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Group analysis is applied to overdetermined systems of ODES. If each ODE of 
the system admits the same r-parameter solvable Lie group, then the use of the 
corresponding differential invariants greatly simplifies the analysis of the system. 
Moreover this can even lead to its explicit solution. Examples are given. 1” 19x9 
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1. INTRODUCTION 

We show how group analysis can be used to solve an overdetermined 
system of two ordinary differential equations (ODES) of orders m and n, 
respectively, m < n : 

f(w,~,-*-,~)=0. 

g x, y.$, . ..) 2 =o. 
( > 

(I.la) 

(l.lb) 

Let D be a set of solutions common to ( I.la), ( 1. lb). Each member of D 
lies on the surface S defined by the intersection of the surfaces 

fb,, Z2,Z3? ..., z,+2)=0, 

g(z1,z2,z3,...,z,+2)=0, 

95 

(1.2a) 

(1.2b) 
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with the correspondence z, = x, z2 = y, z3 = dy/dx, . . . . z, + z = d”y/dx”. 
Obviously the dimensionality of the surface S is at most m + 1. 

We assume that each of the ODES (l.la) and (l.lb) is invariant under 
the same r-parameter (sr, .s2, . . . . E,) solvable Lie group of point transfor- 
mations G”’ [ 1, p. 1541: 

x* =X(x, y; El 9 5, . . . . E,), 

y* = ytx, y; El, EZ, ---7 &,I, 

1 < r < m. Consequently there exist differential invariants [ 1,2], 

( 
4 6-‘y 

u x3 Y> -&’ . ..v dx,-’ 
> 

9 

v 
4 d’y 

x3 Y, -&’ ‘.., dx’ 
> 

3 

(1.3a) 

(1.3b) 

(1.4a) 

(1.4b) 

such that Eqs. (l.la) and (l.lb), respectively, reduce to the equivalent 
overdetermined system of equations 

(1.5a) 

(1Sb) 

for some functions F and G. 
Thus by group analysis we see that the surface S containing a set of 

solutions D common to (l.la), (1.1 b) is a surface S of dimensionality at 
most m + 1 - r in (z,, z2, zj, . . . . z,, 2 )-space since it is now constrained by 
(1.4a), (1.4b), (lSa), (1.5b). In particular the surface S lies in 
@I, z2, z,, ---, z??+2--r )-space with the correspondence Z, = U, Zz = u, 
Z, = dvldu, . . . . Z, + 2 _ r = d”’ ~ ‘v/du” - r. 

Suppose a curve 

v = Q(u) 

solves (1.5a), (1.5b). Then any solution of the ODE 

(1.6) 

v  ( 
4 d’y 

x5 Y, -&’ . ..7 dx’ 
d’-ly 

) **” dx’-’ >> 
(1.7) 

is a common solution of (1. la), ( 1.1 b). Since u and v are invariants of G”’ 
it follows that Eq. (1.7) is invariant under the r-parameter solvable group 
G”’ defined by (1.3a), (1.3b). Hence Eq. (1.7) can be reduced constructively 
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to r quadratures which introduce r constants labelled c,, c2, . . . . c,. Thus we 
obtain explicitly a function $(x, y; c,, c2, . . . . c,) for which the equation 

ax, y; Cl, c2, . . . . c,) = 0 (1.8) 

defines an implicit common solution of (l.la), (1.1 b) with c, , c2, . . . . c, as 
essential constants. 

Equations (lSa), (1Sb) also can have point solutions 

u = A, (1.9a) 

v = B, (1.9b) 

for some constants A and B. In this case a common solution of ( 1. la), 
( l.lb), if any exists, satisfies each of the ODES 

(l.lOa) 

Since both of the ODES (l.lOa), (l.lOb) are invariant under the 
r-parameter group G (r) defined by (1.3a), (1.3b), it follows that the solution 
of each of these ODES is constructively reduced to quadratures. Hence one 
can determine explicitly all common solutions of (l.lOa), ( 1. lob). 

Note that with our procedure one may find the set of all common 
solutions of (l.la), (l.lb) without determining the general solution of 
either (l.la) or (l.lb). 

II. A SIMPLE EXAMPLE 

Consider the system of ODES (m = 2, n = 2): 

d2y 4 x2-+Xx-y=o, 
dx2 

2 

= 0. (2.lb) 

Equations (2.la) and (2.1 b) are both invariant under three Lie groups of 
point transformations (r= 1 or 2): 
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(i) The one-parameter (8,) group G(r)(.sl) 

x* = e&lx 

y*=y. 

(2.2a) 

(2.2b) 

(ii) The one-parameter (Q) group G(~)(Q) 

x*=x, 

y* = e”*y. 

(2.3a) 

(2.3b) 

(iii) The two-parameter (sr , sZ) group G(*)(E~, Ed) 

x* = e&lx 3 (2.4a) 

y* = eE2y. (2.4b) 

These three groups are all solvable since each has at most two parameters. 
We demonstrate our procedure for each of these groups. 

(i) G(‘)(E,). Differential invariants for G(l)(sr) are 

u = y, 

4 
u=xzd 

Correspondingly, Eqs. (2.la), (2.lb) reduce to 

udv-u=o 
du ’ 

u ue-u-20 -0. 1 - du 

Substituting (2.6a) into (2.6b) one obtains 

(u + u)(2v - 24) = 0 

so that either 

(2Sa) 

(2Sb) 

(2.6a) 

(2.6b) 

v,4f 
2 

(2.7) 

or 

v= -u. (2.8) 
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Then substituting (2.7) into (2.6a) yields u = u = 0 and hence the common 
trivial solution y = 0. Corresponding to (2.8) we find that the set D of all 
common solutions of (2.la), (2. lb) is given by the ODE u = Q(u) = - U. 
namely, 

& 
x&= -y. 

Hence 

y=c’ 
X 

(2.9) 

for arbitrary constant c, represents the set of all common solutions of 
(2.la), (2.lb). 

(ii) G(‘)(sZ). Differential invariants for G(‘)(F~) are 

u = x. 

1 dy 
u=--. 

Y dx 

In this case Eqs. (2.la), (2.lb) become 

u2~+u2u2+uu- 1 TO, 

dt,&+o, 
du 

Substitution of (2.12b) into (2.12a) leads to 

(2uu- l)(uv+ l)=O 

so that either 

1 
u=2u 

or 

1 f)= --. 
u 

(2.1 la) 

(2.1 lb) 

(2.12a) 

(2.12b) 

(2.13) 

(2.14) 
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Then again using (2.12b) we see that all common solutions of (2.la), (2.1 b) 
result from u = G(U) = - l/u, i.e., 

ldy 1 
--= --7 ydx x 

the same ODE as defined by Eq. (2.9). 

(iii) G’*‘(s,, s2). Differential invariants are 

x 4 u=---, 
Y dx 

x2 d2y u=-- 
y dx*’ 

(2.15) 

(2.16a) 

Thus Eqs. (2.la), (2.lb) become 

v+u--l=O, 

u - 2u2 = 0. 

The solutions of (2.17a), (2.17b) are the points 

(4 u) = (4,&, 

and 
(u,u)=(-1,2). 

The point (2.18) leads to 

(2.17a) 

(2.17b) 

(2.18) 

(2.19) 

xdy 1 
--=-3 
ydx 2 

x*d*y 1 
-2=-’ ydx 2 

(2.20a) 

(2.20b) 

The solution of (2.20a) is y = fix r/’ for any constant /II. Substitution of this 
expression into (2.20b) leads to j? = 0. The point (2.19) leads to 

x dy --= - 
Y dx 

1, (2.21a) 

x2 d*y 
- 2. -2- 

Y dx 
(2.21b) 

Equation (2.21a) is the same as Eq. (2.9) with solution given by Eq. (2.10). 
This solution satisfies Eq. (2.21b). 
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III. A PROBLEM ARISING FROM GROUP ANALYSIS OF THE WAVE EQUATION 

We showed [3] that the wave equation 

a% a% 
Y'(X) -g-s = 0 (3.1) 

is invariant under a four-parameter Lie group of point transformations if 
and only if the wave speed y(x) satisfies the fifth order ODE 

= 0, 

\ 
’ (3.2) 

where 

HJdL‘ 
ydx’ (3.3) 

We also showed that the related system of partial differential equations 

(3.4a) 

(3.4b) 

is invariant under a four-parameter Lie group of point transformations if 
and only if y(x) solves the fourth order ODE 

(3.5) 

Equation (3.1) and system (3.4a), (3.4b) are related as follows: If (u, u) 
solves (3.4a), (3.4b), then u solves (3.1); if u=&x, t) solves (3.1) then 
(u, u) = (ad/at, ad/lax) solves (3.4a), (3.4b). A natural question arises: What 
is the set D of common solutions of the ODES (3.2) and (3.5)? Without 
some simplifying procedure it is unclear how to find D. The method out- 
lined in Section I yields D simply and elegantly. 

Each of the ODES (3.2) and (3.5) admits the same three-parameter 
(cl, e2, Ed) solvable Lie group of point transformations G’3’(s,, .s2, s3): 

X*=eyX+E,), 

y* = t+y. 

(3.6a) 

(3.6b) 
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Differential invariants corresponding to (1.4a), (1.4b) are 

(3.7a) 

(3.7b) 

Consequently Eqs. (3.2) and (3.5), respectively, reduce to the equation 

2uf+ g+tig+ti; 
( 3 

(u+u-22u2)=0, (3.8a) 

where d = dvldu, i; = d2v/du2, and 

T(u,u,ti)=(l-u)+ 
(2~~-3uv-9~+6v+4)+d(2~~-~-~) 

2u-1 

+3(v-2u+ 1)2 
(2U-1)” ’ 

and to the equation 

(2#2-U-u)(d-2u+l)=O. 

From Eq. (3.9) two cases arise: 

u = 2u2 - 24; 

u=u2-u+6, 

(3.9) 

(3.10) 

(3.11) 

where 6 is an arbitrary constant. We determine separately the compatibility 
of Eqs. (3.10) and (3.11) with Eqs. (3.8a), (3.8b). 

Case 1. u = 2u2 - U. It is easy to check that Eqs. (3.8a), (3.8b) are 
satisfied identically so that we have common solutions defined by 
u = @i(u) = 2u2 - U. The ODE corresponding to (1.7), namely 

~23i($)‘=2~2(~)‘i(~)‘-~31(%)‘, (3.12) 

is invariant under the solvable group G(3)(~,, a2, .s3) given by Eqs. (3.6a), 
(3.6b). An integration of (3.12) leads to 

d2y dy ’ 
u=y, 

dx i( > z 
= constant = a. (3.13) 
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From this equation it is easy to show that the general solution of ODE 
(3.12) is 

y = (c, + c2xp, (3.14) 

where c , , c2, c) are arbitrary constants, with c3 = l/(1 -A). Let D, denote 
the common solution set (3.14) of ODES (3.2) and (3.5). 

Case 2. u = u2 - u + 6. The substitution of Eq. (3.11) into Eqs. (3.8a), 
(3.8b) leads to the compatibility equation 

(zAS)(l-46)=0. (3.15) 

If in Eq. (3.15) the first factor is set to zero, we obtain Eq. (3.13) which 
leads to the common solution set D, defined by Eq. (3.14). Setting the 
second factor to zero, i.e., 6 = a, we see that y(x) is a common solution of 
Eqs. (3.2) and (3.5) if it satisfies the ODE corresponding to ( 1.7). 
2) = Q*(U) = uz - zf + $, namely, 

From our remarks in Section I, Eq. (3.16) admits the solvable group 
GC3’(s,, Ed, ej) and using a chain of Lie subgroups corresponding to the 
solvability of GC3’(e,, E*, Ed), one can reduce this ODE to three explicit 
quadratures. The calculations follow. 

Let 

&.k 
dx’ 

(3.17a 

V=y$, (3.17b) 

be differential invariants of GC3)(.s1, .s2, Q). Then ODE (3.16) reduces to 

dV V U3 -= 
dU ??+rV 

(3.18) 

with general solution 

(3.19) 

where c1 is an arbitrary constant. From (3.17a), (3.17b) we see that 

v= y&Y 
& 

(3.20) 
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Thus Eq. (3.19) becomes 

U= 
=4+“. 

(3.21) 

Consequently U = dy/dx can be determined explicitly as a function of y and 
two arbitrary constants {y > 0, p}: 

(3.22) 

Finally, corresponding to the two signs in (3.22) we obtain the common 
solution set D2 of ODES (3.2) and (3.5) consisting of the two families of 
solutions 

J - arctan ci J$ = c2(x + c,), (3.23a) 

(3.23b) 

where in each family ci, c2, c3 are arbitrary constants. 
Let us determine the set of all solutions D, n D2 common to ODES 

(3.12) and (3.16). 
A solution belonging to D, nD, must lie on both parabolas 

0 = @I(U) = 2u2 -u 

and 

v=@$(u)=U*-u+~. 

(3.24a) 

(3.24b) 

An intersection point of these parabolas defines a solution in D, n D2 since 
U= constant solves (3.24a) for any constant. The intersection points of 
these parabolas are located at U= -+3. The point U= f corresponds to the 
family of solutions 

y= = (ax + b)4, (3.25) 

where a, b are arbitrary constants, and the point u = - 4 corresponds to the 
family of solutions 

y2 = (cx + d)4’3, (3.26) 

where c, d are arbitrary constants. The set D, n D2 consists of the two 
families of solutions (3.25) (3.26). 

It is interesting to note that the wave speeds y(x), defined by Eqs. (3.25), 
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(3.26), have special significance for the wave equation (3.1): One can 
obtain explicitly [4, 51 the general solution of (3.1) when the wave speed 
y(x) satisfies either Eq. (3.25) or (3.26). If y(x) is given by (3.25), the 
general solution of (3.1) is obtained through a point transformation 
mapping this wave equation into one with a constant wave speed v(x) = 1. 
If y(x) is given by (3.26) the general solution of (3.1) is obtained through 
a Backlund transformation which relates the wave equation with wave 
speed J(X) = (cx + d) 2i3 to the wave equation with wave speed Y(X) = 
(ax + b)2. 
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