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This paper gives a general treatment and proof of the direct conservation law method

presented in Part I (see Anco & Bluman [3]). In particular, the treatment here applies to

finding the local conservation laws of any system of one or more partial differential equations

expressed in a standard Cauchy-Kovalevskaya form. A summary of the general method and

its effective computational implementation is also given.

1 Introduction

In this paper we present a general treatment of the direct conservation law method

introduced in Part I (see Anco & Bluman Ref. [3]). In particular, in section 2 we show

how to find the local conservation laws for any system of one or more PDEs expressed

in a standard Cauchy-Kovalevskaya form. We specifically treat nth order scalar PDEs

in section 3. In section 4 we summarize the general method and discuss its effective

implementation in computational terms.

To make the treatment uniform, it is convenient to work with Cauchy-Kovalevskaya

systems of PDEs as follows.

Definition 1.1 A PDE system with any number of independent and dependent variables

has Cauchy-Kovalevskaya form in terms of a given independent variable if the system is

in solved form for a pure derivative of the dependent variables with respect to the given

independent variable, and if all other derivatives of dependent variables in the system are

of lower order with respect to that independent variable.

Typically, scalar PDEs admit a Cauchy-Kovalevskaya form by singling out a derivative

with respect to one independent variable, or by making a point transformation (more

generally a contact transformation) on the independent variables. For example, the wave

equation

utx = 0
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admits the Cauchy-Kovalevskaya form utt = uxx after the point transformation t→ t− x,

x→ x+ t; the harmonic equation

uxx + uyy = 0

admits the Cauchy-Kovalevskaya form uyy = −uxx with respect to y. A less trivial example

is the Kadomtsev-Petviashvili equation [10]

utx + (uux)x + uxxxx ± uyy = 0.

This equation admits two obvious Cauchy-Kovalevskaya forms: uyy = ∓(utx + (uux)x +

uxxxx) which is a second-order PDE with respect to y; and uxxxx = ∓uyy − utx − (uux)x
which is a fourth-order PDE with respect to x.

As examples which are more involved, consider the modified Benjamin-Bona-Mahoney

equation [4]

ut + (1 + u2)ux − uxxt = 0,

and the symmetric regularized long wave equation [12]

utt + uxx + uutx + uxut + uttxx = 0.

As it stands, the modified Benjamin-Bona-Mahoney equation is not of the Cauchy-

Kovalevskaya form with respect to either t or x, since the t derivatives of u appear in

both pure and mixed derivative terms, while the highest order x derivative of u appears

in a mixed derivative involving t and hence is not in solved form. Nevertheless, if one

makes the point transformation t → t, x → x − t, then the modified Benjamin-Bona-

Mahoney equation becomes uxxx − uxxt + u2ux + ut = 0 which now is of third-order

Cauchy-Kovalevskaya form with respect to x. The situation for the symmetric regularized

long wave equation is similar. It is not of Cauchy-Kovalevskaya form as it stands, but

after one makes the point transformation t → t − x, x → x + t it is of fourth-order

Cauchy-Kovalevskaya form with respect to t or x: utttt + uxxxx − 2uttxx + (2 − u)utt +

(2 + u)uxx + ut
2 − ux2 = 0.

Many PDE systems can be handled similarly to scalar PDEs. For example, the vector

nonlinear Schroedinger equation

i~ut +~uxx ± f(|~u|)~u = 0, ~u = (u1, . . . , un)

admits the first-order Cauchy-Kovalevskaya form ~ut = i~uxx ± if(|~u|)~u with respect to t, as

well as the second-order Cauchy-Kovalevskaya form ~uxx = −i~ut ∓ f(|~u|)~u with respect to

x. A less obvious example is Navier’s equations of isotropic elasticity,

κuxx + µuyy + (κ− µ)vxy = 0,

(κ− µ)uxy + µvxx + κvyy = 0,

κ = const, µ = const. This PDE system admits a second-order Cauchy-Kovalevskaya form

with respect to x or y: uxx = − µ
κ
uyy + ( µ

κ
− 1)vxy and vxx = − κ

µ
vyy + (1− κ

µ
)uxy .

In general, any Cauchy-Kovalevskaya form of a system of one or more PDEs can be

used with no loss of completeness in finding the conservation laws admitted by the system.

Given a Cauchy-Kovalevskaya PDE system, we let t denote the independent variable in

the derivative which appears in solved form in the PDEs, with the remaining independent
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variables denoted by x = (x1, . . . , xn). To obtain the most effective formulation of the

direct conservation law method, it is convenient to express the system in its equivalent

first-order (evolution) form with respect to t.

Hence, we consider a first-order Cauchy-Kovalevskaya system of PDEs with N depen-

dent variables u = (u1, . . . , uN) and n+ 1 independent variables (t, x),

Gσ =
∂uσ

∂t
+ gσ(t, x, u, ∂xu, . . . , ∂

m
x u) = 0, σ = 1, . . . , N (1.1)

with x derivatives of u up to some order m. We use ∂xu, ∂
2
xu, etc. to denote all derivatives

of uσ of a given order with respect to xi. We denote partial derivatives ∂/∂t and ∂/∂xi by

subscripts t and i respectively. Corresponding total derivatives are denoted by Dt and Di.

We let (Lg)
σ
ρ denote the linearization operator of gσ defined by

(Lg)
σ
ρV

ρ =
∂gσ

∂uρ
V
ρ +

∂gσ

∂uρi
DiV

ρ + · · ·+ ∂gσ

∂uρi1···im
Di1···imV

ρ
, (1.2)

and we let (L∗g)σρ denote the adjoint operator defined by

(L∗g)σρWσ =
∂gσ

∂uρ
Wσ − Di

(
∂gσ

∂uρi
Wσ

)
+ · · ·+ (−1)mDi1···im

(
∂gσ

∂uρi1···im
Wσ

)
, (1.3)

acting on arbitrary functions Vρ
,Wσ , respectively.

Throughout we use the summation convention for repeated lower-case indices; we use

an explicit summation sign where needed for summing over non-indices.

2 General treatment

We start by considering the determining equations for symmetries and adjoint symmetries.

Suppose X is the infinitesimal generator of a symmetry leaving invariant PDE system

(1.1). We denote Xuσ = ησ , which satisfies

0 = Dtη
σ + (Lg)

σ
ρη

ρ
, σ = 1, . . . , N (2.1)

for all solutions u(t, x) of Eq. (1.1). This linearization of Eq. (1.1) is the determining

equation for symmetries (point-type as well as first-order and higher-order type [11])

ησ(t, x, u, ∂u, . . . , ∂pu) of the PDE system (1.1), where ∂ju denotes all jth order derivatives

of u with respect to all independent variables t, x. The adjoint of Eq. (2.1) is given by

0 = −Dtωσ + (L∗g)ρσωρ, σ = 1, . . . , N (2.2)

which is the determining equation for adjoint symmetries ωσ(t, x, u, ∂u, . . . , ∂pu) of the PDE

system (1.1). In general, solutions of the adjoint symmetry equation (2.2) are not solutions

of the symmetry equation (2.1), and there is no interpretation of adjoint symmetries in

terms of an infinitesimal generator leaving anything invariant.

To solve the determining equations for ησ and ωσ , one works on the space of solutions

of the PDE system. This means we use the PDEs to eliminate uσt in terms of uσ , uσi , etc.

In particular, without loss of generality, we are free to let ησ and ωσ have no dependence
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on uσt and its differential consequences. Let

Dt = ∂t − (gρ∂uρ + (Dig
ρ)∂uρi + · · ·) (2.3)

which is the total derivative with respect to t on the solution space of PDE system

(1.1). (In particular, Dt = Dt when acting on all solutions u(t, x).) Then the determining

equations explicitly become

0 = Dtησ + (Lg)
σ
ρη

ρ

=
∂ησ

∂t
−
(
∂ησ

∂uρ
g
ρ +

∂ησ

∂uρi
Dig

ρ + · · ·+ ∂ησ

∂uρi1···ip
Di1 · · ·Dipgρ

)
+
∂gσ

∂uρ
η
ρ +

∂gσ

∂uρi
Diη

ρ + · · ·+ ∂gσ

∂uρi1···im
Di1 · · ·Dimηρ, σ = 1, . . . , N (2.4)

for ησ(t, x, u, ∂xu, . . . , ∂
p
xu), and

0 = −Dtωσ + (L∗g)ρσωρ

= − ∂ωσ

∂t
+

(
∂ωσ

∂uρ
g
ρ +

∂ωσ

∂uρi
Dig

ρ + · · ·+ ∂ωσ

∂uρi1···ip
Di1 · · ·Dipgρ

)

+
∂gρ

∂uσ
ωρ − Di

(
∂gρ

∂uσi
ωρ

)
+ · · ·+ (−1)mDi1 · · ·Dim

(
∂gρ

∂uσi1···im
ωρ

)
, σ = 1, . . . , N

(2.5)

for ωσ(t, x, u, ∂xu, . . . , ∂
p
xu). The solutions of Eqs. (2.4) and (2.5) yield all symmetries and

adjoint symmetries up to any given order p.

We now consider conservation laws.

Definition 2.1 A local conservation law of PDE system (1.1) is a divergence expression

DtΦ
t(t, x, u, ∂u, . . . , ∂ku) + DiΦ

i(t, x, u, ∂u, . . . , ∂ku) = 0 (2.6)

for all solutions u(t, x) of Eq. (1.1); Φt and Φi are called the conserved densities.

The conservation equation (2.6) holds as an identity if, for all solutions u(t, x) of

Eq. (1.1),

Φt = Diθ
i, Φi = −Dtθi + Djψ

ij (2.7)

for some expressions θi(t, x, u, ∂u, . . . , ∂k−1u), ψij(t, x, u, ∂u, . . . , ∂k−1u) with ψij = −ψji. Such

conservation laws are trivial. Only the nontrivial conservation laws of the PDE system

(1.1) are of interest.

Definition 2.2 A local conservation law (2.6) is nontrivial iff the conserved densities do

not satisfy Eq. (2.7).

Any nontrivial conserved densities that agree to within trivial conserved densities are

regarded as defining the same nontrivial conservation law. There is further freedom in the
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form of conserved densities since we are clearly free to replace uσt = −gσ in Φt and Φi on

the solution space of PDE system (1.1). Thus, without loss of generality we can consider

Φt and Φi to depend only on t, x, u, and x derivatives of u. We refer to this as the normal

form of the conservation law,

DtΦ
t(t, x, u, ∂xu, . . . , ∂

k
xu) + DiΦ

i(t, x, u, ∂xu, . . . , ∂
k
xu) = 0 (2.8)

for all solutions u(t, x) of PDE system (1.1). In normal form, the freedom corresponding

to trivial conserved densities is given by

Φt → Φt + Diθ
i, Φi → Φi −Dtθi + Djψ

ij (2.9)

where θi, ψij = −ψji do not depend on ut and differential consequences.

All nontrivial local conservation laws (in normal form) can be shown to arise from

multipliers on the PDEs (1.1) as follows. We move off the solution space of Eq. (1.1) and

let u(t, x) be an arbitrary function of t, x.

Definition 2.3 Multipliers for PDE system (1.1) are a set of expressions

{Λ1(t, x, u, ∂u, . . . , ∂qu), . . . , ΛN(t, x, u, ∂u, . . . , ∂qu)}
satisfying

(uσt + gσ)Λσ = DtΦ̃
t + DiΦ̃

i (2.10)

for some expressions Φ̃t(t, x, u, ∂u, . . . , ∂ku) and Φ̃i(t, x, u, ∂u, . . . , ∂ku) for all functions u(t, x).

Given a conservation law (2.8), consider DtΦ
t + DiΦ

i. Clearly this expression must be

proportional to uσt + gσ and its differential consequences in order to satisfy Eq. (2.8). The

uσt terms arise only from

DtΦ
t =

∂Φt

∂t
+
∂Φt

∂uσ
uσt +

∂Φt

∂uσi
uσti + · · ·+ ∂Φt

∂uσi1···ik
uσti1···ik = ∂tΦ

t + (LΦt )σu
σ
t (2.11)

where (LΦt )σ = (∂Φt/∂uσ) + (∂Φt/∂uσi )Di + · · · + (∂Φt/∂uσi1···ik )Di1 · · ·Dik denotes the lin-

earization operator of Φt. To organize these terms we use the identities

(LΦt )σu
σ
t = (LΦt )σ(uσt + gσ)− (LΦt )σg

σ

= (uσt + gσ)Êuσ (Φ
t)− (LΦt )σg

σ + DiΓ
i (2.12)

where Γ i is given by an expression proportional to uσt +gσ (and differential consequences),

and where

Êuσ = ∂uσ − Di∂uσi + DiDj∂uσij + · · · (2.13)

is a restricted Euler operator. Thus, we have

DtΦ
t = ∂tΦ

t − (LΦt )σg
σ + DiΓ

i + (uσt + gσ)Êuσ (Φ
t). (2.14)

For the conservation equation (2.8) to hold, the terms ∂tΦ
t − (LΦt )σg

σ which do not
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involve uσt + gσ must cancel DiΦ
i, and therefore we have

DiΦ
i = −∂tΦt + (LΦt )σg

σ. (2.15)

Then combining expressions (2.14) and (2.15) we obtain

DtΦ
t + Di(Φ

i − Γ i) = (uσt + gσ)Λσ (2.16)

with

Λσ = Êuσ (Φ
t), σ = 1, . . . , N. (2.17)

When u(t, x) is restricted to the solution space of PDE system (1.1), then Γ i vanishes and

the divergence expression (2.16) reduces to the conservation equation (2.8).

Hence, the expressions {Êuσ (Φt)} define multipliers {Λσ} yielding a conservation law

(2.8). Furthermore, since Φt does not depend on ut and its differential consequences, we

see that each multiplier expression Λσ is a function only of t, x, u, and x derivatives of

u. Most important, these expressions Λσ are invariant under a change in Φt by a trivial

conserved density (2.9) since Êuσ annihilates divergences Diθ
i where θi depends on t, x, u

and x derivatives of u. (In particular, if Φt in normal form is trivial, then Λσ is identically

zero, and conversely.) Thus we have the following result.

Theorem 2.4 For the Cauchy-Kovalevskaya PDE system (1.1), every nontrivial conservation

law in normal form (2.8) is uniquely characterized by a set of multipliers {Λσ} with no

dependence on ut and differential consequences, satisfying the relations (2.16) and (2.17)

holding for all functions u(t, x).

From this result, it is natural to define the order of a conservation law (2.8) as the order

of the highest x derivative of u in its multipliers (2.17).

Theorem 2.4 is the starting point for an effective approach to find conservation laws

of PDE system (1.1) by use of multipliers. The standard determining condition [11] for

multiplier expressions Λσ(t, x, u, ∂xu, . . . , ∂
p
xu) arises from the definition (2.10) by the well-

known result that divergence expressions are characterized by annihilation under the full

Euler operator

Euσ = ∂uσ − Di∂uσi − Dt∂uσt + DiDj∂uσij + DtDj∂uσtj + · · · . (2.18)

This yields (by a straightforward calculation)

0 = Euσ (u
ρ
t Λρ + g

ρ
Λρ) = −DtΛσ + (L∗g)ρσΛρ + (L∗

Λ
)σρ(u

ρ
t + g

ρ), σ = 1, . . . , N (2.19)

where (L∗
Λ

)σρ is the adjoint operator of the linearization operator (LΛ)σρ defined by

(LΛ)σρV
ρ =

∂Λσ
∂uρ

V
ρ +

∂Λσ
∂uρi

DiV
ρ + · · ·+ ∂Λσ

∂uρi1···ip
Di1 · · ·DipV ρ (2.20)

and

(L∗
Λ

)ρσW
σ =

∂Λσ
∂uρ

Wσ − Di
(
∂Λσ
∂uρi

Wσ

)
+ · · ·+ (−1)pDi1 · · ·Dip

(
∂Λσ
∂uρi1···ip

Wσ

)
(2.21)
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acting on arbitrary functions Vρ
,Wσ . Here the determining condition (2.19) is required

to hold for all functions u(t, x), i.e. this is necessary and sufficient for uρt Λρ + g
ρ
Λρ to be

a divergence expression. We give a simple direct proof in § 2.3.

We now show how to convert the determining condition for Λσ into a system of

determining equations that allow one to work entirely on the space of solutions of

PDE system (1.1) to find Λσ . Furthermore, we show that the resulting determining

system consists of the adjoint symmetry determining equation (2.5) augmented by extra

determining equations giving necessary and sufficient conditions for an adjoint symmetry

to be a set of multipliers yielding a conservation law.

2.1 Conservation law determining system

In the determining condition (2.19) for Λσ(t, x, u, ∂xu, . . . , ∂
p
xu) of order p consider the

terms involving uσt . These terms arise just from DtΛσ and (L∗
Λ

)σρu
ρ
t , and so it follows

that Eq. (2.19) is a linear polynomial in uσt and differential consequences of uσt with

respect to x. Since uσ is an arbitrary function of t and x, Eq. (2.19) splits into separate

equations given by the coefficients of uσt , uσti, etc. It is convenient to organize this splitting

in terms of uσt + gσ = Gσ and differential consequences uσti + Dig
σ = DiG

σ , etc., which

we refer to as the leading terms (all other terms in the splitting are then referred to

as non-leading). Then the leading and non-leading terms in the splitting must vanish

separately.

To carry out the splitting of DtΛσ , we use the identity

Dt = Dt + (uρt + g
ρ)∂uρ + (uρti + Dig

ρ)∂uρi + · · ·

which yields DtΛσ = DtΛσ + (LΛ)σρG
ρ.

Consequently, the non-leading terms in Eq. (2.19) are given by

0 = −DtΛσ + (L∗g )ρσΛρ

= − ∂Λσ
∂t

+

(
∂Λσ
∂uρ

g
ρ +

∂Λσ
∂uρi

Dig
ρ + · · ·+ ∂Λσ

∂uρi1···ip
Di1 · · ·Dipgρ

)

+
∂gρ

∂uσ
Λρ − Di

(
∂gρ

∂uσi
Λρ

)
+ · · ·+ (−1)mDi1 · · ·Dim

(
∂gρ

∂uσi1···im
Λρ

)
,

σ = 1, . . . , N. (2.22)

This is the adjoint symmetry equation (2.5) with ωσ = Λσ .

The leading terms in Eq. (2.19) are given by

0 = −(LΛ)σρG
ρ + (L∗

Λ
)σρG

ρ
, σ = 1, . . . , N. (2.23)

which we call the adjoint invariance condition on Λσ . Now since uσ is required to be an

arbitrary function of t and x, we observe that Eq. (2.23) splits into separate equations
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given by the coefficients of Gσ , DiG
σ , . . . ,Di1 · · ·DipGσ:

0 = (−1)p+1 ∂Λσ
∂uρi1···ip

+
∂Λρ
∂uσi1···ip

,

0 = (−1)q+1 ∂Λσ
∂uρi1···iq

+
∂Λρ
∂uσi1···iq

− Cq+1
q Diq+1

∂Λρ
∂uσi1···iq+1

+ · · ·

+(−1)p−qCp
qDiq+1

· · ·Dip
∂Λρ
∂uσi1···ip

, q = 1, . . . , p− 1

0 = − ∂Λσ
∂uρ

+
∂Λρ
∂uσ
− Di

∂Λρ
∂uσi

+ · · ·+ (−1)pDi1 · · ·Dip
∂Λρ
∂uσi1···ip

,

σ = 1, . . . , N; ρ = 1, . . . , N; q = 1, . . . , p− 1 (2.24)

where Cr
q = r!

q!(r−q)!
. This establishes the following important splitting result.

Lemma 2.5 For Λσ with no dependence on ut and differential consequences, the Euler op-

erator equation (2.19) is equivalent to the split system of equations (2.22) and (2.24), which

are required to hold for all functions u(t, x).

Consequently, by combining Lemma 2.5 and Theorem 2.4, we see that Eqs. (2.22)

and (2.24) constitute a necessary and sufficient determining system for finding multipliers

{Λσ}. The number of equations in this system is N2(n+p−1)!
n!(p−1)!

+ N(N−(−1)p)
2

(n+p)!
n!p!

.

Theorem 2.6 For the Cauchy-Kovalevskaya PDE system (1.1), the multipliers for all non-

trivial conservation laws in normal form (2.8) up to any given order p are the solutions

Λσ(t, x, u, ∂xu, . . . , ∂
p
xu) of the determining system consisting of the adjoint symmetry deter-

mining equation (2.22) augmented by the extra determining equations (2.24). In particular,

Eq. (2.24) gives necessary and sufficient conditions for an adjoint symmetry to be a set of

multipliers.

In deriving the determining system for Λσ , we have eliminated ut and its differential

consequences. As a result, one is able to work equivalently on the space of solutions of

the PDE system (1.1) to solve the determining system to find Λσ . In particular, the same

algorithmic procedures which one uses to solve determining equations for symmetries can

be used to solve the determining system for multipliers. Moreover, there is freedom in

mixing the order of solving the determining equations in this system. A direct (naive)

approach is to solve the adjoint symmetry determining equation first, then check which

of these adjoint symmetries satisfy the extra determining equations. As illustrated in the

examples in Part I, a more effective approach is to use the extra determining equations

first.

Remarks on the extra determining equations

There is a simple interpretation of the extra determining equations (2.24). From relation

(2.17) between multipliers and conserved densities, we observe that Λσ is a variational

expression (i.e. it arises as an Euler-Lagrange expression from Φt). The well-known
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necessary and sufficient (Helmholtz) conditions [11] for an expression to be variational

are that its linearization operator is self-adjoint, and thus Λσ is a variational expression

if and only if it satisfies [7, 8]

(LΛ)σρ = (L∗
Λ

)σρ, σ, ρ = 1, . . . , N. (2.25)

The operator equation (2.25) is a linear polynomial in Di of degree p. We easily find that

if it is decomposed into separate equations given by the coefficients of the polynomial,

then the resulting equations are the same as the determining equations (2.24).

Corollary 2.7 Multipliers for any first-order Cauchy-Kovalevskaya PDE system are com-

pletely characterized as adjoint symmetries with a variational form.

Moreover, it is interesting to note that the determining equations (2.24) take the same

form regardless of gσ for all first-order Cauchy-Kovalevskaya PDE systems (1.1).

2.2 Conservation law construction formula

We now give an integral formula that constructs the conserved densities Φt and Φi for

any nontrivial conservation law in normal form (2.8) in terms of its multipliers {Λσ}. The

formula makes use of the identities [1]

Wσ(Lg)
σ
ρV

ρ − Vρ(L∗g)σρWσ = DiS
i[V ,W ; g], (2.26)

Wσ(LΛ)σρV
ρ − Vρ(L∗

Λ
)σρW

σ = DiS
i[V ,W ;Λ], (2.27)

where

Si[V ,W ; g] =

m−1∑
`=0

m−`−1∑
k=0

(−1)k(Di1 · · ·Di`V ρ)Dj1 · · ·Djk
(
Wσ

∂gσ

∂uρii1···ikj1···j`

)
,

(2.28)

Si[V ,W ;Λ] =

p−1∑
`=0

p−`−1∑
k=0

(−1)k(Di1 · · ·Di`V ρ)Dj1 · · ·Djk
(
Wσ ∂Λσ

∂uρii1···ikj1···j`

)
,

(2.29)

which are trilinear expressions derived by manipulation of the linearization operators and

adjoint operators. (Note, the terms in Eqs. (2.28) and (2.29) with ` = 0 or k = 0 are

understood to involve no derivatives of V and W , respectively.)

To set up the formula, we first let

uσ(λ) = λuσ + (1− λ)ũσ (2.30)

where {ũσ} are any functions of t, x. This defines a one-parameter λ family of functions

with uσ(1) = uσ and uσ(0) = ũσ . Then we let

Λρ[u(λ)] = Λρ(t, x, u(λ), ∂xu(λ), . . . , ∂
p
xu(λ)), (2.31)

g
ρ[u(λ)] = g

ρ(t, x, u(λ), ∂xu(λ), . . . , ∂
m
x u(λ)), (2.32)

K(t, x) =
(

(uρ(λ)t + g
ρ[u(λ)])Λρ[u(λ)]

) ∣∣∣
λ=0

. (2.33)
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Theorem 2.8 For the Cauchy-Kovalevskaya PDE system (1.1), the conserved densities of

any nontrivial conservation law in normal form are given in terms of the multipliers by

Φt =

∫ 1

0

dλ(uσ − ũσ)Λσ[u(λ)] + t

∫ 1

0

dλK(λt, λx), (2.34)

Φi = xi
∫ 1

0

dλλnK(λt, λx) +

∫ 1

0

dλ
(
Si[u− ũ,Λ[u(λ)]; g[u(λ)]]

+Si[u− ũ, g[u(λ)]− λg[u] + (1− λ)ũt;Λ[u(λ)]]
)
. (2.35)

In applying the construction formula (2.34) and (2.35), we must fix a choice for the

functions {ũσ}. If the expressions Λσ and gσ are nonsingular for uσ = 0, then we can

choose ũσ = 0 and this simplifies the integrals. Moreover, if ũσ = uσ = 0 satisfies the PDE

system (1.1), then the K integrals vanish.

In the case when the expressions Λσ and gσ are singular at uρ = 0 (for some ρ = 1, . . . , N),

we must choose ũρ� 0 such that the expressions Λσ[ũ] and gσ[ũ] are nonsingular. It is

sufficient to fix a simple choice of ũρ such that the integrals converge. Any change in the

choice of ũρ changes the conserved densities only by a trivial conserved density (2.9).

A simple proof of Theorem 2.8 is given in section 2.3.

2.3 Proofs of main equations

Recall that, for first-order Cauchy-Kovalevskaya PDE systems (1.1), the proof of the

determining system (2.22) and (2.24) for conservation law multipliers in Theorem 2.6

reduces, by Lemma 2.5, to the determining condition (2.19) involving the Euler operator.

To conclude this section, we present a simple, direct proof of this determining condition

(2.19) together with the construction formula (2.34) and (2.35) for corresponding conserved

densities in Theorem 2.8. The proof of Eq. (2.19) is based on an identity for linearization

of the multiplier equation (2.10). We let

uσ(λ) = (λ− 1)vσ + uσ (2.36)

be a one-parameter family of functions with uσ(1) = uσ being an arbitrary function, and

with ∂uσ(λ)/∂λ = vσ for any functions vσ(t, x).

Proposition 2.9 For any given expressions Λσ[u] = Λσ(t, x, u, ∂xu, . . . , ∂
p
xu), Φ̃t[u] =

Φ̃t(t, x, u, ∂xu, . . . , ∂
k
xu) and Φ̃i[u] = Φ̃i(t, x, u, ∂xu, . . . , ∂

k
xu), the following identities hold by

direct calculation:

(i)
∂

∂λ

(
(uσ(λ)t + gσ[u(λ)])Λσ[u(λ)]

)
= (vσt + (Lg[u(λ)]

)σρv
ρ)Λσ[u(λ)] + (uσ(λ)t + gσ[u(λ)])(LΛ[u(λ)]

)σρv
ρ

= vσ
(
− DtΛσ[u(λ)] + (L∗

g[u(λ)]
)ρσΛρ[u(λ)] + (L∗

Λ[u(λ)]
)σρ(u

ρ
(λ)t + g

ρ[u(λ)])
)

+Dt

(
vσΛσ[u(λ)]

)
+ Di

(
Si[v,Λ[u(λ)]; g[u(λ)]]

+Si[v, u(λ)t + g[u(λ)];Λ[u(λ)]]
)

(2.37)
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where Si denotes the trilinear expressions given by Eqs. (2.28) and (2.29);

(ii)
∂

∂λ

(
DtΦ̃

t[u(λ)] + DiΦ̃
i[u(λ)]

)
= Dt((LΦ̃t[u(λ)]

)σv
σ) + Di((LΦ̃[u(λ)]

)iσv
σ) (2.38)

where (LΦ̃t )σ and (LΦ̃)iσ denote the linearization operators of Φ̃t and Φ̃i, respectively.

Proof of the multiplier determining condition and conserved density construction formula

Suppose Φt, Φi are conserved densities of a conservation law in normal form (2.8). From

Theorem 2.4 the multipliers for the conservation law are given by Λσ = Êuσ (Φ
t) satisfying

the multiplier equation (2.10) with Φ̃t = Φt, Φ̃i = Φi − Γ i.

Since the multiplier equation (2.10) holds for all functions uσ(t, x), it must hold for

the one-parameter family uσ(λ). We now take the derivative of the resulting left-side and

right-side expressions of Eq. (2.10) with respect to λ. By Proposition 2.9, on the left-

side we obtain Eq. (2.37), while on the right-side we directly obtain Eq. (2.38). These

expressions (2.37) and (2.38) are equal for all functions vσ(t, x) and therefore hold iff the

terms multiplying vσ vanish and the total derivative terms involving vσ are separately

equal (by considering the terms vσt , v
σ
i ). From the terms multiplying vσ we have

0 = −DtΛσ[u(λ)] + (L∗
g[u(λ)]

)ρσΛρ[u(λ)] + (L∗
Λ[u(λ)]

)σρ(u
ρ
(λ)t + g

ρ[u(λ)]). (2.39)

This reduces when λ = 1 to Eq. (2.19) and hence {Λσ} is a solution of the determining

condition (2.19).

Conversely, suppose {Λσ} is a solution of the determining condition (2.19). Then, by

combining the two identities in Proposition 2.9, we see Λσ satisfies the linearized multiplier

equation

∂

∂λ

(
(uσ(λ)t + gσ[u(λ)])Λσ[u(λ)]

)
= Dt

∂

∂λ
Φ̃t[u(λ)] + Di

∂

∂λ
Φ̃i[u(λ)] (2.40)

with ∂Φ̃t[u(λ)]/∂λ and ∂Φ̃i[u(λ)]/∂λ defined by

(L
Φ̃t[u(λ)]

)σv
σ = vσΛσ[u(λ)] + Diθ

i, (2.41)

(L
Φ̃[u(λ)]

)iσv
σ = (Si[v,Λ[u(λ)]; g[u(λ)]] + Si[v, u(λ)t + g[u(λ)];Λ[u(λ)]])− Dtθi + Djψ

ij ,

(2.42)

for some expressions θi, ψij = −ψji. We now undo the linearization to obtain the multiplier

equation (2.10) by integrating with respect to λ as follows. We set vσ = uσ − ũσ , and so

uσ(λ) = λ(uσ − ũσ) + ũσ. (2.43)

Then we use the fundamental theorem of calculus to obtain

(uσt + gσ[u])Λσ[u] = DtΦ̃
t[u] + DiΦ̃

i[u] + (ũσt + gσ[ũ])Λσ[ũ]− DtΦ̃t[ũ]− DiΦ̃i[ũ] (2.44)

where

Φ̃t[u] = Φ̃t[ũ] +

∫ 1

0

dλ(uσ − ũσ)Λσ[u(λ)], (2.45)

Φ̃i[u] = Φ̃i[ũ] +

∫ 1

0

dλ(Si[u− ũ,Λ[u(λ)]; g[u(λ)]]

+Si[u− ũ, u(λ)t + g[u(λ)];Λ[u(λ)]]), (2.46)
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to within trivial conserved densities. Since Eq. (2.44) holds for arbitrary u(t, x), while ũ(t, x)

is fixed, we must have

DtΦ̃
t[ũ] + DiΦ̃

i[ũ] = (ũσt + gσ[ũ])Λσ[ũ] = K(t, x). (2.47)

It is then simple to check that Eq. (2.47) is satisfied identically by

Φ̃t[ũ] = t

∫ 1

0

dλK(λt, λx), Φ̃i[ũ] = xi
∫ 1

0

dλK(λt, λx). (2.48)

Thus, we find from Eq. (2.44) that {Λσ} satisfies the multiplier equation (2.10), with

conserved densities given by Eqs. (2.45) to (2.48). Hence, by Theorem 2.4, Λσ are multipliers

for a conservation law in normal form (2.8).

To obtain the construction formula (2.34) and (2.35) for the conserved densities, we

move onto the solution space of Eq. (1.1) and substitute uσ(λ)t = −λgσ[u] + (1− λ)ũσt into

Eqs. (2.45) and (2.46). The expressions Φ̃t[u] and Φ̃i[u] directly reduce to the formula for

Φt and Φi. q

3 Treatment of Nth order scalar PDEs

Here we exhibit the conservation law determining system and construction formula for

scalar PDEs of any order with one dependent variable u and n+ 1 independent variables

t, x = (x1, . . . , xn). We work directly with the scalar PDE expressed in an Nth order

Cauchy-Kovalevskaya form

G =
∂Nu

∂tN
+ g(t, x, u, ∂u, . . . , ∂mu) = 0 (3.1)

where in this section ∂qu now denotes all derivatives of u of order q, excluding t derivatives

of u of order q > N and their differential consequences (i.e. the PDE is written so that

the t derivatives of u of highest order appear in solved form).

Clearly, without loss of generality, for conservation laws we are free to eliminate Nth

order t derivatives of u (and differential consequences) in considering conserved densities.

Definition 3.1 A local conservation law in normal form for a Cauchy-Kovalevskaya scalar

PDE (3.1) is a divergence expression

DtΦ
t(t, x, u, ∂u, . . . , ∂ku) + DiΦ

i(t, x, u, ∂u, . . . , ∂ku) = 0 (3.2)

holding for all solutions u(t, x) of Eq. (3.1).

A conservation law (3.2) is trivial if it holds as an identity (2.7) for some expressions

θi(t, x, u, ∂u, . . . , ∂k−1u), ψij(t, x, u, ∂u, . . . , ∂k−1u) with ψij = −ψji, for all solutions u(t, x) of

PDE (3.1). Only nontrivial conservation laws (3.2) are of interest.

All nontrivial conservation laws (3.2) of PDE (3.1) can be shown to arise from multipliers

on the PDE, similarly to Theorem 2.4. We move off the solution space of Eq. (3.1) and

let u(t, x) be an arbitrary function of t, x. We use the notation ∂qt u = ∂qu/∂tq for pure t

derivatives of u, and ui = ∂u/∂xi , uij = ∂2u/∂xi∂xj , etc. for pure x derivatives of u, and
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∂qt ui = ∂q+1u/∂tq∂xi, ∂qt uij = ∂q+2u/∂tq∂xi∂xj , etc. for mixed t, x derivatives of u, with

∂q0u = u and ∂0
t ui = ui.

Theorem 3.2 For the Cauchy-Kovalevskaya scalar PDE (3.1), every nontrivial conservation

law (3.2) is uniquely characterized by a multiplier Λ with no dependence on ∂Nt u and

differential consequences. The multiplier satisfies the relations

(∂Nt u + g)Λ = DtΦ
t + Di(Φ

i − Γ i) (3.3)

and

Λ = Ê(Φt) (3.4)

holding for all functions u(t, x), where

Ê =
∂

∂(∂N−1
t u)

− Di ∂

∂(∂N−1
t ui)

+ DiDj
∂

∂(∂N−1
t uij)

+ · · · (3.5)

is a restricted Euler operator, and Γ i is given by an expression proportional to ∂Nt u+ g and

its differential consequences.

From Eq. (3.4) one can show that Λ is invariant under a change in Φt by a trivial

conserved density (2.7). (In particular, if Φt is trivial, then Λ is identically zero, and

conversely.) Consequently, it is natural to define the order of a conservation law (3.2) as

the order of the highest derivatives of u in its multiplier (3.4).

It is straightforward to derive both the determining system for multipliers Λ and the

construction formula for conserved densities in terms of Λ by applying the results in

sections 2.1 and 2.2 to the scalar PDE (3.1) written as a first-order Cauchy-Kovalevskaya

system (which we carry out later).

To display the determining equations explicitly, we introduce the N + 1 expressions

Ω0 = Λ,

Ωq = (−1)qDqt Λ +

q∑
k=1

(−1)q−kDq−kt

(
∂g

∂(∂N−kt u)
Λ − Di

(
∂g

∂(∂N−kt ui)
Λ

)
+ · · ·

+(−1)mDi1 · · ·Dim
(

∂g

∂(∂N−kt ui1···im)
Λ

))
, q = 1, . . . , N (3.6)

where Dt is the total derivative operator with respect to t on the solution space of the

PDE (3.1) as defined by eliminating ∂Nt u = −g and all differential consequences. (In

particular, Dtu = ∂tu, D2
t u = ∂2

t u, etc., and DNt u = −g.) Note that, if the order of Ω0 with

respect to x derivatives of u is p, the order of Ωq is at most p+ mq.

Theorem 3.3 For the Cauchy-Kovalevskaya scalar PDE (3.1), the multipliers for all of the

nontrivial conservation laws (3.2), up to any given order p, are the solutions
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Λ(t, x, u, ∂u, . . . , ∂pu) of the determining system

ΩN = 0 (3.7)

and

∂Ωk

∂(∂jt u)
− ∂Ωj

∂(∂kt u)
=

p′∑
k=1

(−1)kDi1 · · ·Dik
∂Ωk

∂(∂jt ui1···ik )
,

∂Ωk

∂(∂jt ui1···iq )
− (−1)q

∂Ωj

∂(∂kt ui1···iq )

=

p′∑
k=q+1

(−1)k−q+1 k!

q!(k − q)!
Diq+1

· · ·Dik
∂Ωk

∂(∂jt ui1···ik )
, q = 1, . . . , p′ − 1

∂Ωk

∂(∂jt ui1···ip′ )
− (−1)p

′ ∂Ωj

∂(∂kt ui1···ip′ )
= 0,

(3.8)

where p′ = p+ mk, j = 0, 1, . . . , N − 1; k = 0, 1, . . . , N − 1.

In this system, Eq. (3.7) is the determining equation for the adjoint symmetries Λ =

ω(t, x, u, ∂u, . . . , ∂pu) of order p of the PDE (3.1), explicitly

0 = (−Dt)Nω +L∗gω. (3.9)

The extra determining equations (3.8) are the necessary and sufficient conditions for an

adjoint symmetry to be a conservation law multiplier. Since Eqs. (3.7) and (3.8) do not

involve ∂Nt u or any of its differential consequences, one is able to work equivalently on

the solution space of the PDE (3.1) in order to find the solutions Λ.

In order now to display explicitly the construction formula for the conserved densities

Φt, Φi in terms of the multiplier Λ, we first define the trilinear expression

Si[V ,W ;F] =

N−1∑
j=0

(
D
j
tV

(
∂F

∂(∂jt ui)
W − Di1

(
∂F

∂(∂jt uii1 )
W

)
+ · · ·

)

+DjtDj1V

(
∂F

∂(∂jt uij1 )
W − Di1

(
∂F

∂(∂jt uii1j1 )
W

)
+ · · ·

)
+ · · ·

)
(3.10)

depending on arbitrary functions V ,W , F . Next we let

u(λ) = λu + (1− λ)ũ (3.11)

where ũ is any function of t, x. This defines a one-parameter λ family of functions with

u(1) = u and u(0) = ũ. Then we define

Ωq[u(λ)] = Ωq(t, x, u(λ), ∂u(λ), . . . , ∂
pu(λ)), q = 0, 1, . . . , N − 1 (3.12)

g[u(λ)] = g(t, x, u(λ), ∂u(λ), . . . , ∂
pu(λ)), (3.13)

K(t, x) = (∂Nt ũ + g[ũ])Ω0[ũ], (3.14)

using Eq. (3.6) for Ωq in terms of Λ.
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Theorem 3.4 For the Cauchy-Kovalevskaya scalar PDE (3.1), the conserved densities of any

nontrivial conservation law (3.2) are given in terms of the multiplier Λ by

Φt =

∫ 1

0

dλ

N−1∑
j=0

(∂jt u − ∂jt ũ)Ωj[u(λ)] + t

∫ 1

0

dλK(λt, λx), (3.15)

Φi = xi
∫ 1

0

dλλnK(λt, λx) +

∫ 1

0

dλ
(
Si[u − ũ, Ω0[u(λ)]; g[u(λ)]]

+Si[u − ũ, g[u(λ)]− λg[u] + (1− λ)∂Nt ũ;Ω0[u(λ)]]
)
. (3.16)

In applying the construction formula (3.15) and (3.16), we fix the function ũ so that the

expressions Λ[ũ] and g[ũ] are nonsingular. In particular, if Λ[0] and g[0] are nonsingular

then we can choose ũ = 0, which significantly simplifies the integrals. Moreover, if

ũ = u = 0 satisfies the PDE (3.1), then immediately the K integrals vanish. A change in

the choice of ũ alters the conserved densities only by a trivial conserved density (2.7).

Conversion to a first order Cauchy-Kovalevskaya system

We now outline the proof of Theorems 3.3 and 3.4 using Theorems 2.6 and 2.8. To begin

we write the scalar PDE (3.1) in first-order (evolution) form (1.1) with respect to t as

follows:

u1 = u, u2 = ∂tu, . . . , u
N = ∂N−1

t u, (3.17)

g1 = −u2, . . . , gN−1 = −uN, gN = g, (3.18)

G1 = ∂tu
1 − u2 = 0, . . . , GN−1 = ∂tu

N−1 − uN = 0, GN = ∂tu
N + g = 0. (3.19)

Through Eqs. (3.17) to (3.19) there is a one-to-one correspondence between nontrivial

conservation laws (3.2) of the scalar PDE (3.1) and nontrivial conservation laws in

normal form (2.8) of the equivalent first-order PDE system (3.19). The relation between a

multiplier Λ of a scalar PDE conservation law and a set of multipliers {Λ1, . . . , ΛN} of the

corresponding PDE system conservation law can be obtained by considering the adjoint

symmetry equations of the scalar PDE (3.1) and the PDE system (3.19). Straightforwardly,

from Eqs. (3.18) and (2.22), we have

0 = −DtΛN +L∗0,gΛ1, (3.20)

0 = −DtΛN−q − ΛN−q+1 +L∗q,gΛ1, q = 1, . . . , N − 1 (3.21)

where L∗q,g is the adjoint operator of the linearization operator Lq,g defined by

Lq,g =
∂g

∂(∂qt u)
+

∂g

∂(∂qt ui)
Di + · · ·+ ∂g

∂(∂qt ui1···im)
Di1 · · ·Dim . (3.22)

By solving Eq. (3.21) for Λ2, . . . , ΛN in terms of Λ1 and comparing Eq. (3.20) with Eq. (3.7),

we directly see

Λ1 = Λ = Ω0, Λ2 = Ω1, . . . , ΛN = ΩN−1. (3.23)

This establishes an explicit correspondence between Λ and {Λ1, . . . , ΛN} leading immedi-

ately to Theorems 3.3 and 3.4 from Theorems 2.6 and 2.8.
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Remarks on the determining system and construction formula

Theorems 3.3 and 3.4 can also be established directly from Theorem 3.2 without use of the

results in sections 2.1 and 2.2. The main step in the proof of Theorem 3.3 is a polynomial

splitting result analogous to Lemma 2.5 as follows.

The determining condition for a multiplier Λ of order p for the scalar PDE (3.1) arises

from the relation (3.3) by the result that an expression is a divergence if and only if it is

annihilated by the full Euler operator

Eu =
∂

∂u
− Di ∂∂ui − Dt

∂

∂(∂tu)
+ DiDj

∂

∂uij
+ DtDj

∂

∂(∂tuj)
+ D2

t

∂

∂(∂2
t u)

+ · · · . (3.24)

This can be shown (by a straightforward calculation [11]) to yield

0 = Eu ((∂
N
t u)Λ + gΛ) = (−Dt)NΛ +L∗gΛ +L∗

Λ
(∂Nt u + g), (3.25)

which is required to hold for all functions u(t, x) (not just solutions of Eq. (3.1)). The

determining condition (3.25) is a polynomial in ∂Nt u, ∂
N+1
t u, . . . , ∂2N−1

t u and differential

consequences with respect to x. Furthermore, the terms in this polynomial have weights

0 up to N, where we assign weight 1 to ∂Nt u (and x derivatives of ∂Nt u), 2 to ∂N+1
t u

(and x derivatives of ∂N+1
t u), etc., and we add the weights of products (and powers) of

∂Nt u, ∂
N+1
t u, etc. Now, since u is required to be an arbitrary function of t and x, the

polynomial splits into separate determining equations given by the coefficients of the

various weight terms involving ∂Nt u, ∂
N+1
t u, . . . , ∂2N−1

t u (and differential consequences with

respect to x). It is convenient to organize the splitting by working in terms of ∂Nt u+g = G,

∂N+1
t u+Dtg = DtG, ∂Nt ui+Dig = DiG, ∂N+1

t ui+DiDtg = DiDtG, etc. The terms of weight

0 yield the adjoint symmetry determining equation (3.7) and the terms of weight 1 up to

N yield the extra determining equations (3.8) on Λ. This derivation is illustrated in the

second example of Part I.

The construction formula for conserved densities Φt and Φi of a conservation law

for PDE (3.1) is obtained by inverting the Euler operator equation (3.25) as follows.

Since Eq. (3.25) holds for arbitrary functions u(t, x), it must hold with u replaced by the

one-parameter family u(λ) = λu + (1− λ)ũ. This yields

0 = (−Dt)NΛ[u(λ)] +L∗
g [u(λ)]

Λ[u(λ)] +L∗
Λ[u(λ)]

(∂Nt u(λ) + g[u(λ)]). (3.26)

We multiply Eq. (3.26) by u−ũ and then rearrange the terms which involve total derivative

operators coming from L∗g and L∗
Λ

. This leads to the formula

Dt

( N−1∑
j=0

(∂jt u− ∂jt ũ)Ωj[u(λ)]
)

+ Di

(
Si[u − ũ, Ω0[u(λ)]; g[u(λ)]]

+Si[u − ũ, ∂Nt u(λ) + g[u(λ)];Ω0[u(λ)]]
)

=
∂

∂λ

(
(∂Nt u(λ) + g[u(λ)])Λ[u(λ)]

)
. (3.27)

Next we integrate from λ = 0 to λ = 1 and apply the fundamental theorem of calculus.

Using the identity Dt

(
t
∫ 1

0 dλK(λt, λx)
)

+Di

(
xi
∫ 1

0 dλλ
nK(λt, λx)

)
= K , and finally moving

onto the solution space of the PDE (3.1), we obtain the conservation law (3.2) with Φt

and Φi given by Eqs. (3.15) and (3.16).



Direct conservation law method 583

Remarks on variational principles

Definition 3.5 A Cauchy-Kovalevskaya scalar PDE (3.1) is called variational if it arises

from an action

S =

∫ (
L(t, x, u, ∂u, . . . , ∂ku)

)
dtdx (3.28)

by variation with respect to u,

G = Eu (L) = ∂Nt u + g. (3.29)

The well-known necessary and sufficient condition [11] for existence of an action (3.28)

is that

DNt +Lg = (−Dt)N +L∗g , (3.30)

i.e. N must be even and g must have a self-adjoint linearization. This condition is

equivalent to requiring that the determining equation for symmetries of the PDE (3.1) is

self-adjoint.

In the case when PDE (3.1) is variational, Theorem 3.3 combined with Noether’s

theorem [5, 11] shows that the extra determining equations (3.8) constitute necessary and

sufficient conditions for a symmetry of the PDE (3.1) to leave invariant the action (3.28) to

within a boundary term. In particular, if Xu = η(t, x, u, ∂u, . . . , ∂pu) is a symmetry of order

p, then XS =
∫

(Dtθ
t + Diθ

i)dtdx holds for some expressions θt and θi iff Λ = η satisfies

Eq. (3.8) and hence η is a multiplier yielding a conservation law (3.2) of PDE (3.1).

4 Summary and concluding remarks

For any Cauchy-Kovalevskaya system G of one or more PDEs, Theorems 2.6, 2.8 and

Theorems 3.3, 3.4 yield an effective computational method to obtain all local conservation

laws (up to any specified order). The method is summarized as follows:

(1) Linearize G to form its linearized system `, which is the determining system for the

symmetries of G.

(2) Form the adjoint system `∗ of `, which is the determining system for the adjoint

symmetries of G.

(3) Form the extra system h comprising the necessary and sufficient determining equa-

tions for an adjoint symmetry to be a multiplier for a conservation law of G.

(4) Solve the augmented system `∗∪h. This is the determining system for the multipliers

that yield all nontrivial local conservation laws of G.

(5) Use the explicit construction formula to obtain the conserved densities arising for

each solution of the system `∗ ∪ h.
The linearized system of G is self-adjoint (` = `∗) if and only if G is variational, in

which case solutions of `∗ are solutions of `. Then the extra system h is equivalent to

the condition for symmetries to leave invariant the action for G. In general, G is not

variational then solutions of `∗ are not solutions of `.
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The systems `, `∗, h, and `∗ ∪ h are all linear overdetermined systems which are solved

working entirely on the space of solutions of G (i.e. a leading derivative of the dependent

variables in G is eliminated). There exist algorithmic procedures [9] to seek solutions of

`. These procedures can be readily adapted for seeking solutions of `∗, h, and `∗ ∪ h. In

general, `∗ ∪ h is more overdetermined than ` and hence is typically easier to solve. More

significantly, one can choose appropriate mixings of the determining equations in `∗ and

h to solve `∗ ∪ h effectively.

One can also use specific ansatze to seek particular solutions of `∗∪h, such as restricting

the form of highest derivatives of the dependent variables of G allowed in the solution.

For example, familiar conservation laws such as energy invariably arise from the simple

ansatz of seeking multipliers restricted to be linear in first derivatives.

In general it is important to note that solutions of `∗ are not necessarily solutions of

h and hence `∗ does not determine a conservation law multiplier. This typically occurs

for scaling symmetries of systems G in the case `∗ = ` (i.e. self-adjoint), and for point-

type adjoint symmetries (first-order and linear in derivatives of dependent variables) of

systems G in the case `∗ = −` (i.e. skew-adjoint). Examples are utt − uxx + u3 = 0 which

has u + tut + xux as a solution of ` = `∗ but not a solution of h; ut + uxxx = 0 which

has ux as a solution of `∗ = −` but not a solution of h. Anco & Bluman Ref. [2] exhibit

several ODE examples in which nontrivial adjoint symmetries are not multipliers. The

need for the extra conditions h to determine multipliers has not been clearly recognized

in the literature (e.g. Chien et al. [6]).

The chief aspect of our method compared to other existing treatments of PDE con-

servation laws (e.g. [7, 13, 11, 5, 14]) is the explicit delineation of the linear determining

system `∗ ∪ h which incorporates (and identifies) the necessary and sufficient conditions

for adjoint symmetries to be multipliers, without moving off the space of solutions of

the given PDE(s) G. Consequently, one can calculate multipliers of conservation laws by

effective algorithmic procedures. Moreover there is the added computational advantage

of allowing the determining equations in the adjoint system `∗ and the extra system h

to be mingled to optimally solve the determining system `∗ ∪ h, as illustrated by the

conservation law classification results for the PDE examples in Part I.
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