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An identity is derived which yields a correspondence between symmetries and
conservation laws for self-adjoint differential equations. This identity does not rely
on use of a Lagrangian as needed to obtain conservation laws by Noether’s theo-
rem. Moreover, unlike Noether's theorem, which can only generate conservation
laws from local symmetries, the derived identity generates conservation laws from
nonlocalas well as local symmetries. It is explicitly shown how Noether’s theorem

is extended by the identity. Conservation laws arising from nonlocal symmetries
are obtained for a class of scalar wave equations with variable wave speeds. The
constants of motion resulting from these nonlocal conservation laws are shown to
be linearly independent of all constants of motion resulting from local conservation
laws. © 1996 American Institute of Physids$§0022-24886)02405-7

I. INTRODUCTION

Conservation laws can be found for self-adjoint systems of differential equations by Noether’'s
theoremt 3 If a local symmetry admitted by a given system leaves invariant the variational
principle of the system, Noether’s theorem yields a corresponding conservation law of local type.
Conversely, all conservation laws of local type for a given system arise from the local symmetries
admitted by the system. A limitation of Noether’'s theorem, however, is that it can only directly
deal with local symmetries and hence conservation laws of local type. This poses a significant
incompleteness in the study of differential equations since conservation laws of nonlocal type are
equally as useful as those of local type. In particular, as will be shown in this article, conservation
laws of nonlocal type yield additional constants of motion and thus expand the utility of methods
of analysis which depend on conservation laws.

In this article we introduce an expression that yields conservation laws from nonlocal sym-
metries as well as local symmetries admitted by an arbitrary self-adjoint system of differential
equations. Significantly, in contrast to the formulation of Noether’'s theorem, the expression is
derived from a bilinear identity that makes no use of a Lagrangian. As preliminaries to the
derivation and main results, we now give definitions of local and nonlocal symmetries and con-
servation laws of local and nonlocal type for self-adjoint systems of differential equations.

Consider a system of differential equatioi3Es) given by

Go(x,u,g,...,g)zo, c=1,...M (1.2
for M=1 dependent variablas= (ul,...,u™) which are functions oN=1 independent variables

x=(x},... xN), with u denoting allJth order derivatives ofi with respect tox. For the sequel, we
J

let D, denote total differentiation with respect 0, wherei=1,... N, and we use the index
notation uiyl...iJ = Dil---DiJuy for differentiations ofu, where y=1,...M, i;=1,...N, and
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2362 S. C. Anco and G. Bluman: Derivation of conservation laws

J=1,2,... . Hereafter, unless otherwise stated, we use the index conventions that all Greek indices
range from 1 taM, all Latin indices(lower casgrange from 1 td\, while summation is assumed
over any repeated indices in all expressions.
Definition 1.1: The Frehet derivative associated with system (1.1) is the matrix linear op-
erator
_ 0G, 4G

G,
F o= +—
7P auP ol

T D,

o

D+ +

K

Definition 1.2: A symmetry admitted by system (1.1) is characterized by an infinitesimal
generator

X= n*al du*, (1.3
where n # satisfies
T 5on"=0 (1.9

for every solution (x) of system (1.1).
Definition 1.3: A local symmetry admitted by system (1.1) is a symmetry with an infinitesimal
generator of the form

XZnM(X,u,lf,...,g)&/&u“ (1.5

such that, for all values of x7* depends on ulJ e ,g only through L(x),llJ(x), e ,LPJ(x) evaluated

at x.

Definition 1.4: A nonlocal symmetry admitted by system (1.1) is a symmetry with an infini-
tesimal generatoiX=»*dldu* not of the form (1.5), such thay* has other than just a local
dependence on(x) and derivatives of (X) to some finite order

All local symmetries of systerfil.1) can be determined by Lie’s algorithfri.No correspond-
ing procedure exists to findll nonlocal symmetries of systefi.1).

There is an algorithAT® to determine special nonlocal symmetries, calpedential symme-
tries, if one DE of system(1.1) is a divergence expression. These potential symmetries arise as
local symmetries admitted by auxiliary systems associated to sy@telin In the case of two
independent variabledN=2), suppose systeitl.1) has a DE of the form

G,(x,u,u,...,u)=D;fY(x,u,u,..., u )+D,f (x,u,u,..., u )=0, o=M. (1.6)
1 K 1 K—-1 1 K—-1

Through Eq.(1.6) one can introduce an auxiliary potential variableand form a potential system
given by

G,=0, o=1,...M-1, .7
Do=f!, Dpw=-f2 (1.9
If (u(x),v(x)) satisfies systenil.7)—(1.8), then u(x) satisfies systentl.1); if u(x) satisfies
system(1.1), then there exists somgx) (unique up to the addition of an arbitrary consjasch
that (u(x),v(x)) satisfies systenil.7)—(1.8). Sincev(x) is determined in terms of integrals of

u(x), a local symmetry of systeifi.7)—(1.8) may yield a nonlocal symmetry of systeih.1). In
particular, such a nonlocal symmetry arises if and only if an infinitesimal generator of a local
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symmetry of systentl.7)—(1.8) does not project onto an infinitesimal generator of a local sym-
metry admitted by systerfl.1). Similar considerations hold for the case of more than two inde-
pendent variables. _

Definition 1.5: A conservation law of system (1.1) is a divergence free expressih=D
which holds for every solution of system (1.1) and its differential consequences. The conservation
law is local (conservation law of local type) if and only if it has the fomﬂﬂx,u,llj,...,lLJ)

= 0 where, for all values of x¥' depends on ulJlLJ only through L(x),LlJ(x),...,LLJ(x) evalu-

ated at x Otherwise the conservation law is nonlocal (conservation law of nonlocal .type)
Definition 1.6: The adjoint of the Fohet derivative (1.2) is the matrix linear operator
7, satisfying

VOT WP = W75 VP =D;P' (1.9

for all K times differential functions ¥(x) and W(x), for some P which depends on'xu?, V7,
W? and the derivatives of {j V?, W” to some finite order
Definition 1.7: The system (1.1) is self-adjoint if and only if
T op=T op - (1.10

In Sec. I, we derive the bilinear identity giving a correspondence between symmetries and
conservation laws for self-adjoint systems of OEsl). From this identity we obtain an expression
that yields a conservation law for each pair of symmettisal or nonlocal admitted by any such
system(linear or nonlinegr Furthermore, as each such linear system admits a trivial scaling
symmetry, we obtain a conservation law for all nontrivial symmetries of any self-adjoint linear
system of DES(1.1). In particular, each nonlocal symmetry admitted by such a linear system
thereby leads to a corresponding nonlocal conservation law.

From the known connection between local conservation laws and local symrétices
self-adjoint systems of DEs it follows that all local conservation laws obtained through the bilinear
identity derived in Sec. Il are also obtainable from Noether's theorem. In the case when such a
system is linear, we show in Sec. lll that each local symmetry leaving invariant a corresponding
variational principle yields the same conservation law through our bilinear identity as through
Noether's theorem.

In Sec. IV, as an example of a self-adjoint linear DE, we consider the two-dimensional scalar
wave equation with a variable wave speed. For a large class of wave speeds this equation admits
nonlocal symmetries realized as potential symmeffidZhe nonlocal character of these symme-
tries means that we cannot obtain corresponding conservation laws by applying Noether’s theorem
to the variational principle of the scalar wave equation. Moreover, we show that the potential
system for this equation does not have a variational principle, and hence Noether’s theorem cannot
be applied to the potential system to obtain any conservation laws. By using our conservation law
expression derived in Sec. Il, we obtain nonlocal conservation laws for the admitted nonlocal
symmetries. In Sec. V, we obtain corresponding constants of motion for the scalar wave equation.
We show that these constants of motion are linearly independent of each other as well as linearly
independent of all constants of motion arising from local symmetries of the scalar wave equation.

In Sec. VI, we expand on some of the ideas and results presented in earlier sections.

II. DERIVATION OF THE CONSERVATION LAW EXPRESSION

We consider a systeifi.1) that is self-adjoint. Then the DEs in systéinl) must satisfy the
following Helmholtz identities”

G, dG G
=2 i( £ (2.0

auP  gu’ au?

Fle
+---+(—1)KDil---DiK(WU—”),
PRI
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G, G oG
———=(—1)’ =+ (- 1)’CyD | |
ouf . u’ . J +1{ gu’
SR Il ig e
KK aGP
+ "+(—1) CJDiJ+1“'DiK M—- , J=1,..K-1, (22)
iy iy
G, G
=(—1)K —"—, 2.3
aui’JlmiK g i

whereC5=L!1/J!(L—J)! for positive integerd =J. As a consequence of these identities, one can
verify by direct calculation that the Febet derivative(1.2) leads to the identity

G
T gp0P =P Wp—Di

P

G,
o +---+(—1)XD; ---D;
au? 1 K

£ ) (2.4

for arbitrary functionsw”.

Using Eq.(2.4) and the Leibnitz rule for differentiation, one finds that the following bilinear
skew-symmetric identity holds for arbitrary functions’ and v *:

V0T 5y = 07 v P=D;®'[v,w], (2.5
where
i — 1 u’aG 5G p o
Pllrwl==3 v 75 o'+ (D =v"D)| 70 ur ¢ +o- (D Dy v
« JG,
e (=KD Dy )| s wf
1 K-1 ﬁuil...inli
1 4G, JG, a
+§ W’ — v W+ (Djw’ - D) aug +--+(DijDi_,o
K dG,
Feot(—1) w’D; D 1) —L2 |l (2.6
B (9Ui1---iK71i

The functionsw” and +* here can have arbitrafjocal or nonlocal dependence oo and deriva-
tives ofu.

This bilinear identity leads to a connection between symmetries and conservation laws:
Theorem 2.1: SupposeX ;= 7{dlou” and X,= r5dlou* are infinitesimal generators of sym-

metries (local or nonlocal) of a self-adjoint system (1.1). The bilinear identity (2.5) then yields the
conservation law

Di®'[71,7,]=0 (2.7

with ®'[ ,,7,] defined by Eq. (2.6).
We now specialize to the case when sysidni) is a linear homogeneous system

Gy(x,U,U,... U) =Gy, (X)u’+ Gy (U +- -+ G KO =0 (2.9
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S. C. Anco and G. Bluman: Derivation of conservation laws 2365
with coefficientsG,,,(x), G,,p(x),...,Gi(jp'"iK(x). Every such system admits the trivial scaling
symmetry

Xs=U*dl Jur. (2.9

Using this symmetry as one of the symmetries in Theorem 2.1 now leads to the following corre-
spondence:

Theorem 2.2: Suppose a self-adjoint linear system (2.8) admits a nontrivial symmetry (local
or nonlocal) with infinitesimal generatot = 7*d/du”. Then Eq. (2.7) yields the conservation law

D;®'[u, ]=0, (2.10
where
'[u, n)=~ § { UG, (0 7"+ (U7~ u"D; (G, (x) 7*)

e (U e (C DD Dy )G ) )

{,’](TGI (X)u +(Dj7]0_ WUDj)(Ggu(X)up)"_”'+(Di1'"Dinln(r

o+ (=1Ky°Dy oDy, (G Rt () up)}. (2.1

llI. RELATIONSHIP TO NOETHER’'S THEOREM

Noether's theorem only relates local symmetries to conservation (afviocal type for
self-adjoint systems. The variational principle foflimear or nonlinearself-adjoint systengl.1)
has Lagrangiam. given by’

1
L(x,u,u,...,u)zf u’G,(X,AU,\U,... AU)d\. (3.1
1K 0 1 K

Definition 3.1: An infinitesimal generatot= n“(x,u,lf,...,g)ﬁléu“ is a variational symmetry of
a self-adjoint system (1.1) if and only if

X®L(x,u,u,...,u)=D;Al (3.2
1 K
for some A(x,u,u,...,u), whereX®) is the Kth prolongation generator given by
1 L
XK= kol du+(Dimt)alauf + - -+ (D; -+~ Dy p*)dlduf: ;. . (3.3

Noether’s theorem vyields a local conservation law for each variational symmetry admitted by
system(1.1). Specifically, one can show that

X®L=G, 5"+D,;S=D;A|, (3.9

where Sizn"aL/au;’ + (Djn” — "D)(aL/au) + o+ (Dj o Dy pTH +
(- 1" *%°Dj, - Dj, )(6L/au . )237Then Eq.3.4) yields Noether5|dent|ty

DiNi[ﬂ]=—Gg77" (3.5

with N'[ 7] =S — Al. Consequently, for any solution of systéfh1) we obtain the Noether con-
servation law
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2366 S. C. Anco and G. Bluman: Derivation of conservation laws

D;N'[ #]=0. (3.6)

Using the Helmholtz identitie2.1) to (2.3), along with Noether's identity3.5 and the fact
that the Euler—Lagrange operator annihilates divergences, one can show that any variational
symmetryX =y *d/lgu* satisfies the identity

an * an* an*
72 pP— _ —— 4D — |+ (—-1)P*D. ---D. . .
T opT Gp PG D; Gp e (-1 DIl DIP Gp 3Ui01---ip (3.7

From Eq.(3.7) it immediately follows that all variational symmetries are local symmetries of
system(1.1). [The converse does not always hold, as seen from the fact that scaling symmetries
(2.9 generally do not satisfy Eq3.7).]

For the rest of this section we restrict the self-adjoint syster to be a linear homogeneous
system(2.8). Before relating conservation laws from Noether's theorem to conservation laws
arising from the bilinear identity2.5), we establish the following result;

Lemma 3.2: Supposef‘(x,u,lil,...,g) is analytic in u and derivatives of.urhen any local

symmetry generator of the forid= n“(x,u,lf,...,g)a/au“ admitted by a linear homogeneous
system(2.8) can be expressed as a superposition of homogeneous local symmetry generators

(n)
n*(x,u,u,...,u), (3.8
0 1 P

where
(n)
7*(X,u,U,...,u)=N""n*(X,\U,\U,... \U) (3.9
1 P 1 P

for all positive constants.
Proof: Since systen(2.8) admits the scaling symmet(®.9), it must also admit the symmetry
n*(X,\U,\U,... \u)dl/du* for all constants\. Then the analyticity property of leads to
1 P

> (n)
7*(X,AU,AU,... \U)= E A" p#(x,u,U,...,U), (3.10
1 P n=0 1 P

(n) (n)
where pH(X,u,u,...,u)=a"p*(X,\U,\U,... AU)/IN"|, —o and 7*(x,u,u,...,u
1 P 1 P

n)
= 7*(X,\,U,AU,... \U)|,—o. It then follows that eacl’v;”(x,u,Llj,...,g)a/&u“, forn=0,1,2,..., is
1 P

a local symmetry of systert®.8). Settingh=1 in the superpositiof3.10 then yields Eq(3.8).0]
As an aside we remark that every infinitesimal generator of a point symmetry

(n)
in“(x,u,llJ)a/au“ has n“(x,u,lil)zO for n#1 when systenm(2.8) is a scalar PDE of order

K=2 (with N=2).8
Without loss of generality we assume that each infinitesimal generator of a symmetry admit-
ted by systen{2.8) satisfies the homogeneity prope(8.9). We then have the following identity

an’ an° an
Ul+u?_7]+...+u? R L
au? ' oauf ey

u =nyn” (3.11)

for some integen=0.
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We now establish the relationship between Noether’'s conservation law expré3€pand
our conservation law expressida.10):

Theorem 3.3: Suppose a variational symmetry of a self-adjoint linear system (2.8) has an
infinitesimal generatoX = “dldu* satisfying Eq. (3.11). Then up to the addition of a divergence
free expression, one has

®'[u,7]=(1+n)N'[7], (3.12

for every solution of the system (2.8).
Proof. From the bilinear identity2.5 we have

DiCDi[U,”)]:UG-‘/’?’Vopﬂp_ 770.'7(rpup- (313
Since systen{2.9) is linear, it satisfies the identity
T apUP=G,. (3.19

Using the Leibnitz rule for differentiation to manipulate E§.7), we get

[l P 0_(97]p U&nl’ T anP i
U7 4pm ——Gp u aug+ui ana_—f—----‘r-Uil...iP (9Uigl...ip +D;B', (3.15
where
: anP anf
B'=u’G, —5+(u/—u’D))| G, —( |+
p au’ ( j J)( p z?Uﬁ
+(u? -+ (=1 WD - D G _ (3.1
(Ui i, (=1)"""u’Dy, in ;) Tt .
1 K—-1

Consequently, after substituting Eq8.14) and (3.15 into Eq. (3.13 and then using Eq.3.11),
we obtain

D;®'[u,7]=—(1+n)»°G,—D;B'. (3.17)
Then Noether's identity3.5) yields
Di®'[u,7]=(1+n)D;N'[#]-D;B". (3.18

Now observe thaB' =0 whenG,=0, and henc®' =0 for every solution of systerf2.8). Thus we
arrive at Eq.(3.12. O

IV. NONLOCAL CONSERVATION LAWS FOR SCALAR WAVE EQUATIONS

Throughout the sequel, we set=x, x>=t, and we use a subscript notation for total differ-
entiation with respect ta andt.
Consider the scalar wave equation

Ugy—C 2Uy=0 4.1
with a variable wave speez(x). From Eq.(1.8) we introduce the corresponding potential system

vi=Uy, Uy=C 2Uu. 4.2
J. Math. Phys., Vol. 37, No. 5, May 1996
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2368 S. C. Anco and G. Bluman: Derivation of conservation laws

The wave equatiori4.1) has nonlocal symmetries which are realized as potential symmetries
resulting from local point symmetries of potential systéh2) if and only if the wave speed
satisfies the fourth order DE

(cc'(c/c’)")' =0. (4.3

Such wave speeds are bounded away from zere-forxx<<cc whenc(x) satisfies the first order
DE

c¢’=v lsin(vlogc), wv=const, (4.4

up to arbitrary scalings of andx.®

Classification of the point symmetries of systén?) yielding nonlocal(potentia) symme-
tries of the wave equatiofé.1) leads to two casés® with, respectively, one and two admitted
infinitesimal generator¥ = »nd/du of the form

n=f(X,t)u+g(x,t)v—&X,tH)u,— 7(x,t)u;, (4.5

whereg(x,t) is not identically zero.
Case | (one nonlocal symmetrylhe wave speed(x) satisfies

(clc")'=y=const. (4.6)
Here we have
fx,n=a'()(1-3y), g(x,t)=—za"(t)c(x)/c’(x),
Ex,t)y=a’(t)e(x)/c’'(x), 7(x,t)y=a(t)(y—1)+a"(t)d(x), .7

where d(x) is a definite integral of 1£(x)c’'(x)), and a(t) satisfies the first order ODE
(a/t?)'=0, which thus leads to the existence of one generétemdlJu.
Case Il (two nonlocal symmetriesjhe wave speed(x) satisfies

cc’'(c/c’)"=u=const0. (4.8
Here we have
fxt)=b"(t)(2—(c(x)/c’(x))"),
g(x,t)=—ub(t)c(x)/c’(x),

&(x,t)=2b’(t)c(x)/c’(x),

4.9

7(X,t)=2b(t)((c(x)/c’'(x))'—1),

whereb(t) satisfies the second order OE— wb=0, which thus leads to the existence of two
generatorsX = »d/Ju.

Conservation laws for all symmetries admitted by the wave equéidhare obtainable from
Theorem 2.2 since the wave equation is linear and self-adjoint. Hence, each nonlocal symmetry
X=mndlou admitted in Cases | and Il gives rise to a corresponding nonlocal conservation law.
From Egs.(2.11) and(4.5), these conservation laws are given by

(@MU, 7]yt (P7Lu, 7])=0 (4.10

with
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DU, ]=Uny— pUy+ (TUUHCT2EU),

=g uv —guw + fLu?+c 2guu—c’c teuu + e 28U+ Eul+ 21Uy, (4.1

2[u, 7]=c"?(qUi—un) — (UL C2EUll),
=c (—guv+gup— fu?—guu+c’c teuu— rud—c?rui—2£uy), (4.12

wheref,g,& 7 satisfy Eq.(4.7) in Case | and Eq4.9) in Case Il. The identically divergence free
terms in®! and®? have been added to eliminate all terms involving second order derivatjyes
Ui, anduy,.

These nonlocal conservation laws arising from the nonlocal symmetriegs/du cannot be
obtained through Noether’s theorem for the scalar wave equ@ti@nsince Noether’'s theorem is
applicable only to local symmetries that leave invariant a variational principle for(4£d).
Moreover, even though the symmetri¢s- nd/du are realized as local symmetries of the potential
system(4.2), Noether's theorem still cannot be applied since, as will now be demonstrated, the
potential system is not self-adjoint and hence has no variational principle. Let

ul

u

u
v

define a column vector. Then the Ehet derivative(1.2) associated to syste.2) is given by the
matrix operator

—dl ax al ot i1
T = . .
T | =c 2alat  alox .13
By direct calculation, using Ed1.9), the adjoint of the Frehet derivative is
F*=—7, (4.14

and thus the potential system is not self-adjoint.

V. NEW CONSTANTS OF MOTION FOR SCALAR WAVE EQUATIONS

Given a conservation lawd{*[u, 77]) ,+ (®?[u, 5]),=0 arising from Theorem 2.2 for a sym-
metry X=nd/du of the scalar wave equatidd.l), we let

Cly]= jl(bz[u,n]dx. (5.1

If u(x,t) has appropriate asymptotic propertiesxas =, then

dCf 7]
dt

=—®Nu,n]}Z”..=0, (5.2

from which it follows thatC[ 5] defines a constant of motion for E¢t.1).
Now consider compact support initial data

u(X,to)=¢(x),  u(X,to)=4(x), (5.3

for the scalar wave equatio@.1). This determines corresponding data for the potential system
(4.2), with
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v(X,to) = 6(X)= J’;C&)_Zlﬂ@d’i (5.9

(up to the addition of an arbitrary constanEvaluating the nonlocal conservation laws given by
Egs.(4.10 to (4.12 with this initial data we find

lim ®u,5]=0 (5.5

X— F oo

and hence Eq5.1) yields constants of motion for the scalar wave equatibf). In terms of the
initial data(5.3) and(5.4) we obtain

Clnl= J_ZC(X)_Z{(Q(X,to) P$(X) = Gi(X,to) ©(X)) 8(X) = g(X,t) e(X) " (X) = F1(X,to) (X)?

+E(X,to) (€(X) 7" (X) 9(X) = 29" (X)) ¢h(X) — 7(X,to) ($(X) 2+ c(x) ¢’ (x)?) }dx.
(5.6

For each wave speax{x) satisfying Eq.(4.6), the expressio[ z] yields one constant of motion,
with f,g,& 7 satisfying Eq.(4.7); for each wave speed(x) satisfying Eq.(4.8), the expression
C[ n] yields two constants of motion, with g,&,7 satisfying Eq.(4.9).

A. Linear independence of constants of motion

Let C[#%4],C[7,],...,C[ 7] define k>1 constants of motion arising for the scalar wave
equation(4.1) from symmetriesX;= n,d/du, X,=ndldu,..., X,= n,d/du, respectively.

Definition 5.1: Suppose;6...,c, are constants such that, €[ ;] +---+c¢C[ 7] vanishes
for arbitrary initial data (5.3). Then €#,],...,C[ %] are linearly independent constants of mo-
tion if and only if g=---=¢,=0.

The following theorem now establishes that each constant of m@&idh arising from the
admitted nonlocal symmetrigg.5) of Eq. (4.1) in Cases | and Il is linearly independent of the
constants of motion arising from all admitted point symmetries of(Ed). A subsequent theorem
then establishes further that the two constants of mago®) in Case Il are linearly independent
of each other modulo all point symmetry constants of motion.

Theorem 5.2:For the scalar wave equation (4.1), the constants of motion (5.6) obtained from
the admitted nonlocal symmetries (4.5) are each linearly independent of the constants of motion
obtained from all admitted point symmetries

Proof: Every point symmetry admitted by a scalar linear PDE is characterized by an infini-
tesimal generatopd/du either with linear inu and first order derivatives af (in which case the
symmetry is calledhontrivial) or with % independent ofi and derivatives ofi (in which case the
symmetry is calledtrivial).2 Thus, for the scalar wave equatidd.1), every nontrivial point
symmetry as well as every nonlocal symmeihys) has an infinitesimal generator that is linear in
u and first order derivatives af. The constants of motion obtained from these symmetries through
Theorem 2.2 are thereby quadratic expressions in terms of initiaugats)) andu,(x,ty), while
the constants of motion obtained from trivial symmetries are only linear expressions in terms of
this data.

These properties imply that the constants of motion obtained from nontrivial point symmetries
and nonlocal symmetrie@.5) are linearly independent of all constants of motion obtained from
trivial point symmetries, since these constants of motions have a different scaling dimension under
scalings of initial data. Consequently, to complete the proof of the theorem, we need only establish
that each constant of motion obtained from the nonlocal symme#isis linearly independent
of all constants of motion obtained from nontrivial point symmetries.
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Let 70/ du correspond to the generator of a nonlocal symmétr) admitted by Eq(4.1),
and letnqd/du, ... ,pd/du correspond to the generators of all distinct nontrivial point symme-
tries admitted by Eq(4.1). Let C[ 7], C[#4],...,C[ ] denote the resulting constants of motion
obtained through Theorem 2.2.
Consider the one-parameter family of nonnegative initial data:
U(X,to; M) =@(X;M)=0,  u(X,to;N)=h(X;N)=0, (5.7

with
X
v(x,to;h)=0(x;>\)=f c(X) 2g(X;N ) dX=0, (5.9
such that the supports of

de
¢1(X)=¢(x;0), @2(X)::25:(X;0%

(5.9
Iy
Y1) =9(x;0),  Pa(x)=—= (x.0),
are compact and mutually disjoint. Now define
X
61(X)=6(x;0)= f c(X) 2y (X)dX,
(5.10
90 X
1a0)= 2 60)= | o) 20
If C,cq,...,C¢ are constants such that
TC[7]+ciClm]+- -+ Clm]=0 (5.11
for arbitrary initial data, then
TCL7N]+C1Cl 1M ]+ CL ;N ] =0, (5.12

whereC[ 4;\],...,C[ 7 ;] are the constants of motion evaluated for the one-parameter family
of initial data(5.9) and(5.10. Hence we must have

=0. (5.13

JC 77;)\ dC n ;)\ JC 7 ;)\
~ [ ] [ 1 ] [ k ])
A=0

AN Lo Ko

Using the earlier remarks about the quadratic propertigS[afl for nontrivial point symme-
tries, and taking account of the disjoint supportsgatx), ¢,(X), ¥1(X), ¥»(x), we have

dC[ 7\ ]

N =0 (5.19

=0

for »=m,....7= 7. Hence, from Eq(5.13, we get
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_oC[mN]
S| Y (5.15
where
IC[ ;N x
EK] :f () ~3{g(X,to) (#2(X) B1(X) + ¢h1(X) O2(X) )
A=0 -

= 9t(X,t0) (@2(X) 01(X) + @1(X) 62(x)) 1A, (5.16

using Eq.(5.6).
Now we further restrict the initial data so that the supportegfx), oo(X), #1(X),¥,(X) are
to the left of each other, respectively. Then E5.16) reduces to

aC[ ;N ]

T =] e et w0 moodxto. 517

— o0

A=0

Hence Eq.(5.15 leads toc=0 in Eq. (5.11), which implies that the constant of motion arising
from the nonlocal symmetryd/du is linearly independent of the constants of motion arising from
the nontrivial point symmetrieg,d/du,...,nd/du. O

Theorem 5.3: The two constants of motion (5.6) obtained for the scalar wave equation (4.1)
from the nonlocal symmetries (4.5) in Case Il are linearly independent modulo all constants of
motion obtained from point symmetries.

Proof: We proceed by the same argument used in proving Theorem 5.27|#®Hu
and7,d/ du correspond to the generators of the two nonlocal symme#igsof Eq. (4.1), and let
maldu,...,mdldu correspond to the generators of all distinct nontrivial point symmetries. Let
C[#%11,C[%,],C[ %4],...,C[ 5] denote the resulting constants of motion. Consider the same one-
parameter initial data used in the previous proof, with the supporis, ©f), ©,(X), 1 (X), ¥o(X)
lying to the left of each other.

If €;,C5,Cq,...,C, are constants such that

T1C[ 7]+ CC 7]+ ¢ CL g ]+ -+ CL 7 ]=0 (5.18
for arbitrary initial data, then we have

— dC[7m1;N] _ 9C[7m;\]
Lot

=0, (5.19
A=0

whereC[7;;\] and C[7,;\] are the constants of motion evaluated for the one-parameter family
of initial data. From Eq(5.16 we find that Eq(5.19 simplifies to

fioc(x) “2(C101(X,tp) +CaG2(X, o)) 2(X) B1(X)dX=0, (5.20

where, by use of Eq4.9), we have
T191(X,to) +C282(X,tg) = — u(C1by1(tg) +Tob,(t) ) c(x)/c’ (X). (5.21

Then Eq.(5.20 reduces to

)

—(Cybs(to) +752b2(to)),uf _c(x) T () M a(X) 61(x)dx=0 (5.22
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with [*_.c(x) "1’ (%) "1p(x) 61 (x)dx=0. It then follows thalt;b;(to) +C,b,(te) =0, and since
we can choose the value tf freely, we then must have,b,(t) +C,b,(t) =0 for all t. However,
from Eq. (4.9 we note thab=b,(t) andb=b,(t) are linearly independent functions satisfying
b”—ub=0. ThusC,;=0="T,. The linear independence of the constants of mo@jmy,] and
C[7%,] modulo the constants of motio@[ 7,],...,C[ 5] then follows from Eq.(5.18. O

B. Analytical example of new constants of motion

Theorems 5.2 and 5.3 establish new constants of motion for the scalar wave e¢djifor
wave speeds given by E4.6) in Case | and Eq(4.8) in Case Il. The wave speeds in Case Il
satisfying the ODE4.4) have the most physical interest since they are boufaleove and beloyw
away from zero. These wave speaq) are implicitly given by the integral

J‘C(X) v dc (5.23
——=X—X y .
c(xy) SIN(¥ log c) 0

wherev andxg are arbitrary constant parameters. From &3, ¢(x) can be shown to increase
monotonically from the asymptotic value—1 for x——o to the asymptotic value—e™" for
Xx—+oo, In physical terms, this describes a medium of two layers, with wave speetisand
c~e™”, separated by a smoothly varying transition layer having witlix »(e™”—1), con-
trolled by the value of.°

The scalar wave equatig@.1) with wave speed$5.23 has no constants of motion arising
from nontrivial point symmetries other than time translation symmetries generatéerby/ Ju.
These symmetries give rise through Theorem 2.2 to an energy constant of motion

E=f c(x) "A(P(x)*+ e(x) e’ (x)?)dx, (5.24
where ¢(x) and ¢(x) are initial data(5.3).

Two additional constants of motion arise from the nonlocal symmeii&s admitted by the
scalar wave equatiof#.1) with these wave speeds. In terms of the potentiaitroduced through
Eq. (4.2, the nonlocal symmetry generatofs= nd/du have the explicit form(4.5) with

f(x,t)==(1+B(x))e*!, g(x,t)=—A(x)e"!,

(5.295
Ext)==x2Ax)e"t,  7(x,t)=—2B(x)e ",
where
A(x)=wvc(x)csd v log c(x)), B(x)=v cot{v log c(x)). (5.26
The corresponding constants of motion given by &g6) are
C¢=fij(X)‘z(—A(X)(w(X)i@(X))G(X)i(¢(X)—2A(X)¢’(X))¢(X)
— 3 (1+B(X) @(x)?+2B(X) (#(X) >+ c(x)%¢’ (x)%))dx, (5.27)

where ¢(x) and #(x) are initial data(5.3), and 6(x) is determined nonlocally fromg{(x) by Eq.
(5.4). C.. andE comprise a linearly independent set of constants of motion as shown by Theorems
5.2 and 5.3.

The new constants of motio@. may have utility in the mathematical analysis of wave
propagation for two layered media described by wave spge#ld. In particular,C. may supple-
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ment the use of the energy constant of motibin addressing certain problems, such as the time
evolution analysis for dispersal of waves initially localized across the transition boundary between
the layers, and the scattering theory analysis of traveling waves incident on the transition bound-
ary.

VI. CONCLUDING REMARKS

(1) In Sec. Il we presented an explicit conservation law arising from any pair of symmetries,
local or nonlocal, admitted by an arbitrary self-adjoint systenflinkar or nonlinearDEs (1.1).
This conservation law expression does not require use of a variational principle for the system.
Specializing to self-adjoint systems of linear DEs, we obtained a conservation law from any
admitted local or nonlocal symmetry, by using a scaling symmetry as a second symmetry. A
similar conservation law also can be obtained for any nonlinear system which admits a scaling
symmetry(e.g., the Einstein equations in General Relativity thgoPpr variational symmetries
(which are always local symmetriesdmitted in the case of self-adjoint linear systems, we
showed in Sec. lll that the resulting local conservation laws are the same as those obtained from
Noether's theorem(The proof can be generalized straightforwardly to the conservation laws
arising in the case of nonlinear systems with a scaling symmetry.

The following theorem shows how our conservation law for a pair of symmetries is connected
to Noether's theorem.

Theorem 6.1: SupposeX;= 77 (x,u, u u)a/au“ and X,= 75(x,u, u u)a/au“ are

variational symmetries of a self-ad]omt (Ilnear or nonlinear) system (1 1). Tzhen the resulting
conservation law (2.7) is the same as the conservation law obtained through Noether’s theorem
for the commutator symmetry

[ X1, X5]=7p*(x,u,u,...,u)dl Ju* (6.1
1 P

with P<P;+P,.
Proof: The commutatofX;,X,]=7’dldu’ is given by

any . Inh an "
n'= (au 77+WDinl+"'+WDi1"'Dipznl
1 P,
any any any
oo 12T e ue g Dimz -+ oo Di- Dig w3 | (6.2
1 1p,
From Eq.(2.5 we see that
771 a'p772 772 ap771 DCD[771,772] (6.3

Then similarly to the derivation of Eq3.15), the identity(3.7) now leads to

anh anh dnh i
I oz pP— = 0L T D ... — D ---D; o H!
771'/0'p772_ p( ou’ 771+ &Ula— Dlﬂl—i_ + auiUlu.iPZ Dll Dlpzﬂl +D|H [7]11772]
(6.9
for a certainH'[ ,, 7,]. Hence, using Eqg6.2) to (6.4), we have
G,7°=D;Q), (6.5
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whereQ'=—®'[ 5y, 7,] +H'[ 71, 7,] —H'[ 7,,74]. As the commutator of any two variational
symmetries is itself a variational symmetry, we see from Bd) that Eq.(6.5) is a conservation
law obtainable from Noether's theorem. O

The set of all variational symmetries for a given self-adjoint syster) forms a Lie algebra
#. If all Lie algebra generators can be realized as commutators, in which case we say
“perfect,” then Theorem 6.1 yields all local conservation laws for the system. We remark that all
semisimple Lie algebras, as well as the Poinadgebra(which is not semisimple are perfect.

(2) The questions of how to find and how to characterize useful potential systems in order to
find nonlocal symmetries admitted by a system of DEs is considered in Ref. 6.

Potential systems of a given systéinl) rely on the existence of at least one divergence free
equation in the system. However, if an appropriate divergence free equation cannot be found, one
may still be able to embed systefh.1) as a subsystem of a related potential syst&ifhis may
allow one to find nonlocal symmetries which are generalizations of potential symmetries.

(3) The conservation laws derived in Sec. Il for a system of DE$) require that the system
is self-adjoint. If a given systertlL.1) is not self-adjoint, one may still be able to find a related
potential system that is self-adjoint. Through the embedding into the potential system, any sym-
metry (local or nonlocal admitted by the given system will induce a symmetry of the potential
system.(An induced symmetry will be a nonlocal symmetry unless its generator has strictly local
dependence on the dependent variables in the potential sy#tsra.result, conservation laws for
the given system can then be obtained as conservation laws arising from the induced symmetries
(local and nonlocalof each self-adjoint potential system. If a systél) is itself self-adjoint,
conservation laws fronany admitted symmetry will correspondingly arise through each self-
adjoint potential system found for systegth1) as well as through systefi.l) itself.

For the wave equatio(#.1), the first order potential syste.2) considered in Sec. IV is not
self-adjoint. There are several different ways, nevertheless, to introduce potential variables for
system(4.2) leading to potential systems that are self-adjoint. As we will discuss in a forthcoming
article, the conservation law expressions arising through each such potential system are different
from the conservation law expressions obtained through the wave equétipitself. In particu-
lar, the nonlocal symmetries admitted by E4.1) as point symmetries of systed.2) induce
nonlocal symmetries of these potential systems, leading to corresponding nonlocal conservation
laws different than the ones derived in Sec. IV. These additional conservation laws for the wave
equation(4.1) are not obtainable by Noether’s theorem applied to any of the self-adjoint potential
systems, since Noether's theorem only deals with local symmetries.
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