEs for field variablesu5(u1,...,uN),

Gs~x,u,u
1
,...,u

K
!5Gsr~x!ur1Gsr

i ~x!ui
r1•••1Gsr

i1••• i K~x!ui1••• i K
r 50, s51,...,N, ~3.1!

then for any nontrivial local or nonlocal symmetry~2.3! admitted by system~3.1! we have a
corresponding conservation law on solutionsu(x),

DiF
i@u,h#50, ~3.2!

where

F i@u,h#52 1
2$u

sGrs
i hr1~uj

s2usDj !~Grs
j i hr!1•••1~ui1••• i K21

s 1•••

1~21!K21usDi1
•••DiK21

!~Grs
i1••• i K21ihr!%1 1

2$h
sGrs

i ur1~Djh
s2hsDj !~Grs

j i ur!

1•••1~Di1
•••DiK21

hs1•••1~21!K21hsDi1
•••DiK21

!~Grs
i1••• i K21iur!%. ~3.3!

For each symmetry admitted by system~3.1! we can obtain additional conservation laws throu
any self-adjoint equivalent system related to system~3.1!, with expression~3.3! applied to the
corresponding induced symmetry of the equivalent system.

In particular, for symmetries of the wave equation~2.17!, we can obtain conservation law
from the wave equation itself as well as from its equivalent potential system given by Eqs.~2.19!
and~2.21!, since both Eq.~2.17! and Eqs.~2.19! and~2.21! are self-adjoint systems of PDEs. Th
leads to two conservation laws for any admitted symmetryX5h]/]u of the wave equation~2.17!.
We obtain

F i@u,h#5gi j ~uDjh2hDju! ~3.4!

directly through Eq.~2.17!, and using the induced symmetryX5h]/]u1h i]/]v i of Eqs.~2.19!
and ~2.21! we obtain

F i@u,h#5gi j ~uh j2v jh!2e i jkv jhk. ~3.5!

Now suppose we are given a linear homogeneous system~3.1! that is not self-adjoint. If there
exists an equivalent system that is self-adjoint, then any of its admitted symmetries yield c
vation laws for the given system~3.1!. Thus, since every such equivalent system inherits
symmetries of the given system, we can obtain corresponding conservation laws for any sym
of the given system~3.1!.
J. Math. Phys., Vol. 38, No. 7, July 1997
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Maxwell’s equations~2.30! and its potential system~2.33! are not self-adjoint. However, th
two equivalent systems~2.44! and ~2.45! are self-adjoint. Hence we can use both systems~2.44!
and ~2.45! to obtain conservation laws for any symmetry, local or nonlocal, admitted by M
well’s equations.

Most importantly, since the equivalent systems~2.45! and ~2.44! for Maxwell’s equations
correspond respectively to the wave equation~2.17! and its augmented potential system consist
of Eqs. ~2.19! and ~2.21!, all conservation laws~3.4! and ~3.5! obtained for symmetries of the
wave equation yield conservation laws for the induced symmetries of Maxwell’s equa
through this correspondence.

Definition 3.1: A conservation law of system (3.1) is a local conservation law if and only i
solutions of system (3.1) it has the form DiF

i(x,u,u
1
,...,u

L
)50 such that for each value of x,

F i depends on u only through u(x), u
1
(x),...,u

L
(x) evaluated at x. Otherwise a conservation law

of system (3.1) is a nonlocal conservation law.

A. Nonlocal conservation laws for the wave equation

We now obtain conservation laws for the wave equation~2.17! from the two classes o
nonlocal symmetries~2.22!–~2.24!. Each nonlocal symmetry yields two conservation laws~3.4!
and~3.5! derived from the wave equation and its augmented potential system. These conse
laws are nonlocal as shown by their explicit dependence on the potentialsv i .

1. Conservation laws derived from the wave equation

Class I:The nonlocal symmetries of conformal type~2.23! and the conformal point symme
tries ~2.28! both project to the same conformal transformations on the space of indepe
variablesx. To obtain conservation laws~3.4!, we use symmetries given by subtracting the po
symmetries~2.28! from the nonlocal symmetries~2.23!. This leads to

F i@u,h#52gi j u„16~DjDkj
k!u2 1

4e
klm
„~DjDljm!vk1~Dljm!D ( jvk)…2

1
4g

kl~D [kj j ] !Dlu…

1gi jD ju„j
kDku2 1

4e
klm~Dljm!vk…, ~3.6!

wherej j5gjkj
k, jk is given by Eq.~2.23a!, and (u,v i) is any solution of Eqs.~2.19! and~2.21!.

Class II: Here we directly use the nonlocal symmetries of duality type~2.24! to obtain
conservation laws~3.4!. This yields

F i@u,h#5l lg
klgi j ~uD( jvk)2vkD ju!2 1

2l je
i jkuDku, ~3.7!

wherel j is an arbitrary constant and (u,v i) is any solution of Eqs.~2.19! and ~2.21!.

2. Conservation laws derived from the augmented potential system

Here we use the nonlocal symmetries~2.23! and ~2.24! directly to obtain conservation law
~3.5!.

Class I:

F i@u,h#52~gi j u1e i jkvk!„j
lD ( lv j )1

1
2gjl e

lmnjmDnu2 1
2g

lm~D [mj j ] !v l2
1
4gjl e

lmn~Dmjn!u…

1gi jv j„j
kDku2 1

4e
klm~Dljm!vk…, ~3.8!

wherej j5gjkj
k, jk is given by Eq.~2.23a!, and (u,v i) is any solution of Eqs.~2.19! and~2.21!.

Class II:

F i@u,h#5gi jl j~u
21gklvkv l !12e i jkl jvku22gi j gkllkv jv l , ~3.9!

wherel j is an arbitrary constant and (u,v i) is any solution of Eqs.~2.19! and ~2.21!.
J. Math. Phys., Vol. 38, No. 7, July 1997
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B. Nonlocal conservation laws for Maxwell’s equations

For Maxwell’s equations~2.30!, we now derive corresponding conservation laws from the
classes of nonlocal symmetries~2.46!–~2.48!. The conservation laws are obtained directly throu
the conservation laws~3.6!–~3.9! for the wave equation~2.17! by using the correspondenc
(u,v i)→(w,wi) and eliminating all derivatives ofw as well as antisymmetrized derivatives
wk in terms of the dual electromagnetic fieldF̃k through use of expressions~2.39a! and ~2.39b!.
This leads to conservation laws which are nonlocal as shown by their essential depende
w andwi .

1. Conservation laws derived from the corresponding the wave equation for w

Class I:

F i@ F̃,h̃#52gi jw„ 12g
kl~D [kj j ] !F̃ l2

1
4e

klm~DjDljm!wk1
1
6~DjDkj

k!w2 1
4e

klm~Dljm!D ( jwk)…

1gi j F̃ j„4jkF̃k1
1
2e

klm~Dljm!wk…, ~3.10!

wherej j5gjkj
k, jk is given by Eq.~2.23a! and (F̃k ,w,wj ) is any solution of system~2.39!.

Class II:

F i@ F̃,h̃#5l lg
klgi j ~2wkF̃ j1wD( jwk)!1l je

i jkwF̃k , ~3.11!

wherel j is an arbitrary constant and (F̃k ,w,wj ) is any solution of system~2.39!.

2. Conservation laws derived from the corresponding equivalent system for (w ,w i)

Class I:

F i@ F̃,h̃#5~e i jkwk1gi jw!„gjl e
lmnjmF̃n1

1
2g

lm~D [mj j ] !wl

1 1
4gjl e

lmn~Dmjn!w2j lD ( lwj )…2gi jwj„2jkF̃k1
1
4e

klm~Dljm!wk…, ~3.12!

wherej j5gjkj
k, jk is given by Eq.~2.23a!, and (F̃k ,w,wj ) is any solution of system~2.39!.

Class II:

F i@ F̃,h̃#5gi jl j~w
21gklwkwl !12e i jkl jwkw22gi j gkllkwjwl , ~3.13!

wherel j is an arbitrary constant and (F̃k ,w,wj ) is any solution of system~2.39!.

IV. NEW CONSTANTS OF MOTION

For the sequel we use the notationx05t, x15x, andx25y to denote time and space var
ables, respectively.

Given a conservation law~3.2! for a linear system~3.1!, we let

C@h#5E
R2

F0@u,h#dxdy ~4.1!

evaluated for solutionsu5(u1,...,uN) of the system. Ifu1(x,y,t),...,uN(x,y,t) have appropriate
asymptotic properties in terms of polar variablesr5Ax21y2 andu5arctany/x as r→`, then

dC@h#

dt
52 lim

r→`
E
0

2p

~F1@u,h# cosu1F2@u,h#sinu!du50, ~4.2!

from which it follows thatC@h# defines a constant of motion for system~3.1!.
J. Math. Phys., Vol. 38, No. 7, July 1997
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Definition 4.1: A simple conservation law on solutions u of a linear system (3.1) is a
conservation law DiF

i(x,y,t,u,u
1
,...,u

L
)50 such thatF i depends linearly on u and its deriva

tives.
If a given linear system~3.1! is self-adjoint, then all of its simple conservation laws arise fr

expression~3.3! applied to the trivial symmetriesX5hm]/]um where hm is any solution
(u1,...,uN)5(h1,...,hN) of the system. For a linear system~3.1! that is not self-adjoint, we can
obtain its simple conservation laws by finding all factors for the system as well as for differe
consequences of the system, where the factors satisfy the adjoint of the system or diffe
consequences of the system.4,7

Remark 4.2: Since every linear system admits the scaling symmetryX5um]/]um, then with-
out loss of generality all nonsimple conservation laws DiF

i(x,y,t,u,u
1
,...,u

L
)50 for a linear

system can be assumed to haveF i given by a homogeneous expression in u,u
1
,...,u

L
with scaling

degree of at least two.1

In general, for a given linear system~3.1!, one is interested in finding nonsimple conservati
laws yielding constants of motion whose forms do not involve explicit solutions of the sys
Such constants of motion, e.g., energy, momentum, and angular momentum, are useful sin
give a priori constraints on all solutions.

Definition 4.3: A constant of motion of a linear system (3.1) is elementary if and only if it
be expressed in terms of a finite number of constants of motion arising from simple conser
laws for the system. Otherwise a constant of motion of a linear system (3.1) is nonelemen

Let C@h1#,...,C@hK# defineK constants of motion~4.1! arising for a linear system~3.1!.
Then any function ofC@h1#,...,C@hK# also defines a constant of motion of the system.

Definition 4.4: Suppose C@h1#,...,C@hK# are nonelementary constants of motion. Th
C@h1#,...,C@hK# are functionally independent if and only if each one of the K constants of mo
cannot be expressed in terms of the other K21 constants of motion together with any fini
number of elementary constants of motion.

We now obtain the constants of motion arising from the 12 nonlocal conservation
derived in Sec. III for potential symmetries of the wave equation and Maxwell’s equations
proceed to show that six of these constants of motion represent new nonelementary funct
independent constants of motion of the wave equation and Maxwell’s equations.

A. Constants of motion for the wave equation

Consider smooth compact support initial data

u~x,y,t0!5w~x,y!, D0u~x,y,t0!5c~x,y!, ~4.3!

for the wave equation~2.17!. This data determines corresponding initial datav i(x,y,t0) for the
augmented potential system of the wave equation as follows.

The augmented potential system consisting of PDEs~2.19! and ~2.21! has a residual gaug
freedom given by

v i→v i1Dif ~4.4!

for an arbitraryf(x,y,t) satisfying the wave equationgi jDiD jf50. This freedom allows one to
set

v0~x,y,t0!50, D0v0~x,y,t0!50, ~4.5!

by fixing appropriate initial data forf. Then the PDEs~2.19! and~2.21! evaluated att5t0 lead to

D1v11D2v25D0v050, ~4.6a!
J. Math. Phys., Vol. 38, No. 7, July 1997
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D2v12D1v25D0u5c, ~4.6b!

D0v15D1v01D2u5D2w, ~4.6c!

D0v25D2v02D1u52D1w. ~4.6d!

From Eq.~4.6a! we see that

v1~x,y,t0!5D2r~x,y!, v2~x,y,t0!52D1r~x,y!, ~4.7!

for somer(x,y). Then Eq.~4.6b! leads to

c5Dr, ~4.8!

whereD5(D1)
21(D2)

2 is the Laplace operator. Hence, from Eqs.~4.7! and ~4.8!, we have the
initial data

v1~x,y,t0!5D2D
21c~x,y!,

~4.9!

v2~x,y,t0!52D1D
21c~x,y!,

whereD21 is the inverse Laplace operator.
From the differential consequences of PDEs~2.19! and ~2.21! it follows that bothu(x,y,t)

andv i(x,y,t) satisfy the wave equation. One can then show that the initial data~4.5! and~4.9! for
v i along with the initial data~4.3! for u can be evolved by the wave equation to obtain a solut
„u(x,y,t),v i(x,y,t)… of PDEs~2.19! and ~2.21! given by

v0~x,y,t !50,

v1~x,y,t !5D2D
21D0u~x,y,t !, ~4.10!

v2~x,y,t !52D1D
21D0u~x,y,t !.

Expressions~4.10! determinev i in terms of an arbitrary solutionu of the wave equation~2.17!
with compact support initial data. Hence we have an explicit embedding of the solution spa
the wave equation~2.17! into the solution space of the augmented potential system PDEs~2.19!
and~2.21!. It is useful to note that the time derivatives ofv i are expressed in terms ofu from Eq.
~4.10! by

D0v0~x,y,t !50,

D0v1~x,y,t !5D2u~x,y,t !, ~4.11!

D0v2~x,y,t !52D1u~x,y,t !.

We can now evaluate, on solutionsu of the wave equation~2.17!, the constants of motion
arising from the nonlocal conservation laws~3.6!–~3.9! derived through the wave equation~2.17!
and the augmented potential system given by PDEs~2.19! and ~2.21!. In order to simplify the
resulting expressions~4.1! for the constants of motion it is convenient to isolate divergen
D1S

11D2S
2 appearing inF0@u,h#, where the expressionsS1 and S2 involve u, D0u,

D21D0u, and their spatial derivatives. The contribution of such divergences to the expres
~4.1! consists of flux integrals

lim
r→`

E
0

2p

~S1 cosu1S2 sinu!du, ~4.12!
J. Math. Phys., Vol. 38, No. 7, July 1997

¬08¬Jan¬2009¬to¬137.82.36.67.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright;¬see¬http://jmp.aip.org/jmp/copyright.jsp



te

nt of

ion of

or

s in
ants

3521S. C. Anco and G. Bluman: Nonlocal symmetries and nonlocal conservation laws

Downloaded
which can be simplified using the compact spatial support ofu andD0u, and the asymptotic
expansion ofD21D0u asr→`.

8 The flux integral appearing in condition~4.2! can be simplified
similarly.

1. Constants of motion derived through the wave equation

We use tildes to indicate constants of motion derived through the wave equation~2.17!.
Class I: From Eq.~3.6! the three conservation laws corresponding to$l i% i50,1,2 lead to

C̃1
I 5E

R2
„D0u~xD11yD2!D

21D0u…dxdy, ~4.13a!

C̃2
I 52E

R2
~uD1D

21D0u!dxdy1tE
R2

~D0uD1D
21D0u!dxdy, ~4.13b!

C̃3
I 52E

R2
~uD2D

21D0u!dxdy1tE
R2

~D0uD2D
21D0u!dxdy. ~4.13c!

In Eq. ~4.13a!, the expression forF0@u,h# can be manipulated into the form of a comple
divergence, yielding a flux integral. Simplifying the integral then leads to

C̃1
I 5

1

4p S E
R2
D0u dxdyD 2, ~4.14!

which is a constant of motion functionally depending on the well-known elementary consta
motion *R2D0u dxdy.

Through similar manipulations, the second terms in Eqs.~4.13b! and~4.13c! can be simplified
to flux integrals which are found to vanish when evaluated using the asymptotic expans
D21D0u. Hence

C̃2
I 52E

R2
~uD1D

21D0u!dxdy, ~4.15!

C̃3
I 52E

R2
~uD2D

21D0u!dxdy. ~4.16!

The expressions forF1@u,h# and F2@u,h# corresponding to the simplified expressions f
F0@u, h# in Eqs. ~4.15! and ~4.16! lead to vanishing flux integrals in condition~4.2! when
evaluated using the asymptotic expansion ofD21D0u. Consequently,C̃2

I andC̃3
I define constants

of motion for the wave equation. Moreover, due to the compact spatial support ofu and the
smoothness of bothu andD21 in the simplified expressions forF0@u,h#, it immediately follows
that bothC̃2

I and C̃3
I arefinite.

Class II: From Eq.~3.7! the conservation law corresponding tol0 hasF
0@u,h#50, and hence

yields an identically zero constant of motion. The conservation laws corresponding tol1 and
l2 lead to expressions forF0@u,h# identical to the expressions given by the second integral
Eqs.~4.13b! and~4.13c!, which each vanish. Hence we obtain two more identically zero const
of motion.

2. Constants of motion derived through the augmented potential system

We use hats to indicate constants of motion derived through PDEs~2.19! and ~2.21!.
Class I:From Eq.~3.8! the three conservation laws corresponding to$l i% i50,1,2 lead to
J. Math. Phys., Vol. 38, No. 7, July 1997
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Ĉ1
I 52E

R2
„u~yD12xD2!D

21D0u…dxdy, ~4.17!

Ĉ2
I 5E

R2
y~D0uD21D0u2u2!dxdy22tE

R2
~uD2D

21D0u!dxdy, ~4.18!

Ĉ3
I 52E

R2
x~D0uD21D0u2u2!dxdy12tE

R2
~uD1D

21D0u!dxdy. ~4.19!

To arrive at these expressions we manipulatedF0@u,h# to isolate divergence terms and used t
asymptotic expansion ofD21D0u to find that the integrals contributed by these terms all van

The expressions forF1@u,h# andF2@u,h# corresponding toF0@u,h# in Eq. ~4.17! lead to
flux integrals satisfying the condition~4.2! similar to the ones arising fromC̃2

I and C̃3
I . For

F0@u,h# in Eqs.~4.18! and~4.19! the corresponding expressions forF1@u,h# andF2@u,h# have
an explicit dependence onu andD0u, leading directly to flux integrals satisfying the conditio
~4.2!. HenceĈ1

I , Ĉ2
I , and Ĉ3

I all define constants of motion for the wave equation. Moreov
from the compact spatial support ofu and the smoothness ofu andD21 in these expressions fo
F0@u,h#, it immediately follows thatĈ1

I , Ĉ2
I , andĈ3

I arefinite.
Class II:Here the conservation laws from Eq.~3.9! corresponding tol1 andl2 respectively

yield

Ĉ1
II52C̃2

I , Ĉ2
II52C̃3

I , ~4.20!

which are constants of motion obtained previously.
The remaining conservation law corresponding tol0 leads to

E
R2

~D0uD21D0u2u2!dxdy1 lim
r→`

C̃1
I ln r ~4.21!

after some manipulations similar to the ones used to simplifyC̃1
I . Since we see that the secon

term in Eq.~4.21! is an infinite constant, we now split it off in order to obtain a finite constan
motion. One can then show that

Ĉ3
II5E

R2
~D0uD21D0u2u2!dxdy ~4.22!

satisfies condition~4.2!, since the expressions forF1@u,h# andF2@u,h# arising from Eq.~4.22!
have compact spatial support through an explicit dependence onu. HenceĈ3

II defines a constan
of motion for the wave equation. Most importantly,Ĉ3

II is finite, due to the compact spatial suppo
of u andD0u together with the smoothness ofu andD21 in Eq. ~4.22!.

B. Constants of motion for Maxwell’s equations

Now consider solutions of Maxwell’s equations~2.29! for B(x,y,t), E1(x,y,t), and
E2(x,y,t) with smooth compact spatial support at any fixedt. Corresponding solutions of th
equivalent system~2.45! given by the wave equation for the potentialw(x,y,t) are determined as
follows.

From the relations given by Eq.~2.39a! it directly follows that

2B52D0w, 2E152D2w, 2E25D1w. ~4.23!
J. Math. Phys., Vol. 38, No. 7, July 1997
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Through Maxwell’s equation~2.29c!, one can then solve Eq.~4.23! for w in terms ofE1 and
E2 at any fixedt, up to a constant which can be set to zero by the residual gauge freedom~2.40a!
in system~2.39!. This leads to

w~x,y,t !52E
g
„E2~x8,y8,t !dx82E1~x8,y8,t !dy8…, ~4.24!

whereg is any smooth curve inR2 from the point (x,y) to any point withr→`. Maxwell’s
equation~2.29d! shows thatw is independent of the choice of curveg. As a result, one can show
thatw has spatial support contained in the union of the spatial supports ofE1 andE2 at any fixed
t.

Thus we have the following explicit correspondence of solutions.
Lemma 4.5: Every solution of Maxwell’s equations (2.29) with compact spatial support y

a corresponding solution of the wave equation (2.45) through expression (4.24). Conversely
solution of the wave equation (2.45) with compact spatial support yields a corresponding so
of Maxwell’s equations (2.29) through expressions (4.23). This correspondence between s
spaces of Maxwell’s equations and the wave equation is one-to-one.

Through Lemma 4.5, it follows that the constants of motion arising from the nonlocal
servation laws~3.10!–~3.13! on solutions (B,E1,E2) of Maxwell’s equations can be obtained fro
the constants of motion~4.14!–~4.19! and ~4.22! arising from the nonlocal conservation law
~3.6!–~3.9! for the wave equation withu→w. This correspondence leads to one element
constant of motion

C̃1
I 5

1

p S E
R2
B dxdyD 2 ~4.25!

and the following six new constants of motion:

C̃2
I 524E

R2
~E2D21B!dxdy,

C̃3
I 54E

R2
~E1D21B!dxdy,

Ĉ1
I 58E

R2
„~yE21xE1!D21B…dxdy,

~4.26!

Ĉ2
I 5E

R2
y~4BD21B2w2!dxdy28tE

R2
~E1D21B!dxdy,

Ĉ3
I 52E

R2
x~4BD21B2w2!dxdy28tE

R2
~E2D21B!dxdy,

Ĉ3
II5E

R2
~4BD21B2w2!dxdy,

wherew is given in terms ofE1 andE2 by Eq. ~4.24!. In obtaining expressions~4.26! we have
used relations~4.23! together with integrations by parts which use the compact spatial suppo
w.
J. Math. Phys., Vol. 38, No. 7, July 1997
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Since (B,E1,E2) are solutions with compact spatial support andD21B has spatial suppor
almost everywhere, it follows that the constants of motion~4.26! for Maxwell’s equations are
finite and generically nonzero.

C. Independence of the new constants of motion

We now establish that the six constants of motion~4.26! obtained from nonlocal conservatio
laws for Maxwell’s equations are nonelementary, and that each one cannot be expressed i
of the others together with any finite number of constants of motion arising from the
conservation laws for Maxwell’s equations.

In view of the correspondence Lemma 4.5, we first establish corresponding results for t
constants of motion~4.15!–~4.19! and ~4.22! for the wave equation.

Theorem 4.6:For the wave equation (2.17), every constant of motion functionally depen
on at least one of the six constants of motion from nonlocal conservation laws as well as
most any finite number of constants of motion from local conservation laws is nonelement.

Proof: Let ĉk for k51,...,6 denote respectively the constants of motion~4.15!–~4.19! and
~4.22!. Consider a function depending on at least one of the constants of motion$ĉk%k51,...,6 as
well as on a finite numberL1M of constants of motion$c̄k%k51,...,L , $ck%k51,...,M arising respec-
tively from L nonsimple local conservation laws andM simple conservation laws of the wav
equation~2.17!. Suppose this function defines an elementary constant of motion, given
function depending on a finite numberJ of constants of motion$ck%k5M11,...,M1J arising from
J simple conservation laws of the wave equation~2.17!. Then we have

f ~ ĉ1 ,...,ĉ6 ,c̄1 ,...,c̄L ,c1 ,...,cM !5g~cM11 ,...,cM1J! ~4.27!

for some functionsf of 61L1M variables andg of J variables, which we assume to be smoo
where f has an essential dependence on at least one of its first six variables.

Now consider an arbitrary one-parameter family of solutionsu(x,y,t;l) of the wave equation
~2.17! with smooth initial data~4.3! such that supports of

w0~x,y!5u~x,y,t0 ;0!>0, w1~x,y!5
]u

]l
~x,y,t0 ;0!>0,

~4.28!

c0~x,y!5D0u~x,y,t0 ;0!>0, c1~x,y!5
]D0u

]l
~x,y,t0 ;0!>0,

are compact and mutually disjoint. Evaluating Eq.~4.27! for this initial data then leads to

(
k51

6

f̂ k
] ĉk
]l U

l50

5 (
k51

L

f̄ k
] c̄k
]l U

l50

1 (
k51

M1J

f k
]ck
]l U

l50

, ~4.29!

where f̂ k5] f /] ĉkul50 for k51,...,6, and f̄ k52] f /] c̄kul50 for k51,...,L, while f k5
2] f /]ckul50 for k51,...,M , and f k5]g/]ckul50 for k5M11,...,M1J.

Since eachck appearing in Eq.~4.29! arises from a simple conservation law, it can
expressed linearly in terms of the initial data foru(x,y,t;l), and hence we have

]ck
]l U

l50

5E
R2
„Pk~x,y,t0!w0~x,y!1Qk~x,y,t0!c0~x,y!…dxdy ~4.30!

for some fixed functions$Pk(x,y,t),Qk(x,y,t)%k51,...,M1J . Furthermore, from Remark 4.2 it fol
lows that, in terms of the initial data foru(x,y,t;l), eachc̄k appearing in Eq.~4.29! must be given
by a homogeneous expression of scaling degree of at least two. Consequently, we have
J. Math. Phys., Vol. 38, No. 7, July 1997
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] c̄k
]l U

l50

50 ~4.31!

since all the obtained terms are products of initial data and derivatives of initial data with re
to l having disjoint supports when evaluated atl50 as given by Eq.~4.28!.

Through Eq.~4.31! the relation~4.29! simplifies to

(
k51

6

f̂ k
] ĉk
]l U

l50

5 (
k51

M1J

f k
]ck
]l U

l50

. ~4.32!

Now, from Eqs.~4.15!–~4.19! and ~4.22!, we obtain

] ĉ1
]l U

l50

5E
R2

~2w1D1D
21c01c1D

21D1w0!dxdy,

] ĉ2
]l U

l50

5E
R2

~2w1D2D
21c01c1D

21D2w0!dxdy,

] ĉ3
]l U

l50

52E
R2
„w1~yD12xD2!D

21c02c1D
21~yD1w02xD2w0!…dxdy,

~4.33!

] ĉ4
]l U

l50

5E
R2

c1„yD21c01D21~yc0!…dxdy12t0
] ĉ2
]l U

l50

,

] ĉ5
]l U

l50

52E
R2

c1„xD21c01D21~xc0!…dxdy22t0
] ĉ1
]l U

l50

,

] ĉ6
]l U

l50

52E
R2

~c1D
21c0!dxdy,

where, in terms of the initial data~4.28!, we have integrated by parts so thatD21 does not act on
w1 andc1 , using the identity

VD21U5UD21V1“•„~“D21V!D21U2~“D21U!D21V… ~4.34!

together with the asymptotic expansion ofD21 for r→`.
8

Hence, from Eq.~4.33!, we have

(
k51

6

f̂ k
] ĉk
]l U

l50

5E
R2

S c1~D21~bD1w02aD2w01cc0!1dD21c0!

1w1~aD2D
21c01bD1D

21c0! Ddxdy, ~4.35!

where

a~x!52 f̂ 222 f̂ 3x22 f̂ 4t0 ,

b~y!52 f̂ 112 f̂ 3y12 f̂ 5t0 ,
~4.36!

c~x,y!5 f̂ 4y2 f̂ 5x,
J. Math. Phys., Vol. 38, No. 7, July 1997
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d~x,y!5c~x,y!12 f̂ 6 .

From Eq.~4.30! we also have

(
k51

M1J

f k
]ck
]l U

l50

5E
R2

~w1p1c1q!dxdy, ~4.37!

where

p~x,y!5 (
k51

M1J

f kPk~x,y,t0!,

~4.38!

q~x,y!5 (
k51

M1J

f kQk~x,y,t0!,

in terms of the fixed functions$Pk(x,y,t),Qk(x,y,t)%k51,...,M1J .
Sincew1 andc1 are independent data, it follows from Eq.~4.32! that the terms in Eqs.~4.35!

and ~4.37! involving these functions must be separately equal. This immediately leads t
separating equations

E
R2
„w1~aD2D

21c01bD1D
21c02p!…dxdy50,

E
R2

~c1„D
21~bD1w02aD2w01cc0!1dD21c02q!…dxdy50,

with D21c0(x,y) having support almost everywhere, and bothw1(x,y) and c1(x,y) having
arbitrary compact support. Since we can vary each ofw1 and c1 arbitrarily as non-negative
compactly supported functions, it follows that

aD2D
21c01bD1D

21c05p, ~4.39a!

D21~bD1w02aD2w01cc0!1dD21c05q. ~4.39b!

The expressionsa, b, c, d, p, q appearing in Eq.~4.39! have dependence on the initial da
w0 andc0 only throughf k and f̂ k which are functions of the finite number of constants of mot
$ĉk%k51,...,6, $c̄k%k51,...,L , and$ck%k51,...,M1J all evaluated for this initial data. Applying the La
placianD to Eq. ~4.39a! leads to the relation

a~x!D2c0~x,y!1b~y!D1c0~x,y!5Dp~x,y!. ~4.40!

By fixing the values of the constants$ĉk%k51,...,6, $c̄k%k51,...,L , and$ck%k51,...,M1J which comprise
a finite number of integrals involvingc0 , we can varyc0(x,y) as a smooth compactly supporte
function such that the values ofD2c0 andD1c0 at any chosen point (x,y) are arbitrary while
a(x), b(y), andDp(x,y) all remain fixed. Hence, from this arbitrariness,a andb in Eq. ~4.40!
must be identically zero. As a result it follows that

f̂ 15 f̂ 25 f̂ 35 f̂ 45 f̂ 550. ~4.41!

Then Eq.~4.39b! simplifies to

2 f̂ 6D
21c0~x,y!5q~x,y!, ~4.42!
J. Math. Phys., Vol. 38, No. 7, July 1997
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from which one can show that

f̂ 650 ~4.43!

by a similar argument.
Consequently, from Eqs.~4.41! and ~4.43! we have that eachf̂ k vanishes for the initial data

w0 andc0 . Since this data is arbitrary, we thus have

] f

] ĉk
50, ~4.44!

which shows thatf must have no dependence onĉk for k51,...,6. Hence the functional relatio
~4.27! cannot hold. h

From Theorem 4.6 it follows that the six constants of motion obtained from nonlocal co
vation laws for the wave equation are nonelementary, and that each one cannot be expre
terms of the others together with any finite number of constants of motion arising from
conservation laws for the wave equation. Hence, we have the following corollaries from The
4.6.

Corollary 4.7: The six constants of motion (4.15)–(4.19) and (4.22) arising from nonloca
conservation laws for the wave equation are nonelementary and functionally independent.

Corollary 4.8: The six constants of motion (4.15)–(4.19) and (4.22) arising from nonloca
conservation laws for the wave equation are functionally independent of nonelementary con
of motion arising from any finite number of local conservation laws for the wave equation.

Corollaries 4.7 and 4.8 now lead to the following key theorem for the constants of m
~4.26! for Maxwell’s equations.

Theorem 4.9: For Maxwell’s equations (2.29), the six constants of motion (4.26) obta
from nonlocal conservation laws are nonelementary and functionally independent. Further
each of the six constants of motion (4.26) is functionally independent of nonelementary con
of motion arising from any finite number of local conservation laws of Maxwell’s equations.

Proof: From the correspondence Lemma 4.5 and the form of relations~4.23!, it directly
follows that any local conservation law for Maxwell’s equations yields a local conservation
for the wave equation, and in particular any simple conservation law for Maxwell’s equa
yields a simple conservation law for the wave equation. Moreover, since through Lemma 4
six constants of motion~4.26! arising from the nonlocal conservation laws~3.10!–~3.13! for
Maxwell’s equations correspond to the six constants of motion~4.15!–~4.19! and ~4.22! arising
from nonlocal conservation laws~3.6!–~3.9! for the wave equation, the proof of Theorem 4
reduces to the proof of Theorem 4.6. h

V. SUMMARY

We have obtained six potential symmetries~2.46!–~2.48! for Maxwell’s equations~2.29!
through the point symmetries~2.22!–~2.24! admitted by the equivalent system~2.44!. All other
point symmetries of this equivalent system yield only point symmetries of Maxwell’s equation
particular, translations, a rotation and boosts, and a dilation. One can show that Maxwell’s
tions admit no other nontrivial point symmetries in three space–time dimensions. Note th
admitted point symmetries of Maxwell’s equations~2.29! do not include conformal transforma
tions, unlike the case in four spacetime dimensions.

Since the wave equation~2.45! is also an equivalent system for Maxwell’s equations~2.29!,
we can use its point symmetries to obtain symmetries of Maxwell’s equations. From th
nontrivial point symmetries admitted by the wave equation, one can easily show that the
point symmetries given by translations~2.25!, a rotation and boosts~2.26!, and a dilation~2.27!
yield the seven corresponding point symmetries admitted by Maxwell’s equations, where
J. Math. Phys., Vol. 38, No. 7, July 1997
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TABLE I. Symmetries of Maxwell’s equations~2.29!.

Nonlocal symmetries Remarks

X15„j1
i B24tB1

5
2~xE

22yE1!1w2
1
2~yD~1w0)

2xD~2w0)!…]/]B1„j1
i DiE

124tE12
5
2yB

1
1
2~w11yD~2w1)2xD2w2!…]/]E

11„j1
i DiE

224tE2

1
5
2xB1

1
2~w21xD~2w1)2yD1w1!…]/]E

2

X1, X2, X3 are three conformal point symmetries o
potential system~2.44!.
j1
052t22x22y2, j1

1522tx, j1
2522yt

X25„j2
i DiB14xB2

5
2tE

21
1
2~w21tD ~2w0)

1yD0w0!…]/]B1„j2
i DiE

114xE11
5
2yE

2

1
1
2~w01yD~2w0)1tD2w2!…]/]E

11„j2
i DiE

214xE2

2
5
2~ tB1yE1!1w2

1
2~ tD ~1w2)1yD~1w0)!…]/]E

2

j2
052tx, j2

15t21x22y2, j2
252yx

X35„j3
i DiB14yB1

5
2tE

12
1
2~w11tD ~1w0)

1xD0w0!…]/]B1„j3
i DiE

114yE11
5
2~ tB2xE2!2w

2
1
2~ tD ~2w1)1xD~2w0)!…]/]E

11„j3
i DiE

214yE2

1
5
2xE

11
1
2~w01xD~1w0)2tD1w1!…]/]E

2

j3
052yt, j3

152yx, j3
25t22x21y2

X45~
1
2D0w0!]/]B1~

1
2E

21
1
2D ~2w0)!]/]E

1

1~2
1
2E

11
1
2D ~1w0)!]/]E

2

X4, X5, X6 are three duality point symmetries of potentia
system~2.44!.

X55~2
1
2E

12
1
2D ~1w0)!]/]B1~

1
2B2

1
2D ~2w1)!]/]E

1

1~
1
2D1w1!]/]E

2

X65~
1
2E

22
1
2D ~2w0)!]/]B1~2

1
2D2w2!]/]E

1

1~
1
2B1

1
2D ~2w1)!]/]E

2

X75„j1
i DiB23tB12~xE22yE1!1

1
2w…]/]B1~j1

i DiE
1

23tE122yB!]/]E11~j1
i DiE

223tE212xB!]/]E2

X7, X8, X9 are three conformal point symmetries o
potential system~2.45!.
j1
052t22x22y2, j1

1522tx, j1
2522yt

X85~j2
i DiB13xB22tE2!]/]B1~j2

i DiE
113xE1

12yE2!]/]E11„j2
i DiE

213xE222~ tB1yE1!

1
1
2w…]/]E

2

j2
052tx, j2

15t21x22y2, j2
252yx

X95~j3
i DiB13yB12tE1!]/]B1„j3

i DiE
113yE112~ tB

2xE2!2
1
2w…]/]E

11~j3
i DiE

213yE212xE1!]/]E2

j3
052yt, j3

152yx, j3
25t22x21y2

The potentials$w,w0 ,w1 ,w2% are determined nonlocally in terms of the fields$B,E1,E2% from relations~2.44a! and~4.23!
up to the residual gauge freedom~2.40!.

Point symmetries Remarks

X105~D0B!]/]B1~D0E
1!]/]E11~D0E

2!]/]E2 X10, X11, X12 are three translations.

X115~D1B!]/]B1~D1E
1!]/]E11~D1E

2!]/]E2

X125~D2B!]/]B1~D2E
1!]/]E11~D2E

2!]/]E2

X135~yD1B2xD2B!]/]B1~yD1E
12xD2E

12E2!]/]E1

1~yD1E
22xD2E

21E1!]/]E2

X13 is a rotation.

X145~2tD2B2yD0B2E1!]/]B1~2tD2E
12yD0E

1

2B!]/]E11~2tD2E
22yD0E

2!]/]E2

X14, X15 are two boosts.

X155~ tD2B1xD0B1E2!]/]B1~ tD2E
11xD0E

1

1B!]/]E11~ tD2E
21xD0E

2!]/]E2

X165(tD0B1xD1B1yD2B)]/]B1(tD0E
11xD1E

1

1yD2E
1)]/]E11(tD0E

21xD1E
21yD2E

2)]/]E2
X16 is a dilation.
J. Math. Phys., Vol. 38, No. 7, July 1997
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three point symmetries given by conformal transformations~2.28! yield three potential symmetrie
which aredifferentfrom the six potential symmetries~2.46!–~2.48! admitted by Maxwell’s equa-
tions. Consequently, we obtain three additional potential symmetries for Maxwell’s equations
generators of the seven point symmetries and these nine potential symmetries for Max
equations are exhibited in Table I.

Each symmetry of Maxwell’s equations yields two conservation laws derived through
equivalent systems~2.44! and~2.45!. In Sec. III B we have obtained 12 conservation laws aris
for the six potential symmetries~2.46!–~2.48!. We can likewise obtain 20 conservation law
arising for the seven point symmetries and three other potential symmetries discussed abo
interesting to note that for each symmetry the conservation laws obtained from the two sy
~2.44! and ~2.45! are distinct. However, some symmetries yield trivial or duplicate conserva
laws. The conserved densities arising from all 32 conservation laws are exhibited in Tables
Tables III.

Altogether, these conserved densities yield 16 nonelementary functionally independen
stants of motion for Maxwell’s equations: seven constants of motion arising for the seven
symmetries, given by translations, a rotation and boosts, and a dilation, are obtained from
conserved densities through system~2.45!; six constants of motion arising for the six potenti
symmetries~2.46!–~2.48! are obtained from nonlocal conserved densities through system~2.44!;
three constants of motion arising for the three additional potential symmetries above are ob
from nonlocal conserved densities through system~2.45!. The functional independence of these

TABLE II. Conserved densities for Maxwell’s equations~2.29! from conservation laws derived through the potent
system~2.44!.

Symmetry Conserved density Remarks

X1 8„yE2~x,y,t !1xE1~x,y,t !…D21B~x,y,t ! 6 new quantities@see~4.26!# from X1,...,X6;
g is any smooth curve from
(x,y) to r→` at fixed t.

X2 24yB~x,y,t!D21B~x,y,t!

24ySE
g

„E2~x8,y8,t !dx82E1~x8,y8,t !dy8…D 2
18tE1~x,y,t !D21B~x,y,t !

X3 4xB~x,y,t!D21B~x,y,t!

14xSE
g

„E2~x8,y8,t !dx82E1~x8,y8,t !dy8…D 2
28tE2~x,y,t !D21B~x,y,t !

X4 24B~x,y,t!D21B~x,y,t!

1SE
g

„E2~x8,y8,t !dx82E1~x8,y8,t !dy8…D 2
X5 28E2(x,y,t)D21B(x,y,t)
X6 8E1(x,y,t)D21B(x,y,t)
X7 trivial
X8 trivial
X9 trivial
X10 trivial
X11 trivial
X12 8E2(x,y,t)D21B(x,y,t) Duplicate of new quantity fromX5 .
X13 28E1(x,y,t)D21B(x,y,t) Duplicate of new quantity fromX6 .
X14 trivial
X15 trivial
X16 trivial
J. Math. Phys., Vol. 38, No. 7, July 1997
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constants of motion is established by a strengthing of Theorem 4.9, through the use of Lem
and Corollaries 4.7 and 4.8 for the 16 corresponding constants of motion of the wave eq
arising for its ten nontrivial point symmetries~2.25!–~2.28! and six potential symmetries~2.22!–
~2.24!.

For Maxwell’s equations~2.29!, the ten constants of motion arising for the seven po
symmetries and the three additional potential symmetries represent energy, momentum,
momentum, dilation, and conformal quantities for the electromagnetic field. The six consta
motion ~4.26! arising for the potential symmetries~2.46!–~2.48! represent new additional con
served quantities for the electromagnetic field.

VI. CONCLUDING REMARKS

~1! Maxwell’s equations~2.29! in three space–time dimensions arise from Maxwell’s equati
in four space–time dimensions when the electromagnetic field tensorF has no essentia

TABLE III. Conserved densities for Maxwell’s equations~2.29! from conservation laws derived through the potent
system~2.45!.

Symmetry Conserved density Remarks

X12X7 4B(x,y,t)(xD11yD2)D
21B(x,y,t) Not new @see~4.25!#.

X22X8 24E2(x,y,t)D21B(x,y,t)1trivial Duplicate of new quantity.

X32X9 4E1(x,y,t)D21B(x,y,t)1trivial Duplicate of new quantity.
X4 trivial
X5 trivial
X6 trivial
X7 24~t21x21y2!„B~x,y,t !21E1~x,y,t !21E2~x,y,t !2…

116tB~x,y,t !„xE2~x,y,t !2yE1~x,y,t !…

14tB~x,y,t !S E
g

„E2~x8,y8,t !dx82E1~x8,y8,t !dy8…D
1S E

g

„E2~x8,y8,t !dx82E1~x8,y8,t !dy8…D 2

Three conformal quantities
~see Sec. V! from X7, X8, X9;
g is any smooth curve, from
(x,y) to r→` at fixed t.

X8 8xt„B~x,y,t !21E1~x,y,t !21E2~x,y,t !2…

28~ t21x22y2!B~x,y,t !E2~x,y,t !116xyB~x,y,t !E1~x,y,t !

24xB~x,y,t !S E
g

~E2~x8,y8,t !dx82E1~x8,y8,t !dy8!D
X9 8yt„B~x,y,t !21E1~x,y,t !21E2~x,y,t !2…

18~ t22x21y2!B~x,y,t !E1~x,y,t !216xyB~x,y,t !E2~x,y,t !

24yB~x,y,t !S E
g

~E2~x8,y8,t !dx82E1~x8,y8,t !dy8!D
X10 4„B(x,y,t)21E1(x,y,t)21E2(x,y,t)2… energy
X11 24B(x,y,t)E2(x,y,t) spatial momentum
X12 4B(x,y,t)E1(x,y,t) spatial momentum

X13 28B(x,y,t)„xE2(x,y,t)1yE1(x,y,t)… rotation angular momentum
X14 24y„B~x,y,t !21E1~x,y,t !21E2~x,y,t !2…

28tB~x,y,t !E1~x,y,t !

boost angular momentum

X15 24x„B~x,y,t !21E1~x,y,t !21E2~x,y,t !2…

18tB~x,y,t !E2~x,y,t !

boost angular momentum

X16 4t„B~x,y,t !21E1~x,y,t !21E2~x,y,t !2…

28B~x,y,t !„E2~x,y,t !2E1~x,y,t !…

dilation quantity
J. Math. Phys., Vol. 38, No. 7, July 1997
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dependence on one spatial dimension as follows: Fix spatial directionsx̂,ŷ,ẑ, and letEW

5E1x̂1E2ŷ1E3ẑ andBW 5B1x̂1B2ŷ1B3ẑ represent the electric and magnetic fields. If t
ẑ components ofF, given byE3,B1,B2, are constant, while the other components ofF, given
by E1,E2,B3, have no dependence onz, then Maxwell’s equations forEW andBW reduce to Eq.
~2.29! for E1, E2, andB35B.

~2! Maxwell’s equations in four space–time dimensions admit 15 point symmetries and c
sponding local conservation laws.9–12Through the above dimensional reduction of Maxwel
equations, seven local conservation laws survive in three space–time dimensions. Thes
conservation laws correspond to the three translations, one rotation and two boosts ea
involving the ẑ direction, and one dilation, which are the point symmetries admitted
Maxwell’s equations~2.29! in three space–time dimensions. Interestingly, local conserva
laws corresponding to the four conformal transformations in four space–time dimension
lost since conformal transformations are not admitted as point symmetries by Maxw
equations in three space–time dimensions. Using a scalar potential for the electroma
field, we have obtained a group of nonlocal conformal transformations and three corres
ing nonlocal conservation laws for Maxwell’s equations~2.29!. More importantly, through a
system of scalar and vector potentials for the electromagnetic field, we have found a
group of nonlocal conformal transformations and three further nonlocal conservation law
Maxwell’s equations~2.29!. From the same system of scalar and vector potentials, we
have found three additional nonlocal conservation laws corresponding to a group of no
duality transformations arising as rotations on the potentials. Altogether these nonloca
servation laws yield nine gauge-invariant conserved quantities for the electromagnetic fi
three space–time dimensions.

~3! The results of this paper can be generalized to Maxwell’s equations in three space
dimensions with a curved Lorentz metricgi j . Let g

i j denote the inverse metric,e i jk denote the
totally-skew tensor normalized with respect togi j , andDi denote the derivative operato
determined bygi j . Then, the nonlocal symmetries~2.46!–~2.48! obtained in flat space–time
extend to curved space–time if and only ifl i is a covariantly constant vector,Djl

i50, and
j i is a conformal Killing vector of special type such thatRlk ji j

i50 whereRlk ji is the curva-
ture tensor andgjkDkj

i1gikDkj
j5 2

3g
jiDkj

k. From these nonlocal symmetries, correspond
nonlocal conservation laws and associated constants of motion can be derived by the m
of Secs. III and IV.

~4! In a future paper we will apply our methods to Maxwell’s equations in four space–
dimensions to seek nonlocal symmetries and corresponding nonlocal conservation law
new constants of motion.

~5! It is important to emphasize that the basic formulation presented in Sec. II can be app
any system of PDEs with three or more independent variables.
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