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We study the invariance properties (in the sense of Lie~-Backlund groups) of the nonlinear
diffusion equation (3/9x)[C (u)}3u/dx)] — (Gu/dt ) = 0. We show that an infinite number of one-
parameter Lie~Bécklund groups are admitted if and only if the conductivity C (&) = a(u + b )% In
this special case a one-to-one transformation maps such an equation into the linear diffusion
equation with constant conductivity, (9 %#/9x%) — (9ii/dt) = 0. We show some interesting
properties of this mapping for the solution of boundary value problems.

1. INTRODUCTION

In recent years nonlinear diffusion processes described
by the partial differential equation (p.d.e)

J Ju ou
‘a—x‘ [C(U) 5;] - —87 =0, ¢))

with a variable conductivity C (1), have appeared in prob-
lems related to plasma and solid state physics.'* Interest in
such processes has long occurred in other fields such as met-
allurgy and polymer science.>”

Some exact solutions are well known for such equa-
tions.® These can be shown to be included in the class of all
similarity solutions to such equations obtained from invari-
ance under a Lie group of point transformations.”*

Recently, it has been shown that differential equations
can be invariant under continuous group transformations
beyond point or contact transformation Lie groups which
act on a finite dimensional space.’ These new continuous
group transformations act on an infinite dimensional space.
Such infinite dimensional contact transformations have been
called Noether transformations'® or Lie-Bicklund (LB)
transformations'' (Noether mentioned the possibility of
such transformations in her celebrated paper on conserva-
tion laws'?). Well known nonlinear partial differential equa-
tions admitting LB transformations include the Korteweg—
deVries,"”'* sine-Gordon,'*"* cubic Schrédinger,'* and
Burgers’ equations.'® All of these known examples admit an
infinite number of one-parameter LB transformations.
Moreover, many of their important properties (existence of
an infinite number of conservation laws,'*-'* existence of so-
litons,'* and existence'” of Bicklund transformations'®) are
related to their invariance under LB transformations.

Any linear differential equation which admits a nontri-
vial one-parameter point Lie group is invariant under an
infinite number of one-parameter LB transformations
through superposition. Moreover, every known nonlinear
p-d.e., invariant under LB transformations, can be associat-
ed with some corresponding linear p.d.e.

With the above views in mind we study the invariance
properties of Eq. (1). Previously,”®'? it had been shown that
Eq. (1) is invariant under
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a) a three-parameter point Lie group for arbitrary C (u),

b) a four-parameter point Lie group if
Cwy=a@+b)’,

¢) a five-parameter point Lie group if v = — 4.
[It is well known that a six-parameter point Lie group leaves
invariant Eq. (1) in the case C (#) = const.*®]

In the present work, we show that £q. (1) is invariant
under LB transformations if and only if the conductivity is of
the form

Cw)=alu+b)?, )

i.e., if Eq. (1) is of the form

d
—(—9;— [a-(u +b)

2 du du
] — — =0. 3
Hx] at @

Furthermore, this equation admits an infinite number of LB
transformations.

In this special case, there exists a one-to-one transforma-
tion which maps Eq. (3) into the linear diffusion equation with
constant conductivity, namely, the heat equation

2 _

du_ 9 _,, @

dx? ot

In the course of this paper, we find an operator connect-
ing two infinitesimal LB transformations leaving Eq. (3) in-
variant. We prove that this operator is a recursion operator
which generates an infinite sequence of one-parameter in-
finitesimal LB transformations leaving Eq. (3) invariant.
Moreover, we show that no other LB transformation leaves
Eq. (3) invariant.

By examining the linearization of Eq. (3), we are led to
construct the transformation mapping Eq. (3) into Eq. (4). It
is shown that this transformation maps the recursion opera-
tor of Eq. (3) into the spatial translation operator of Eq. (4),
giving a simple interpretation of the transformation relating
Eq. (3) to Eq. (4). We use this transformation to connect
boundary value problems of Eq. (3) to those of Eq. (4).

We construct a new similarity solution of Eq. (3) corre-
sponding to invariance under LB transformations.
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2. DERIVATION OF THE CLASS OF NONLINEAR
DIFFUSION EQUATIONS INVARIANT UNDER LB
TRANSFORMATIONS

LB transformations include Lie groups of point trans-
formations and finite dimensional contact transforma-
tions.'" The algorithm for calculating infinitesimal LB trans-
formations leaving differential equations invariant is
essentially the same as Lie’s method?® for calculating infini-
tesimal point groups.

Consider the most general one-parameter infinitesimal
LB transformation that can leave invariant a time-evolution
equation,’' namely;

u* = u + eU(x,tu,uy,.u,) + O (€5,

x¥*=x, )

t* =
where u, = du/dx’, i = 1,2,--. Let du/dt = u,, du, /It
=u,,dU /0u = U, dU /du, = U,, 3*U /du,0u; =U,,,
C’'=dC /du,and C" = d*C /du>.

In the above notation Eq. (1) becomes

u, =C'(u,))* + Cu,. (6)

Under Egs. (5) the derivatives of u appearing in Eq. (6) trans-
form as follows:

u)* =u, +eU'+ 0(),
(u)* =u,+eU*+ 0(e),
(u)* = uy + €U + 0(€),

where
U'=D,U= %tg+ Uy, + é‘,} Uity ™
Us=D,U= ‘;—g+ 20 Uy sy
U™ = (DU = ‘Zfﬂ éjo%um
+ ,-,i:o U, jui 4oy + i’; Vu; .

D, and D, are total derivative operators with respect to f and
x, respectively.

The transformation (5) is said to leave Eq. (6) invariant
if and only if for every solution u = 8 (x,t) of Eq. (6)

U'=C"Uu)* +2C'Uuy+ C'Uuy + CU™.  (8)
The fact that U must satisfy Eq. (8) for any solution of Eq. (6)
imposes severe restrictions on U. Using Eq. (6) the deriva-
tives of u; with respect to ¢, i.e., #,, can be eliminated in Eq.
(8). Since the invariance condition (8) must hold for every
solution of Eq. (6), Eq. (8) becomes a polynomial form in
u,,, and u, ,,. As a result the coefficients of each term in
this form must vanish. This leads us to the determining equa-
tions for the infinitesimal LB transformations (5).

If in Eq. (5), <2, we obtain the Lie group of point
transformations leaving Eq. (6) invariant. Without loss of
generality we assume #>3 in Eq. (5). It turns out that for
n>3, Uis independent of x and ¢.

In our polynomial form, the coefficient of 4, ,, vanish-
es and the coefficients of (,, ., )* and u,, ., , respectively,
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lead to determining equations
cv,, =0, ®)
n—1
nC'Uuy=2C Y U, u . (10)

i=0
Solving Egs. (9) and (10) we find that
U=a(CY "u, + E(uu,,...tt, ), (1D

where E is undetermined, and a = arbitrary constant.

The substitution of Eq. (11) into the remaining terms of
Eq. (8) leads to a polynomial form in u,, whose coefficients of
(u,)’ and u,, respectively, lead to determining equations

CE, ,,., =0, (12)
n-—2
2C Z En»—l,i L

i=0
+U=mCE, y wy — L +3)C" (€)uy

+ a [}‘n2(c 1)2(C)(1/2)n -1 _ %n(n +2)C " (C)(]/Z)n](ul)?. —_ O

(13)
Solving Egs. (12) and (13) we find that
U=a [(C)"?u, +in(n +3)C" (CO)Y" ' uu, |
+ F(@u, |, + G@,uy,...u, ), (14)
where F and G are undetermined and, more importantly, for

a#0 it is necessary that the conductivity C (u) satisfy the
differential equation

2CC" = 3(C'). (15)
Hence, it is necessary that
Cw)=alu+b)? (16)

where a and b are arbitrary constants for the invariance of
Eq. (1) under LB transformations. Without loss of generality
we can seta = 1, b = 0, i.e., from now on we consider the
equivalent p.d.e.

Gu _ _3_(,,—: fi) —8B. )
g  am\

This particular equation has been considered as a model
equation of diffusion in high-polymeric systems.**

3. CONSTRUCTION OF A RECURSION OPERATOR; AN
INFINITE SEQUENCE OF INVARIANT LB
TRANSFORMATIONS OF EQ. (17)

For n = 3 it is easy to solve the rest of the determining
equations and show that the only LB transformation leaving
Eq. (17) invariant is

U=U'"" =u3uy, —9uuu, +12uu,)’. (18)

For n = 4 we obtain two linearly independent LB trans-
formations U '’ and

U = u'u, —14uuuy —10u"(u,)’

+95u7(u )2u, —90u (1) (19)

The existence of I/ ‘!’ and U ‘?’, combined with the work

of Olver,'® motivates us to seek a linear recursion operator

2 leading to infinitesimal LB transformations U “’ defined
as follows:
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(ZYB=U%, k=12 (20)
The character of {B,U ", U ‘*’} leads one to consider for &
the form

9 =pD, +q+nD,)", (1)
where D, is a total derivative operator, (D,)-(D,)"" is the

identity operator, and { p,q,r} are functions of {u,u,,u,}.
Then one can show that Z B = U*‘" if and only if

p=u’, 22)
and
qluu, =207 )] + ru?u,

= —3uuu, +6u>(u,)’. 23
Furthermore, (Z)*B = U‘*’ if and only if

q= —2u’u, (24)
and

r= —ulu, +2u3(u,) (25)
A more concise expression for the operator is

D = D)D), (26)

We now show that the constructed operator & is in-
deed a recursion operator. Let the operator

A= i B.(D,y

i=0
=u(D,) —4u>u, D, +6u*(u,)* —2u>u,
=D, )u?, Q7

where B; = (3/9u,)B. Olver’s work'® shows that & is a re-
cursion operator for Eq. (17) if and only if the commutator

[4-D,2]=0, (28)

for any solution ¥ = 8 (x,t) of Eq. (17). Moreover, if & is a
recursion operator, then thesequence { U ",U ‘®,...] givenby
Eq. (20) is an infinite sequence of LB transformations leav-
ing Eq. (17) invariant. It is straightforward to show that A
and 7 satisfy Eq. (28).

The nature of U " and the form of a general U given by
Eq. (11) show that for n = / 42, there are at most k</ lin-
early independent LB transformations leaving Eq. (17) in-
variant since U must depend uniquely on », _, .

The proof that & is a recursion operator demonstrates
that k = / and hence we have found all possible LB transfor-
mations leaving Eq. (17) invariant, namely, { U ®},
k=12,

4. A MAPPING TO THE LINEAR DIFFUSION EQUATION

As far as we know all p.d.e.’s invariant under LB trans-
formations have a recursion operator and, moreover, can be
related to linear p.d.e.’s. This suggests the possibility of seek-
ing a transformation relating Eq. (17) to a linear equation.
This leads us to consider the linearization of Eq. (17),
namely,

(4—-3/dt)f=0, 29)
where A is given by Eq. (27) for any solution u = 6 (x,t ) of Eq.
(17). Introducing a new variable & by
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J , _
f= == (uit), (30)
ox
we obtain from Eq. (29) the equation
-1___3_)2 -3 _59___ _‘9_] 7=0 31
[(“ ) T T wl® ¢l
and if we set
a a4 0
_— =Y —,
dx dx
(32)
d a 3 d
—_ = —— U, =
ot ot Ox
Eq. (31) becomes
Fu au
—— — =0 33
ox® at 3

Since f = 0 is always a solution of Eq. (29), the relation (30)
suggests that we set uid = constant. This and Egs. (32) lead
us to the transformation

dX = udx + uu, dt,
dt = di,

7=u’,

(34

relating solutions u = @ (x,¢) of Eq. (17) to solutions
il = @ (x,t ) of Eq. (33). Choosing a fixed point (x,,t,), we have
the following integrated form of Eqgs. (34):

X= f udx — J. (—a—u") dt’,
Xq to ax X = Xq

(335)

It is easy to check that Egs. (35) indeed transform Eq.
(17) to Eq. (33), and define a map relating the solutions of
Egs. (17) and (33). Moreover, ifu > 0 (i > 0), Eqgs. (35) define
a one-to-one map since dx/dx > 0 for each fixed 1.2

We now show that under the transformation (34) the
recursion operator & of Eq. (17) is transformed into the
recursion operator

9 =D, (36)
leading to an infinite sequence of LB transformations of the
heat equation (33). The proof is as follows:

An LB transformation of the form (5) induces an LB
transformation on the variables {X,t,iz} through Egs. (34),
namely,

X*=x+e+0(@,

t* =1y, 37
@* =u+ef + 0,
where £ and 7] are defined by
dE = o dX + A dt,
& =uaU, B =uaU+ @)U*=20), (3%

7= — @)U

It turns out that for any solution i = § (%,7) of Eq. (33), &
and & satisfy the integrability condition D;.o/ = D_ %, so
that d¢ is an exact differential. The integrated form of £ is
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E= — D' @) +e, (39)
where c is an arbitrary constant. Since U+ = g U,
where Z is given by Eq. (26), for ¢ = 0 we get a correspond-
ing infinite sequence of invariant infinitesimal LB transfor-
mations { U} for Eq. (33), namely,

U =7~
where
7= —@) U, (40)

= —)'[F@y'l,
and it; = (/9% )'u. From Egs. (40) it is simple to show that

Uid =D U, (41)
leading to Eq. (36). Moreover,
U =D @)= D)5, i=172 42)

D, corrsponds to the obvious invariance of Eq. (33)
under translations in X.

It is interesting to note that the recursion operator for
the invariant LB transformations of Burgers’ equation is also
mapped into the space translation operator under the Hopf-
Cole transformation relating Burgers’ equation to the heat
equation. Moreover, we can obtain the Hopf-Cole transfor-
mation by examining the linearization equation (29) corre-
sponding to Burgers’ equation.

5. PROPERTIES OF SOLUTIONS OF EQ. (17) FROM THE
MAPPING

We now consider the use of Egs. (34) in constructing
solutions to Eq. (17). It is easy to show that Eqs. (34) are
equivalent to

dx = it d% + iI; dt,
dt =di, (43)
u= @)y,
with an integrated form
x = f #dx + J () _ 5, dt’,
t=1—1, 44
u=(@@)"
for some fixed point (¥,,%,). In the following, we assume u >0
(4 > 0). Without loss of generality, we set X, = ¢, = 0.

A. Explicit formula connecting solutions; examples

First we consider the problem of giving a more explicit
formula for relating solutions of Eq. (33) to those of Eq. (17).
Let # = 8 (X,2) be a solution of Eq. (33) on the domain ¢ > 0,

xe(x,,X,)- By Egs. (43),
x=X(x1)= fxé(f’,f) dx + f (90—?2)_ dt'.(45)

0
This uniquely determines the function X L X=X"(x,t),
where ¢ = . Now Egs. (44) lead to the following solution of
Eq. (17):
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1
(X (x,t)t)’
on the domain xe(x (1), x,(¢)), t>0, where (46)
xX,(1) =X (X,1)x,(t) = X (X,,t).

In a similar manner, Egs. (35) map a solution u = 6 (x,t ) of
Eq. (17) to

u=0(xzt)=

T 1
U= 0 x,t = ~——m————
&0 O X\ (x,),t)
on the domain Xe(x,(t ),%,(7 )), > 0 where 47)

fn(i_) = ,i;(x,,t_), fz(t_) :X;(xz’t_)’

E=X(xt)= j O(x',t)dx’
O

_ L [7.% (6 (x,1 '))—‘L ar (48)

with the corresponding definition of the function
X'(%) = x.
Example 1: The source solution of Eq. (33), i.e.,
i =0 (%)= a(@nt) " “/* on the domain
— 0 <X < w,t>0,1s mapped by Egs. (45) and (46) into the
following separable solution of Eq. (17):
u=0(xt)=a'(4mr)"%",

on the domain — la <x <la, >0, where v(x) is defined
by (49)

a .
x=—=1] e ¥ dy
V7 Jee
Note that lim, . , ,0(x,t) = + .
Example 2. The dipole solution of Eq. (33), i.e,,

u= 9—(52,17) = — % [0(4771‘_)‘“2@'" (f’/4f)],
X

on the domain 0 < X < c0, > 0, is mapped by Egs. (45) and
(46) into the following self-similar solution of Eq. (17):

u=0(x1)=x"'2)" [m( a’ )] e

47tx’®

(50)
on the shrinking domain 0 < x <a(4mt ) "%, 1> 0.

B. Connection between initial conditions; connection
between boundary conditions

The mapping formulas (34) and (43) demonstrate a
one-to-one correspondence (within translation of x,¢ ) be-
tween initial conditions for Eq. (17) and those for Eq. (33).
As for the connection between boundary conditions, from
the same formula it is easy to see that x = s(¢ ) is an insulating
boundary of Eq. (17), i.e., [38 (x,£)/9x], _ ., = 0, ifand
only if the corresponding boundary X = 5(¢) is an insulating
boundary of Eq. (33), i.e., the corresponding solution
7 = 0 (%,1) satisfies [0 (X,1)/9%) ;. «n = 0. Moreover,
s(t) = constif and only if 5(t) = const, i.e., there is a one-to-
one correspondence between fixed insulating boundaries of
Egs. (17) and (33).

In general, a noninsulating boundary condition for Eq.
(17), on a fixed boundary x = const = ¢, is mapped into a
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noninsulating boundary condition of Eq. (33) with a corre-
sponding moving boundary ¥ = §{¢ ) 5 const with speed
ds

L, 060(x,1)
[6(e)] T] 1)

x=c?
t=1

where, as previously mentioned, v = @(x,t)>0.

6. CONCLUDING REMARKS

(a) From invariance under the LB transformations
[U®}, i = 1,2,--, there exist similarity solutions of Eq. (17),
i.e., u = 0 (x,t;n), whose similarity forms satisfy

n—~1
U+ > o, U® =0, (52)
k=1
where {¢,,c5,...,c, | } are arbitrary constants, # = 1,2,
For example, for n = 1, Eq. (52) leads to the similarity form
u=0xz1)=[a@t)x+b@)) + )" (53)
where [a(t), b(t), c(t)} are arbitrary. Substituting Eq. (53)
into Eq. (17) we find that Eq. (53) solves Eq. (17) if and only
ifa = a, b =, and ¢ = ye**, where {a,B,y] are arbitrary
constants. This solution is not contained in the class of simi-
larity solutions of Eq. (17) obtained from invariance under a
four-parameter point Lie group.’*
(b) The infinitesimal transformations (5) of the four-
parameter point group of Eq. (17) are given by

U=u+xu, U’=xu,+2u,
Uc=u, U‘=B. (54)

Under the mapping (34), these are transformed, respective-
ly, to corresponding infinitesimals of invariant point group
transformations of Eq. (33):

U=, U’=xu; + 2,

U=0, U'=B=1i,. (55)
Conversely, the mapping (34) transforms the six-parameter
point Lie group of Eq. (33) as follows: The three-parameter
subgroup of infinitesimals given by Eq. (55) transforms to
{UU°U} given by Egs. (54) and U = #; transforms to
U = 0; the remaining infinitesimal point group transforma-
tions U = xit +2 tii; and U/ = (I%* + 1t )il + Xtit; + 1 %ii;
are mapped, respectively, into infinitesimals which depend
on {x,tu,u,} and integrals of u.

(c) Generally speaking, the action of a recursion opera-
tor & on any infinitesimal invariance transformation U of
the form (5) (whether of point group or LB type) yields a new
infinitesimal transformation U’ = QU if 2 U 0. For Eq.
(17), we can show that ZU° = QU= QU =0.

(d) The heat equation is a special limiting case of Eq. (3)
obtained by setting @ = b and then observing
lim, . b%u+ b)? = 1. As one might expect if a = b 2, for
the corresponding recursion operator &, lim,_ . &

= d/3dx, and the mapping formulas reduce to identity
mappings.
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(e) Since Eq. (1) admits an infinite sequence of LB
transformations if and only if C (u) satisfies Eq. (15) with
associated mapping (34) whereas Eq. (4) admits an infinite
sequence of LB transformations, there is no point transfor-
mation of the form

X = K (x,t,u),
t =L (x,tu),
U =M (x,tu),

relating solutions of Eq. (1) and those of Eq. (4).
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