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A comparison is made between the symmetries and conservation laws admitted by
nonlinear telegraph �NLT� systems. Such systems are not variational. Unlike the
situation for variational systems where all conservation laws arise from symme-
tries, there are many NLT systems that admit more conservation laws than symme-
tries. The results are summarized in a table which includes the numbers of sym-
metries and conservation laws for each NLT system. It is also indicated when
symmetries map conservation laws to other conservation laws. © 2005 American
Institute of Physics. �DOI: 10.1063/1.1915292�

I. INTRODUCTION

In this paper, we consider the problem of comparing the multipliers of conservation laws and
the point symmetries of a given nonlinear system of partial differential equations �PDEs� that is
not variational, i.e., whose associated Fréchet derivative is not self-adjoint. As a protypical ex-
ample, we consider nonlinear telegraph �NLT� systems of the form

H1�u,v� = vt − F�u�ux − G�u� = 0,

H2�u,v� = ut − vx = 0. �1�

One physical example related to system �1� is represented by the equations of telegraphy of a
two-conductor transmission line with v as the current in the conductors, u as the voltage between
the conductors, G�u� as the leakage current per unit length, F�u� as the differential capacitance, t
as a spatial variable and x as time.1 Another physical example related to system �1� is the equation
of motion of a hyperelastic homogeneous rod whose cross-sectional area varies exponentially
along the rod. Here u is the displacement gradient related to the difference between a spatial
Eulerian coordinate and a Lagrangian coordinate x, v is the velocity of a particle displaced by this
difference, G�u� is essentially the stress-tensor, F�u�=�G��u� for some constant �, and t is time
�see Refs. 2 and 3�.

A point symmetry

x* = x + �̂�x,t,u,v�� + O��2� ,

t* = t + �̂�x,t,u,v�� + O��2� ,

u* = u + �̂�x,t,u,v�� + O��2� ,
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v* = v + �̂�x,t,u,v�� + O��2� , �2�

with corresponding infinitesimal generator �in evolutionary form�

X = ��u + ��v

is admitted by system �1�4–6 if and only if

X�1�H1�u,v��H1�u,v�=0,

H2�u,v�=0
� = 0,

�3�
X�1�H2�u,v��H1�u,v�=0,

H2�u,v�=0
� = 0,

where X�1� is the first extension of X and

� = �̂�x,t,u,v� − �̂�x,t,u,v�ux − �̂�x,t,u,v�ut,

� = �̂�x,t,u,v� − �̂�x,t,u,v�vx − �̂�x,t,u,v�vt.

The Fréchet derivative associated with system �1� is the linear operator

L�u� = � Dt − Dx

− F��u�ux − F�u�Dx − G��u� Dt
� , �4�

and it yields the linearized system of �1� given by

L�u����

�
��H1�u,v�=0,

H2�u,v�=0

= 0 �5�

in terms of total derivative operators Dx and Dt. It is easy to show that a point symmetry of system
�3� is any solution �� ,��= �� ,�� of the linearized system �5�.

On the other hand, a set of multipliers

� = ��x,t,U,V�, 	 = 	�x,t,U,V� , �6�

yields a conservation law of system �1� if and only if

EU���x,t,U,V�H1�U,V� + 	�x,t,U,V�H2�U,V�� � 0,

EV���x,t,U,V�H1�U,V� + 	�x,t,U,V�H2�U,V�� � 0, �7�

for all differentiable functions U�x , t� and V�x , t�, where

EU =
�

�U
− Dx

�

�Ux
− Dt

�

�Ut
, EV =

�

�V
− Dx

�

�Vx
− Dt

�

�Vt

are Euler operators. One can show that a necessary condition for 	��x , t ,U ,V� ,	�x , t ,U ,V�
 to be
a set of multipliers for a conservation law of system �1� is that

L*�u�����x,t,u,v�
	�x,t,u,v� ��H1�u,v�=0,

H2�u,v�=0

= 0, �8�

where in terms of the Fréchet derivative operator L�u�, the adjoint operator L*�u� is the unique
operator having the property that
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�
,��L�u���

�
� − ��,��L*�u��


�
�

is a divergence expression for any differentiable functions 
, �, �, and �.4,7–9 It is easy to show
that for the Fréchet derivative operator L�u� defined by �4�, one has

L*�u� = �− Dt F�u�Dx − G��u�
Dx − Dt

� .

In the study of physical systems, the importance of conservation laws is well known, includ-
ing connections with integrability, linearization and modern numerical methods. Conservation
laws are intrinsic properties of field equations since they must hold for any posed data. Familiarly,
conservation laws are derived from variational principles through Noether’s theorem.4,5 A given
system of PDEs �linear or nonlinear� can be directly obtained from a variational principle if and
only if its Fréchet derivative is self-adjoint,4,10 i.e., L*�u�=L�u�. Noether’s theorem yields a con-
servation law for any point symmetry �2� that leaves invariant the action functional of the varia-
tional principle. This is equivalent to the Euler operator annihilating the scalar product of the
multipliers and the given system of PDEs’ functions in which solutions �u ,v� are replaced by
arbitrary differentiable functions �U ,V�, i.e., system �7�. Consequently, any set of multipliers for a
conservation law of a system of PDEs having a variational principle must also be admitted
symmetries of the given system. Hence, when a system of PDEs has an associated self-adjoint
Fréchet derivative, its multipliers for conservation laws are a subset of its admitted symmetries.

It is well known that for a linear system of PDEs, any solution of its adjoint system yields a
set of multipliers for a conservation law since for any linear operator L, a divergence expression
is yielded by vLu−uL*v. Moreover, from this it follows that if a given nonlinear system of PDEs
can be mapped into a linear system by a point or contact transformation, then its infinite number
of admitted symmetries exhibit this linear system and its infinite number of multipliers for con-
servation laws exhibit the adjoint of this linear system.5,11,12

It is easy to show that for any F�u� and G�u�, the NLT system �1� is not self-adjoint. The extra
conditions beyond the necessary condition �8� for ��x , t ,U ,V�, 	�x , t ,U ,V� to be multipliers for a
conservation law of system �1� are given in Refs. 7–9. At first sight, one might think that a given

system �1� admits more point symmetries �2� which involve four unknowns 	�̂ , �̂ , �̂ , �̂
 than sets of
multipliers of the form �6� which involve only two unknowns 	� ,	
. However, we will show that
for many NLT systems �1�, there are more admitted sets of multipliers of the form �6� than
admitted point symmetries �2�.

The point symmetry and conservation law classifications of the NLT system �1� have been
separately investigated in Refs. 13 and 14, respectively. In Ref. 15, it is shown how to obtain new
conservation laws from the action of an admitted symmetry on a known conservation law.

In Sec. II, we give the determining equations for point symmetries and multipliers admitted by
NLT systems �1�. We present the Symmetry and Conservation Law Classification Table for NLT
systems �1� and show that when �1� is not linearizable, there are many cases where it can admit,
nontrivially, one symmetry and four, three, two or zero conservation laws as well as cases where
it can admit, nontrivially, zero symmetries and four or two conservation laws. We also comment
on situations when a symmetry maps a conservation law into another conservation law�s�. Further
comments are presented in Sec. III.

II. COMPARISON OF SYMMETRIES AND CONSERVATION LAWS FOR NLT SYSTEMS

By inspection, any NLT system �1� obviously admits, as point symmetries, translations t→ t
+�1, v→v+�2, and x→x+�3, corresponding to admitted infinitesimal generators X1=ut�u+vt�v,
X2=�v, and X3=ux�u+vx�v, respectively, as well as a set of multipliers �� ,	�= �0,1� since the
second PDE of any NLT system �1� is written as a conservation law. Any additional admitted point
symmetries or sets of multipliers for conservation laws are considered to be nontrivial.
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A point symmetry �2� admitted by an NLT system �1� is represented by any solution

	�̂�x , t ,u ,v� , �̂�x , t ,u ,v� , �̂�x , t ,u ,v� , �̂�x , t ,u ,v�
 of the linear determining system of PDEs4–6

�̂v − �̂u = 0,

�̂u − �̂v + �x − �t = 0,

G�u��̂v + �̂t − �̂x + G�u��̂x = 0,

�̂u − F�u��̂v = 0,

�̂u − G�u��̂u − F�u��̂v = 0,

G�u��̂v + �̂t − F�u��̂x = 0,

��̂v − �̂t − 2G�u��̂v − �̂u + �̂x�F�u� − F��u��̂ = 0,

��̂v − �̂t − G�u��̂v�G�u� − F�u��̂x − G��u��̂ + �̂t = 0. �9�

The complete solution of the determining system �9� is presented in Ref. 13.
A set of multipliers for a conservation law of an NLT system �1� is represented by any solution

	��x , t ,U ,V� ,	�x , t ,U ,V�
 of the linear determining system of PDEs7,9

	V − �U = 0,

	U − F�U��V = 0,

	x − �t − G�U��V = 0,

F�U��x − 	t − G�U��U − G��U�� = 0. �10�

The complete solution of the determining system �10� and the corresponding conservation laws are
presented in Ref. 14.

Equivalence transformations10,11 simplify the symmetry and conservation law classifications
of NLT systems �1�. In particular, in Refs. 13 and 14, it is shown how to obtain the corresponding

conservation law for any �F̄�u� , Ḡ�u�� pair related to the conservation law for a given �F�u� ,G�u��
pair through any similarity transformation

F̄�u� = 
F�
u + ��, Ḡ�u� = �G�
u + �� + � . �11�

In the following Symmetry and Conservation Law Classification Table �Table I�, we list and
compare the additional admitted nontrivial symmetries and nontrivial conservation laws for all
possible pairs �F�u� ,G�u��, modulo any similarity transformation �11�. For each such pair, we
indicate the number of additional admitted point symmetries, the number of additional admitted
conservation laws, list all such admitted point symmetries in evolutionary form, show where to
find such admitted conservation laws in Ref. 14, and state pertinent comments. Most important, in
the comments column we indicate where an admitted symmetry can map a conservation law to
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TABLE I. Symmetry and conservation law classification table.

G�u� F�u�

Number of additional
point symmetries;

listing of symmetries

Number of additional
conservation laws;

see Ref. 14 for
conservation laws

Comments;
symmetry

mappings of
conservation

laws �Ref. 15�

0 Arbitrary � X= �−A�u ,v�ux+B�u ,v�ut��u

+�−A�u ,v�vx+B�u ,v�vt��v

with
Au=−F�u�Bv ,Av=−Bu

� Multipliers
�=a�U ,V�,
	=b�U ,V�

with
aU=bV,

F�U�aV=bU

Linearizable
by a hodograph
transformation;
�a ,b� system
is adjoint of

�A ,B� system

u 1 � X�=B�x , t��u−A�x , t��v

with
Ax+Bt=0,

At+Bx+B=0

� Multipliers
�=b�x , t�,
	=a�x , t�

with
ax=bt,

at=bx−b

Linear system;
�a ,b� system
is adjoint of

�A ,B� system

u 1 X= �2u−2xux− tut��u

+�3v−2xvx− tvt��v

4 Table 4: Case 1
with �2=1,
�1=�3=0

t→ t+�

maps ��3 ,	3�
to additional
three ��i ,	i�,

i=1,2 ,4

u
�
�0,1� 1 X= �2u−2
xux−
tut��u

+��2+
�v−2
xvx−
tvt��v

2 Table 1 t→ t+�

maps ��1 ,	1�
to ��2 ,	2�

e
u�
�0� 1 X= �2−2
xux−
tut��u

+�
v+2t−2
xvt��v

2 � �

u2+
1u+
2

�
1
2�4
2�

0 4 Table 4: Case 1
with �1=1,

�2=
1 ,�3=
2

In Ref. 14: in Table 1,
t→ t+� maps

��1 ,	1� to ��2 ,	2�;
in Table 3,

�t ,V�→ �−t ,−V�
maps a different

��1 ,	1�
to a different ��2 ,	2�

than for Table 1

All other F�u� 0 2 Table 1 t→ t+�

maps ��1 ,	1�
to ��2 ,	2�

u−1 u−2 � X= �u−1A�û ,v�ux�
�−B�û ,v�ut+A�û ,v���u

+�u−1A�û ,v�vx�
�−B�û ,v�vt��u

with
Av+Bû=0,

Aû+Bv−A=0
�û=x+ln u�

� Multipliers

�=e−xb�Û ,V�,
	=a�Û ,V�

with

aV−e−ÛbÛ=0,

aÛ−e−ÛbV=0

�Û=x+ln U�

Linearizable;
�a ,b� system
is adjoint of

�A ,B� system

u−1 1 X= �2xux+3tut−2u��u

+�2xux+3tut−v��v

4 Table 5: Case 1
with �2=1,
�1=�3=0

V→V+�

maps ��3 ,	3�
to additional
three ��i ,	i�,

i=1,2 ,4
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TABLE I. �Continued.�

G�u� F�u�

Number of additional
point symmetries;

listing of symmetries

Number of additional
conservation laws;

see Ref. 14 for
conservation laws

Comments;
symmetry

mappings of
conservation

laws �Ref. 15�

u−1 �u+1�� u2 1 X= �2�x+ln u−1/u�ux�
�+ �3t+2v�ut−2�u+1���u

+�2�x+ln u−1/u�vx�
�+ �3t+2v�vt−v��v

4 Table 5: Case 1
with �3=0,
�1=�2=1

X maps ��3 ,	3�
to ��2 ,	2�;
V→V+�

maps ��3 ,	3�
to additional
three ��i ,	i�,

i=1,2 ,4

�u±1��� u2

���0,1�
1 X= �2��x±�F�u�du�ux�

+���+2�t±2v�ut

�−2�u±1���u

+�2��x±�F�u�du�vx�
+���+2�t±2v�vt

�−�v��v

2 Table 1 V→V+�

maps ��2 ,	2�
to ��1 ,	1�

u


�
�−1,−2�
1 X= �2�2+
�xux�

+��4+
�tut−2u��u

+�2�2+
�xux�
�+ �4+
�tut− �2+
�v��u

2 � �

u−2e
u

�
�0�
1 X= ��2
x+2�F�u�du�ux�

�+ �
t+2v�ut−2��u

��2
x+2�F�u�du�vx�
�+ �
t+2v�vt−
v��v

2 � �

u−2+
1u−1+
2

�
1
2�4
2�,
�
2�0�

0 4 Table 5: Case 1
with

�1=1, �2=
1,
�3=
2

In Ref. 14: in Table 1,
V→V+� maps

��2 ,	2� to �	1 ,	1�;
in Table 3,

�t ,V�→ �−t ,−V�
maps a different

��1 ,	1�
to a different ��2 ,	2�

than for Table 1

All other F�u� 0 2 Table 1 v→v+�

maps ��2 ,	2�
to ��1 ,	1�

u�

���0, ±1�
u�−1 1 X= ���−1�tut+2u��u

+���−1�tvt�
�+ �1+��v��v

3 Table 3: Case 2
with

�=�, �=0

t→ t+�

maps ��1 ,	1�
to ��3 ,	3�;
V→V+�

maps ��3 ,	2�
to ��3 ,	3�

u�����−1� 1 X= �2��−�−1�xux�
�+ �2�−�−2�tut+2u��u

+�2��−�−1�xux�
+�2�−�−2�tvt

�+ �2+����u

0

u�−1+�
���0�

0 2 Table 3: Case 2
with

�=�, �=�2�

�t ,V�→ �−t ,−V�
maps ��1 ,	1�
to ��2 ,	2�k
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TABLE I. �Continued.�

G�u� F�u�

Number of additional
point symmetries;

listing of symmetries

Number of additional
conservation laws;

see Ref. 14 for
conservation laws

Comments;
symmetry

mappings of
conservation

laws �Ref. 15�

u�

���0, ±1�
u�−1

+��u�+��2

���0�

0 2 Table 3: Case 1
with


=�, 
=�2�,
�=�

�

ln u u−1 1 X= �tut−2u��u

+�tvt−v−2t��v

3 Table 3: Case 2
with

�=1, �=0

X maps ��2 ,	2�
to ��1 ,	1�;

t→ t+�

maps ��1 ,	1�
to ��3 ,	3�

u


�
�−1�
1 X= �2�
+1�xux+ �
+2�tut�

�−2u��u

+�2�
+1�xvx+ �
+2�tvt�
�− �2t+ �2+
�v���v

0

u−1+

�
�0�

0 2 Table 3: Case 2
with

�=1, �=


�t ,V�→ �−t ,−V�
maps ��1 ,	1�

to ��2 ,	2�

u−1

+��ln u+��2

���0�

0 2 Table 3: Case 1
with


=1, 
=�,
�=�

�

ln−1 u 1/ �u ln2 u� 1 X= �−2 ln−1 uux�
�+ �t+2v�ut−2u��u

+�−2 ln−1 uvx�
�+ �t+2v�vt−v��v

3 Table 3: Case 2
with

�=−1, �=0

X maps ��1 ,	1�
to ��2 ,	2�;

t→ t+�

maps ��1 ,	1�
to ��3 ,	3�

u� / ln2 u
���−1�

1 X=2����+1�x+�F�u�du�ux�
�+ ���+2�t+2v�ut−2u��u

+2����+1�x+�F�u�du�vx�
+���+2�t+2v�vt

�− ��+2�v��v

0

1/ �u ln2 u�+

�
�0�

0 2 Table 3: Case 2
with

�=−1, �=


�t ,V�→ �−t ,−V�
maps ��1 ,	1�

to ��2 ,	2�

1/ �u ln2 u�
+��ln−1 u+��2

���0�

0 2 Table 3: Case 1
with


=−1, 
=�,
�=�

�

eu eu 1 X= �2+ tut��u

+�v+ tvt��v

Table 6: Case 4
with

�1=�3=0,
�2=1

V→V+�

maps ��4 ,	4�
to ��1 ,	1�;

t→ t+�

maps ��4 ,	4�
to ��2 ,	2�;

X maps ��4 ,	4�
to ��3 ,	3�
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other conservation laws through the methods presented in Ref. 15. In particular, we show that in
many cases the obvious admitted point symmetries t→ t+�1 and v→v+�2 are very useful to
obtain new conservation laws from a known conservation law.

TABLE I. �Continued.�

G�u� F�u�

Number of additional
point symmetries;

listing of symmetries

Number of additional
conservation laws;

see Ref. 14 for
conservation laws

Comments;
symmetry

mappings of
conservation

laws �Ref. 15�

eu e
u

�
�0,1�
1 X= �2�
−1�xux�

�+ �
−2�tut−2��u

+�2�
−1�xvx�
�+ �
−2�tvt−
v��v

0

eu+

�
�0�

0 4 Table 6: Case 4
with

�1=0, �2=1,
�3=


t→ t+�

maps ��3 ,	3�
to ��1 ,	1�;

�t ,V�→ �−t ,−V�
maps ��3 ,	3�

to ��4 ,	4�
and maps ��1 ,	1�

to ��2 ,	2�
e2u+
1eu+
2

�
1
2�4
2�

0 4 Table 6: Case 1
with

�1=1, �2=
1,
�3=
2�0

�t ,V�→ �−t ,−V�
maps ��1 ,	1�

to ��2 ,	2�

�1=eA sin B,
	1=eA�r cos B�

�−eU sin B�
with

A=a�x+eU�
+ 1 � 2�a
1

−1�U
+
t−�V,

B=�t+
V−b�x�
�+eU

+ 1 � 2
1U�;
a ,b ,r ,
 ,
 ,� ,�

are given in
Table 6: Case 2

with �1=1,
�2=
1,

�3=
2�0

�t ,V�→
�t+c1 , V+c2�
maps ��1 ,	1�

to ��2 ,	2�;
�t ,V�→ �−t ,−V�

maps ��1 ,	1�
to ��3 ,	3�;

�t ,V�→
�−t+c1 ,−V+c2�
maps ��1 ,	1�

to ��4 ,	4�
�c1=
1� /2�

2
 ,

c2=�

2
��

Table 6: Case 5
with

�1=1, �2=
1,
�3=
2=0

t→ t+�

maps ��3 ,	3�
to ��1 ,	1�;

�t ,V�→ �−t ,−V�
maps ��3 ,	3�
to ��4 ,	4� and

maps
��1 ,	1� to ��2 ,	2�

�eu+
�2

�
�0�
0 2 Table 6: Case 3

with
�1=1, �2=2
,

�3=
2

�t ,V�→ �−t ,−V�
maps ��1 ,	1�

to ��2 ,	2�
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III. FURTHER DISCUSSION

�1� As can be seen in the Symmetry and Conservation Law Classification Table �Table I�, for
each �F�u� ,G�u�� pair where the NLT system �1� admits nontrivial conservation laws, there exists

TABLE I. �Continued.�

G�u� F�u�

Number of additional
point symmetries;

listing of symmetries

Number of additional
conservation laws;

see Ref. 14 for
conservation laws

Comments;
symmetry

mappings of
conservation

laws �Ref. 15�

u�±1

u��1
���0, ±1�

u�−1

�u��1�2

1
X= �� 1

2

u�±1

u��1
ux

+ �t+�v�ut−2u��u

+�� 1
2

u�±1

u��1
vx

+ �t+�v�vt−��t+v���v

3 Table 3: Case 2
with

�= �2�, �=0

X maps ��1 ,	1�
to ��2 ,	2�;

t→ t+�,
maps ��1 ,	1�

to ��3 ,	3�;
V→V+�,

maps ��2 ,	2�
to ��3 ,	3�

u�+�−1

�u��1�2

���0�

1 X= ��2�x+��F�u�du�ux�
�+ ���+1�t+�v�ut−2u��u

+��2�x+��F�u�du�vx�
+���+1�t+�v�vt

�− ��t+ ��+1�v���v

0

u�−1

�u��1�2 +


�
�0�

0 2 Table 3: Case 2
with

�= �2�,
�= �2��2


�t ,V�→ �−t ,−V�
maps ��1 ,	1�

to ��2 ,	2�

u�−1

�u��1�2

+�� u�±1

u��1
+��2

���0�

0 2 Table 3: Case 1
with


= �2�,

= �2��2�,

�=�

�

tan�� ln u�
���0�

u−1 sec2�� ln u� 1 X= �−2 tan�� ln u�ux�
�+ �t−2�v�ut−2u��u

+�−2 tan�� ln u�vx�
+�t−2�v�vt

�− �2�t+v���v

3 Table 3: Case 2
with

�=�, �=0

X maps ��1 ,	1�
to ��2 ,	2�;

t→ t+�,
maps ��1 ,	1�

to ��3 ,	3�;
V→V+�,

maps ��2 ,	2�
to ��3 ,	3�

u� sec2�� ln u�
���−1�

1 X= �2���+1�x
−��F�u�du�ux�
�+ ���+2�t−2�u�ut

−2u��u

+�2���+1�x−��F�u�du�vx�
+���+2�t−2�v�vt

�+ �2�t+ ��+2�v���v

0

� sec2�� ln u�� u � +

�
�0�

0 2 Table 3: Case 2
with

�=�, �=�2


�t ,V�→ �−t ,−V�
maps ��1 ,	1�

to ��2 ,	2�

� sec2�� ln u�� u � +����
�+tan�� ln u��2

���0�

0 2 Table 3: Case 1
with


=�, 
=�2�,
�=�

�

073513-9 Symmetries and conservation laws of NLT equations J. Math. Phys. 46, 073513 �2005�

Downloaded 23 Jul 2009 to 137.82.36.67. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



TABLE I. �Continued.�

G�u� F�u�

Number of additional
point symmetries;

listing of symmetries

Number of additional
conservation laws;

see Ref. 14 for
conservation laws

Comments;
symmetry

mappings of
conservation

laws �Ref. 15�

tanh u sech2 u 1 X= �tanh uux+vut−1��u

+�tanh uvx+vvt− t��v

4 Table 7: Case 3
with

�1=1,
�2=�3=0

t→ t+�

maps ��4 ,	4�
to ��i ,	i�, i=1,3;

V→V+�,
maps ��4 ,	4�

to ��i ,	i�, i=2,3;
X maps ��1 ,	1�

to ��2 ,	2�

e�u sech2 u
���0�

1 X= �2��x+�F�u�du�ux�
�+ ��t+2v�ut−2��u

+�2��x+�F�u�du�vx�
�+ ��t+2v�vt− �2t

+�v���v

0

tanh u+� 0 4 Table 7: Case 1
with �1=0,

�2=1, �3=�,

�
�1

�t ,V�→ �−t ,−V�
maps ��1 ,	1�

to ��2 ,	2�

�1

=eA cosh U cos B,

	1=��1
−��1/2� 1

+e2U�eA cosh U
��sin B

−re2U cos B�
with

A=a�x+ 1
2U�

−��t+
V�,
B=−b�x+ 1

2U�
−�
t+�V�,

a ,b ,r ,
 ,
 ,� ,�
are given in

Table 7: Case 2
with �1=0,

�2=1, �3=�,

�
�1

�t ,V�→
�t+c1 ,V+c2�

maps ��1 ,	1�
to ��2 ,	2�;

�t ,V�→ �−t ,−V�
maps ��1 ,	1�

to ��3 ,	3�;
�t ,V�→

�−t+c1 ,−V+c2�
maps ��1 ,	1�

to ��4 ,	4�
�c1=−� /4�1−� , ��

�c2= �2�
−1�� /4�1−��

Table 7: Case 3
with �1=0,

�2=1, �3=�,

�
=1

t→ t+�

maps ��3 ,	3�
to ��1 ,	1�;

�t ,V�→ �−t ,−V�
maps ��1 ,	1�

to ��2 ,	2�
and maps ��3 ,	3�

to ��4 ,	4�

tanh2 u+�
���−1,0�

0 4 Table 7: Case 1
with

�1=−1, �2=0,
�3=1+�

�t ,V�→ �−t ,−V�
maps ��1 ,	1�

to ��2 ,	2�
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an admitted group of point transformations �discrete and/or continuous� that maps a conservation
law to one or more �up to three� new conservation laws for the same �F�u� ,G�u�� pair through use
of the work presented in Ref. 15.

TABLE I. �Continued.�

G�u� F�u�

Number of additional
point symmetries;

listing of symmetries

Number of additional
conservation laws;

see Ref. 14 for
conservation laws

Comments;
symmetry

mappings of
conservation

laws �Ref. 15�

tanhu

tanh2 u
+
1 tanh u+
2

�
1
2�4
2 ,
1�0�

0 4 Table 7: Case 1
with �1=−1,
�2=
1, �3=1

+
2,

1+
2
� 

1


�t ,V�→ �−t ,−V�
maps ��1 ,	1�

to ��2 ,	2�

Table 7: Case 2
with

�1=−1, �2=
1

�0,
�3=1+
2,


1+
2
�−
1

�t ,V�→
�t+c1 ,V+c2�
maps ��1 ,	1�

to ��2 ,	2�;
�t ,V�→ �−t ,−V�

maps ��1 ,	1�
to ��3 ,	3�;

�t ,V�→
�−t+c1 ,−V+c2�
maps ��1 ,	1�

to ��4 ,	4�

�c1=
�2+
1��

4�−�1+
1+
2� �,
�c2=

−
�
1+2
2��

4�−�1+
1+
2� �
�1

=eA cosh1+a u cos B,
	1

= � �
1− �1+
2�

1+e2U �eA

�cosh1+a U�sin B�
�−re2U cos B�

with
A=a�x− 1

2U�
−��t+
V�,

B=−b�x
+ln cosh U�
+ 1

2
1U�− �
t
+�V�;

a ,b ,r ,
 ,
 ,� ,�
are given in

Table 7: Case 2
with �1=−1,
�2=
1�0,
�3=1+
2,


1+
2
�
1

�t ,V�→
�t+c1 ,V+c2�
maps ��1 ,	1�

to ��2 ,	2�;
�t ,V�→ �−t ,−V�

maps ��1 ,	1�
to ��3 ,	3�;

�t ,V�→
�−t , +c1 ,−V+c2�

maps ��1 ,	1�
to ��4 ,	4�

�c1=
�2−
1��

4�
1− �1+
2� �,
�c2=

�2
2−
1��

4�
1− �1+
2� �
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�2� It can happen that a nonvariational system of PDEs can become variational through a
differential substitution. For example, the Korteweg–de Vries equation

ut + uux + uxxx = 0

is not variational but becomes variational after the differential substitution u=�x. One can show
that the differential substitution �u ,v�= ��x ,�x�, leads to an NLT system �1� that is variational if

TABLE I. �Continued.�

G�u� F�u�

Number of additional
point symmetries;

listing of symmetries

Number of additional
conservation laws;

see Ref. 14 for
conservation laws

Comments;
symmetry

mappings of
conservation

laws �Ref. 15�

tanh u tanh2 u
+
1 tanh u+
2

�
1
2�4
2 ,
1�0�

0 4 Table 7: Case 3
with �1=−1,
�2=
1, �3=1

+
2,

�3
= 

1


t→ t+�

maps ��3 ,	3�
to ��1 ,	1�;

�t ,V�→ �−t ,−V�
maps ��1 ,	1�

to ��2 ,	2�
and maps ��3 ,	3�

to ��4 ,	4�

�tanh u+��2

��� ±1�
0 2 Table 7: Case 5

with �1=−1,
�2=2�,

�3=1+�2

�t ,V�→ �−t ,−V�
maps ��1 ,	1�

to ��2 ,	2�

1 0 2 Table 7: Case 5
with �3=1
�1=�2=0

�

coth u e�u cosh2 u 1 See comments 0
or
4

See comments Symmetries and
conservation laws
obtained from the
the cases where

G�u�=tanh u
through

equivalence
transformation

�x , t ,u ,v�→

�x , t ,u+
�

2
i ,v�


1 coth2 u
+
2 coth u+
3

0 2
or
4

See comments

tan u sec2 u 1 X= �1+tan uux+vut��u

+�t+tan uvx+vvt��v

4 Table 8: Case 2
with �1=1,
�2=�3=0

V→V+�

maps ��1 ,	1�
to ��i ,	i�, i=2,3;

t→ t+�

maps ��1 ,	1�
to �i ,	i, i=1,3;
X maps ��1 ,	1�

to ��2 ,	2�

e�u sec2 u
���0�

1 X= �2��x−�F�u�du��ux

�+ ��t−2v�ut−2��u

+�2��x−�F�u�du��vx

+��t−2v�vt

�− �2t+�v���v

0

tan u+� 0 4 Table 8: Case 1
with �1=0,
�2=1, �3=�

�t ,V�→ �−t ,−V�
maps ��1 ,	1�

to ��2 ,	2�
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and only if G�u�=const �in this variational case, the NLT system �1� is linearizable by a hodograph
transformation�.

�3� In general, suppose a system of PDEs with two dependent variables �u ,v� and two inde-
pendent variables �x , t� is not variational but becomes variational through the differential substi-
tution �u ,v�= ��x ,�x�, then an admitted point symmetry

� = �̂�x,t,�,�� − �̂�x,t,�,���x − �̂�x,t,�,���t,

� = �̂�x,t,�,�� − �̂�x,t,�,���x − �̂�x,t,�,���t,

of the variational system would yield multipliers of the form 	��x , t ,U ,V� ,	�x , t ,U ,V�
 of the

given system, if and only if �̂�x , t ,� ,��=0 and �̂, �̂ and �̂ do not depend explicitly on � and �
�otherwise, such a set of multipliers yields a set of nonlocal multipliers and nonlocal symmetries
of the given system�. Conversely, suppose the given system admits a conservation law resulting
from a set of multipliers of the form 	��x , t ,U ,V� ,	�x , t ,U ,V�
, then such a set of multipliers
yields a point symmetry admitted by the variational system if and only if �V=�UU=	U=	VV=0
�otherwise, such a set of multipliers would yield a local �but not point� symmetry admitted by the
variational system�.

�4� In general, for a nonvariational system of PDEs, there is a direct connection between
conservation laws and symmetries if the system is linear or directly linearizable by a point or
contact transformation. For the other exhibited cases, in view of the previous two remarks it would
be interesting to investigate if there exist nonlocal symmetries directly connected to the conser-
vation laws.
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