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An identity is derived which yields a correspondence between symmetries and
conservation laws for self-adjoint differential equations. This identity does not rely
on use of a Lagrangian as needed to obtain conservation laws by Noether’s theo-
rem. Moreover, unlike Noether’s theorem, which can only generate conservation
laws from local symmetries, the derived identity generates conservation laws from
nonlocalas well as local symmetries. It is explicitly shown how Noether’s theorem
is extended by the identity. Conservation laws arising from nonlocal symmetries
are obtained for a class of scalar wave equations with variable wave speeds. The
constants of motion resulting from these nonlocal conservation laws are shown to
be linearly independent of all constants of motion resulting from local conservation
laws. © 1996 American Institute of Physics.@S0022-2488~96!02405-2#

I. INTRODUCTION

Conservation laws can be found for self-adjoint systems of differential equations by Noether’s
theorem.1–3 If a local symmetry admitted by a given system leaves invariant the variational
principle of the system, Noether’s theorem yields a corresponding conservation law of local type.
Conversely, all conservation laws of local type for a given system arise from the local symmetries
admitted by the system. A limitation of Noether’s theorem, however, is that it can only directly
deal with local symmetries and hence conservation laws of local type. This poses a significant
incompleteness in the study of differential equations since conservation laws of nonlocal type are
equally as useful as those of local type. In particular, as will be shown in this article, conservation
laws of nonlocal type yield additional constants of motion and thus expand the utility of methods
of analysis which depend on conservation laws.

In this article we introduce an expression that yields conservation laws from nonlocal sym-
metries as well as local symmetries admitted by an arbitrary self-adjoint system of differential
equations. Significantly, in contrast to the formulation of Noether’s theorem, the expression is
derived from a bilinear identity that makes no use of a Lagrangian. As preliminaries to the
derivation and main results, we now give definitions of local and nonlocal symmetries and con-
servation laws of local and nonlocal type for self-adjoint systems of differential equations.

Consider a system of differential equations~DEs! given by

Gs~x,u,u
1
,...,u

K
!50, s51,...,M ~1.1!

for M>1 dependent variablesu5(u1,...,uM) which are functions ofN>1 independent variables
x5(x1,...,xN), with u

J
denoting allJth order derivatives ofu with respect tox. For the sequel, we

let Di denote total differentiation with respect toxi , where i51,...,N, and we use the index
notation ui1••• i J

g 5 Di1
•••DiJ

ug for differentiations ofu, where g51,...,M , i J51,...,N, and
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J51,2,... . Hereafter, unless otherwise stated, we use the index conventions that all Greek indices
range from 1 toM , all Latin indices~lower case! range from 1 toN, while summation is assumed
over any repeated indices in all expressions.

Definition 1.1: The Fre´chet derivative associated with system (1.1) is the matrix linear op-
erator

F sr5
]Gs

]ur 1
]Gs

]ui
r Di1•••1

]Gs

]ui1 ••• i K
r Di1

•••DiK
. ~1.2!

Definition 1.2: A symmetry admitted by system (1.1) is characterized by an infinitesimal
generator

X5hm]/]um, ~1.3!

whereh m satisfies

F srhr50 ~1.4!

for every solution u(x) of system (1.1).
Definition 1.3: A local symmetry admitted by system (1.1) is a symmetry with an infinitesimal

generator of the form

X5hm~x,u,u
1
,...,u

P
!]/]um ~1.5!

such that, for all values of x, hm depends on u,u
1
,...,u

P
only through u(x),u

1
(x),...,u

P
(x) evaluated

at x.
Definition 1.4: A nonlocal symmetry admitted by system (1.1) is a symmetry with an infini-

tesimal generatorX5h m]/]um not of the form (1.5), such thath m has other than just a local
dependence on u(x) and derivatives of u(x) to some finite order.

All local symmetries of system~1.1! can be determined by Lie’s algorithm.2,3 No correspond-
ing procedure exists to findall nonlocal symmetries of system~1.1!.

There is an algorithm3–6 to determine special nonlocal symmetries, calledpotential symme-
tries, if one DE of system~1.1! is a divergence expression. These potential symmetries arise as
local symmetries admitted by auxiliary systems associated to system~1.1!. In the case of two
independent variables~N52!, suppose system~1.1! has a DE of the form

Gs~x,u,u
1
,...,u

K
!5D1f

1~x,u,u
1
,..., u

K21
!1D2f

2~x,u,u
1
,..., u

K21
!50, s5M . ~1.6!

Through Eq.~1.6! one can introduce an auxiliary potential variablev and form a potential system
given by

Gs50, s51,...,M21, ~1.7!

D2v5 f 1, D1v52 f 2. ~1.8!

If ( u(x),v(x)) satisfies system~1.7!–~1.8!, then u(x) satisfies system~1.1!; if u(x) satisfies
system~1.1!, then there exists somev(x) ~unique up to the addition of an arbitrary constant! such
that (u(x),v(x)) satisfies system~1.7!–~1.8!. Sincev(x) is determined in terms of integrals of
u(x), a local symmetry of system~1.7!–~1.8! may yield a nonlocal symmetry of system~1.1!. In
particular, such a nonlocal symmetry arises if and only if an infinitesimal generator of a local
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symmetry of system~1.7!–~1.8! does not project onto an infinitesimal generator of a local sym-
metry admitted by system~1.1!. Similar considerations hold for the case of more than two inde-
pendent variables.

Definition 1.5: A conservation law of system (1.1) is a divergence free expression DiC
i50

which holds for every solution of system (1.1) and its differential consequences. The conservation
law is local (conservation law of local type) if and only if it has the form DiC

i(x,u,u
1
,...,u

L
)

5 0 where, for all values of x, Ci depends on u,u
1
,...,u

L
only through u(x),u

1
(x),...,u

L
(x) evalu-

ated at x. Otherwise the conservation law is nonlocal (conservation law of nonlocal type).
Definition 1.6: The adjoint of the Fre´chet derivative (1.2) is the matrix linear operator

F sr* satisfying

VsF srW
r2WsF sr* Vr5DiP

i ~1.9!

for all K times differential functions Vg(x) and Wg(x), for some Pi which depends on xi , ug, Vg,
Wg and the derivatives of ug, Vg, Wg to some finite order.

Definition 1.7: The system (1.1) is self-adjoint if and only if

F sr5F sr* . ~1.10!

In Sec. II, we derive the bilinear identity giving a correspondence between symmetries and
conservation laws for self-adjoint systems of DEs~1.1!. From this identity we obtain an expression
that yields a conservation law for each pair of symmetries,local or nonlocal, admitted by any such
system~linear or nonlinear!. Furthermore, as each such linear system admits a trivial scaling
symmetry, we obtain a conservation law for all nontrivial symmetries of any self-adjoint linear
system of DEs~1.1!. In particular, each nonlocal symmetry admitted by such a linear system
thereby leads to a corresponding nonlocal conservation law.

From the known connection between local conservation laws and local symmetries2,7 for
self-adjoint systems of DEs it follows that all local conservation laws obtained through the bilinear
identity derived in Sec. II are also obtainable from Noether’s theorem. In the case when such a
system is linear, we show in Sec. III that each local symmetry leaving invariant a corresponding
variational principle yields the same conservation law through our bilinear identity as through
Noether’s theorem.

In Sec. IV, as an example of a self-adjoint linear DE, we consider the two-dimensional scalar
wave equation with a variable wave speed. For a large class of wave speeds this equation admits
nonlocal symmetries realized as potential symmetries.3–5 The nonlocal character of these symme-
tries means that we cannot obtain corresponding conservation laws by applying Noether’s theorem
to the variational principle of the scalar wave equation. Moreover, we show that the potential
system for this equation does not have a variational principle, and hence Noether’s theorem cannot
be applied to the potential system to obtain any conservation laws. By using our conservation law
expression derived in Sec. II, we obtain nonlocal conservation laws for the admitted nonlocal
symmetries. In Sec. V, we obtain corresponding constants of motion for the scalar wave equation.
We show that these constants of motion are linearly independent of each other as well as linearly
independent of all constants of motion arising from local symmetries of the scalar wave equation.

In Sec. VI, we expand on some of the ideas and results presented in earlier sections.

II. DERIVATION OF THE CONSERVATION LAW EXPRESSION

We consider a system~1.1! that is self-adjoint. Then the DEs in system~1.1! must satisfy the
following Helmholtz identities:7

]Gs

]ur 5
]Gr

]us 2DiS ]Gr

]ui
s D 1•••1~21!KDi1

•••DiKS ]Gr

]ui1 ••• i K
s D , ~2.1!
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]Gs

]ui1 ••• i j
r 5~21!J

]Gr

]ui1 ••• i J
s 1~21!J11CJ

J11DiJ11S ]Gr

]ui1 ••• i J11

s D
1•••1~21!KCJ

KDiJ11
•••DiKS ]Gr

]ui1 ••• i K
s D , J51,...,K21, ~2.2!

]Gs

]ui1 ••• i K
r 5~21!K

]Gr

]ui1 ••• i K
s , ~2.3!

whereCJ
L5L!/J!(L2J)! for positive integersL>J. As a consequence of these identities, one can

verify by direct calculation that the Fre´chet derivative~1.2! leads to the identity

F srvr5vr
]Gr

]us 2DiS vr
]Gr

]ui
s D 1•••1~21!KDi1

•••DiKS vr
]Gr

]ui1 ••• i K
s D ~2.4!

for arbitrary functionsvr.
Using Eq.~2.4! and the Leibnitz rule for differentiation, one finds that the following bilinear

skew-symmetric identity holds for arbitrary functionsv r andn r:

nsF srvr2vsF srnr5DiF
i@n,v#, ~2.5!

where

F i@n,v#52
1

2 H ns
]Gr

]ui
s vr1~Djn

s2nsDj !S ]Gr

]uji
s vrD 1•••1~Di1

•••DiK21
ns

1•••1~21!KnsDi1
•••DiK21

!S ]Gr

]ui1 ••• i K21i
s vrD J

1
1

2 H vs
]Gr

]ui
s nr1~Djv

s2vsDj !S ]Gr

]uji
s nrD 1•••1~Di1

•••DiK21
vs

1•••1~21!KvsDi1
•••DiK21

!S ]Gr

]ui1 ••• i K21i
s nrD J . ~2.6!

The functionsvr andnr here can have arbitrary~local or nonlocal! dependence onu and deriva-
tives ofu.

This bilinear identity leads to a connection between symmetries and conservation laws:
Theorem 2.1:SupposeX15h1

m]/]um and X25h2
m]/]um are infinitesimal generators of sym-

metries (local or nonlocal) of a self-adjoint system (1.1). The bilinear identity (2.5) then yields the
conservation law

DiF
i@h1 ,h2#50 ~2.7!

with Fi@h1,h2# defined by Eq. (2.6).
We now specialize to the case when system~1.1! is a linear homogeneous system

Gs~x,u,u
1
,...,u

K
!5Gsr~x!ur1Gsr

i ~x!ui
r1•••1Gsr

i1 ••• i K~x!ui1 ••• i K
r 50 ~2.8!
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with coefficientsGsr(x),Gsr
i (x),...,Gsr

i1 ••• i K(x). Every such system admits the trivial scaling
symmetry

Xs5um]/]um. ~2.9!

Using this symmetry as one of the symmetries in Theorem 2.1 now leads to the following corre-
spondence:

Theorem 2.2:Suppose a self-adjoint linear system (2.8) admits a nontrivial symmetry (local
or nonlocal) with infinitesimal generatorX5hm]/]um. Then Eq. (2.7) yields the conservation law

DiF
i@u,h#50, ~2.10!

where

F i@u,h#52 1
2 $usGrs

i ~x!hr1~uj
s2usDj !~Grs

j i ~x!hr!

1•••1~ui1 ••• i K21

s 1•••1~21!KusDi1
•••DiK21

!~Grs
i1 ••• i K21i~x!hr!%

1 1
2 $hsGrs

i ~x!ur1~Djh
s2hsDj !~Grs

j i ~x!ur!1•••1~Di1
•••DiK21

hs

1•••1~21!KhsDi1
•••DiK21

!~Grs
i1 ••• i K21i~x!ur!% . ~2.11!

III. RELATIONSHIP TO NOETHER’S THEOREM

Noether’s theorem only relates local symmetries to conservation laws~of local type! for
self-adjoint systems. The variational principle for a~linear or nonlinear! self-adjoint system~1.1!
has LagrangianL given by2,7

L~x,u,u
1
,...,u

K
!5E

0

1

usGs~x,lu,lu
1
,...,lu

K
!dl. ~3.1!

Definition 3.1: An infinitesimal generatorX5hm(x,u,u
1
,...,u

P
)]/]um is a variational symmetry of

a self-adjoint system (1.1) if and only if

X~K !L~x,u,u
1
,...,u

K
!5DiA

i ~3.2!

for some Ai(x,u,u
1
,...,u

L
), whereX(K) is the Kth prolongation generator given by

X~K !5hm]/]um1~Dih
m!]/]ui

m1•••1~Di1
•••DiK

hm!]/]ui1 ••• i K
m . ~3.3!

Noether’s theorem yields a local conservation law for each variational symmetry admitted by
system~1.1!. Specifically, one can show that

X~K !L5Gshs1DiS
i5DiA

i , ~3.4!

where Si5hs]L/]ut
s 1 (Djh

s 2 hsDj )(]L/]uji
s ) 1 ••• 1 (Dj 1

••• DjK21
hs1••• 1

( 2 1)K21hsDj 1
••• DjK21

)(]L/]uj 1 ••• j K21i
s ).2,3,7Then Eq.~3.4! yields Noether’s identity

DiN
i@h#52Gshs ~3.5!

with Ni [h]5Si2Ai . Consequently, for any solution of system~1.1! we obtain the Noether con-
servation law
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DiN
i@h#50. ~3.6!

Using the Helmholtz identities~2.1! to ~2.3!, along with Noether’s identity~3.5! and the fact
that the Euler–Lagrange operator annihilates divergences, one can show that any variational
symmetryX5h m]/]um satisfies the identity

F srhr52Gr

]h r

]us 1DiSGr

]h r

]ui
s D 1•••1~21!P11Di1

•••DiPSGr

]h r

]ui1 ••• i P
s D . ~3.7!

From Eq.~3.7! it immediately follows that all variational symmetries are local symmetries of
system~1.1!. @The converse does not always hold, as seen from the fact that scaling symmetries
~2.9! generally do not satisfy Eq.~3.7!.#

For the rest of this section we restrict the self-adjoint system~1.1! to be a linear homogeneous
system~2.8!. Before relating conservation laws from Noether’s theorem to conservation laws
arising from the bilinear identity~2.5!, we establish the following result:

Lemma 3.2: Supposehm(x,u,u
1
,...,u

P
) is analytic in u and derivatives of u. Then any local

symmetry generator of the formX5hm(x,u,u
1
,...,u

P
)]/]um admitted by a linear homogeneous

system~2.8! can be expressed as a superposition of homogeneous local symmetry generators:

hm~x,u,u
1
,...,u

P
!5 (

n50

`

h
~n!

m~x,u,u
1
,...,u

P
!, ~3.8!

where

h
~n!

m~x,u,u
1
,...,u

P
!5l2nh

~n!
m~x,lu,lu

1
,...,lu

P
! ~3.9!

for all positive constantsl.
Proof: Since system~2.8! admits the scaling symmetry~2.9!, it must also admit the symmetry

hm(x,lu,lu
1
,...,lu

P
)]/]um for all constantsl. Then the analyticity property ofhm leads to

hm~x,lu,lu
1
,...,lu

P
!5 (

n50

`

lnh
~n!

m~x,u,u
1
,...,u

P
!, ~3.10!

where h
(n)

m(x,u,u
1
,...,u

P
)5]nhm(x,lu,lu

1
,...,lu

P
)/]lnul50 and h

(n)
m(x,u,u

1
,...,u

P

5hm(x,l,u,lu
1
,...,lu

P
)ul50. It then follows that eachh

(n)
m(x,u,u

1
,...,u

P
)]/]um, for n50,1,2,..., is

a local symmetry of system~2.8!. Settingl51 in the superposition~3.10! then yields Eq.~3.8!.h
As an aside we remark that every infinitesimal generator of a point symmetry

X5hm(x,u,u
1
)]/]um has h

(n)
m(x,u,u

1
)50 for nÞ1 when system~2.8! is a scalar PDE of order

K>2 ~with N>2!.8

Without loss of generality we assume that each infinitesimal generator of a symmetry admit-
ted by system~2.8! satisfies the homogeneity property~3.9!. We then have the following identity

us
]hr

]us 1ui
s

]hr

]ui
s 1•••1ui1 ••• i P

s
]hr

]ui1 ••• i P
s 5nhr ~3.11!

for some integern>0.
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We now establish the relationship between Noether’s conservation law expression~3.6! and
our conservation law expression~2.10!:

Theorem 3.3:Suppose a variational symmetry of a self-adjoint linear system (2.8) has an
infinitesimal generatorX5h m]/]um satisfying Eq. (3.11). Then up to the addition of a divergence
free expression, one has

F i@u,h#5~11n!Ni@h#, ~3.12!

for every solution of the system (2.8).
Proof. From the bilinear identity~2.5! we have

DiF
i@u,h#5usF srhr2hsF sru

r. ~3.13!

Since system~2.8! is linear, it satisfies the identity

F sru
r5Gs . ~3.14!

Using the Leibnitz rule for differentiation to manipulate Eq.~3.7!, we get

usF srhr52GrS us
]hr

]us 1ui
s

]hr

]ui
s 1•••1ui1 ••• i P

s
]hr

]ui1 ••• i P
s D 1DiB

i , ~3.15!

where

Bi5usGr

]hr

]ui
s 1~uj

s2usDj !SGr

]hr

]uji
s D 1•••

1~ui1 ••• i P21

s 1•••1~21!P21usDi1
••• DiP21

!SGr

]hr

]ui1 ••• i K21i
s D . ~3.16!

Consequently, after substituting Eqs.~3.14! and ~3.15! into Eq. ~3.13! and then using Eq.~3.11!,
we obtain

DiF
i@u,h#52~11n!hsGs2DiB

i . ~3.17!

Then Noether’s identity~3.5! yields

DiF
i@u,h#5~11n!DiN

i@h#2DiB
i . ~3.18!

Now observe thatBi50 whenGp50, and henceBi50 for every solution of system~2.8!. Thus we
arrive at Eq.~3.12!. h

IV. NONLOCAL CONSERVATION LAWS FOR SCALAR WAVE EQUATIONS

Throughout the sequel, we setx15x, x25t, and we use a subscript notation for total differ-
entiation with respect tox and t.

Consider the scalar wave equation

uxx2c22utt50 ~4.1!

with a variable wave speedc(x). From Eq.~1.8! we introduce the corresponding potential system

v t5ux, vx5c22ut . ~4.2!
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The wave equation~4.1! has nonlocal symmetries which are realized as potential symmetries
resulting from local point symmetries of potential system~4.2! if and only if the wave speed
satisfies the fourth order DE3,4

~cc8~c/c8!9!850. ~4.3!

Such wave speeds are bounded away from zero for2`,x,` whenc(x) satisfies the first order
DE

c85n21 sin~n log c!, n5const , ~4.4!

up to arbitrary scalings ofc andx.9

Classification of the point symmetries of system~4.2! yielding nonlocal~potential! symme-
tries of the wave equation~4.1! leads to two cases3–5 with, respectively, one and two admitted
infinitesimal generatorsX5h]/]u of the form

h5 f ~x,t !u1g~x,t !v2j~x,t !ux2t~x,t !ut , ~4.5!

whereg(x,t) is not identically zero.
Case I (one nonlocal symmetry):The wave speedc(x) satisfies

~c/c8!85g5const. ~4.6!

Here we have

f ~x,t !5a8~ t !~12 1
2g!, g~x,t !52 1

2a9~ t !c~x!/c8~x!,
~4.7!

j~x,t !5a8~ t !c~x!/c8~x!, t~x,t !5a~ t !~g21!1a9~ t !d~x!,

where d(x) is a definite integral of 1/(c(x)c8(x)), and a(t) satisfies the first order ODE
(a/t2)850, which thus leads to the existence of one generatorX5h]/]u.

Case II (two nonlocal symmetries):The wave speedc(x) satisfies

cc8~c/c8!95m5constÞ0. ~4.8!

Here we have

f ~x,t !5b8~ t !~22~c~x!/c8~x!!8!,

g~x,t !52mb~ t !c~x!/c8~x!,
~4.9!

j~x,t !52b8~ t !c~x!/c8~x!,

t~x,t !52b~ t !~~c~x!/c8~x!!821!,

whereb(t) satisfies the second order ODEb92mb50, which thus leads to the existence of two
generatorsX5h]/]u.

Conservation laws for all symmetries admitted by the wave equation~4.1! are obtainable from
Theorem 2.2 since the wave equation is linear and self-adjoint. Hence, each nonlocal symmetry
X5h]/]u admitted in Cases I and II gives rise to a corresponding nonlocal conservation law.
From Eqs.~2.11! and ~4.5!, these conservation laws are given by

~F1@u,h#!x1~F2@u,h#! t50 ~4.10!

with
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F1@u,h#5uhx2hux1~tuux1c22juut! t

5gxuv2guxv1 f xu
21c22guut2c8c21juux1c22jut

21jux
212tuxut , ~4.11!

F2@u,h#5c22~hut2uh t!2~tuux1c22juut!x

5c22~2gtuv1gutv2 f tu
22guux1c8c21juut2tut

22c2tux
222juxut!, ~4.12!

where f ,g,j,t satisfy Eq.~4.7! in Case I and Eq.~4.9! in Case II. The identically divergence free
terms inF1 andF2 have been added to eliminate all terms involving second order derivativesuxx ,
utt , anduxt .

These nonlocal conservation laws arising from the nonlocal symmetriesX5h]/]u cannot be
obtained through Noether’s theorem for the scalar wave equation~4.1! since Noether’s theorem is
applicable only to local symmetries that leave invariant a variational principle for Eq.~4.1!.
Moreover, even though the symmetriesX5h]/]u are realized as local symmetries of the potential
system~4.2!, Noether’s theorem still cannot be applied since, as will now be demonstrated, the
potential system is not self-adjoint and hence has no variational principle. Let

Fu1u2G5Fuv G
define a column vector. Then the Fre´chet derivative~1.2! associated to system~4.2! is given by the
matrix operator

F 5F 2]/]x ]/]t

2c22]/]t ]/]xG . ~4.13!

By direct calculation, using Eq.~1.9!, the adjoint of the Fre´chet derivative is

F *52F , ~4.14!

and thus the potential system is not self-adjoint.

V. NEW CONSTANTS OF MOTION FOR SCALAR WAVE EQUATIONS

Given a conservation law (F1[u,h]) x1(F2[u,h]) t50 arising from Theorem 2.2 for a sym-
metryX5h]/]u of the scalar wave equation~4.1!, we let

C@h#5E
2`

`

F2@u,h#dx. ~5.1!

If u(x,t) has appropriate asymptotic properties asx→6`, then

dC@h#

dt
52F1@u,h#ux52`

x5` 50, ~5.2!

from which it follows thatC@h# defines a constant of motion for Eq.~4.1!.
Now consider compact support initial data

u~x,t0!5w~x!, ut~x,t0!5c~x!, ~5.3!

for the scalar wave equation~4.1!. This determines corresponding data for the potential system
~4.2!, with

2369S. C. Anco and G. Bluman: Derivation of conservation laws

J. Math. Phys., Vol. 37, No. 5, May 1996

Downloaded¬08¬Jan¬2009¬to¬137.82.36.67.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright;¬see¬http://jmp.aip.org/jmp/copyright.jsp



v~x,t0!5u~x!5E
2`

x

c~ x̃!22c~ x̃!dx̃ ~5.4!

~up to the addition of an arbitrary constant!. Evaluating the nonlocal conservation laws given by
Eqs.~4.10! to ~4.12! with this initial data we find

lim
x→6`

F1@u,h#50 ~5.5!

and hence Eq.~5.1! yields constants of motion for the scalar wave equation~4.1!. In terms of the
initial data ~5.3! and ~5.4! we obtain

C@h#5E
2`

`

c~x!22$~g~x,t0!c~x!2gt~x,t0!w~x!!u~x!2g~x,t0!w~x!w8~x!2 f t~x,t0!w~x!2

1j~x,t0!~c~x!21c8~x!w~x!22w8~x!!c~x!2t~x,t0!~c~x!21c~x!2w8~x!2!%dx.

~5.6!

For each wave speedc(x) satisfying Eq.~4.6!, the expressionC@h# yields one constant of motion,
with f ,g,j,t satisfying Eq.~4.7!; for each wave speedc(x) satisfying Eq.~4.8!, the expression
C@h# yields two constants of motion, withf ,g,j,t satisfying Eq.~4.9!.

A. Linear independence of constants of motion

Let C[h1],C[h2],...,C[hk] define k.1 constants of motion arising for the scalar wave
equation~4.1! from symmetriesX15h1]/]u, X25h2]/]u,..., Xk5hk]/]u, respectively.

Definition 5.1: Suppose c1 ,...,ck are constants such that c1C[h1]1•••1ckC[hk] vanishes
for arbitrary initial data (5.3). Then C[h1],...,C[hk] are linearly independent constants of mo-
tion if and only if c15•••5ck50.

The following theorem now establishes that each constant of motion~5.6! arising from the
admitted nonlocal symmetries~4.5! of Eq. ~4.1! in Cases I and II is linearly independent of the
constants of motion arising from all admitted point symmetries of Eq.~4.1!. A subsequent theorem
then establishes further that the two constants of motion~5.6! in Case II are linearly independent
of each other modulo all point symmetry constants of motion.

Theorem 5.2:For the scalar wave equation (4.1), the constants of motion (5.6) obtained from
the admitted nonlocal symmetries (4.5) are each linearly independent of the constants of motion
obtained from all admitted point symmetries.

Proof: Every point symmetry admitted by a scalar linear PDE is characterized by an infini-
tesimal generatorh]/]u either withh linear inu and first order derivatives ofu ~in which case the
symmetry is callednontrivial! or with h independent ofu and derivatives ofu ~in which case the
symmetry is calledtrivial !.8 Thus, for the scalar wave equation~4.1!, every nontrivial point
symmetry as well as every nonlocal symmetry~4.5! has an infinitesimal generator that is linear in
u and first order derivatives ofu. The constants of motion obtained from these symmetries through
Theorem 2.2 are thereby quadratic expressions in terms of initial datau(x,t0) andut(x,t0), while
the constants of motion obtained from trivial symmetries are only linear expressions in terms of
this data.

These properties imply that the constants of motion obtained from nontrivial point symmetries
and nonlocal symmetries~4.5! are linearly independent of all constants of motion obtained from
trivial point symmetries, since these constants of motions have a different scaling dimension under
scalings of initial data. Consequently, to complete the proof of the theorem, we need only establish
that each constant of motion obtained from the nonlocal symmetries~4.5! is linearly independent
of all constants of motion obtained from nontrivial point symmetries.
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Let h̃]/]u correspond to the generator of a nonlocal symmetry~4.5! admitted by Eq.~4.1!,
and leth1]/]u, . . . ,hk]/]u correspond to the generators of all distinct nontrivial point symme-
tries admitted by Eq.~4.1!. Let C[ h̃], C[h1],...,C[hk] denote the resulting constants of motion
obtained through Theorem 2.2.

Consider the one-parameter family of nonnegative initial data:

u~x,t0 ;l!5w~x;l!>0, ut~x,t0 ;l!5c~x;l!>0, ~5.7!

with

v~x,t0 ;l!5u~x;l!5E
2`

x

c~ x̃!22c~ x̃;l!dx̃>0, ~5.8!

such that the supports of

w1~x!5w~x;0!, w2~x!5
]w

]l
~x;0!,

~5.9!

c1~x!5c~x;0!, c2~x!5
]c

]l
~x;0!,

are compact and mutually disjoint. Now define

u1~x!5u~x;0!5E
2`

x

c~ x̃!22c1~ x̃!dx̃,

~5.10!

u2~x!5
]u

]l
~x;0!5E

2`

x

c~ x̃!22c2~ x̃!dx̃.

If c̃,c1 ,...,ck are constants such that

c̃C@h̃#1c1C@h1#1•••1ckC@hk#50 ~5.11!

for arbitrary initial data, then

c̃C@h̃;l#1c1C@h1 ;l#1•••ckC@hk ;l#50, ~5.12!

whereC[h1 ;l],...,C[hk ;l] are the constants of motion evaluated for the one-parameter family
of initial data ~5.9! and ~5.10!. Hence we must have

S c̃ ]C@h̃;l#

]l
1c1

]C@h1 ;l#

]l
1•••1ck

]C@hk ;l#

]l D U
l50

50. ~5.13!

Using the earlier remarks about the quadratic properties ofC@h# for nontrivial point symme-
tries, and taking account of the disjoint supports ofw1(x), w2(x), c1(x), c2(x), we have

]C@h;l#

]l U
l50

50 ~5.14!

for h5h1,...,h5hk . Hence, from Eq.~5.13!, we get
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c̃
]C@h̃;l#

]l U
l50

50, ~5.15!

where

]C@h̃;l#

]l U
l50

5E
2`

`

c~x!22$g~x,t0!~c2~x!u1~x!1c1~x!u2~x!!

2gt~x,t0!~w2~x!u1~x!1w1~x!u2~x!!%dx, ~5.16!

using Eq.~5.6!.
Now we further restrict the initial data so that the supports ofw1(x),w2(x),c1(x),c2(x) are

to the left of each other, respectively. Then Eq.~5.16! reduces to

]C@h̃;l#

]l U
l50

5E
2`

`

c~x!22g~x,t0!c2~x!u1~x!dxÞ0. ~5.17!

Hence Eq.~5.15! leads toc̃50 in Eq. ~5.11!, which implies that the constant of motion arising
from the nonlocal symmetryh̃]/]u is linearly independent of the constants of motion arising from
the nontrivial point symmetriesh1]/]u,...,hk]/]u. h

Theorem 5.3:The two constants of motion (5.6) obtained for the scalar wave equation (4.1)
from the nonlocal symmetries (4.5) in Case II are linearly independent modulo all constants of
motion obtained from point symmetries.

Proof: We proceed by the same argument used in proving Theorem 5.2. Leth̃1]/]u
andh̃2]/]u correspond to the generators of the two nonlocal symmetries~4.5! of Eq. ~4.1!, and let
h1]/]u,...,hk]/]u correspond to the generators of all distinct nontrivial point symmetries. Let
C[ h̃1],C[ h̃2],C[h1],...,C[hk] denote the resulting constants of motion. Consider the same one-
parameter initial data used in the previous proof, with the supports ofw1(x),w2(x),c1(x),c2(x)
lying to the left of each other.

If c̃1 ,c̃2 ,c1 ,...,ck are constants such that

c̃1C@h̃1#1 c̃2C@h̃2#1c1C@h1#1•••1ckC@hk#50 ~5.18!

for arbitrary initial data, then we have

S c̃1 ]C@h̃1 ;l#

]l
1 c̃2

]C@h̃2 ;l#

]l D U
l50

50, ~5.19!

whereC[ h̃1 ;l] andC[ h̃2 ;l] are the constants of motion evaluated for the one-parameter family
of initial data. From Eq.~5.16! we find that Eq.~5.19! simplifies to

E
2`

`

c~x!22~ c̃1g1~x,t0!1 c̃2g2~x,t0!!c2~x!u1~x!dx50, ~5.20!

where, by use of Eq.~4.9!, we have

c̃1g1~x,t0!1 c̃2g2~x,t0!52m~ c̃1b1~ t0!1 c̃2b2~ t0!!c~x!/c8~x!. ~5.21!

Then Eq.~5.20! reduces to

2~ c̃1b1~ t0!1 c̃2b2~ t0!!mE
2`

`

c~x!21c8~x!21c2~x!u1~x!dx50 ~5.22!
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with *2`
` c(x)21c8(x)21c2(x)u1(x)dxÞ0. It then follows thatc̃1b1(t0)1 c̃2b2(t0)50, and since

we can choose the value oft0 freely, we then must havec̃1b1(t)1 c̃2b2(t)50 for all t. However,
from Eq. ~4.9! we note thatb5b1(t) andb5b2(t) are linearly independent functions satisfying
b92mb50. Thus c̃1505 c̃2 . The linear independence of the constants of motionC[ h̃1] and
C[ h̃2] modulo the constants of motionC[h1],...,C[hk] then follows from Eq.~5.18!. h

B. Analytical example of new constants of motion

Theorems 5.2 and 5.3 establish new constants of motion for the scalar wave equation~4.1! for
wave speeds given by Eq.~4.6! in Case I and Eq.~4.8! in Case II. The wave speeds in Case II
satisfying the ODE~4.4! have the most physical interest since they are bounded~above and below!
away from zero. These wave speedsc(x) are implicitly given by the integral

E
c~x0!

c~x! n dc

sin~n log c!
5x2x0 , ~5.23!

wheren andx0 are arbitrary constant parameters. From Eq.~5.23!, c(x) can be shown to increase
monotonically from the asymptotic valuec→1 for x→2` to the asymptotic valuec→ep/n for
x→1`. In physical terms, this describes a medium of two layers, with wave speedsc'1 and
c'ep/n, separated by a smoothly varying transition layer having widthDx'n(ep/n21), con-
trolled by the value ofn.9

The scalar wave equation~4.1! with wave speeds~5.23! has no constants of motion arising
from nontrivial point symmetries other than time translation symmetries generated byX5ut]/]u.
These symmetries give rise through Theorem 2.2 to an energy constant of motion

E5E
2`

`

c~x!22~c~x!21c~x!2w8~x!2!dx, ~5.24!

wherew(x) andc(x) are initial data~5.3!.
Two additional constants of motion arise from the nonlocal symmetries~4.5! admitted by the

scalar wave equation~4.1! with these wave speeds. In terms of the potentialv introduced through
Eq. ~4.2!, the nonlocal symmetry generatorsX5h]/]u have the explicit form~4.5! with

f ~x,t !56~11B~x!!e6t, g~x,t !52A~x!e6t,
~5.25!

j~x,t !562A~x!e6t, t~x,t !522B~x!e6t,

where

A~x!5nc~x!csc~n log c~x!!, B~x!5n cot~n log c~x!!. ~5.26!

The corresponding constants of motion given by Eq.~5.6! are

C65E
2`

`

c~x!22~2A~x!~c~x!6w~x!!u~x!6~w~x!22A~x!w8~x!!c~x!

2 1
2 ~11B~x!!w~x!212B~x!~c~x!21c~x!2w8~x!2!!dx, ~5.27!

wherew(x) andc(x) are initial data~5.3!, andu(x) is determined nonlocally fromc(x) by Eq.
~5.4!. C6 andE comprise a linearly independent set of constants of motion as shown by Theorems
5.2 and 5.3.

The new constants of motionC6 may have utility in the mathematical analysis of wave
propagation for two layered media described by wave speeds~5.23!. In particular,C6 may supple-
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ment the use of the energy constant of motionE in addressing certain problems, such as the time
evolution analysis for dispersal of waves initially localized across the transition boundary between
the layers, and the scattering theory analysis of traveling waves incident on the transition bound-
ary.

VI. CONCLUDING REMARKS

~1! In Sec. II we presented an explicit conservation law arising from any pair of symmetries,
local or nonlocal, admitted by an arbitrary self-adjoint system of~linear or nonlinear! DEs ~1.1!.
This conservation law expression does not require use of a variational principle for the system.
Specializing to self-adjoint systems of linear DEs, we obtained a conservation law from any
admitted local or nonlocal symmetry, by using a scaling symmetry as a second symmetry. A
similar conservation law also can be obtained for any nonlinear system which admits a scaling
symmetry~e.g., the Einstein equations in General Relativity theory!. For variational symmetries
~which are always local symmetries! admitted in the case of self-adjoint linear systems, we
showed in Sec. III that the resulting local conservation laws are the same as those obtained from
Noether’s theorem.~The proof can be generalized straightforwardly to the conservation laws
arising in the case of nonlinear systems with a scaling symmetry.!

The following theorem shows how our conservation law for a pair of symmetries is connected
to Noether’s theorem.

Theorem 6.1: SupposeX15h1
m(x,u,u

1
,...,u

P1
)]/]um and X25h2

m(x,u,u
1
,...,u

P2
)]/]um are

variational symmetries of a self-adjoint (linear or nonlinear) system (1.1). Then the resulting
conservation law (2.7) is the same as the conservation law obtained through Noether’s theorem
for the commutator symmetry

@X1 ,X2#5hm~x,u,u
1
,...,u

P
!]/]um ~6.1!

with P<P11P2 .
Proof: The commutator@X1,X2#5hr]/]ur is given by

hr5S ]h2
r

]us h1
s1

]h2
r

]ui
s Dih1

s1•••1
]h2

r

]ui1 ••• i P2

s Di1
•••DiP2

h1
sD

2S ]h1
r

]us h2
s1

]h1
r

]ui
s Dih2

s1•••1
]h1

r

]ui1 ••• i P1

s Di1
••• DiP1

h2
sD . ~6.2!

From Eq.~2.5! we see that

h1
s
F srh2

r2h2
s
F srh1

s5DiF
i@h1 ,h2#. ~6.3!

Then similarly to the derivation of Eq.~3.15!, the identity~3.7! now leads to

h1
s
F srh2

r52GrS ]h2
r

]us h1
s1

]h2
r

]ui
s Dih1

s1•••1
]h2

r

]ui1 ••• i P2

s Di1
•••DiP2

h1
sD 1DiH

i@h1 ,h2#

~6.4!

for a certainHi [h1 ,h2]. Hence, using Eqs.~6.2! to ~6.4!, we have

Grhr5DiV
i , ~6.5!
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whereV i52F i [h1 ,h2]1Hi [h1 ,h2]2Hi [h2 ,h1]. As the commutator of any two variational
symmetries is itself a variational symmetry, we see from Eq.~3.4! that Eq.~6.5! is a conservation
law obtainable from Noether’s theorem. h

The set of all variational symmetries for a given self-adjoint system~1.1! forms a Lie algebra
A. If all Lie algebra generators can be realized as commutators, in which case we sayA is
‘‘perfect,’’ then Theorem 6.1 yields all local conservation laws for the system. We remark that all
semisimple Lie algebras, as well as the Poincare´ algebra~which is not semisimple!, are perfect.

~2! The questions of how to find and how to characterize useful potential systems in order to
find nonlocal symmetries admitted by a system of DEs is considered in Ref. 6.

Potential systems of a given system~1.1! rely on the existence of at least one divergence free
equation in the system. However, if an appropriate divergence free equation cannot be found, one
may still be able to embed system~1.1! as a subsystem of a related potential system.10 This may
allow one to find nonlocal symmetries which are generalizations of potential symmetries.

~3! The conservation laws derived in Sec. II for a system of DEs~1.1! require that the system
is self-adjoint. If a given system~1.1! is not self-adjoint, one may still be able to find a related
potential system that is self-adjoint. Through the embedding into the potential system, any sym-
metry ~local or nonlocal! admitted by the given system will induce a symmetry of the potential
system.~An induced symmetry will be a nonlocal symmetry unless its generator has strictly local
dependence on the dependent variables in the potential system.! As a result, conservation laws for
the given system can then be obtained as conservation laws arising from the induced symmetries
~local and nonlocal! of each self-adjoint potential system. If a system~1.1! is itself self-adjoint,
conservation laws fromany admitted symmetry will correspondingly arise through each self-
adjoint potential system found for system~1.1! as well as through system~1.1! itself.

For the wave equation~4.1!, the first order potential system~4.2! considered in Sec. IV is not
self-adjoint. There are several different ways, nevertheless, to introduce potential variables for
system~4.2! leading to potential systems that are self-adjoint. As we will discuss in a forthcoming
article, the conservation law expressions arising through each such potential system are different
from the conservation law expressions obtained through the wave equation~4.1! itself. In particu-
lar, the nonlocal symmetries admitted by Eq.~4.1! as point symmetries of system~4.2! induce
nonlocal symmetries of these potential systems, leading to corresponding nonlocal conservation
laws different than the ones derived in Sec. IV. These additional conservation laws for the wave
equation~4.1! are not obtainable by Noether’s theorem applied to any of the self-adjoint potential
systems, since Noether’s theorem only deals with local symmetries.
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