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Abstract

A complete conservation law classification is given for nonlinear telegraph (NLT) systems with re-
spect to multipliers that are functions of independent and dependent variables. It turns out that a very
large class of NLT systems admits four nontrivial local conservation laws. The results of this work
are summarized in tables which display all multipliers, fluxes and densities for the corresponding
conservation laws. A physical example is considered for possible applications.
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1. Introduction

In this paper we give the complete conservation law classification for nonlinear tele-
graph (NLT) systems of the form

Hiu,v]=v; — F(u)uy — G(u) =0,
Holu,vl=u; — vy =0, 1)

with respect to a class of multipliers that are functions of the independent and dependent
variables of the system.
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In [1], it is shown how to find the multipliers for conservation laws of a given system
of PDEs. In [2] and [3], the direct construction method is presented to obtain the multi-
pliers and, through an integral formula, the corresponding conservation laws for a given
system of partial differential equations (PDEs). Connections between multipliers and the
linearization of a given system of PDEs are presented in [4].

One physical example related to system (1) is represented by the equations of teleg-
raphy of a two-conductor transmission line withas the current in the conductots as
the voltage between the conductofsu) as the leakage current per unit lengi) as
the differential capacitance,as a spatial variable andas time [5]. Another physical ex-
ample related to system (1) is the equation of motion of a hyperelastic homogeneous rod
whose cross-sectional area varies exponentially along the rod.Hsthe displacement
gradient related to the difference between a spatial Eulerian coordinate and a Lagrangian
coordinatex, v is the velocity of a particle displaced by this differenG&y) is essentially
the stress-tensoF, (1) = AG’(u) for some constant, andt is time (see [6,7]).

The complete point symmetry classification of system (1) is given in [8]. As far as the
authors know, a classification of the conservation laws of (1) for various forrAgugfand
G (1) has not yet been presented.

Two functionst = &(x, ¢, U, V) and¢ = ¢ (x, t, U, V) aremultipliersof a conservation
law of system (1) if they satisfy

EH1[U,V]+¢H[U,V]1= DX + DT (2)

for all differentiable functiond/ (x, r) andV (x, t) and some differentiable functiods=
X(x,t,U,V)andT =T(x,t, U, V). Consequently, the conservation law

DX +D,T=0 (3)

holds for all solutiond/ = u(x, t), V = v(x, tr) of NLT system (1) withflux X (x, ¢, u, v)
anddensityT (x, ¢, u, v). Throughout this papefl, V) denotes arbitrary functions af
andr; (u, v) denotes solutions of PDE system (1).

The necessary and sufficient conditions §qr, r, U, V), ¢ (x, ¢, U, V) to yield multi-
pliers for a conservation law of (1) are that the Euler operaligrand Ey with respect to
U andV, respectively, annihilate the left-hand side of (2), i.e.,

Ey[¢(x.t, U, VYU = Vi) +&(x, 1, U, V)(V, = FU)U, — G(U))]
Ey[¢px.1,U,V)(U; — Vi) +£x, 1, U, V)(V, = F(U)Uyx — G(U))]

0.
0,

for all differentiable functiong/ (x, t) andV (x, t), where
ad d d a d d
=——Dx— —Di—, Ey=— —Dy— —Di—;
oU oU, aU; av aVy aV;
D,, D, are total derivative operators with respect to the independent varialaled:. In
particular,

Ey

D—a—i—Ua—i—Va—i-U 8+U a+v 9
TTox T You T Yav T TMau, T MU, T o,
9
+Vy—+---, etc

aV;
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Consequently, we obtain the following determining equationg fand¢:

¢v — &y =0, (4a)
¢v — F(U)éy =0, (4b)
¢ —& — G(U)Ev =0, (4c)
F(U)gx — ¢ — G(U)éy — G'(U)E =0, (4d)

with x, ¢, U, V as independent variables afdp as dependent variables.

In Section 2, we give equivalence transformations of NLT system (1) in order to simplify
subsequent calculations and presentations of results. In Section 3, we give the complete
classification of NLT systems (1) that admit conservation laws resulting from multipliers
of the formé&(x,t, U, V), ¢ (x,t,U, V). The pairs ofF (1), G(«) admitting conservation
laws and the corresponding multipliers, fluxes and densities are given in Tables 1, 3-8.
The second physical example is considered in Section 4. Further comments are presented
in Section 5.

2. Equivalence transformations of NLT system (1)

To simplify our calculations, we use equivalence transformations of NLT system (1).
In particular, one has the following theorem.

Theorem 1. Any transformation of the form

x=ax +b, t=ct+d, U=aU+8, V=yV+pi+38,

- - oc - - c 14

FU)=—F), GU)=-GW) -~ (5)

ay 14 Y

with aa = yc, aayc # 0, is an equivalence transformation BLT system(1), i.e., trans-
formation(5) maps theNLT systen(1) to theNLT systen{H) given by

Hila, 9] = 7 — F @)z — G (@) =0,

Holi, o] = 7 — vz =0, (H)
whereH1[U, V1= LHi[U, V], Ho[U, V] =L H[U, V1.

The identity (2) and transformation (5) directly lead to the following proposition.

Proposition 1. An equivalence transformatiqi®) induces a one-to-one mapping between
conservation laws of systed) and conservation laws of systefd). In particular, if

X =X(x,t,u,v), T =T(x,t,u,v) are the flux and density for a conservation law of
NLT system(1) corresponding to the multiplieéss=&(x,t, U, V), ¢ = ¢ (x,t,U, V), then
the equivalence transformatiai®) maps(X, T) and (£, ¢) to the flux and densitx’ =
X'(x,t,u,v), T"=T'(x,t,u,v) for a conservation law of syste(hl) corresponding to
the multiplierss’ = &'(x,7,U, V), ¢' = ¢'(x,1, U, V) with
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X'(%,1,0,0) =cX @k +b,ci+d,ai+ B, yv+ pi +6),

T'(,t,u,0) =aT(ax +b,ct +d,ai+ B, yv + pt +8);

E'(x,1,U,V)=ay&@x +b,ct +d,aU + B, yV + pi +9),

¢ (X, 1, U, Vy=cyp(ax +b,ct+d,aU + B, yV + pi +8). (6)

This proposition means that if the conservation laws of system (1) are known for a given
pair (F (1), G(u)), then through the equivalence transformation (5) and corresponding re-
lations (6), one can find the conservation laws of system (1) for all p&ir&) obtained
from (F(u), G(u)) by an arbitrary translation and scalingigfan arbitrary translation and
scaling of G and arbitrary scaling of'. Throughout this paper we use such equivalence
transformations to simplify our analysis.

An important use of the equivalence transformation is to get standard representatives
for F(u) andG(u) in presenting results. For example Giiu) = Ae®* 4+ C and F(u) =
B1e?B" + BoeBU 4 B3 for constantsA, B, C, 1, B2 andBs, then, without lost of generality,
one can assume that(u) = ¢* and F (1) = e? + poe + B3 if f1#0.

Note that the parameters in an equivalence transformation can be complex. In particular,
if + and V are imaginary, then the equivalence transformation (5) with —1, ¢ =i,
a=1y=i,b=d=B=p=5=0,ie.,

X =—X, t =if, U=U, V=iV (7)
has real variables, 7, U, V. Transformation (7) maps NLT system (1) to system (H) with

F(U)=—-F), GWU)=GW). (8)
Consequently, one obtains

X'(x,t,u,0) =iX(=x,if,u,iv),

T'G,t,u,0)=—T(—X,it,u,iv);

E'(x,1,U,V)=—i&(—x,it,U,iV),

¢ (%, 1,U,V)=—¢(—x,it,U,iV). 9)

From identity (2), we see that the real and imaginary partX6f7’) and €', ¢’) in (9)
yield real conservation laws of NLT system (H).
The equivalence transformation (5) includes the continuous symmetry

X=X, t=t+d, u=u, v=0+4+6, (10)
and the discrete symmetry

X=X, t=—1+d, u=u, v=—0+26 (11)

of NLT system (1).

Later in this paper, we will see that the special equivalence transformations (7), (10)
and (11) significantly simplify the classification of the conservation laws for NLT sys-
tem (1).
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3. Determination of multipliers, fluxesand densities

In this section, we consider the problem of solving the system of determining equa-
tions (4) and finding the corresponding fluxes and densities. In particular, we find com-
patibility conditions so thaf'(x) and G (1) yield solutions of (4). Then we determine all
conservation laws of each NLT system (1) in terms of multipliers.

We first derive a formula to determine the flux and denskyT) for a known set of
multipliers €, ¢). Expanding the right-hand side of (2), one obtains

E(x,t, U, V)(Vi = FWU)Uy — GWU)) + ¢ (x, 1, U, V)(U; — Vi)
=Xy + XU + Xy Ve + T, + Ty U + Ty Vi, (12)
which must hold forall differentiable functiond/ (x,t), V (x,t). Comparing the coeffi-
cients ofU,, V;, U,, V, and the remaining terms of both sides of (12), one obtains
Ty =9, Ty =§, Xy=-FU)§,
Xy =—9, Xy +Ti =—-GU)§. (13)
By direct calculation, one can establish the following theorem.

Theorem 2. For any set of multiplierg (x, ¢, U, V), ¢ (x, t, U, V) solving the determining
systen(4), the solution of systerfi3) is given by

U \% x
Xz—/é(x,t,s,b)F(s)ds—/d)(x,t, U,s)ds—G(a)/é(s,t,a,b)ds,
a b

U v
T:/¢(x,t,s,b)ds+/§(x,t, U,s)ds. (14)
a b

MoreoverX = X (x,t,u,v) andT =T (x, t, u, v) defined by14) yield the flux and density
of the corresponding conservation law NET system(1) for any solutionU = u(x, 1),

V =v(x,t) of (1). In (14), constantsz and b are chosen so that the integrals are not
singular.

Now we consider the problem of finding all paitB(«), G (1)) so that the determining
system (4) for multiplierg (x, ¢, U, V), ¢(x, ¢, U, V) has a solution.

Note that the NLT system (1) is linearizable by a point transformation [4,9] if and only
if

c d

S G —
(au + b)2 W=
for arbitrary constants, b, ¢, d, f, or

Fu) =

F (u) is any specific function, G (u) = const.
Obviously, if
F(u) =const G(u)=u,
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then the NLT system (1) is linear. For the linearizable and linear cases, the NLT system (1)
admits an infinite number of conservation laws [4,9]. In this paper we exclude the investi-
gation of conservation laws for both the linearizable and linear cases.

Before proceeding further, note that for arbitrafyfu) and G(«), the determining
system (4) has a particular solution

£=0, ¢=const (15)

More generally, it is easy to see thati& 0, theng = const is the only possible solution of
system (4) for any specifi€ (u) andG (1). The set of multipliers (15) leads to an obvious
conservation law with flux and density given by

X =—v, T =u. (16)

For the rest part of this paper, we exclude this obvious case.

In solving system (4), we consider separately three possible cas&s(u(parbitrary;
(b) F(u) arbitrary; (c)F (1) andG (u) specific functions ofi. In (b) and (c), further sub-
cases arise.

3.1. G(u) is arbitrary

It is easy to see that if; () is arbitrary, therg = 0 follows from Eg. (4d). This leads
to solution (15) and flux and density (16). Hence the NLT system admits no additional
conservation laws.

3.2. F(u) is arbitrary

If F(u) is arbitrary, then from Eqgs. (4b, d), we hage= &y = 0 and consequently,
¢y = 0. Usinggy = 0 and takingd/0U of (4a, d), we obtain

tvu=0,  (GW)E),, =0. (17)

Consequently, the NLT system (1) admits nontrivial conservation laws for three cases of
G (u) as summarized in the following theorem.

Theorem 3. If F(u) is arbitrary, thenNLT system(1) admits nontrivial conservation laws
if and only ifG(u) =0, G(u) =u or G(u) = 1/u.

The corresponding multipliers, fluxes and densities are given in Table 1.
3.3. F(u) and G (u) are specific functions
If neither F (1) nor G(u) is an arbitrary function, the determining system (4) is solv-

able if and only if the integrability conditions faf and& are satisfied. The integrability
conditionspyy = ¢vu, dvx = ¢rv andeoy; = ¢,y yield

2G'(U)sy — F'(U)éx + G"(U)§ =0. (18)
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Table 1

F(u) is arbitrary

F(u) G(u) | Multipliers (¢, ¢); flux and density(X, T')
Arbitrary | 0 &1=U, ¢1=V;

X1=— ["sF(s)ds —v?%/2, Ty =12
Ex=t, P2=1x;

Xp=—t [" F(s)ds — vx, Tp = xu +tv.
§3=1 ¢3=0;

X3=—["F(s)ds, T3=v.

u f1=t, p1=x—12/2;
X1=(2/2—x)v—1 [" F(s)ds, Ty = (x — t2/2u + tv.

§2=1 ¢p=—1;
Xp=tv— [“F(s)ds, Tp=v—tu.

Yu | &1=U, ¢1=V;
X1=—x—v2/2— ["sF(s)ds, Ty =uv.

E2=UV, ¢pop=V2/2+x+ [VsF(s)ds;
Xo=—v3/6 —xv—v ["sF(s)ds,
To = [“(/°F(2))dz)ds + (x + v2/2u.

Using the Characteristic Set algorithm for differential polynomial systems [10] and its im-
plemented computer algebra system program, we obtain the following additional reduced
equations fok:
a(U)éxx +b(U)éx +c(U)§ =0, (19)
dU)éx —h(U)s=0 (20)
under the nondegeneracy condition
F(U)G'(U) #0.
In (19) and (20),

a(U) = G'(U)F'(U)? + 2F (U)F (U)G" (U) — 2F (U)G'(U)F"(U),

b(U) = 2[-2G'(U)F' ()G (U) — FU)G" (UY? + G (W) F'(U) + FU)G ()G U)],

c(U) = G/(U)[sG”(U)2 —-2G'(HG" ()],

d(U) = G'(U)ZF(s)(U) - 3G/ ()G F'"(U) + [3G”(U)2 -G WU)G"W|F' (),

h(U) =3G"(U)° - 4G () G" ()G (U) + G (U)?GD ). (21)
Note that if G’ (1) = 0, then system (1) is linearizable.

System (18)—(20) significantly simplifies the analysis for solving the determining sys-
tem (4) and leads to compatibility conditions f8(u) andG (u).
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Table 2

F(u) andG () in case (C3)d(u) =0, h(u) =0]
Case Gu) F(u)

A u Bluz + Bou + B3

B Yu B1/u? + Ba/u + B3

c e Bre?t + Boe + P3

D tanhu B1secifu + Botanhu + B3
E tanu B1se@u + Botanu + f3

Since¢ # 0, from (20) it follows that ifd (U) = 0, thenh(U) = 0. Thus the solution of
the determining system (4) naturally separates into three subcases:

d(U) #0, h(U) #0; (C1)
d(U)#0,  h(U)=0; (C2)
dU)=0,  hU)=0. (C3)

In subcase (C2), one can prove that the situation reduces to the cases listed in Table 1.
In subcase (C3)F («) andG (u) satisfy the coupled nonlinear system of ODEs

dw) =G W)?F® ) — 36" ()G ) F" (u)
+ [3G”(u)2 — G’ W)G" (w)|F'(u) =0, (22)
h(w) = 3G"w)® — 4G' W)G" )G (u) + G'w)>G® (u) = 0. (23)
The details for the solution of system (22), (23) are given in Appendix A. Its solutions are
summarized in Table 2.

For all other solutions of the determining system (4), using (18)—(20), one can show that
F(u) andG (1) must satisfy one of the following two conditions:

yF ) — G (u) = %(G(u) +B)? (D1)
for some constanis, g andy with o £ 0,y #0;
VF(u) — G'(u) = % (D2)

for some constants and . with v £ 0.
In summary, one has the following theorem.

Theorem 4. Under the conditionF (u)G’(u) # 0, the NLT system(1) admits nontriv-
ial conservation laws if and only it'(«) and G(u) satisfy one of the following three
conditions

@) ¥ Fu) — G'(u) = %(Gu) + p)* for some constants, a # 0, y #0;
(b) vF(u) — G (u) = % for some constants # 0, u;
(c) F(u) andG (u) take on one of the forms listed in Talde
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Table 3
Conditions (a) and (b) in Theorem 4() # 0, h(u) # 0]
Case | Restrictions Subcase| Multipliers (&, ¢); flux and density X, T)
on F(u) andG (u)
1 yF) — G () = >0 £1=A(x, U)ePBI+V)
§(Gw +p)>?, $1= 5 (GW) + A, U)el PV,
[ #0, y #0, X1=—2(Gw) + B A(x, wer BV,
p=x/lal] le%A(x,u)e'o(ﬁ’Jr“)
[AGx, U) =explyx + 7 J(GW)+ pau)].
§2=861(x,—1,U,=V), ¢p2=—¢1(x, =1, U, =V);
Xo=X1(x,—t,u,—v), To=—-T1(x, —t,u, —v).
a<0 Obtained from the subcase > 0 through trans-
formation (7);(&, ¢) and(X, T) are given by the real
and imaginary parts of (9).
2 VEw)—G'w)=5, | p>0 | &1=Ex,1)=e""TP ¢ =¢1(x,1) = B TP,
v#0, p=+VIull X1=—€”+p’(fF(u)du+§v),

T = e”xﬂ”(%u +v).

§2=81(x,—1), p2=—¢1(x, —1);
Xo=X1(x,—t,u,—v), Tp=—-T1(x, —t,u, —v).

u<0 Obtained from the subcase > 0 through trans-
formation (7);(&, ¢) and(X, T) are given by the real
and imaginary parts of (9).

n=0 Er=1e", 1= L1e";
X1= -1 (G W) +v), Ty =" (Lu+rv).

E2=Ve'™, ¢p=1GU)e";

Xo=—vGwe"™, T =1 (f Gu)du + 5v?).
g3=e"", ¢3=0;

X3:—%G(u)e”, T3 =ve"™.

Note that there exist solutions of (22), (23), i.e., case (C3), which satisfy (D1) or (D2).

The classifying functiong” (1) and G(u) and their corresponding multipliers, fluxes
and densities for conditions (a) and (b) in Theorem 4 (with the additional restriction that
d(u) #0,h(u) #0,ie., F(u) andG(u) are not one of the five classifying function pairs
listed in Table 2) are presented in Table 3. The multipliers, fluxes and densities for the other
five classifying function pairs listed in Table 2 are respectively given in Tables 4-8.

4. A physical example

We know specialize to the situation for the second physical example mentioned in the
introduction. Here we hav€’(u) = vF (u), i.e., condition (b) of Theorem 4. This corre-
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Table 4
G(u)=u, F(u)=pu’+ Bou+ f3

Case | Restrictions on| Subcase| Multipliers (&, ¢); flux and density X, T')

constantg; in addition tothe two sets given in Table 1
1 ﬂzz #4B1B3 B1L#0 Two more sets ofg, ¢) and(X, T) are given by Case 1 in Table 3
; 4p1 2 B2
with y = , 0= , B= A%~
V= el O TP P2

B1=0 | &3=4[6xr+3Bx(Ut— V) —13],
¢3=12(12 — 12x + 1283) + 12x2 + 6622V — BoU2 — 283U):
X3 = 2Bo[(13 — 61x + 3Bov — 3B31)u? — 1 (3v2 + 2Bud)]

+ 4B3(13 — 6ixt + 3Bov)u — (14 — 12012 + 12¢2 + 12B312)v,
T3 =4(6tx — 13)v — 2B2(3v2 + Boud + 3B3u?)

+ (1% — 12012 + 12¢2 4+ 128510 + 1283t)u.

£4=3(2x + poU — 1?),

Pgq = 13— 6rx + 3B2V + 683t;

X4 = 3B3(ut? — 2tv — 2xu) — p3u® — (1% — 6x)tv
- %/52(1)2 — 122 4 2xu? + /.‘53142),

Ty =3(Bou + 2x — 12)v + 1 (12 — 6x + 683)u.

2 ﬁ% =4183 B1#0 No additional conservation laws
p1=0, | Linearcase
p2=0,
B3#0

sponds tou = 0 in Case 2 of Table 331 = 8> = 0 in Case 2 of Table 4 (linear case),

B2 = B3 =0in Case 3 of Table 5 (linearizable casg),= 3 =0 in Case 4 of Table 6,

B2 = B3=0in Case 3 of Table 7 angb = 83 = 0 in Case 2 of Table 8. In Table 9, we give

the multipliers and corresponding fluxes and densities for each of the resulting four cases
(excluding the linear and linearizable cases).

5. Further discussion

In this paper we have given a classification of conservation laws for nonlinear telegraph
systems of the form (1) in terms of classifying functidng:) andG (u). In future work we
intend to consider further classifications of such systems in terms of seeking conservation
laws for equivalent scalar PDEs and systems of PDEs related to (1) under nonlocal trans-
formations. The classification of (1) in terms of admitted pointed symmetries was given
in [8]. In both classifications, the Characteristic Set algorithm for differential polynomial
systems [10] efficiently solves the overdetermined systems of linear determining equations
for multipliers or symmetries.

For a PDE system admitting a variational principle, multipliers for conservation laws are
a subset of admitted point symmetries. In a future paper we will compare our classifications
of point symmetries and conservation laws for systems of the form (1).
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Table 5
Gu)=1/u, F(u) = p1/u? + B2/u + B3
Case | Restrictions on| Subcase | Multipliers (&, ¢); flux and density X, T')

constantg; in addition tothe two sets given in Table 1
1 B3 #4B183 B2B3#0 | Two more sets off, ¢) and(X, T) are given by Case 1 in
Table 3 withy = 4B3/(83 — 4B183), @ = (yB2)?/(4B3),
B =2B3/B2.
B2=0 Two more sets of¢, ¢) and(X, T') are given by Case 2 in

Table 3 withy = B3/B2, v = —1/B1.

B3=0 E3=4UA(x,t,U, V),
d3=VA@x,1,U,V)
+[2(x 4+ p1INU) + 3BoU + 4B11B(x, U, V)
+B2(3tV —8B1U — B2U?) — 8B (x + p1InU);
X3= %(—ﬁllnu - p1 —x)v3— 4(—B1Inu —x)%v
- %Svs - 2,32(1,‘1)2 +2tx +2B1tInu + ﬂzuzv)
— 4Bol(2x — By + 2B Inuyv + 303 + Borlu,
T3=[3v* +4(B1Inu +x)? + 8621 — Inu) + 4forvlu
—8B1x + 2535 + 2B[v? + 2v — 2811 — Inu)]u?
+ 4(x +,31|nu)v2u.

§4=UB(x,U,V),
b4 =A(x,t,U,V)+BUV +28,V;
Xa=—B1[A+Mu)v? + Bo(L—u + 2ulnu)]

—xv?— %2v4— BrInu +x)2 — %ﬁ%(uz -1

— Bo(tv +uv?—x+ 2xu),
Ty = (302 +2v + 2By Inwyuv + Boluv + 1 (u — 1]
[AG,1,U, V)= V334 UV +1) + 2V (x+ 1 In V),
B(x,U,V)=2x+ U +2B1InU + V?].

2 /35 =4p183 B3#0 No additional conservation laws

3 Bo=B3=0 B1#0 Linearization case
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Appendix A. Solution of nonlinear ODE system (22), (23)

Here we show how to solve the coupled nonlinear system of ODEs (22), (23). After the
obvious substitutiong = G’, f = F’, this system reduces to

g2f" —3gg'f' +(3¢g'*—ggf =0, (A1)

3g/3 _ 4gg/g// + ng/// =0. (A.Z)

Note that for anyg solving (A.2), the ODE (A.1) becomes a second order linear ODE in
terms of f. Moreover, observe thaf = g is a solution of (A.1). Hence the substitution



470 G.W. Bluman, Temuerchaolu / J. Math. Anal. Appl. 310 (2005) 459-476
Table 6
Gu)=e", F(u) = pre® + poe" + 3
Case | Restrictions on Subcase | Multipliers (&, ¢); flux and density X, T)
constantg;
1 B1B3 >0, Four sets of&, ¢) and(X, T') are given by Case 1 in Table 3 with
B3 # 4B1P3 o =p1/(Bo£2/P1P3)% v = 1/(B2£2J/P1P3), B = F+/B3/P1.
2 B1B3 <0, B3>0 | &1=e20UVsinB(x,1,U, V),
B2+ 413 ¢1=TBrleA1UV) (U cosB(x, 1, U, V) —rsinB(x, 1, U, V));
- B X1 = —MeA(x’l’"'”)[ o — pet)sinB(x,t,u,v
= G ainger ! y2(+pi “)cosB(( t o ))] (ot uv)
—(k+ye X, t,u,v)|,
2/1B183 .
= (;’ET;M;))’ Ty = VZipZeA(x”’u’U)[V SinB(x, t,u, v) — pCOSB(x, t,u, v)]
r= [AG, 1, U V) =ax —kt +yV + P32y £ aprel,
1’ _ _ B2 U
=0 /I BSOS N it S
Kk =a/|pl, Ea=81(x, 1 —ym/2ay + pK), U,V —km/2(ay + pK)),
p=al|p1l, $2=1(x,t —ym/2ay + pr), U,V —kmw/2(y + pK));
y =b/1B11 ] Xo=X1(x,t —ym/2(ay + pK),u, v —kn/2(ay + pk)),
Tp=Ti(x.t — ym/2(@y + p).u, v — k7/2(@y + pK)).
§3=81(x, =1, U, =V), ¢p3=—¢1(x,—1,U, =V);
X3=X1(x,—t,u,—v), TIg3=—-T1(x, —t,u, —v).
Ea=E(x,—t —ymn/2ay + pk), U, =V —kn/2(ay + pK)),
pa=—¢1(x, =t —ym/2ay + pk), U, =V —kr/2(cy + pK));
Xa=X1(x, =t —ym/2ay + pK), u, —v — k7w /20y + pK)),
Typ=—-Ti(x, —t —yn/2(ay + pi), u, —v — k7 /2(@y + pK)).
B3 <0 Obtained from the subcasg; > O through transformation (7);
(&,¢) and(X, T) are given by the real and imaginary parts of (9).
3 /3§ =4B183 B2 #0 Two sets of(¢, ¢) and (X, T) are given by Case 1 in Table 3 with
o =p1/(4p3), B=—P2/(2B1), v = 1/(2B2).
4 B2#0,81=0 B3>0 In addition to the two sets of Case 2 in Table 3 with- ,33/5% >0,
_ A/lBsl v=1/8o:
[x= B2 ] 2=t
E3=A(x,1,U, V)eP2 ",
¢3=Boel +kA(x,1,U, VP2 s
Xa3=—BoeK!T5/B2[(A(x, 1, u,v) — kB2)e" + K Ax, 1, u,v)2/2],
T3= eKHX//SZ[ﬁze“ + A(x,t,u, v)2/2]
[AGx,1,U, V)= 2Bt +x) + (V — kfo(1—U))].
§a=283x, =1, U, =V), ¢pa=—¢3(x,—1,U,=V);
Xq=X3(x,—t,u,—v), Tg=—-T3(x,—t,u, —v).
B3 <0 Obtained from the subcasg; > O through transformation (7);
(&,¢) and(X, T) are given by the real and imaginary parts of (9).
B3=0 In addition to the three sets of Case 2 in Table 3 with= 0,
v=1/p2:
E4=eP2 (2 +1V + BoU). pa=PoeP2 (teV +V);
Xa=—PoeP2 T [W2e 4 )2 4 tv 4 2x + Bo(u — D],
Typ=eP2[(tv/2+ 2x)v + Bo(uv + te)].
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Table 6
(Continued)
Case | Restrictions on Subcase | Multipliers (&, ¢); flux and density X, T')
constantg;
5 B2#0,83=0 B1>0 In addition to the two sets of Case 1 in Table 3 witk= ﬁl/ﬂg >0,
[ = ] B=0,y =1/pp:
2

U
g3 = exp( L L kV)Ax, 1, UL V),
U
¢3=paexp( 2O 4y eVt Ar,1, U, V)

X3 = —eP2 (OB By A, 1., v) — 2eale + o]
— (Ba/)ePLP2),

T3 = P2 (PLB2[ 2B (v + Kk fpe) + Bou — A(x, £, u, v) /ic]
+ VTP (A(x, 1,u,v) /K — 2B2))

[AG,1,U, V) =1+ 2B262(V + kB2eV) + k(2x — 21— U)].

§a=583(x,—1t,U,=V), ¢pa=—¢3(x,—1,U, =V);
X4=X3(x,—t,u,—v), Tg=—-T3(x, —t,u, —v).

B1<0 Obtained from the subcasg; > O through transformation (7);
(&,¢) and(X, T) are given by the real and imaginary parts of (9).

f = zg reduces (A.1) to a first order linear ODE in terms of dependent variable
particular,z’ = ug for some arbitrary constant. Thus for any solutionG(«) of ODE
(23), it follows that

F(u) = c1G?() 4+ c2G(u) + c3 (A.3)

yields the general solution of ODE (22).

Now we obtain the general solution of ODE (A.2). First note that the third order ODE
(A.2) admits a solvable three parameter Lie group of point transformations corresponding
to its invariance under translationsinscalings int, and scalings irg. Hence the general
solution of this ODE can be obtained by successively reducing the order of this ODE to an
integrable first order ODE in terms of variables chosen according to a correct solvability
ordering. See [9] or [11] for details. A correct ordering for these symmetries arises from
the corresponding point symmetry generators

0 0
Xo=u—, X3=g—.

X1=—,
1= S du g

We use the method of differential invariants. Obvious differential invariantsXforare
given by

U=g, V=g. (A.4)

Then in terms of the variables given by (A.4), we have

dv d2v dv\?
r—y—_, m_y2Z Ly .
: : (%)
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Table 7
G(u) = tanhu, F(u) = B1secku + Botanhu + B3
Case | Restrictions on Subcase| Multipliers (¢, ¢); flux and density X, T')
constants;
1 |B3] > |B2l, B2 #0 Four sets of¢, ¢) and(X, T) are given by Case 1 in Table 3 with
[e=B1(B1L+ B3) o =2F1L - ppE), B = BrE/2(1 - paF), y =2*,
2
+ %2 #£0, Br=0 Four sets of¢, ¢) and(X, T) are given by Case 1 in Table 3 with
__1 ___ B3 _ ; ;
st o 2thety ﬁ%fﬂi] YR G B =0 and by Case 2 in Table 3 with
2 w=PB3/Bf,v="1/B1.
2 |83l <182l B3> B2 | & =e?(cosh)1~4P1 cosB,
[c= ﬂlfq’zl +53) ¢ = 71?;;52 e (cosht)1~9P1[cosB — re?V sinB;
L2240 /BB
+3 70 X1 = — VP37P2 A (coshu)y=9BL(ry et + pe~'*) cosB

a=(2p1+ P3)/2c, 2/2+p?) .
+ (ye ™™ —rpe*)sinB],

b=—(,/182 - B3I)/2c,
(/185 — B5D/2c 1 eA(coshu)l=1[pcosB + y sinB]

1=72.72

_ /\B3tB2 reto
r=ylg=p [A=A@x,1,U,V)=ax +at+pV+%aﬁ2U,
a1 =—by[B2+ B3l/2, B=B(x,1,U,V)=«t+yV —b(x - princoshU + 3 p,U)].
K1 =—a | + | 2‘ ...........................................................

L o e el £2=E1(r.1 + p/2ay — pi). U, V — am/2ety — pi)),

T 2J/1B3+B2l’ P2 =0¢1(x,t + pm /2y — pk), U,V —an/2(ay — pk));
y = — D@14y Xp=X1(x,t + pr/2ay — pK),u, v —an/2(ay — pk)),

2./1B3—B2l’ To=Ti(x,t+ pr/2(ay — pk),u, v —aw/2(ay — pk)).

=201 — P, || e
K =—21—y] §3=861(x,—1,U,=V), ¢p3=—¢1(x, =1, U, =V);

X3=X1(x,—t,u,—v), TI3=—-T1(x, —t,u, —v).

§a=81(x, =t + pr/2ay — pk), U, =V —am/2(ay — pk)),
$a=—¢1(x, =1 + p /20y — pk), U, =V —am/2(ay — pK));
X4=X(x,—t+ pr/2(ay — pKk),u, —v —aw/2ay — pk)),
Tp=—-T(x,—t+ pr/2(ay — pk),u, —v —ax/2(ay — pk)).

B3 < B2 | Obtained from the subcag® > B> through transformation (7);
(&, ¢) and(X, T) are given by the real and imaginary parts of (9).

Hence ODE (A.2) reduces to the second order ODE

dv d2v  (dV\?
3v2—4uvﬁ+uz<vm+<ﬁ> >=o. (A.5)
Next, obvious differential invariants fox, are given by

X=U=yg, Y = V‘lj—; =(g) %"
Then

v _ V(Y2 + d—Y>

avz dx )’

and ODE (A.5) transforms to

dy
v2(3—4xy + X% — +2v?%) ) =0.
(3-axr+x( g v2r?))
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Table 7
(Continued)
Case | Restrictions on Subcase | Multipliers (&, ¢); flux and density X, T')
constantg;
3 B3 =PB2, Bo#—2B1 | B2>0 In addition to the two sets of Case 1 in Table 3 with
[k = 5202 a=2B/(2p1+B2)? >0, =1,y =2/(2B1 + B2):
2P+ £3=C(x, U)(1+ e2V)Aer +V)
$3=(282)Y/2C(x, U) (A +2(B1 + B2/2)D)e V)
X3= @1 +FC(x. M)EK(HU){Z(ISl +B2/2)?
+ XA+ 2/51 ﬂ2/2]}
T3= 2/31";32 K(t+l)) 1+ ezu)c(x WA+ 2/31 '32/2]
[A=Ax,1,U0.V) = (282 2[(Ba/2— BV + (2/32 + Bl
+ 2/82(2/32 + BDU +2B2(x — B1log(1+ e2V))
+ B2 — p2/4,
22U\~
Cx,U)= exp(ﬁ2+2ﬁl)(1+e ) ﬂ2+ /31]
§4=83(x,—1,U,=V), pa=—¢3(x,—1,U,=V);
Xqa=X3(x,—t,u,—v), Tg=—-T3(x,—t,u, —v).
B2 <0 Obtained from the subcagg > 0 through transformation (7);
(&,¢) and(X, T) are given by the real and imaginary parts of (9).
B2=0 In addition to the three sets of Case 2 in Table 3 with: O,
v=1/p1:
£4=e*/P1[2x +12 — V2 _ 281 IncoshU],
¢4 =2p1*/P1[ — V tanhU];
X4 = B/ PL{—2(1v + Bru) + [v2 — 12 — 2«
+ 2B81(1+ Incoshu)] tanhu},
Ty = e*/PLv(t2 — v2/3 4 2x) + 281 (tu — vIncoshu)].
4 B3=—PB2, Obtained from Case 3 of this table through equivalence transformation
Bo #2B1 xX=x,t=—1, U_—UV V
(&,¢) and(X, T) are obtained from (6).
5 ﬁ% = —4B1(B1+ B3) Bo#0 Two sets of(¢, ¢) and(X, T') are given by Case 1 in Table 3 with
\Bal % 1Bl or v = ggigs @ = (BL+ B2, B=B2/2B1+ Ba)-
B1=0,
B2=0
Bo=0, Two sets of(¢, ¢) and(X, T') are given by Case 2 in Table 3 with
B1#0 w=-1/B1,v=1/p1.

Thus two cases arise according to whether orihet 0.
If V #0 the reduced ODE is

dY 4XY—-3-— 2x2y2
dxX X2

Now we focus on the first order ODE (A.6). Clearly

(A.6)

Z=XY=g(g) %"
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Table 8
G(u) =tanu, F(u) = B15eCu + Botanu + B3
Case | Restrictions on Subcase| Multipliers (&, ¢); flux and density X, T')
constantgs;
1 ﬂ% #4B1(B1+ B3), B2#0 Four sets of¢, ¢) and(X, T') are given by Case 1 in
G dkada __ BnE
[ L 2By Pt /35_”}%)] Tablef withe =A*(A* g1 — 1), = 20Ep=D)
T BE-41(B1+Ba) y =A%
2 B2 =0, B3#0 Four sets of&, ¢)and(X, T) are given by Case 1 in
B1(B1+ B3) #0 Table 3 witha = —B3/(B1 + B3)?, ¥ = 1/(B1 + Ba),
B =0and Case 2 in Table 3 with= 3/, v =1/p1.
B3=0 In addition to the three sets of Case 2 in Table 3 with
n=0v=1/p
fg=ell e+ 12+ V2 —2p1In(|cosU])).
¢4 =2pB1e A1 (z + VtanU);
X4=—P1e P20 + (t2 + v2 + 2x) tanu
+2B81(u — (1 + log| cosu|) tanu)],
X
Ty=eP1vi?+ % Q2 + 2x) + 2B1(tu — vlog| cosul)].
3 ﬂ% =4p1(B1+ B3) B2 #0 Two sets of(£, ¢) and(X, T) are given by Case 1in
or ithy — 1 _ __Bi1t+B3
Bo=0 Table 3 W;thy Pi+Ps T T @prrpa?’
’ —_ 2
p1=0. | P="2m1m
B3#0
B2 =0, Two sets of(¢, ¢) and(X, T) are given by Case 2 in
B1#0 | Table3withu =—1/81,v=1/p1.

is an invariant undekK 3. Consequently, ODE (A.6) reduces to the separable ODE

dz dX
_— =2, A.7
(z-3HzZ-1 X (A1

Thus four cases arise for the solution of ODE (23):

Casel: VvV =0.
This corresponds t6¢” (u) = 0, so that here

G(u) =a1+ aou.

Casell: Z=1.
This corresponds t§ X =1, i.e., the second order ODE

(g) %" = (A.8)

It is easy to show that the general solution of (A.8) yields

G(u) = a1 + axe®
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Table 9
Physical exampleG’ (1) = vF (1)
Case | G(u) Multipliers (&, ¢); flux and density X, T')

1 v[F)du | g =1e"*, ¢y = Lev¥;
X1= -1 (Gw) +v), Ty =" (Lu+1v).

b2=Ve'™, g2=1GU)e";

Xo=-20Gwe"™, To=Le"* ([ Gu)du + §v).
ggze“¢3=o .................................
X3= —%G(u)e"x, T3 =ve’*.

2 et In addition to the three sets of Case 1 in this table:
E4=e" 2+ 1V + UMW), pg= e eV + V);
Xa= —%e‘”‘*”[vze*“/z-ﬁ- tv+2x 4+ (w—1)/v],
Tp=e" [(tv/2+ 2x)v + (uv + ") /v].

3 tanhu In addition to the three sets of Case 1 in this table:

£4=e"*[2x +12 — V2 — 2IncoshU],

¢4 = 2¢"[1 — V tanhU];

Xg= L™ (=2(tv +u/v) + [v? — 1% — 2x + 2(1 + Incoshu)] tanhu},
Ty =e"*[v(t? —v?/3+ 2x) + 2(tu — vIncoshu)].

4 tanu In addition to the three sets of Case 1 in this table:
E4=e"¥(2x + 12+ V2 — 2In(|cosU|)/v),

pa=2¢" (1 + VianU);

Xg=—Lev (20 4 (12 4+ v + 2x) tanu + 2 (u — (1 + log | cosu|) tanu)],
2

Ty =" [u(r? + % +2x) + 2 (tu — vlog| cosul)].

Casell: z=3.
This case corresponds to the ODE

3
nN=2," _ %
8(g) " =5,

and its general solution yields

Gu)=a1+ —.
) =01 P

CaselV arises from the solution of (A.7) witlZ # 1, %’ With Z = Y X, the general
solution of (A.7) yields
%X -«
X2 —aX’
which, in turn, leads to
V=8UU-a)"?),
and thus to the separable first order ODE
g =B(s(g — ).

Y =
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Two subcases arise according to the sig d¢the limiting casest = 0, « = oo, respec-
tively, correspond t& = 3, Z = 1):

CaselVa: o <0.
Here it is easy to show that

Gu)=o1+ —m—.
(u) =01 P

CaselVb: o > 0.
Here

G(u) =a1 + artan(azu + o).

For eachG (u), there corresponds a three-parameter clags(oj given by the expres-
sion (A.3). For eaclG (1), modulo translations il andu, and scalings irG andu, the
results are summarized in Table 3 in Section 3.
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