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New classes of symmetries for partial differential equations are introduced. By writing a given
partial differential equation S in a conserved form, a related system 7" with potentials as
additional dependent variables is obtained. The Lie group of point transformations admitted by
T induces a symmetry group of S. New symmetries may be obtained for S that are neither point
nor Lie-Bicklund symmetries. They are determined by a completely algorithmic procedure.
Significant new symmetries are found for the wave equation with a variable wave speed and the

nonlinear diffusion equation.

I. INTRODUCTION

In this paper we introduce new classes of symmetries for
partial differential equations (PDE’s). We present an algo-
rithm to find such symmetries. In general, they are not deter-
mined by a direct application, to the given PDE, of Lie’s
method for finding point symmetries and Lie-Backlund
symmetries. These new symmetries significantly extend the
applicability of group analysis to differential equations.

A symmetry group of a differential equation is a group
that maps solutions to other solutions of the differential equa-
tion.

Lie considered groups of point transformations depend-
ing on continuous parameters, acting on the space of inde-
pendent and dependent variables of a given differential equa-
tion. Unlike the case for a discrete group, Lie showed that
the continuous group of point transformations admitted by a
differential equation can be found by an explicit algorithm
(cf. Refs. 1-3 for recent accounts). Such a group is com-
pletely characterized in terms of its infinitesimal generators,
which depend on the independent and dependent variables
of the given differential equation. Lie extended his work to
groups of contact transformations that act on the space of
independent and dependent variables and first derivatives of
the dependent variables of the given differential equation.

Noether® recognized the possibility of generalizing Lie’s
infinitesimals by allowing them to depend on derivatives of
the dependent variables up to any finite order. Such general-
ized symmetries, commonly called Lie-Béicklund transfor-
mations, came to fruition in Ref. 5. Lie-Bédcklund symme-
tries lead directly to the infinity of conservation laws arising
in the study of the Korteweg—de Vries, sine—-Gordon, nonlin-
ear Schrodinger, and other nonlinear differential equations
exhibiting soliton behavior and are computed by a simple
extension of Lie’s algorithm. "%’

In our approach we obtain new classes of symmetries by
computing Lie groups of point transformations whose infini-
tesimals act on a different space than the space of indepen-
dent variables, dependent variables, and their derivatives, of
the given differential equation. In terms of the variables of
the given differential equation, our new symmetries are
neither point symmetries nor Lie-Biicklund symmetries.
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Our approach can be applied to a system .S of PDE’s
with independent variables x and dependent variables u,
written in a conserved form with respect to some choice of
these variables. Through the conserved form we naturally
introduce potentials ¢. The resulting system T of PDE'’s has
as its variables the independent variables x, the dependent
variables u of S, plus new dependent variables ¢. We find the
Lie group G, of point transformations, of this enlarged
space of variables (x,u,4), admitted by system 7.

Any transformation in G; maps solutions of 7T into oth-
er solutions of 7 and hence maps solutions of .S into other
solutions of S. Consequently, G is a symmetry group of S. A
transformation in G is a new symmetry for S if the infinitesi-
mal of the transformation, corresponding to any of the vari-
ables (x,u), depends explicitly on ¢. We show that a new
symmetry is neither a point symmetry nor a Lie-Biacklund
symmetry of .S.

Our new symmetries are nonlocal symmetries that are
realized as local (point) symmetries in the space (x,u,$).
Thus they can be found by Lie’s algorithm.

Special types of nonlocal symmetries have been studied
by other authors.®~'° Their works give no explicit algorithms
for finding nonlocal symmetries. In general, our nonlocal
symmetries do not belong to the types considered by these
authors.

In Sec. II we present our method for obtaining new sym-
metries admitted by PDE’s. By way of example, we find new
symmetries for the wave equation in Sec. I1I and the nonlin-
ear diffusion equation in Sec. IV.

Il. METHOD FOR FINDING NEW SYMMETRIES

Consider a PDE S of order m written in a conserved
form,

3 :959-F,. (s, 2™~ ) = 0,

i=1 i

(2.1)

with n>2 independent variables x = (x,,X,,...,x,, ) and a sin-
gle dependent variable u; 3/u represents all jth-order partials
of u with respect to x. (For simplicity we consider a single
PDE—the generalization to a system of PDE’s in a con-
served form is straightforward.)
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We remark that if a given PDE is not written in a con-
served form, there are a number of ways of attempting to put
itin a conserved form. As discussed in Sec. V, these include a
change of variables (dependent as well as independent), an
application of Noether’s theorem, and combinations of the
above.

Since Eq. (2.1) is in a conserved form, there is an
(n — 1)-exterior differential form Fsuch that Eq. (2.1) can
be written as dF = 0. It follows that thereis an (n — 2)-form
o

F=do. (2.2)

In terms of components, Eq. (2.2) implies that there exist
jn(n — 1) “potentials” ¥ ;, components of an antisymmet-
ric tensor, such that

F,(x,u,0u,...,0™  'u)

=3 (—1y— "+z( )'*‘a—",

i<j ' Jj<i X j
L j=12,..,n. (2.3)

Equation (2.3) is a system of PDE’s with 1 + in(n—1)
dependent variables u, ¥; (i <j). Thus (2.3) is underdeter-
mined for n>3. We can impose suitable constraints (effec-
tively, a choice of gauge) on the potentials ¥; to make sys-
tem (2.3) into a determined system. A natural way to do this
is to impose the conditions

i

W, =0, |i—jl#1. (2.4)
In this case, letting

$:=V, .1, i=12.,n—1, (2.5)
system (2.3) becomes the determined system 7T,

0

ox,’
a a
F,=(—1)" [ br B ] , l<t<n,
Ox,py  Ox,_y
a
Fo=(—ty+1 Pt (2.6)
9x, _,

Ifn=2letx,=x, x,=t, F;=F, andF,= — G,sothat
S becomes

9F 96 _o. @7

dx ot
Let the potential ¥,, = ¢, = ¢. Consequently, 7is

6¢ = F(x,t,u,0u,.. LO0™ ), (2.8a)

‘9—"’ = GO, 9™~ ). (2.8)

ax

If n=4, let x,=x, x,=y, x3=2, x,=t, F{=F,

F, =G, F;=H, and F, = I, so that S becomes
OF dG JH JI _
29
ax 8y 3z d (2:9)
The corresponding determined system T'is
%—‘ﬁl = F(x,9,2,t,u,0u,..,0 ™ " 'u), (2.10a)
i
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_|%: + %] = G(xp,z,t,u,0u,..,0 ™ 'u), (2.10b)
z

dx
%-{-%=H(xy,z,t,u,3u,...,6”"'u), (2.10¢c)
dy ot
— ﬁ = I(xp,2,t,u,04,...0 ™~ 'u). (2.10d)

Now assume that a system T admits a one-parameter
(€) Lie group of point transformations

x* = fx,u,;€) = x + £ (x,u,4) + O(?), (2.11a)
= g(x,u,d;€) = u + eny(xu,d) + O(e*), (2.11b)
¢* = h(x,u,b;€) = ¢ + € (x,u,8) + O(?), (2.11c)

where £, 7, and §; are the infinitesimals of x, », and ¢,
respectively, of the group. This group maps a solution of T’
into another solution of 7" and hence induces a mapping of a
solution of § into another solution of S. Thus the group
(2.11) is a symmetry group of PDE S. This one-parameter
symmetry group of PDE S is a new symmetry group of S ifand
only if either & or 1 depends explicitly on ¢. A new symme-
try of S is neither a point symmetry nor a Lie-Bicklund
symmetry of S since ¢, as defined by system (2.6), appears
only in derivative form. Hence this new symmetry cannot be
expressed as a function of (x,u,du,...,d “u), for any finite k.
Clearly, from its form, a new symmetry of S is a nonlocal
symmetry of S. We let G- denote the group of all point trans-
formations admitted by 7.

A one-parameter Lie group of point transformations ad-
mitted by S, in terms of its given variables, is of the form

x* =x + e£g(x,u) + 0O(€2), (2.12a)
u* =u + eng(x,u) + O(€). (2.12b)

Let G denote the group of point transformations of the form
(2.12) admitted by S. It is important to note that the trans-
formations belonging to G with infinitesimals £ (x,u) and
15 (x,u) may not belong to G; in the following sense: there
exist no transformations in G, with infinitesimals
Er(x,u,d), y(x,u,9), and &1 (x,u,¢) such that

Er(xu,d)=£s(x,u), (2.13a)
nr(xu,d)=ns(x,u). (2.13b)

Say S'is a linear PDE and T'is a linear system of PDE’s.
In this case, £ and £, depend only on x. Here we distinguish
two types of new symmetries arising from a new symmetry in
G with an infinitesimal £, (x).

(1) A linear partial differential equation S is said to have
a new symmetry of type I if it has a new symmetry for which
there is no infinitesimal in G such that £(x)=E&(x).

(ii) A linear partial differential equation S is said to have
a new symmetry of type I1 if it has a new symmetry for which
there is some infinitesimal in G such that &s(x)=& (x).

For a new symmetry of type I, the similarity variables
(group invariants depending only on x) are identical to
those for some symmetry in G. This is not the case for anew
symmetry of type L.

There are many ways of expressing a given PDESasa
system. However, the symmetries of such a system may not

Bluman, Reid, and Kumei 807

Downloaded 08 Jan 2009 to 137.82.36.67. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



induce nonlocal symmetries for S. For example, the “usual”
way to find a system T related to S'is to introduce new depen-
dent variables v; = du/dx;, 1<i<n. A point symmetry ad-
mitted by 7, namely,

x* = x + €£(x,u,v) + O(e), (2.14a)
u* = u + €fj(x,u,w) + 0(€%), (2.14b)
v* = v + €& (x,u,0) + O(?), (2.14c)

always induces a local symmetry of S that is either a point
symmetry or a Lie-Bicklund symmetry of S.

lll. EXAMPLES OF NEW SYMMETRIES FOR THE WAVE
EQUATION

Consider the wave equation S:

%u 3%
2 =0. 3.1
¢ ax? o’ G-
Equation (3.1) can be expressed in a conserved form,
9F 3G _ (3.2)
Jx at
where
Ju
F=—"", 3.3
Jx (3.32)
1 oJu
= 3.3b
A (x) ( )
The associated system 7 is
9 _ou ) (3.4a)
ot ax
o __1 o (3.4b)
x ¢ 2(x) 3t

Let G5 and G be the Lie groups of point transforma-
tions admitted by S {Eq. (3.1)] and T [Egs. (3.4)], respec-
tively. These groups depend on the form of the wave speed
c(x) and were derived in Ref. 12. The results in that paper
can be broadly summarized in terms of Theorems 1-5 fol-
lowing. [A prime denotes differentiation with respect to x;
we exclude the case c(x) = (ax + )3, with {8} arbi-
trary constants, for which Gy is an oo -parameter group. ]

Theorem 1: The wave equation (3.1) admits a four-pa-
rameter Lie group of point transformations Gy if and only if
the wave speed c(x) satisfies the fifth-order ODE

[ 2 [ HIIV [2(HI)3 ZHHIHII (Hll) ] ]]
c +3
2H' + H? [2H' + H?}?
=0, (3.5)
where
H=c/c. (3.6)

Theorem 2: G is a four-parameter Lie group of point
transformations if and only if the wave speed ¢(x) satisfies
the fourth-order ODE

[ec’'(e/c’)" ] =0. (3.7)

Theorem 3: For any wave speed c(x) satisfying ODE
(3.7), there exists a new symmetry of the wave equation
(3.1).
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Theorem 4: The new symmetries of the wave equation
(3.1) arising from G, are new symmetries of type II if and
only if the wave speed c(x) satisfies the third-order ODE

(¢/c")" = (3.8)
The general solution of (3.8) is
c(x) = (ax +B), (3.9)

where {a,B,7} are arbitrary constants.

Theorem 5: The new symmetries of the wave equation
(3.1) arising from G are new symmetries of type I if and
only if the wave speed c(x) satisfies the ODE

cc’'(c/c')” = const#0.

The following theorem was proved in Ref. 13.
Theorem 6: A wave speed ¢(x) simultaneously satisfies
(3.10) and (3.5) if and only if either

Jc — arctan we = ax + B,

(3.10)

(3.11a)

or

2Je +log|(Ne — 7Y/ (e + )| =ax + B,

where {a,B,y} are arbitrary constants.

From the above follows this corollary.

Corollary 1: Both of the groups G and G are four-
parameter groups if and only if the wave speed c(x) satisfies
(3.8), (3.11a), or (3.11b). The family of wave speeds (3.8)
yields new symmetries of type II and no new symmetries of
type 1. The families of wave speeds (3.11a) and (3.11b)
yield new symmetries of type I and no new symmetries of
type II.

The following representative examples illustrate the
above theorems.

1. ¢(x) =1 + ¢*. In this case, G is a two-parameter
group and G is a four-parameter group. Infinitesimal gen-
erators of their Lie algebras are

(3.11b)

d d
Gs: Ll—u_', L2=5;
d a ~ 4
L - - s =
Gr: L, ua +¢3¢ 2=
~3—e{2(1+e"‘)—-—(2e"" 1)i
ot
s efiren 2. '*a¢]]

Io—e-tl204e Lt e+ 2

L4e[(+e)ax+(e +)at
ad ad

1 Xy — —e *—|1}.

+(u+¢)[( +e )au e a¢”

The generators L, and L, are new symmetries of type 1
for the corresponding wave equation (3.1).

2. ¢(x) = 1 — x2 In this case, G is a two-parameter
group and G has four parameters. Infinitesimal generators
of their Lie algebras are

J J
Ge: Li=u->, L,=2,
st “au L
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L,=(1—x* —Xu—,
3= ( x°) ™ xuau
a 1 jx+1] d d
Ly=t(1-x*)—+-logi—"— —xtu—;
+ =K X)ax+20|x—1|6t Sy
a = d
GT Ll—u——+¢7 L2=5

3. ¢(x) = x. Here both of the groups G and G have
four parameters, and there is a new symmetry of type II for
S. Infinitesimal generators of their Lie algebras are

Gs: Ll:”}%9 L2=%, L3=x(;1+uaiu
GT:Z,—uaa+¢%’ ) %’
L3=X%+u%,

7}

L, =2xt— + 2log|x| —é+ (tu — x¢) 9
ax du

— (x7'u+ 1) —
¢

The infinitesimal generator L,of G is a new symmetry of
type 11 for S.

4. 2Jc +log|(e — 1)/(Je + 1)| =x. In this case,
both of the groups G5 and G, have four parameters, and
there are new symmetries of type I for S. Infinitesimal gener-
ators of their Lie algebras are

d aJ
Gg: Li=u—, L,=2<,
stERG Ty
L3___er/2(c_1)—1/2
donl_2yte=n,
dx ot 2 6u
L4=e—t/2(c__1)—~1/2
a a (c—1) ad
X 3/2_ = e —|;
[C a2 ‘o
~ ad ad - a
G Li=uZ 492, [,=2,
T G ¢a¢ "
e 3 ad
L,= 3/2 -2 1) —
? c—l{ Ox e+ )at
+[(3c—1)u—2cs’2¢]ai

a3
_ — V21 Y
+[(3—c)p—2 u] 3¢] R

[4c3’2 d +2(c+ 1) -
ox Ox

I,=
‘T -1
+[Ge— Du + 20791 2-
du
+ [(3—c)¢ +2¢7"2u] i} .
ag
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Any linear combination of L, and L, is a new symmetry
of type I for S.

As these examples clearly demonstrate, our method en-
ables one to discover systematically new symmetries of (3.1)
that cannot be found by a direct application of Lie’s algo-
rithm to (3.1).

Ovsiannikov'* recognized the difference between the
groups admitted by an equation equivalent to (3.1) and by a
corresponding system equivalent to (3.4). He made some
cursory remarks about these differences and went no
further.

IV. EXAMPLES OF NEW SYMMETRIES FOR THE
NONLINEAR DIFFUSION EQUATION

Consider the nonlinear diffusion equation .S,

a [ du du
i ) < —_——=0. 4.1
£ S e @D
As it is written, Eq. (4.1) is already in a conserved form,
dF oG
— ——=0, 4.2
ox at (4.2)
where
du
F=K(u) —, (4.3a)
ax
G=u. (4.3b)
The associated system Tis
99 _

— 4.4
at Ku ) 8x (4.4a)
¢
—L =y 4.4b
O u ( )

The group Gs of (4.1) depends on the form of the con-
ductivity K(u) and is derived in Refs. 2, 3, and 15. The re-
sults are summarized as follows.

1. K(u) arbitrary. Equation (4.1) always admits a
three-parameter group with infinitesimal generators

aJ ad ad d
Li=2, L,=2, Li=x2 4122, @45
1= Ty bEr Uy B
2. K(u) = Au + )", {v(# —$),4,x} arbitrary con-

stants. Here G is a four-parameter group with infinitesimal
generators L,, L,, and L, given by (4.5), and

J 2 J
Li=x-——4+—(u+x)—. 4.6
=Xt > (4.6)

A limiting case is K(u) = :
3. K(u) =A(u+x)~*3, {4, k} arbitrary constants.

Here G is a five-parameter group with infinitesimal genera-
tors L, L,, and L, given by (4.5), L, given by (4.6) with
v= —% and
a a
L = x2 —_— 3 -_— g
5 ™ x(u + ) » 4.7)
The group G of system (4.4) also depends on the form

of the conductivity X (u). This group is presented here for
the first time. The results are summarized as follows.
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1. K(u) arbitrary. Equations (4.4) always admit a four-
parameter group with infinitesimal generators

ad ~ d ~ J
==, [,=2, [,=2
*Tap’ TV e TP ox’
P 3 (4.8)
L,=x2 u—té—
3 xa + ¢ ¢
2.K(u) =A(u +x)*, {v(# —2), A,«} arbitrary con-

stants. Here Gy is a five-parameter group with infinitesimal
generators Ly, L,, L,, and L; given by (4.8), and

)¢ S (4.9)

~ a 2 J
L=x242 _+(
4 xax+v(u+K) Ew

3. K(u) = A(u + k) ~2,{A,«} arbitrary constants, Here
G is an oo -parameter group with infinitesimal generators
Lo, L, L2, and L3 given by (4.8), L4 given by (4.9), and
~ a
L,= —x¢—+ (u+x)[¢+x(u+x)] ———+2t%
(4.10a)
Li= —x(*+21) —f?—-|—4t2 g + (u+«)
Ox at
X [¢% + 6t + 2x¢ (u + k)] —+4t¢—, (4.10b)
du d¢
d dO(4t) J
L =0 -L 2280 7 4.10c)
= =00 G T T a (

where v = O(¢,¢) is an arbitrary solution of the linear differ-
ential equation

% v _
YR

4. K(u) =——2——1———exp [rJ.——z—dL——]
u'+pu+gq u'+pu+gq

In this example, {p,q,r} are arbitrary constants not satisfying
either of the relationships

(a) r= 42, p*—4g>0,
(b) r=0, p*—4g=0.

The cases (a) and (b) belong to 3.
Here Gy is a five-parameter group with infinitesimal
generators Ly, L,, L,, and L, given by (4.8), and

(4.11)

Z4=¢—a—+(r—p)ti—(u2+pu+q)§u—

— (gx + po) —¢ (4.12)
A comparison of the groups G5 and G, leads to the
following theorem.

Theorem 7: The nonlinear diffusion equation (4.1) hasa
new symmetry, arising from G. if and only if

K(u) =2;exp [rfzi_:l ,
w+pu+gq U +pu+gq

with arbitrary constants {p,q, r}.
Ovsiannikov''® expressed the nonlinear diffusion equa-
tion (4.1) as a system,

v—-K(u)———

4.13
ox ( 2)
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E

ax
Our remarks at the end of Sec. II show that a point symmetry
of system (4.13) is always a local symmetry of the single
equation (4.1). In particular, as Ovsiannikov found in his
complete point group classification of system (4.13), the
group is G when restricted to (x,t,u) space.

(4.13b)

V. CONCLUDING REMARKS

(1) There are various ways of attempting to put a PDE
S into a conserved form. One way is to find a change of
variables X = X(x,u), 4 = U(x,u), if possible, so that S be-
comes a conserved form,

» JF,
Sy = (%,%,04,..,0™ " '4) =0,

i=10X;

(5.1)

where d “u denotes all k th-order partials of 7 with respect to
x.

Another way depends on S being represented as the
Euler-Lagrange equation for some Lagrangian density L.
Each one-parameter Lie group of point transformations that
leaves the action integral invariant leads to a conserved form
for S through an application of Noether’s theorem.

The following two examples illustrate other ways of ob-
taining conserved forms.

Consider the Schrodinger equation S:

8 u du
e + V(x)u-t—a—t—- (5.2)
We can reexpress (5.2) in the form
9F G _ =0, (5.3)
ax ot
where
F=ow(x) a—u—w’(x)u, (5.4a)
dx
G= —iow(x)u, (5.4b)
with
Vix) =" (x)/w(x). (5.5)
The corresponding system 7T'is
%%’—:w(x) -z—u-—w’(x)u, (5.6a)
—%— — iw(x)u. (5.6b)

Ina future paper we will show that for a class of potentials
V(x), the group G of system (5.6) generates new symme-
tries for the Schriodinger equation (5.2).

For our second example we consider the nonlinear wave
equation

() L3
dx/ ax* or?

We differentiate (5.7) with respect to x and let v = du/dx so
that (5.7) becomes the PDE S,

(5.7

8 [c (xtv)— —i(@)_o. (5.8)
ax ax at \dt
Bluman, Reid, and Kumei 810
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The corresponding system T'is

¢ 2 av

— = WU) — 5.9a
¢ 5 (3-%2)
9 _ v (5.9b)
dx Ot

If (v,¢) solves 7, then u(x,t), defined by

du

= =y, 5.10
ox v ( 2)
du

= =4, 5.10b
% ¢ ( )

solves the nonlinear wave equation (5.7). Hence the symme-
try group G is asymmetry group of (5.7). From the form of
(5.10) we see that new symmetries may arise for (5.7).

(2) A new symmetry leads to invariant solutions of 7,
which, in turn, lead to solutions of S. If S and T are linear and
the new symmetry is of type I, then these solutions cannot be
obtained by applying the infinitesimal operators of G to the
invariant solutions of S arising from Gs.

If a new symmetry arising from G has £, depending
only on x, then it can be used to solve boundary value (initial
value) problems explicitly. New symmetries have been used
to solve initial value problems for wave equations (3.1) fora
class of wave speeds with a smooth transition."’

(3) Since the choice of conserved form is not necessarily
unique, various new groups could be admitted by a given
differential equation. For any conserved form the symme-
tries of the related system are computed by the standard Lie
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algorithm. The work presented in this paper, when com-
bined with recent advances using symbolic manipulation to
execute Lie’s algorithm,'® offers considerable promise for
applying group methods to much wider classes of differen-
tial equations.
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