Int J. Non-Linear Mechanics, Yol 6, pp. 143-153. Pergamon Press 1971. Printed in Great Britain

SIMILARITY SOLUTIONS OF THE ONE-DIMENSIONAL
FOKKER-PLANCK EQUATION

G. W. BLuMAN

Department of Mathematics, University of British Columbia, Vancouver, Canada

Abstract—Group theoretic methods are used to construct new exact solutions for the one-dimensional
Fokker-Planck equation corresponding to a class of non-linear forcing functions f(x). An important sub-class,
corresponding to f(x) = a/x + Bx,a < 1, B > 0 is shown to lead to stable solutions. A discussion is given on how
generalized similarity methods could be applied to higher dimensional systems.

1. INTRODUCTION
WE consider the stochastic differential equation

dx
N + f(x) = n(t) n
where n(t) is stationary Gaussian white noise
<n()) =0
{n(t) n(t;)) = Dot — ty) @
and

The output x(¢) of (1) is a stationary Markov process and is completely specified by
finding the transitional probability density p(x, t/x,) = 0 which satisfies the Fokker—
Planck equation

op op @
¥ _pZ2 P, ° 3
2 = D3t 3 /el (3a)
with the initial condition

p(x. 0/x0) = 8(x — x;) 4

x = r is a reflecting boundary for process (1), (2) if
. dp
Lll‘nr I:DE +f(x)p]— 0.
If r; and r, are reflecting boundaries, r, < r,, and x,e R = (r,; r,), then
{plx,nndx =1 (5)

We limit our discussion to those processes for which f(x) is odd, i.e.

Sx) = —f(-x) (6)
143
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The group properties of (3a), (4) will be studied by the methods discussed in Bluman and
Cole [1] and Bluman [2], in the sense that we search for those f(x) for which at least a
one-parameter Lie group of transformations leaves invariant (3a) and (4). Finding the
invariants of the group transformations and assuming a unique solution p(x, t/x,), we
are then able to reduce (3a) to a linear ordinary differential equation, which can be solved in
terms of tabulated special functions. Hence an explicit, closed form similarity solution is
obtained.

Closed form solutions have been obtained for the case f(x) = k sgn x, — 0 < x < oc,
by Caughey and Dienes [3], and for f(x) piecewise linear by Atkinson and Caughey [4].

For simplification of notation we replace f(x)/D by f(x) and Dt by t in (3a) and (4) and
assume that x, > 0. Hence we are led to the system

?*p 0 op
52 Y ax (Ax)p] = o
(3b)
p(x,0/xg) = Hx — xq)

We will show that a Lie group of transformations leaves invariant (3b) for a three-
parameter family of functions f(x) satisfying (6). It turns out that a two parameter subfamily
of these functions, namely,

f(x)=o—:+[3x, B >0, —w<a<l, N

r2

leads to stable solutions, i.e. lim | x?p(x, t/x,)dx < oo. The generated solutions are defined

t~oory

for xe R = (0; ), i.e. r = O is a reflecting boundary.

2. DERIVATION OF THE GROUP OF THE FOKKER-PLANCK EQUATION

Let
X' = X(x,t,p;€)
U =1t(x.t,p;e) (8)
P =pxtp;e

be a one-parameter group of transformations leaving system (3b) invariant such that
¢ = 0 corresponds to the identity transformation, i.e. if p = P(x, t) is the unique solution
to (3b), then setting p = P(x, t)in (8), (x', t’, p') satisfy :

?p 9 . .0
v g WPl =5
p'[x,0, P(x,0);8] = §{x'[x,0,P(x,0); €] — x4} b (9)

t'[x0. 0, P(x0,0);6] =0

X'[x6, 0, P(x0, 0): €] = x,
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Uniqueness of the solution to (3b) implies that
P(x',t) = p'[x,t, P(x,1); €] (10)

From (10) we deduce that system (3b) has a similarity solution, i.e. we can reduce (3b) to
an ordinary differential equation. It turns out that for an equation of the form (3b), p’
depends linearly on p; x’ and ¢’ are both independent of p.

As shown in [1] and [2], only the local behaviour of the Lie group (8) is needed to
obtain the corresponding similarity solution. Expanding (8) about the identity ¢ = 0, we get:

X' '=x+ eX(x, 1) + 0(e?)

t'=t+eT(x,t) + 0e?) (11)

P'=p +eg(x.t)p + Oe?)
The O{¢) terms in the expansion of (10} about ¢ = 0 lead to the invariant surface condition
opP
ot

which relates the solution P(x,t) to the infinitesimals {X, T,g}. The corresponding
characteristic equations are:

X(x, t)%g + T, ) = =g(x, ) P (12)

dx de dp
X0 - ToD gt 0P 4
Solving (13), we get two constants of integration. The similarity variable
n(x, 1) = const. (14)
is the integral of the first equality in (13).
P(x,t) = F(n G(x, 1) (15)

is the integral of the second equality in (13) where the dependence of G on x and ¢ is knqQwn
explicitly and F(n) is some arbitrary function of . Substitution of (15) into (3b) leads to a
second order linear ordinary differential equation, satisfied by the new dependent variable
F(n). This differential equation has two linearly independent solutions. However the
correct combination can be determined by judicious use of the source condition in (3b).

If, perchance, a two parameter Lie group of transformations leaves (3b) invariant and if
the invariants corresponding to one of the parameters differ from those of the other, then
we obtain two distinct functional forms (15) for the solution p(x, t/x,) = P(x,t). We label
the parameters by subscripts 1 and 2, and let {T, X, g;}, i = 1, 2 be the corresponding
infinitesimals. Parameters 1 and 2 lead to the same invariants if there exists some function
A(x, 1) such that

Xz%+ng—gzpa%=z(x,n[xlg+ng—g,p%] (16
Let n, Fin) and G{(x,t), i = 1, 2, be the similarity variables and functional forms corres-
ponding to the respective parameters of the Lie group. Then

P(x, 1) = F,(1,) G4(x, 1) = Fy(n,) Gylx, 1) 17
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Say n, # fn(n,), as is usually the case, then choosing #, and 5, as the new independent
variables instead of x and t, we can, in principle, solve the functional equation (17). The
resulting solution will be of the form

P(x,t) = AH(y,) G,(x, ) (18)

where the dependence of H on 7, is known explicitly and A is some constant determined
by the source condition in (3b).

We note that invariance under a two-parameter Lie group reduces a partial differential
equation in two independent variables, to a functional equation of the form (16) Hence,
no further use is made of the given partial differential equation, as in the case of invariance
under a one-parameter group. This fact is especially important for extension to systems of
partial differential equations having n > 3 independent variables. If an m parameter
group leaves invariant a system of partial differential equations and the associated boundary
and initial conditions, and if the invariants of the respective parameters are functionally
independent of each other, then the number of variables can be reduced by m. (see
Ovsjannikov [5] for some discussion of this).

So far in our discussion we have assumed that some Lie group (8) leaves invariant (3b),
We now turn our attention to the problem of finding such a group and the corresponding
forcing function f(x). From (12) to (15) we see that it is not the global group (8) but the
infinitesimal generators {X, T,g} corresponding to a particular f{x) which are needed.
Using the methods mentioned in [1], [2], [5], or Miiller and Matschat [6], we find that:

T(x,t) = T(®)
X(x,t) = xT'(t) + At

(19)
_ By~ FOTO _ 040 _ x40 _ ET'Q
g(x,t) = B(t) — = A 5 5 —3
where A(t), B(t), T(t), and f{x) satisfy the equation
N0 + Ny(x,t) = 0 (20)
with
_ [ £70  AS _ f0 xf"(x_)] O | [_ x_?] ,
Nl(x,t)—-T(t)[ 2 +——~‘-£— ~2———4' +—4—+T (1) 8 +B(t)
2n
N,(x, 1) = A(f) [ﬂx)f w_f ”(x)] + A"(0) [— f] 22)
2 2 2
Since fix) is odd,
Ny(x,8) = Ny(x,t) = 0 (23)

We now consider two possible cases:

Case 1. T(t) # 0, A(t) = 0
From (21), we see that

F2x) + xA)f' () — 2 (x) — xf"(x)]” =0 (24)
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The solution of (6), (23), (24) is

16v: — 1
() = ) + Bt~y + —— == 0 25)
Tul(t) _ 4BZT,(1)
" 26
B() = T T 29
4 4
where B, y, v are constants of integration.
Invariance of the initial source further restricts { X, T, g}:
T0)=0
X(x0,0) =0 27N
9(x, 0) = — X (x4,0)
Substitution of (19) into (27) leads to the initial conditions
T0)=0
TO0) =0 (28)
B(0) — x2 TB(O) =0

After solving (26) subject to the initial conditions (28) and making the appropriate
substitution, we find that

T = 4sinh? ft
X = 2Bxsinh 2§t (29)
g = ysinh? Bt — B[1 + xf(x)]sinh 28t — B2x? cosh 28t + x3B*

Case2. At) # 0, T(t) = 0
From (22), we see that here

A f(x) = f7(x)]" = 0 (30)
The solution of (6), (23), (30) is:
2f'(x) = f20) + f2x* —y =0 (31
A"(1) = B2A() 32
Using the source condition (4) and then making the necessary substitutions, we find that
T=0
X = 2sinh Bt (33)

g = B(xo — xcosh pt) — fix)sinh Bt
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Note that (31) is a special case of (25) where v = +4. Hence for f{x) satisfying (31), a two
parameter Lie group of transformations leaves invariant the corresponding Fokker—
Planck equation. For the respective group parameters, (29) and (33) are the corresponding
infinitesimals.

3. CONSTRUCTION OF SIMILARITY SOLUTIONS

The most general similarity solution of the one-dimensional Fokker-Planck equation
corresponds to a forcing function f(x) satisfying (25). Solving the ordinary differential
equation which corresponds to the first equality of (13), we are led to the similarity variable

X
(6 0) = — = (34)
1 J(T(0)
where T(t) = 4 sinh? Bt. The use of (34) in the second equality of (13) leads to the following
functional form for the solution:

p(x, t/xq) = F(n) C(8) - exp [ —(u(t) x* + [ fix) dx)]
where

e X3 )
0= °"p[z?r_‘efﬂ7)

u(t) = gcoth Bt (33

T(t) = 4sinh? Bt

4

Substitution of (35) into (3b) yields a second order linear ordinary differential for F(n)
whose general solution can be expressed in terms of Modified Bessel Functions:

n AL kn) + A0 _5(xkm)] for x>0
F(n) = (36)
|’II*[Blev(Kl"l) + BZIZV(KI’”)] for x<0

where k = Bx,and A,, A,, B,, and B, are arbitrary constants to be determined by boundary
and continuity conditions.

Ast—0,7 - +o0. As z » + 0, (see [7], 7.23),

\*

K,\(2) = (27) e [1+0(z" 1] &y
1\¢

I,(2) = (5_1;> e [1 + 0(z™ 1) (38)

Hence in order to have a source only at x = x,, [i.e. satisfy the initial condition of (3b)], we
must set B, = 0 (otherwise we would generate sources at x = + x)
Let

fro = =72 (39)
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After substituting (39) into (25), we find that V(x) satisfies
16v2 — 1
4y +{y — B~ (—1? - )—} V=0 (40)

The solution of (40) leading to a reliable probability distribution is
V(x) = 3x?)#*veP*"* M(a, b, 18x?) (41)

where M(a, b, z) denotes Kummer’s hypergeometric function of the first kind (see [8],
Chapter 13), and

a=3+v—y8 (42)
b=1+12
with v > —4,a 2> 0. The properties of M(a, b, z) are well known :
Asz -0,
M(a, b,z) =1 + g-z + 0(z%) (43)
Asz = + 00,
_T® -b -1
M(a, b, z) = I“(a)ez 7M1 + 0(z™ 1)) (44)
M(O,b,z) = 1 (45)

Using (43) and (44) we can show thatifa £ 0

@ tim 20— (46)
(ii) lim xf{x) = —(4v + 1) 47

In order that { p(x, t/do) dx = const., dp/dx + fp must be a continuous function of x for
x€R = (ry;r;) t > 0. This restriction combined with the requirement of the continuity
of dp/dx and p for x € R, leads to two cases:

Case 1. R = (— o0 ; o) corresponding to v = —} (to be discussed in Section 4).

Case 2. R = (0; o), i.e. x = 0 is a reflecting barrier, corresponding to v > —4. In this
case we find that B, = 4, = 0 and that

P(x, t/x) = A I (xn) C(0) V(x) e #O=* (48)

where x > 0,v > —4,a = 0.
Imposition of the source condition leads to
_ B3B3t

' MG b, 35 @)
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Since | p(x, t/xq) dx = 1, from the group properties of (3a) as a bonus we are able to
0

compute the following 5 parameter {5, x,.t, v, g) definite integral:

o«

1 W 4
2v+1i i 7ﬁx ﬁxxo 1px?
g x*"*1exp [ - e—zlir)]lﬁv (2 sinh ﬁt)M(a,l + 2v,3px*) dx
0

i 2
= xZexp [(1 + 2v — 2a) f] (23‘3@3) exp Lz—fé"?] Mia, 1+ 2463 (50)

wherev > —4,4 >0
Next we compute

@0

(x> = _(i; x?2p(x, t/xg) dx (31
Let
g=me (=13 M =K@ 52)
Then
o _ pu(©)
Foab A N ©3)
where
v M Bx
l(xm t) = % ﬂxn M + 1= egp! (54)
{Bp/Bxy> = 8/0%, {p> implies that
_ I (%)
(g, t) = —B Q’;zv(f)> (59)
&p al 1548 : I’év{é}
7o 2 A 5
3 { ax, g fﬁﬂlzv(f} + 5 L& ? (56)
I, (&), M = M(a, b, {) satisfy:
Iy, = (82 + 4v) 1, + &5, 57
M =( —b)M + aM {58}

{M' = —aM + aM(a + 1,b,{) (59



Similarity solutions of the one-dimensional Fokker—Planck equation 151

Using (55), (57), (58). (59), (54) and (&?p/0x%)» = 0, we find that

4aM(a + 1,b,3Bx3) . (1 — e 28y _
2y 0 i —-c 2 - 28
{x*) M@, b, 150 sinh 28t + 7 + x5e (60)
We see that {x?) is bounded iffa = 0, i.e.
y = 4B(1 + 2v) (61)

and 8 > 0.
This important special case will be considered in Section 5.

4. INVARIANCE OF A CLASS OF FOKKER-PLANCK EQUATIONS UNDER A
TWO-PARAMETER GROUP OF TRANSFORMATIONS

We now consider the case v = —} where there are no reflecting boundaries, i.e.
R = (—o0; o). Here

V(x) = e P4 M(a,4,4px3), a=4- 8113 (62)

i.e. a special case of (41). In Section 3, solution (49) was obtained by substituting the
similarity form (15) into the original partial differential equation and solving the resulting
ordinary differential equation for F(n). Since for V(x) of the form (62) a two-parameter
group leaves (3b) invariant, no further use has to be made of the original partial differential
equation.

In Section 3 we showed that (29) leads to a solution of the form

p(x, t/xg) = Fy(n,) Gy(x, 1)

where
_ b
n gniﬁt
and
ni4 2
G,(x,t) = \/(S—einhmexp [Ti_ﬁ%‘;—ﬁ] exp [ —(Bx? coth Bt)/4] V(x) (63)

Similarly we can show that (33) leads to a solution of the form

p(x, t/x9) = Fy(n3) Gy(x, 1)
where

N =t
and

G,(x, 1) = V(x)exp [ —(Bx? coth Bt)/4] exp [4 Bxx,/sinh Bt] (64)



152 G. W. BLUMAN

Uniqueness of the solution implies that

(63) = (64)
Hence
Fy(t) = De™* exp [(4Bx3/(1 — €?]/ /(sinhpr) (65)
with the constant D determined by the source condition in (3b). This implies that
1 )B 1
D==- [2)— -
2 \/<7r) M(a, 3,4Bx3) (66)

The formula for {(x?) is a special case of (60) with b = 4, a =4 — y/88. Note that the
bounded case a = 0 corresponds to the well-known Brownian motion where fx) = Bx,
R = (—; o0), and

(X, t/X0) = 1\/B i [—(B(1 + coth B1)/d) {x — xge™#}?]
plx, t/x, =3V (_sm_h ﬂt)*exP - coth ft)/4){x — x4 e
P =18+ (x§ — 1/pre2F (67)

S. STABLE SOLUTIONS FOR R = (0; )

In Section 3 we showed that the generated solutions to the Fokker-Planck equation
are stable iff y = 4f(1 + 2v) and § > 0. These correspond to the two-parameter subfamily
of forcing functions

j(x)=%+/3x, x<1, fB>0. (68)

This corresponds to setting in (41)

[

a=0, b=4%4-4a. y=201- 28, and hence
(69)
V(x) = (3Bx2) /4 e x4
The transitional probability density is
P(x, t/xg) = B3/ %) ¥ 44 4oy (k) C() exp [— (D) x? — Bx2/4]x =0, (70)
The corresponding second moment is
2y = (/B — i) + [x§ — (1/8 — a/B)]) e 2# (71

Note that
lim {x?) = (1 — a)/B. (72)

t— o
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Résumé—On utilise des méthodes de la théorie des groupes pour construire de nouvelles solutions exactes de
I’équation de Fokker—Planck 4 une dimension correspondant A une classe de fonctions du second membre non
linéaires f(x). On montre qu’une sous classe importante correspondant & f(x) = o/x + Bx, & < 1, § > 0, conduit
a des solutions stables. On discute comment on pourrait appliquer des méthodes de similitude généralisées
des systémes de dimensions plus élevées.

Zusammenfassung—-Methoden der Gruppentheorie werden beniitzt, um neue exakte Losungen fir die eindi-
mensionale Fokker-Planck Gleichung, die einer Klasse von nichtlinearen Druckfunktionen f(x) entspricht, zu
bestimmen. Es wird gezeigt, dass eine wichtige Untergruppe, fiir die f{x} = a/x + fx,x < 1,8 > 0, zu stabilen
Losungen fithrt Es wird diskutiert, in welcher Weise verallgemeinerte Ahnhchkeltsmethoden fiir héherdimen-
sionale Systeme angewendet werden kdnnten,

Angoranua—IIpuMeHAIOTCA METOAN TEOPMU PPYIII ¢ LEJHI0 NOCTPOSHUA HOBMX TOMHBIX DEHICHUH
ompomepHoro ypaBHennsa Qokkep—Ilianka, COOTBETCTBYIOIUX KIACCY HEMMHEMHEIX BBIHYHIA0IMX
«bym«:um& Sf(x). TlokasmBaeTCA, YTO BAaMHBI TOAKIACC COOTBETCTBYImMUH f(x) = o/x+fx
a < 1,8 > 0 Begér K ycroMumBHIM pemeHuaM. [IpMBOXUTCA NUCKYCCHIO [0 IOBOALY TOTO, KakK
oGo0IeHHbe MeTONE TOXOGHA MOrYT MPHMEHATHCHA B CIVYAe CUCTEM BHICIUEH PABMEPHOCTH.



