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SIMILARITY SOLUTIONS OF THE ONE-DIMENSIONAL 
FOKKER-PLANCK EQUATION 

G. W. BLUMAN 

Department of Mathematics I.Jniversity of British Columbia, Vancouver, Canada 

Abstract-Group theoretic methods are used to construct new exact solutions for the one-dimensional 
Fokker-Planck equation corresponding to a class of non-linear forcing functions f(.‘cl. An important sub-class, 
corresponding tof(x) = a/x + /I-Y, a < 1, /? > 0 is shown to lead to stable solutions. A discussion is given on how 
generalized similarity methods could be applied to higher dimensional systems. 

1. INTRODUCIION 

WE consider the stochastic differential equation 

dx 
h; + f(u) = n(t) 

where n(t) is stationary Gaussian white noise 

<n(t)) = 0 

and 
(&)n(t,)) = Ds(t, - r1) (2) 

x(0) = xg 

The output .x(t) of (1) is a stationary Markov process and is completely specified by 
finding the transitional probability density P(.Y, t/x0) 3 0 which satisfies the Fokker- 
Planck equation 

!?! = D a2p ; a 
at a.3 T& u-NPIV (34 

with the initial condition 
p(x, O/x,) = 6(x - x0) (4) 

x = r is a reflecting boundary for process (l), (2) if 

& 
[ 

ap 
Dz +fWp = 0. 1 

If r, and rz are reflecting boundaries, rl < r2, and x0 E R = (rl ; r2), then 

,j&, t) dx = 1 

We limit our discussion to those processes for whichf(x) is odd i.e. 

f(x) = -f( -x) 
143 

(5) 

(6) 
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The group properties of (3a), (4) will be studied by the methods discussed in Bluman and 
Cole [l] and Bluman [2], in the sense that we search for thosef(x) for which at least a 
one-parameter Lie group of transformations leaves invariant (3a) and (4) Finding the 
invariants of the group transformations and assuming a unique solution p(x, t/x,), we 
are then able to reduce (3a) to a linear ordinary differential equation, which can be solved in 
terms of tabulated special functions Hence an explicit, closed form similarity solution is 
obtained. 

Closed form solutions have been obtained for the case!(x) = k sgn x, - cx) < x < cc, 
by Caughey and Dienes [3], and forf(x) piecewise linear by Atkinson and Caughey [4]. 

For simplification of notation we replacef(x)/D by f(x) and Dt by t in (3a) and (4) and 
assume that x,, > 0. Hence we arc led to the system 

p(x, Opo) = 6(x - x0) J 
We will show that a Lie group of transformations leaves invariant (3b) for a three- 

parameter family of functionsf(x) satisfying (6) It turns out that a two parameter subfamily 
of these functions, namely, 

j(x) = f + /IX, fl>o, -3o<r<l, (7) 

leads to stable solutions, i.e. lim jz x’p(x, t/x,) dx < 03. The generated solutions are defined 
l-K)rI 

for x E R = (0; a), i.e. r = 0 is a reflecting boundary. 

2. DERIVATION OF THE GROUP OF THE FOKKER-PLANCK EQUATION 

Let 
x’ = .K’(.U, t, p ; E) 

t’ = t’(.K, t, p; E) 

p’ = p’k 6 p ; E) 

be a one-parameter group of transformations leaving ._ 

: 

(8) 

system (3b) invariant such that 
E = 0 corresponds to the identity transformation, i.e. if p = P(x, t) is the unique solution 
to (3b), then setting p = P(x, t) in (8), (x’, t’, p’j satisfy : 

azpf 
a?c’z + 2; lw)P’l = ;g 

p’[x,O, P(x,O);&] = 6(x’[x,O,P(.u,O);&] - x0) 

t’[x,, 0, P(x,, 0); E] = 0 

x’[x,, 0, P(x,, 0); E] = qJ J 
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l.Jniqueness of the solution to (3b) implies that 

P(x’, t’) = p’[.u, t* P(x, t); E] (10) 

From (10) we deduce that system (3b) has a similarity solution, ie. we can reduce (3b) to 
an ordinary differential equation It turns out that for an equation of the form (3b), p’ 
depends linearly on p; x’ and t’ are both independent of p. 

As shown in [l] and [2], only the local behaviour of the Lie group (8) is needed to 
obtain the corresponding similarity solution. Expanding (8) about the identity E = 0, we get : 

x’ = x + &X(X, t) + q&2) 

t’ = t + &7-(X, t) + o(2) 

p’ = p + Eg(X, t)p + q&2) 

The O(e) terms in the expansion of (10) about E = 0 lead to 

(11) 

the invariant surface condition 

ap ap 
X(-F t) z + m t) x = g(x, t) P (12) 

which relates the solution P(x, t) to the infinitesimals {X, T, g}. The corresponding 
characteristic equations are : 

dx dt dP -=-_ =-- 
X(.x, t) T(.u, t) g(.x, t) P 

(13) 

Solving (13), we get two constants of integration. The similarity variable 

~(x, t) = const. (14) 

is the integral of the first equality in (13). 

P(x, t) = F(q) G(.u, t) (15) 

is the integral of the second equality in (13) where the dependence of G on x and t is knqwn 
explicitly and F(q) is some arbitrary function of q. Substitution of (15) into (3b) leads to a 
second order linear ordinary differential equation, satisfied by the new dependent variable 
F(q) This differential equation has two linearly independent solutions. However the 
correct combination can be determined by judicious use of the source condition in (3b). 

If, perchance, a two parameter Lie group of transformations leaves (3b) invariant and if 
the invariants corresponding to one of the parameters differ from those of the other, then 
we obtain two distinct functional forms (15) for the solution p(x, t/.x,) = P(x, t). We label 
the parameters by subscripts 1 and 2 and let (T, Xi, gi), i = 1, 2 be the corresponding 
infinitesimals. Parameters 1 and 2 lead to the same invariants if there exists some function 
i(.u, t) such that 

X2;++g,~a=J(x,t, 
aP 

X,;+Tl;-glpd 
aP 1 (16) 

Let vi, Fi(qi) and Gi(x, t), i = 1, 2, be the similarity variables and functional forms corres- 
ponding to the respective parameters of the Lie group. Then 

P(x, r) = P,(qi) G,(.u, t) = F2(q2) G,(.u, t) (17) 
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Say vI #fn(q& as is usually the case, then choosing q1 and tfl as the new independent 
variables instead of .y and t, we can, in principle, solve the functional equation (17). The 
resulting solution will be of the form 

p(x, t) = AH(rl,) Gl(-y, 0 (18) 

where the dependence of H on qI is known explicitly and A is some constant determined 
by the source condition in (3b) 

We note that invariance under a two-parameter Lie group reduces a partial differential 
equation in two independent variables, to a functional equation of the form (16) Hence, 
no further use is made of the given partial differential equation, as in the case of invariance 
under a one-parameter group. This fact is especially important for extension to systems of 
partial differential equations having n >, 3 independent variables. If an m parameter 
group leaves invariant a system of partial differential equations and the associated boundary 
and initial conditions, and if the invariants of the respective parameters are functionally 
independent of each other, then the number of variables can be reduced by no. (see 
Ovijannikov [5] for some discussion of this). 

So far in our discussion we have assumed that some Lie group (8) leaves invariant (3b). 
We now turn our attention to the problem of fmding such a group and the corresponding 
forcing function f(x). From (12) to (15) we see that it is not the global group (8) but the 
infinitesimal generators {X, T, g} corresponding to a particular Jpx) which are needed. 
Using the methods mentioned in [l], [2], [5], or Miiller and Matschat 163, we find that: 

T(.u, r) = T(t) 

X(.K, t) = .uT’(t) + A(t) 

! 

(19) 

g(.u, t) 
xAx) T’(t) A-u) A(t) .uA’(t) ?7-“(t) = B(r) - -_4- - -_.2 - - 2_ - _8- 

where A(t), B(t), T(t), andflx) satisfy the equation 

IV,@, t) + N,(.K, t) = 0 
with 

(20) 

N,(x, t) = T’(r) 
_f2w .g7x,f’(x) f’(x) xJ”(.K) 
4 +-_4___-2-_4- + 

1 

T"(t) 
4 + T”‘(t) - ; 

[ 1 
+ B'(t) 

N,(x, t) = A(t) 
[ 

y ] + A”(t) [_ ;] Ayw 

Sincefix) is odd, 

N,(.u, t) = N,(x, t) = 0 

We now consider two possible cases : 

Case 1. T(t) # 0, A(t) = 0 

From (21), we see that 

v2(.4 + xA.x)f’(x) - 2f’(.u) - x$“(x)]” = o (24) 

(21, 

(22) 

(23 



Similarity solutions of the onedimensional Fokker-Planck equation 141 

The solution of (6), (23), (24) is 

2f’(x) --f’(x) + /I?%2 - y + - -- = 
16v2 - 1 0 

.x2 

T”‘(t) = 4/W(t) 

(25) 

(26) 

where 8, y, v are constants of integration. 
Invariance of the initial source further restricts IX, T, g} : 

T(0) = 0 

X(x,, 0) = 0 (27) 

gb,, 0) = -Xx(x0, 0) 

Substitution of (19) into (27) leads to the initial conditions 

T(0) = 0 

T’(0) = 0 

B(0) - x; 8 = 
T”(0) o 

i 

(28) 

After solving (26) subject to the initial conditions (28) and making the appropriate 
substitution, we find that 

T= 4sinh2/3t 

X = 2&x sinh 2/?t (29) 

g = y sinh2 /It - /I[1 + xf(x)]sinh 2/3t - b2x2 cash 2flt + &!I’ 

Case 2. A(t) # 0, T(t) = 0 
From (22), we see that here 

Iffx)f’(x) - f”(x)]” = 0 (30) 

The solution of (6), (23), (30) is : 

2f ‘W 

Using the source condition (4) and 

T=O 

-f2(x, + g2x2 - y = 0 (31) 

A”(f) = /&4(t) (32) 

then making the necessary substitutions, we fmd that 

1 
X = 2sinhBt 

g = /?(x,, - x cash /?t, -Ax) sinh /?t 
t 

(33) 
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Note that (31) is a special case of (25) where v = +x ‘. Hence for-A-u) satisfying (31), a two 
parameter Lie group of transformations leaves invariant the corresponding Fokker- 
Planck equation. For the respective group parameters, (29) and (33) are the corresponding 
infinitesimals. 

3. CONSTRUCMON OF SIMILARITY SOLUTIONS 

The most general similarity solution of the one-dimensional Fokker-Planck equation 
corresponds to a forcing function f(x) satisfying (25). Solving the ordinary differential 
equation which corresponds to the first equality of (13), we are led to the similarity variable 

q(x, t) = -5. - 
J(W)) 

(34) 

where T(t) = 4 sinh’ fit. The use of (34) in the second equality of (13) leads to the following 
functional form for the solution : 

p(.u, t&J = F(q) C(t) * exp [ -(p(t) x2 + 4 ~_lW dx)] 
where 

T(t) = 4sinh2 /3t J 

Substitution of (35) into (3b) yields a second order linear ordinary differential for F(q) 
whose general solution can be expressed in terms of Modified Bessel Functions : 

F(V) = 

1 

mJ,v(w) + A2~-2v(w)I for x > 0 
(36) 

)~I*[BIK2JKItlI) + B2~2v(~ItlI)1 for .y < 0 

where K = b-u,, and A r, Al, B r, and B, are arbitrary constants to be determined by boundary 
and continuity conditions. 

Ast-+O,rt-++cO.Asz-++og,(see[7],7.23), 

7t f 
K,,(z) = 22 

0 
e-’ [l + o(z-‘)I 

1 f 
I,,(z) = j& ( > e’ [l + O(z-‘)I 

(37) 

Hence in order to have a source only at x = x0, [i.e. satisfy the initial condition of (3b)], we 
must set B, = 0 (otherwise we would generate sources at x = +x0) 

Let 

Ax) = - 2; (39) 
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After substituting (39) into (25), we find that V(x) satisfies 

4V’+ 
(16~~ - 1) 

y-j?v---~~-- 

149 

(40) 

The solution of (40) leading to a reliable probability distribution is 

k’(x) = (&?x2)*+Ve-8”“4 M(a, b, 38x2) (41) 

where M(a, b, z) denotes Kummer’s hypergeometric function of the first kind (see [8], 
Chapter 13), and 

a = f + v - y/8B (42) 

b=l+2v 

with v > -4, a 2 0. The properties of M(a, b, z) are well known: 
As z + 0, 

Asz+ +co, 

M(a, b, z) = 1 + F z + 0(z2) 

M(u,b,z) = r$&=Fh[l + @z-l)] 

M(0, b, z) = 1 

Using (43) and (44) we can show that if u # 

(i) lim JI-U, = 
x-+cc x 

(43) 

(44) 

(45) 

0 

-P (W 

(ii) hm xj(x) = -(4v + 1) (47) 
.¶z’P 

In order that rp(x, t/d,,) dx = const., 8pla-u +fp must be a continuous function of x for 

xER=(r r ; r,),‘; > 0. This restriction combined with the requirement of the continuity 
of @/ax and p for x E R, leads to two cases : 

Case 1. R = (- co ; co) corresponding to v = -$ (to be discussed in Section 4). 

Case 2. R = (0; a), i.e. x = 0 is a reflecting barrier, corresponding to v > -$. In this 
case we fmd that B, = A, = 0 and that 

p(x, t/x0) = A,q* Z2&ctf) C(t) V(x) e-rcr)x’ 

where x > 0, v > -4, a k 0. 
Imposition of the source condition leads to 

(48) 

j.?x$(g3x;) -* - ” 
A, = ----- 

Wa, b, f/k3 
(49) 
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Since T&C, t/x0) dx = 1, from the group properties of (3a) as a bonus we are able to 

compute”the following 5 parameter (& xat t, 9, tz) de&&e integrai : 

where v r -& 0 Z 0 
Next we compute 

Then 

where 

(54) 
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Using (55), (57), (58) (59), (54) and (a*p/~Y.u~) = 0, we fmd that 

We see that (.Y*) is bounded iff a = 0, i.e. 

y = 4/?(1 + 2v) 

and /3 > 0. 

(61) 

This important special case will be considered in Section 5. 

4. INVARIANCE OF A CLASS OF FOKKER-PLANCK EQUATIONS UNDER A 
TWO-PARAMETER GROUP OF TRANSFORMATIONS 

We now. consider the case v = -4 where there are no reflecting boundaries, i.e. 
R =(-co:oo).Here 

V(X) = e- VI4 M(a, 3, i_j?x$, o+-Y 
8I3 

(62) 

i.e. a special case of (41). In Section 3, solution (49) was obtained by substituting the 
similarity form (15) into the original partial differential equation and solving the resulting 
ordinary differential equation for F(q). Since for V(X) of the form (62) a two-parameter 
group leaves (3b) invariant, no further use has to be made of the original partial differential 
equation. 

In Section 3 we showed that (29) leads to a solution of the form 

and 

ey1/4 

G,(x, t) = -- fs$ 
J(sinh jilt) exp 1 - e*fl’ [ 1 ---- exp [ -@x2 coth /?t)/4] V(X) (63) 

Similarly we can show that (33) leads to a solution of the form 

~6, t/x,) = F,(tlz) W-Y t) 

where 

and 

tl2 = t 

Gz(x, t) = J’(X) exp [ -(fix* coth /M/4] exp [f /?xx,/sinh /3t] (64 
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l_Jniqueness of the solution implies that 

(63) = (64) 

Hence 

F2(C) = D ep14 exp [ffl.u$‘(l - e’fi’)]@inhj%) 

with the constant D determined by the source condition in (3b). This implies that 

(65) 

(66) 

The formula for (x2) is a special case of (60) with 6 = f, a = 4 - r/8/?. Note that the 
bounded case a = 0 corresponds to the well-known Brownian motion where j(x) = /Ix, 
R =(-co;co),and 

P Jo - yeteE-exp [-(fl(l + cothj?t)/4){.x - x,e_fl’)2] 
II (smh fit)+ 

(x2) = l//I + (.yt - 1//?)e-28’ (67) 

5. STABLE SOLUTIONS FOR R = (0; m ) 

In Section 3 we showed that the generated solutions to the Fokker-Planck equation 
are stable iff 7 = 4/?(1 + 2~) and /I > 0. These correspond to the two-parameter subfamily 
of forcing functions 

j(K) = ; + p.u, cx<l, /?>o. (68) 

This corresponds to setting in (41) 

a = 0, b = 4 - fa, y = 2( 1 - xl 8, and hence 

V(x) = (+jjx2)-a/4 e-fiX2j4 I- 
(691 

The transitional probability density is 

p(-u, t/x,) = p.ub(x;.u,)-~atlfZ_(t+*,,(~tl) C(t) exp [-l*(cjx2 - flx2/4] x >/ 0. (70) 

The corresponding second moment is 

(2) = (l/p - a/P) + [.K; - (l/p - alp)] eez8’ (71) 

Note that 

lim (.x2) = (1 - a)/b. 
f-+rn 

(721 
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RCmn&--On utilise des methodes de la theorie des groupes pour construire de nouvelles solutions exactes de 
l’bquation de Fokker-Planck a une dimension correspondant a une classe de fonctions du second membre non 
lintairesf(x). On montre qu’une sous classe importante correspondant &f(x) = u/x + fix, a < 1, /I > 0, conduit 
a des solutions stables. On discute comment on pourrait appliquer des mbthodes de similitude gtntralisees a 
des systemes de dimensions plus ClevQs. 

Z~amme~~-Meth~en der Gruppentheorie werden beniitzt, urn neue exakte Losungen fiir die eindi- 
mensionale Fokker-Planck Gleichung, die einer Klasse von nicht~n~r~ D~ckfunktion~ f(x) entspricht, zu 
bestimmen. Es wird gezeigt, dass ein~wichtige Unterg~p~, f?ir dief(x) = u/x + /?n, a < 1,-p > 0, zu stabilen 
Losungen Whrt Es wird diskutiert, in welcher Weise verallgemeinerte ~nlichkeitsmethod~ fiir haherdimen- 
sionale Systeme angewendet werden kiinnten. 

AEFIOT~~lEtI-npllMeHfilOTCFl MeTOAbl TeOPMB l'pyIlll C QeJIbIIO IlOCTpOeHMR WOBblX TO’iHbIX petHeHHii 
O~HOMepHO~Oyp3BHeHElcI~OKKep-~~aHKa,COOTBeTCTByIoulHXK~a~CyHe~llHe~~blXB~Hy~~aIo~~X 

+yHKI@ f(X). nOKa3bIBaeTCH, 'IT0 BWKHbIi IIOEKJIaCC COOTBeTCTByIoru(Id& f(X) = a/X+pX 

a < 1,p > 0 Be@T K yCTO8WBldM POIJEHEIRM. IQJ~B~~~TCR ~mKycixm no IIOBOAy TOGO, KaK 

0606~eHHbIe MeTOAbI 110~06arr MOryT MpUMeHHTbCH B CJIpWe CIlCTeM BbICJ.IK?tl pa3MepHOCTU. 


