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We show how to find all the integrating factors and corresponding first integrals for any system 
of Ordinary Differential Equations (ODEs). Integrating factors are shown to be all solutions of 
both the adjoint system of the linearised system of ordinary differential equations and a system 
that represents an extra adjoint-invariance condition. We present an explicit construction 
formula to find the resulting first integrals in terms of integrating factors, and discuss 
techniques for finding integrating factors. In particular, we show how to utilize known first 
integrals and symmetries to find new integrating factors. Illustrative examples are given. 

1 Introduction 

For first-order scalar Ordinary Differential Equations (ODEs), Sophus Lie (cf. Lie, 1874) 
showed how to construct an integrating factor from each admitted point symmetry. 
Conversely, Lie showed that each integrating factor yields an admitted point symmetry. 

In general, for systems of one or more ODEs, an integrating factor is a set of functions, 
multiplying each of the ODEs, which yields a first integral. If the system is self-adjoint, then 
its integrating factors are necessarily solutions of its linearized system. Such solutions are 
the symmetries of the given system of ODEs. If a given system of ODEs is not self-adjoint, 
then its integrating factors are necessarily solutions of the adjoint system of its linearized 
system. Such solutions are known as adjoint symmetries (Gordon, 1986; see also Sarlet et 
al., 1987, 1990) of the given system of ODEs. 

In this paper, we introduce an adjoint-invariance condition which is a necessary and 
sufficient condition for an admitted adjoint symmetry to be an integrating factor. We 
present an explicit formula for the first integral corresponding to each integrating factor. 
These results are the counterparts of our work on Partial Differential Equations (PDEs) 
(Anco & Bluman, 1997, 1998). 

For a first-order scalar ODE, a first integral is a quadrature. For an nth-order scalar 
ODE, a first integral is an expression relating the independent variable, the dependent 
variable and derivatives to order n - 1, which is constant for all solutions of the ODE. First 
integrals are defined analogously for systems of ODEs. 

If r independent first integrals are known, then an nth-order scalar ODE can be reduced 
to one or more (n-r)th-order ODEs in terms of r essential constants' and the given 

Constants are essential if none of them can be reduced in terms of function combinations of the 
others. 
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dependent and independent variables. In particular, n independent first integrals yield the 
general solution involving IZ essential constants. 

Sophus Lie (cf. Lie, 1888; Bluman, 1990) showed that if an nth-order scalar ODE admits 
an r-parameter solvable group of point symmetries, then it can be reduced to an (n-r)th- 
order ODE plus Y quadratures.2 Lie's reduction uses derived independent and dependent 
variables, given by invariants and differential invariants to order M - r ,  arising from the 
admitted point symmetries. Consequently, the 'reduced ' ODE is not an (n-  r)th-order 
ODE in terms of the given dependent and independent variables. Thus, Lie's reduction is 
not as useful as a reduction in terms of first integrals. 

In $2 we establish our framework. We define integrating factors and first integrals for 
systems of ODEs. We show that each integrating factor must be an adjoint symmetry, and 
derive the adjoint-invariance condition for an adjoint symmetry to be an integrating factor. 
We give the explicit formula for the first integral arising from an integrating factor. Finally, 
we show how our framework treats the well-known situation for first-order scalar ODEs. 

In 5 3 we treat the case of second-order scalar ODEs, and make some remarks about the 
situation for higher-order scalar ODEs. In $4 we discuss techniques for finding and utilizing 
adjoint symmetries in conjunction with the adjoint-invariance condition. We show how to 
use an adjoint symmetry and functions of known first integrals to obtain new first integrals. 
Finally, in 5 5 we consider various examples. 

2 The basic framework 

Consider any nth-order system of one or more ODES 

G,(x, y,  y', . . . ,y(%)) = 0, CT = 1 , .  . . , N (2.1) 

with any number of dependent variables y = {y' ,  ... ,y") and one independent variable 
x; J' represents the first-order derivative of J>;  y(I) represents the jth-order derivative of y. 
For arbitrary functions Y = {Y',  ... , Y">, let G,[Y] = G,(x, Y, Y ,  ... , Ycpz)) .  The aim is to 
find all factors nu[ Y ]  = k ( x ,  Y,  Y' ,  . . . , YcnP1)) and functions @[ Y ]  = @(x, Y,  Y',  . . . , Ycn-l)) 
so that 

d 
dx 

.4"[ Y ]  G,[ Y ]  = - @[ Y ]  

holds for all Y(x) for which A"[ Y ]  G,[ Y ]  is finite. (Throughout this paper, we use the index 
notation o- = 1, , . . , N ;  p = 1,.  . . , M ;  and the convention that summation is assumed over 
any repeated index in all expressions.) 

From equation (2.2), it follows that 

@[y] = const (2.3) 

on the solutions y(x) of system (2.1) for which each A"[y] is finite. In particular, if nu[ Y ]  
is finite for arbitrary Y(x), then @[y] = const holds for all solutions of system (2.1). 

We allow P [ Y ]  and @[Y] to depend at most upon Y(n-'), since we assume that the system 
(2.1) determines y(") in terms of lower-order derivatives of y.  

Lie's method can be extended to invariance under r-parameter solvable groups of higher order 
symmetries. 
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Definition 2.1 A set of factors {A"[ Y ] }  satisfying (2.2) is an integrating factor of system (2.1) 
and, correspondingly, @[y] = const is a first integral of system (2.1). 

Before defining adjoint symmetries and introducing our adjoint-invariance condition, we 

The linearized system is given by 
first consider the linearized system, and its adjoint, obtained from equation (2.1). 

4Tp[Yl@ = 0 (2.4) 
where 

dVP d" Vp 
Lup[ Y ]  V' = GJ Y ]  + G&[ Y ]  --& + . . . + eP[ YI dx" 

with 

In equation (2.4), v = { v ' ,  ... , v " }  is a solution of the linearized system holding for all 
solutions y(x) of system (2.1); in equation (2.5), V = { V' ,  . . . , V"} and Y = { Y',  . .. , Y"} are 
arbitrary functions of x. 

The linearized system (2.4) is the set of determining equations for the symmetries of 
system (2.1). In particular, a solution v of system (2.4) is a symmetry of the system (2.1) with 
infinitesimal generator vp d/ay.  

The adjoint of the linearized system (2.4) is given by 

L,*[Yl w' = 0, (2.6) 
where 

d d" 
dx  dx" 

L,*,[Y] W " =  G,[Y] W"--(G&[Y] W " ) + . . . + ( - l ) " - ( G : P I Y ]  W").  (2.7) 

In system (2.6), w = {w' ,  . . . , w"} is a solution of the adjoint system holding for all solutions 
y ( x )  of the given system of ODES (2.1); in system (2.7), W = { W ' ,  ..., W " }  and Y = 
{ Y', . . . , Y M }  are arbitrary functions of x. 

Definition 2.2 The adjoint system (2.6) is the set of determining equations for the adjoint 
symmetries of system (2.1). In particular, a solution w of the adjoint system (2.6) is an adjoint 
symmetry of the system (2.1). 

Definition 2.3 System (2.1) is self-adjoint if and only if L:J Y ]  = LuP[ Y ] .  

Theorem 2.4 Every integrating factor of system (2.1) satisfies the adjoint-invariance 
condition 

d dn-I 
L,*,[Y]A"[Y] = - A ~ [ Y ] G , [ Y ] + - ( A ~ " [ Y ] G , [ Y J ) + ~ ~ ~ + ( -  l)n-'-(A$-""[Y]G,[Y]) 

dx  dx"-' 

(2.8) 
for arbitrary Y(x)  where 
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Proof Since system (2.2) holds for arbitrary Y(x), it also holds with Y ~ ( . Y )  replaced by the 
one-parameter (A)  family of functions YP(x; A)  = Yp(x) + A V'(x), where Yp(x), VQ(x)  are 
arbitrary functions of x. Thus, we have 

(2.9) 
d 

dx A"[Y(x; A)] G,[Y(x; A)]  = -@[ Y(x;  A)].  

Now differentiate system (2.9) with respect to h and set A = 0. Then use 

given by the linearizing expression (2.5). This leads to 

Now apply the Euler operators 

(2.11) 

to each side of equation (2. lo), which is an expression in terms of the arbitrary functions 
{ YP(x)}, { VP(x)j. Since Euler operators annihilate total derivatives, the left-hand side of 
equation (2.10) vanishes upon action by the Euler operators (2.11). On the right-hand 
side of equation (2. lo), the Euler operators (2.11) applied to A"[ Y ]  (L,[ Y ]  Vp) yield 
L,*[Y]A"[Y], given by system (2.7) with W" = A"[Y]. The Euler operators (2.11) applied 
to the rest of the right-hand side of equation (2.10) yield 

dic-l d 
d.x dXn- l  

A~[Y]G,[Y]- - (A~ ' [Y]  G,[Y])+ ... +(- l ) " ~ ' - - - ( ~ ~ ~ ' ' " [ Y ] G , [ Y ] ) .  

Thus the adjoint-invariance condition (2.8) is obtained. 0 

Corollary 2.5 I f  @[y]  = const is a first integral of the system of ODES (2.1), then its 
integrating factor {A"[ Y ] }  satisfies the adjoint system 

L,*,[Yl A"CYl = 0, (2.12) 

holding for  all solutions y(x)  of system (2.1). 

The proof of Corollary 2.5 follows immediately from the adjoint-invariance condition 
(2.8) with Y(x) = y(x)  given by any solution of system (2.1). 

An important consequence of Corollary 2.5 is that all first integrals arise from solutions 
of the adjoint system (2.12). If system (2.1) is self-adjoint, then solutions of the adjoint 
system (2.12) are symmetries of system (2.1). If system (2.1) is not self-adjoint, the solutions 
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of the adjoint system (2.12) are not symmetries of (2.1) but adjoint symmetries (Gordon, 
1986; Sarlet et al., 1987, 1990) of system (2.1). However, as will be shown in the examples 
in 0 5, an adjoint symmetry does not always satisfy the adjoint-invariance condition (2.8), 
i.e. an adjoint symmetry does not always give rise to a first integral. 

For any adjoint symmetry that satisfies the adjoint-invariance condition (2.8), we now 
derive a formula which yields the corresponding first integral. To proceed, we first need to 
establish the following identity. 

Lemma 2.6 The operators Lup[ Y ]  and L,*,[ Y ]  satisfy the identity 

d 
dx 

W" LUp[ Y ]  Vp- Vp L,*[ Y ]  W "  - q W ,  V ;  G[ Y ] ]  

for arbitrary functions Yp(x), Vp(x), W"(x) ,  where 

(2.13) 

dn-I vp n-2 dn-1-1 Vp d' dn-I 
-+(-l)n-l VP-)(W"G'&J. (2.14) +(-+ dx"-' c (-'I' dxn-l-l dx' dx"-' 

Proof The identity (2.13) follows from a direct expansion of both sides of (2.13), using the 
definitions of Lup[ Y ]  and Lzu[ Y ]  given by equations (2.5) and (2.7), respectively. 

We are now ready to establish the converse of Theorem 2.4. 

Theorem 2.7 Suppose {A"[ Y ] }  satisfies the adjoint-invariance condition (2.8). Then {A"[ Y ] }  is 
an integrating factor for  the system of ODES (2.1). In particular, 

(2.15) 
d 

dx 
A"[ Y ]  G,[ Y ]  = - @[ Y ]  

with @[ Y ]  = @'(x, Y ,  Y ' ,  . . . , Ycen))  + @,(x) given by the formulae : 

where 

D2 = k(x)dx ,  s (2.16) 

(2.17) 

d a Yp(x; A )  + (&( ~A )-a y p ( x ; A )  ") (Au[ Y ( x ;  A)]  G;J Y ( x ;  A)] )+  ... 
aA dx  
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x (G,[Y(x; h ) ] ~ l ~ - ~ ) " [ Y ( x ; A ) ] ) ;  (2.19) 

Here ?(x) = { pl(x), ... , pLw(x)] are anyfixedfirnctions such that the fztnction k(x)  isfinite, 
and Y(x; A) is the one-pammefer ( A )  family of junctions Y"(x; A)  = A Y"(x) + (1 - A) e ( x ) ,  
for arbitrary Y"(x), cr = 1, ... , M .  

k(sj  = A"[~?[x)] G,[Y((x)]. (2.20) 

Proof Let V(s)  = (c?Y(x; hjj/&t = Y(.v) - f?xj. From the adjoint-invariance condition 
(2.8). we obtain 

P(x) (LTo[Y(x; A)] Ar[ Y(x;  A)] +A;[  Y(x;  A)]  G,[ Y ( L ;  A)] --(A;.[Y(x; A)] G,[Y(x: A)])  + ... 
& - I  

dxn-l 

Now we manipulate the terms in equation (2.21) as follows. From identity (2.13), the first 
terinin (2.21) becomes VpLT,Ar = A"L, VP-dSldx, where Sis given by expression (2.18). 
Using the Leibniz rule for d/d.x, the third term of equation (2.21) becomes 

d 
dx 

i + ( - l ) ~ - ( ~ 4 ~ - 1 ' u [ ~ ' ( . ~ ; / ~ ) ] G " [ Y ( ~ ; ~ ) ] )  = 0. (2.21) 

and the other terms of (2.21) become 

for q = 1, ..., n-I .  
Hence equation (2.21) becomes 

where N is given by expression (2.19). 
Now observe that L+[ Y(x;  A)] VP(x) = (aG,[Y(.r; A)])/aA, and that 
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Then equation (2.22) becomes 

c? 
A"[Y(x;h)]  -GG,[Y(x;h)] + -A"[Y(x;h)]  G,,[Y(x;h)] = - ( A " [ Y ( ~ ; h ) l G , [ Y ( x ; h ) l )  

(:A ) (:A 1 (7h 

d 
d x  = - ( s l 4 Y ( x ; h ) l ,  V(x);G[Y(x;h)ll+yn[Y(x;h)l, V ( x ) ;  C[Y(x;A)l l ) ,  (2.23) 

where S and N are given by expressions (2.18) and (2.19), respectively. 
Now integrate equation (2.23) with respect to h from h = 0 to h = 1. Then we obtain 

A"[ Y ]  G,[ Y ]  -A"[ F ]  C,[ F ]  = d Q,/dx,  

where Q1 is given by expression (2.16). To complete the proof, we observe that 
A"[ f l  G,[ F ]  = k ( x )  = dQ,/dx.  0 

Note that, if A"[ Y ] ,  C,[ Y ] ,  rr = 1, ... , n  are finite for Yp = 0,  p = 1, ... , M ,  then we can 
choose ffl = 0,  p = 1, ... , M ,  and thus simplify the integral for Ql. Moreover, if y p  = 0, 
p = 1, ... , M ,  is a solution of system (2.1), then Q2 vanishes. 

As a consequence of Theorems 2.4 and 2.7, we see that for any system of ODEs, all first 
integrals arise from adjoint symmetries that satisfy the adjoint-invariance condition. 

2.1 First-order ODEs 

We now consider the classical problem of finding the integrating factor for any first-order 
scalar ODE written in solved form 

G(x,y ,y ' )  = y ' -g(x ,y)  = 0. (2.24) 

Here the linearized ODE is 

(2.25) 
dv 

U Y l V  = z- g,v = 0,  

and the corresponding adjoint ODE is given by 

dw 
L*[y]  w = -dx-g,  w = 0. (2.26) 

The symmetries of ODE (2.24) are the solutions of (2.25), while the adjoint symmetries of 
ODE (2.24) are the solutions of (2.26), which hold for all solutions y ( x )  of ODE (2.24). 

For arbitrary Y = Y(x) ,  each integrating factor A ( x ,  Y )  of ODE (2.24) satisfies the 
adjoint-invariance condition 

(2.27) 
dA(x,  Y )  

dx 
- -g,.(x, Y ) A ( x ,  Y )  = -( Y ' - g ( x ,  Y))A,.(X, Y ) ,  

which reduces to 
g,.A+Ax+gA,. = 0. (2.28) 

Theorem 2.8 I f A ( x ,  y )  is an a4oint symmetry of ODE (2.24), then A(x ,  Y )  is an integrating 
factor of ODE (2.24). 

Proof From (2.26t(2.27) it follows that A(x ,  Y )  is a solution of (2.28) if and only if 
w = A ( x ,  y )  is a solution of (2.26). 0 
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Theorem 2.9 Each symmetry v(x, y )  of ODE (2.24) yields an adjoint symmetry A(x,  y )  = 
l/(v(x,y)) of ODE (2.24). Conversely, each adjoint symmetry A(x,J]) of ODE (2.24) yields 
u q]nmetrj+ v(x,y)  = l/(A(x,y)) of ODE (2.24). 

Proof From (2.24)-(2.25), it follows that any symmetry v(x,j>) of ODE (2.24) satisfies 

U L ( X ,  Y)+g(x,  Y)v,(x, Y>-gy(x, Y)”, Y )  = 0, (2.29) 

for arbitrary Y(x). In turn, by direct substitution, one can show that ~ ( x ,  1’) satisfies (2.29) 
if and only if A(.Y, Y )  = l j ( v ( s ,  Y ) )  satisfies 

(2.30) 

13 
-g , (x ,  Y )  A(x ,  Y )  -Az(& Y )  +g(x, Y )  Y )  = 0. 

Hence A(x ,  Y )  satisfies the adjoint-invariance condition (2.28). 

For any integrating factor A(x,  Y ) ,  the first integral formula (2.16)-(2.20) yields 

@,(x,y) + D2(x) = const, 

which gives the general solution of ODE (2.24). In terms of any fixed function y”(x), one has 

s = (V-Y)4x,h(y- ,9+Y)> 

k ( 4  = 4% y”) cv”’ -g(x ,  j%, 

N = O ,  

whch leads to 

Unl(x, y )  = 1; Sdh = A(x, z )  dz, @,(x) = k(x) dx. S (2.3 1) 

From the above, we see that for any first-order ODE each adjoint symmetry is an 
integrating factor and, conversely, each integrating factor is an adjoint symmetry. In the 
next section, we will show that this is not the case for higher-order ODEs. 

3 Second-order and higher-order scalar ODEs 

We now show how the framework presented in 52 applies to any second-order scalar ODE 

Y” - ‘ d . 1 . 3  y ,  Y’) = 0 

yen) - g ( x ,  y ,  y’, y”, . . . , y‘n-1’) = 0. 

(3.1) 

(3.2) 

and higher-order scalar ODEs 

3.1 Second-order ODEs 

The linearized ODE for equation (3.1) is given by 

d’v dv 
dx2 dx L [ y ] v  = --g ,--g = 0,  (3.3) 

and the corresponding adjoint ODE is 

d 2 w  d d 2 w  d w  
dx dx dx dx L * [ y ] w  = :+-(gv,w)-gyw = --z+g,>-+(g,,.+J”gz,, +gg,y-g,)w = 0. (3.4) 

The solutions w = A(x, y ,  y’) of ODE (3.4), holding for any y(x) satisfying the second-order 
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ODE (3. l), are the adjoint symmetries of (3.1). Explicitly, the determining equation for an 
adjoint symmetry A ( x , v ,  y’) is given by 

L*[Yl4*x? Y ,  Y’) = A,, + 2Y’ A,.# + 2g Ax.#, + (Y’ ) z  A,, + 2Y’ gA,,, + g’ A,,,, 

+(g,+y’g,+2gg,.)A,.+(g”‘g,.)n,+g,,A,+(g,,.+L’’g,,,+gg,.,.-g,)A = 0,  (3.5) 

which must hold for arbitrary x,y,y ’ .  In turn, an adjoint symmetry A ( x , y , y ’ )  of ODE (3.1) 
yields an integrating factor A(x ,  Y ,  Y’)  of (3.1) i f  and only if A(x ,  Y ,  Y’) satisfies the sdjoint- 
invariance condition 

L*[ Y ] A ( x ,  Y ,  Y’ )  = -( Y”-g)(Ax,.,+ Y ’ A , . ~ , + g A , . , , . , + 2 g , . , A , . , + 2 A ~ + g , . , ~ ,  A) ,  
(3.6) 

which must hold for arbitrary x, Y ,  Y’,  Y” with g = g(x, Y ,  Y’). Thus, the adjoint- 
invariance condition for A(x ,  Y ,  Y’) to be an integrating factor of (3.1) reduces to A(x ,  Y ,  
Y’) ,  solving the linear system of PDEs 

A,, + 2 Y’A,, + 2gA,,, + ( Y’I2 A,, + 2 Y’gA,,, + g2A,,,, + (g,  + Y’g, + 2gg,,) A,,  

+k+ Y’g,.)A,+g,,/i,+(g,,,+ Y’g,,.+gg,,,,-g,)A = 0 (3.7) 

A,,..+ Y’A,.,..+g/i,..,..+2g,.A,..+2A,.+g,..,..A = 0. (3.8) 

given by equation (3.5) with y replaced by Y ,  and 

given by (3.6). Equations (3.7H3.8) must hold for arbitrary values of x, Y ,  Y’. 
Since every second-order ODE (3.1) has an infinite number of integrating factors, it 

follows that there must exist an infinite number of solutions of the system (3.7)-(3.8). 
Unlike the situation for a first-order ODE, where each adjoint symmetry yields an 
integrating factor, solutions of (3.7) are not always integrating factors, since they must also 
satisfy condition (3.8). 

Correspondingly, for each integrating factor the construction formula (2.16H2.20) 
yields the first integral 

@[y]  = @ , ( ~ , y , y ’ ) + @ ~ ( x )  = const 

of equation (3.1). In terms of any fixed function p(x), with r = hy + (1 - h ) j ,  A = A ( x ,  r ,  r’), 
one has 

S = ((Y’ - j’)  - ( Y - 3  g,(x, r ,  r’)) A 

N = (y - j ) (hg(x ,y ,y ’ )+( l  -h)y’”-g(x,r,r’))Ar,, 

- ( y  - j )  ( A ,  + (hy’ + (1 - 47) A ,  + ( M x ,  y ,  y’) + (1  - 4y’”)  4 1 ,  

so that 

S + N  = ( y ’ - j ’ )  A - ( y  - j )  (g(x ,  r,  r’) A,.+(hy’+(l - h ) j ’ ) A r  + A,+g,.(x, r ,  r’) A ) ,  (3.9) 

(3.10) k ( x )  = [ y’” - g(x ,  j ,  7)] A(x ,  j ,  7). 
Consequently, 

@,(x,Y,Y’) = ( S + N ) d h ,  (3.11) s: 
(3.12) 
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3.2 Higher-order ODEs 

For higher-order scalar ODEs (3.2), the adjoint-invariance condition for an integrating 
factor A(x, Y,  Y’, . . . , YCn-l)) yields a linear determining equation which is a relation 
involving x, Y, Y’, ... , Yczn-’), where each of the 2n quantities x,  Y, Y’, ... , Y(2n-2) are to be 
treated as independent variables. This relation is a polynomial expression in terms of Y(n),  
y(n+l) , ‘.. 9 Y(2n-Z),  whose coefficients depend on x,  Y, Y’, . . . , Y(”-l). The coefficient of the 
term independent of Y(n),  Y(lZ+l), . . . , Y(2n-2) ,  yields the determining equation for the adjoint 
symmetries. The coefficients of the other terms in the polynomial expression yield further 
linear PDEs satisfied by A(x, Y,  Y’, . . . , YCn-l)). For n = 2, as shown in (3.6), this splitting 
yields one such linear PDE (from the coefficient of the Y” term). For n = 3, one can show 
that this splitting yields three such linear PDEs from the coefficients of the terms involving 
Y(4),  (Y”’)’ and Y”‘. For n = 4, the splitting yields five such linear PDEs from the coefficients 
of the terms involving Y@),  Y(4)  Y(5) ,  Y(5) , (Y(4))2 and Y(4).  

4 Techniques for obtaining adjoint symmetries yielding first integrals 

For any system of ODEs (2. l), there is an infinite number of linearly independent solutions 
of its corresponding adjoint system (2.6). Hence, a system of ODEs (2.1) always has an 
infinite number of adjoint symmetries. Consequently, in practice one must resort to specific 
ansatze in order to find adjoint symmetries. 

We now focus on nth-order scalar ODEs. Here, one such ansatz is to seek solutions of 
the form w = A(x,  y,  y’, . . . , y(n-z)), which depend upon derivatives of order at most n - 2 
rather than n - 1, for the corresponding adjoint symmetry determining equation (2.6). 

More importantly, if one knows an adjoint symmetry and one or more first integrals 
arising from other adjoint symmetries, then one can use a second ansatz to seek further first 
integrals as follows. For a given nth-order scalar ODE, suppose that 

@,[Yl = c,, . . ‘ , @,[A = c, 
are m functionally independent first integrals corresponding to the nz integrating factors 
A,[ Y ] ,  . . . , A,[ Y ] ,  respectively. Note that 

for any function T(Cl,. . . , C,), generates an inessential first integral T(C,, . . . , C,) = const. 
Now suppose w = A [ y ]  is an adjoint symmetry such that 
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for all functions T(C,, ... , CJ. We observe that for an arbitrary function F(C,, ..., C”,), 

255 

12?= A, [y ]  = F(C,, ..., C,,)A[y] (4.2) 

is also an adjoint symmetry. 
If we substitute w = A,[ Y ] ,  given by equation (4.2) with y replaced by Y ,  into the adjoint- 

invariance condition (2.8), then we obtain a linear determining equation for F. Each 
solution, if any, of this determining equation yields a new integrating factor for the nth- 
order ODE. This will be illustrated through examples in $5. 

A third ansatz which can lead to finding further adjoint symmetries is suggested by the 
following observation. If a given nth-order ODE admits a point symmetry, then each 
integrating factor of the ODE can always be expressed as a product of a multiplier 
expression, and some function of the invariants/differential invariants of the point 
symmetry. Consequently, the ODE admits adjoint symmetries of such a product form. One 
can then try using a known adjoint symmetry or integrating factor as the multiplier 
expression in a trial form in order to seek new adjoint symmetries. In particular, suppose 
a given nth-order ODE admits an integrating factor A [ Y ]  and a point symmetry with 
corresponding invariants/differential u(x, y ) ,  v , ( s ,  y ,  y’), . . . , ~,- , (x ,y ,y ‘ ,  . . . , 
y(”-’)). Let 

(4.3) 

for an arbitrary function f l u ,  u , ,  . . . , un-,). If we substitute w = A,[y] into the adjoint 
symmetry determining equation (2.6), then we obtain a linear determining equation for .f. 
Each solutionf+ const of this determining equation yields a new adjoint symmetry of the 
nth order ODE. In turn, we feed such a new adjoint symmetry into the second ansatz to 
seek further first integrals. 

invariants 

A,[Yl = f lu ,  01,. . . 1  v,-,> “1, 

The above discussion extends naturally to systems of ODES. 

5 Examples 

We now use three examples to illustrate our procedure for obtaining first integrals. 

5.1 Harmonic oscillator 

Consider the harmonic oscillator equation 

y”+y = 0. (5.1) 

The ODE (5.1) is self-adjoint, so that its adjoint symmetries are symmetries. The 
corresponding determining equation (3.5) for an adjoint symmetry w = A ( x , y , y ’ )  becomes 

(5.2) 

Here the extra adjoint-invariance determining equation (3.8) for w = A ( x , y ,  y’) to yield an 
integrating factor becomes 

(5.3) 

Obviously ODE (5.1) admits translations in x and scalings in y which respectively yield 
adjoint symmetries A ,  = y’ and A 2  = y satisfying (5.2). 

Ax= + 2y’A,, - 2yAx,.  + (y’)51yy- 2yy’A,,. +y2Ay.,.  -.v’Ay, -YAY + A = 0. 

A,,. +y’ A,,, -yA,.,. + 2A,  = 0. 
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Clearly, A = y’ satisfies the adjoint-invariance condition (5.3). Since y”+y and y’ are 
= 0 in our construction formula (3.9)-(3.12). Then we non-singular for y = 0, we can set 

have 
S + N  = h[(y’), +y2], 

and hence the corresponding first integral is the energy 

@ = h((y’)’ + V 2 )  dh = :((y’), +y2)  = C, J”: (5.4) 

It is easy to check that the adjoint symmetry A = y does not satisfy the adjoint-invariance 
condition (5.3). Now we try the second ansatz presented in $4, using the previously- 
obtained first integral (5.4). Let 

A = A ,  = F(C,) Y, (5 .5)  

where C, = f((Y’)’+ Y z ) .  Substituting (5 .5)  into the adjoint-invariance condition (5.3), we 
find that F(C,) satisfies the ODE C, F‘ + F = 0. This yields the integrating factor A = 

Y/(( Y’)’ + Yz) .  Since A is singular for Y = 0, we choose y” = 1 in our construction formula 
(3.9)-(3.12). Correspondingly, r = h(y- 1)+ 1,r’ = A>)’, so that 

y’ Y - ( y  - 1) Y’ 

r2 + (r’)’ 
S + N =  , k(x) = 1. 

This leads to the first integral 

which is the phase. 

sin(x - C, + ~ c / 2 ) .  
The first integrals (5.4) and (5.6) lead to the complete reduction y = 

5.2 Frequency-damped oscillator 

As a second example, we use the frequency-damped oscillator equation 

y” + y(y’)2 = 0, (5.7) 
considered by Gordon (1986), Sarlet et al. (1987) and Mimura & N6no (1994). The ODE 
(5.7) is not self-adjoint, so that its adjoint symmetries are not symmetries. Here the adjoint 
symmetry determining equation (3.5) for w = A(x,y,y’) is 

4, + 2Y’ A%?/ - 2Y(Y’)2 4, + (.JV Ayv - AYU, +Y2(Y’)4 Ayfy, 

+(4y2- 1)(y’)3Aii,.-33y(y’)2A,-2~~~’A(i,+(2y2- 1)b’)’A = 0. (5.8) 
The extra adjoint-invariance determining equation (3.8) becomes 

~%?/ ,+y’A~y, -3y(~’)~A?/ ,? / , -4y~’Av,+2Av-2yA = 0. (5.9) 

We try the first ansatz A = A(x,y). Then equation (5.8) leads to the adjoint symmetry 

A ~ axeU2,’2 + 4 Y ) ,  (5.10) 
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with a = const, and l (y )  satisfying the ODE 1“- 3yl‘+ (2y2 - 1 )  I = 0. Substituting (5.10) 
into the adjoint-invariance condition (5.9), we obtain l‘-yl= 0, and thus I(y) = bey”’, 
b = const. Hence we get two integrating factors, A ,  = eY2/’, A ,  = xey2/2.  

Next, we construct the first integral arising from A = A ,  = eY2/’. Clearly, we can set 
j j  = 0 in the construction formulae (3.9H3.12). This leads to the first integral 

@ = y’ s,’ [ 1 + h2 y2]  $*Y2/’ dA = y’ e,2/2 = C 1 7  (5.1 1 )  

after integration by parts on the second term. 

j j  = 0, the construction formulae (3.9H3.12) reduces to 
Now the first integral arising from A = A ,  = xeY2/’ is easy to construct since, again with 

@ = C , x -  y$ , l2dy  = C x -  eU2/’du = C,. (5.12) J-: = =  4 
This yields the general solution l i e U 2 / 2  du = C,  x -  C,  of the ODE (5.7). 

5.3 Wave-speed equation 

For a third example, we consider the fourth-order wave-speed equation 

G 01, y’, y”, y”’~‘~’) = (yy’(y/y’)”)’ = 0, (5.13) 

which arises when one seeks potential symmetries for a wave equation with a variable wave 
speed y(x)  (see Bluman & Kumei, 1987). The ODE (5.13) is not self-adjoint. Its adjoint 
symmetry determining equation for w = A(x, y ,  y’, y”, y”’) is given by 

((A’yy’)” y / (  y’),)’ + (A’yy’)”/y’ - (A’y(y/y”)’)’ + A’y’(y/y’)” = 0. (5.14) 

The adjoint-invariance condition is 

((A’ Y Y ’y Y / (  Y ’)2)’ + (A’ Y Y ’) ”/ Y’ - (A’ Y( Y /  Y”)’)’ + A’ Y ’( Y /  Y ’)” 

= - ((GA m)’’’ - (GA .)” + (GA .)’ - G A  Y)r (5.1 5) 

with A = A(x,  Y, Y’ ,  Y” ,  Y”‘) and G = (YY’ (  Y /  Y’)”)’. 
By inspection, A = 1 satisfies (5.14H5.15), which leads to the first integral 

@ = yy’( y/y’)” = c,. (5.16) 

Since the ODE (5.13) admits translations in x with corresponding invariants y and y’, we 
employ the third ansatz of $4, in conjunction with the integrating factor A = 1 and these 
invariants, and seek adjoint symmetries of the form A = A, =f(y,y’). Then (5.14) becomes 
a polynomial in y”’,y”. The coefficient of (y”’)’ gives y’f,.,. + 3f,. = 0. This yields 
f,. = h ( ~ ) / ( y ’ ) ~  for some function h(y).  Then the coefficient of y”‘ gives the equation 
12y(y’)’ f,.,., + 3y2 f,.,. + 41yy’f,., + 9y’f,. + 12yf, = 0. This leads to h = const, and hence 
f = l/(y’)’. Once can check that A = l/(y’)’ satisfies both the adjoint symmetry determin- 
ing equation (5.14) and the adjoint-invariance condition equation (5.15). The singularity 
of A at y’ = 0 leads us to choose j j  = x in our construction formula (3.9H3.12). The 
resulting first integral is 

@ = -y”’y2/(y’”y’”(y’)~+(yy’’)2/(y’)4 = c,. (5.17) 
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The first integrals (5.16H5.17) reduce the ODE (5.13) to the second-order ODE 

(Y”)’ = ( (C,  - C’(Y’)’) (Y’)’)/Y’. (5.18) 

Now we again use the third ansatz in conjunction with the integrating factors A = 1 and 
A = l/(y’)’ together with the differential invariant a = yy”/(y’)‘ arising from the invariance 
of ODE (5.13) under scalings in both x and y .  

Using the integrating factor 1, we try A = A,  =A&). The adjoint symmetry determining 
equation (5.14) yields f = a’. Feeding this into the second ansatz, we first substitute 
A = AF = F(C,) a’ into the adjoint-invariance restriction (5.1 5). Unfortunately, this yields 
F = 0. Next we substitute A = A ,  = F(C,) a’ into (5.1 5) ,  which then becomes a polynomial 
with terms y(6) ,y(4)y(5) ,y(5) ,  (y‘,)),, (y (4) )2 ,y (4) .  The coefficient of y“) yields F = l/(Cz)‘. One 
can then check that 

satisfies (5.15). From our construction formula we obtain the corresponding first integral 

@ = (yy”/y’)’/C, + (y’)’ = c,. 
However, one can show that the first integral (5.19) is inessential, since C,  = C,/C, .  

adjoint symmetry determining equation (5.14) leads to 
Finally, using the integrating factor l/(y’)’, we try A = A, =fla)/(y’)’. In this case, the 

c / a  
1 + (c/a)’ 

f = tan-’(c/a) + (5.20) 

with c = const. Here c arises from the scaling symmetry a+a/c admitted by the 
determining ODE satisfied by fla). 

One can check that A = fla)/(y’)’ does not satisfy the adjoint-invariance determining 
equation (5.15). Now we try a variant of the second ansatz as follows. We substitute A = 
AF = F(C,) f/(y’)’, where f is given by equation (5.20) with c = H(C,), into the adjoint- 
invariance determining equation (5.15). This leads to F = (CJ3/’ and H = (Cz)’/’. 
Consequently, we obtain the integrating factor 

and our construction formula yields the first integral 

@ = (Cz)-’/’ tan-’(</a)-lny = C,. (5.21) 

The first integrals (5.16), (5.17) and (5.21) reduce the ODE (5.13) to a first order ODE. In 
particular, we have 

y’dC,/C,  - (y’)’ = y cot( <(C4 +In y)).  

Isolating y’, we obtain 
y’ = Gsin(<(C,+lny)) .  
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6 Conclusion 

For any system of ODES, we have derived determining equations which are necessary and 
sufficient conditions satisfied by its integrating factors. In particular, the solutions of these 
determining equations yield all integrating factors. We have also derived a simple explicit 
formula which yields a first integral for each solution. For an nth-order scalar ODE the 
determining equations are a linear system of 2n - 2 PDEs consisting of the adjoint of the 
determining equation for symmetries of the nth-order ODE and an additional 2n-3 
equations when n 2 2. No additional equations arise in the case of a first-order scalar ODE. 

We have introduced special techniques to seek solutions of the determining equations. 
These techniques involve the use of known first integrals, eliminations of variables and 
symmetry considerations. We have exhibited several examples illustrating combinations of 
these techniques. 
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