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In this paper, local and nonlocal symmetry classifications are considered for four
equivalent nonlinear telegraph equations. A complete potential symmetry classifi-
cation of a scalar nonlinear telegraph equation is given through the point symmetry
classification of a related potential system. Six new classes of equations are shown
to admit potential symmetries. The relationships between Igealuding contadt

and nonlocal(potentia) symmetries of these equations are explored. A physical
example is considered for possible applications of the obtained potential
symmetries. €005 American Institute of PhysicDOI: 10.1063/1.1841481

I. INTRODUCTION

In Refs. 1-4, an algorithmic procedure has been developed to find nonlocal symmetries
(potential symmetrigsof partial differential equation€PDES9 to extend the classes of symmetries
admitted by PDEs. Various researchers have found examples of PDEs that admit potential sym-
metries or extended the procedure to find potential sysfems.

In recent years, there have been several investigatiBefs. 6—8 to find symmetries for
nonlinear telegraph equations of the form

utt = [F(u)ux]x + [G(u)]x (1)
PDE (1) is equivalent to the potential system

Uy = U,

ve=F(U)uy, + G(u). (2)

In particular, if (u,v)=(U(x,t),V(x,1)) solves(2), thenu=U(x,t) solves(1). Conversely, for
anyu=U(x,t) solving (1), there exists a pair of functionis,v) =(U(x,t),V(x,t)) solving (2) with
V(x,t) unique to within a constant.

Similarly, the potential systert®) is equivalent to the potential system

Wt:U,

Wy =U, 3
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vy = F(U)u+ G(u),

and hence to the potential equation

th = F(Wx)Wxx + G(Wx) . (4)

In particular, ifu=U(x,t) solves(1), then from the integrability conditions associated wi#
there exists a tripletu,v,w)=(U(x,t),V(x,t), W(x,t)) solving system(3) with w=W(x,t) solving
(4). Conversely, if w=W(x,t) solves (4), then (u,v)=(W,(x,t),W(x,t)) solves (2) and u
=W,(X,t) solves(1).

Consequently, a symmetry of any one of the PDE syst@émng4) defines a symmetry of the
remaining three equivalent systems. Moreover, due to the relationship connecting these four
equivalent systems, it is possible for a local symmetry of any one of these systems to yield a
nonlocal symmetry of another ofle.

Equations related t€l) include the nonlinear heat conduction equation whén =0, and the
nonlinear inhomogeneous vibrating string equation wén) =0.

The group properties of the nonlinear heat equation for both the scalar (forand the
potential system2) are presented in Ref. 2. The point symmetry classification of the nonlinear
wave equatioril) with G(u)=0 andF(u) replaced byF(x,u) is discussed in Ref. 6. The complete
point symmetry classifications of equati¢h) and the equivalent potential equati@h are given
in Refs. 7 and 8, respectively. Some exact solutions of sy§Pmre given in Ref. 10 for special
forms of F(u) and G(u).

Among the equivalent systent4)—(4), it appears that the potential systd®) arises most
directly in physical situations. One physical example directly related to sy&gem represented
by the equations of telegraphy of a two-conductor transmission line wéh the current in the
conductorsy as the voltage between the conduct@séy) as the leakage current per unit length,
F(u) as the differential capacitance,as a spatial variable andl as time** Another physical
example related to syste(8) is the equation of motion of a hyperelastic homogeneous rod whose
cross-sectional area varies exponentially along the rod. ter¢he displacement gradient related
to the difference between a spatial Eulerian coordinate and a Lagrangian coordinaite the
velocity of a particle displaced by this differenc&(u) is essentially the stress tenséitu)
=\G’(u) for some constant, andt is time (see Refs. 12 and 13

In this paper we give the complete point symmetry classification of the potential sy&tem
and compare our results with the complete point symmetry classification of the scalar e¢ljation
included in Ref. 7 and the complete point symmetry classification of the potential eq@étion
given in Ref. 8. In particular, we will show the following.

(I) The point symmetry classifications of the scalar equati@hand(4) are identical, i.e., for
any F(u) andG(u), a point symmetry admitted bl) induces a point symmetry admitted b4)
and vice versa.

(Il For wide classes df(u) andG(u), there exist point symmetries of the potential syst&m
which are nonlocal symmetries of the scalar equatibn

(Il) Each point symmetry of the potential systé®) which is a nonlocal symmetry dfl)
yields a contact symmetry of the potential equatidnthat isnot a point symmetry of4).

(IV) For all but one particular class &{u) andG(u), a point symmetry of the scalar equation
(1) is a point symmetry of2).

In Sec. I, we give the set of determining equations for point symmetries of the potential
system(2) and the complete potential symmetry classification of the scalar equajioelated to
(2). In Secs. Il and IV, we present the complete point symmetry classifications of the scalar
equations(1) and (4) given in Refs. 7 and 8, respectively. In Sec. V, we compare the point
symmetry classifications of the systefis, (2), and(4) by proving theorems that yield statements
(D—(IV). The second physical example is considered in Sec. VI. Further comments are given in
Sec. VII.

Downloaded 08 Jan 2009 to 137.82.36.67. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



023505-3 Local and nonlocal symmetries J. Math. Phys. 46, 023505 (2005)

II. POTENTIAL SYMMETRY CLASSIFICATION OF THE SCALAR EQUATION (1)

Consider the potential syste(8).
The point symmetry

X* = x+eé(x,t,u,v) + O(?),
t* = t+erxtuuv)+0(?),
u* = u+en(x,tuv)+0(e?),

v* = v+ed(xtuv)+0(?), (5)
is admitted by systen?) if and only if it satisfies the determining equations,
X(l)(vx - Ut) =0,
XB (o= F(u)u, - G(u)) =0, (6)
for any (u,v) that solves systertR);
J J J J
X= —+ —+ —+ —
f(x,t,u,v)ax r(x,t,u,v)o7t 77(x,t,u,v)au ¢(x,t,u,v)av

is the infinitesimal generator of the point symmetsy;
XV =x+ 0L 4,20 gy g2
Juy AU Iy vy
with

@w-P»_D¢, _Dr - @ Dn D& _Dr
Dx Dx Dx Dt Dt Dt

D¢ Dé Dr D¢ Dé Dr
V- _=Z=, _ = (2 - ==,
T M T e
is the first extensioriprolongation of X;

J J J J 1% Jd J

FU—F U F U U T o U

Dx_ ax  Cou e aug Mou v, Xou

D &+u(9+ (9+u(9+ua+ (?+ J
— = —tui— — —tuogT— togT—
Dt ot au ‘v oue Cou o, o
are total derivative operators. Note thgt , 1) are functions of,t,u,v,uy,U;,vy,vp, 1=1,2.
The global one-parametés) Lie group of point symmetries associated wiHf) is obtained by
solving the initial value problem for the first order system of ordinary differential equations
(ODEs

*

de

ZEX*,tr,ur,ur),
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dt*

d—:T(X*,t*,U*,v*),
E

du*

d =p(x*,t*,u*,v*),
&

*

:d)(X*,t*,U*,v*), (7)
&

with x*=x, t*=t, u*=u, v*=v ate=0.

A point symmetry(5) yields anonlocal symmetrpf the scalar equatiofil) if and only if
E+72+72#0, i.e., if and only if the infinitesimalg, 7, and» have an essential dependence on the
potential variablev. Such a nonlocal symmetry is calledpatential symmetrpf scalar equation
(1) related to the potential syste(8) (for details, see Ref.)3

The determining equation®) simplify to

&-n=0,
M~ ¢t &1 =0,
G(un, + ;= ¢+ G(u)r=0,
&~ F(ur,=0,
¢y~ Gu)7, =~ F(u)n, =0,
G(wé, + &~ F(un=0,
[¢, = 7= 2G(u)7, = 7, + §IF(U) = F'(u) =0,
[¢, = 7= G(U)7,]G(u) = F(u) 75 = G’ (W) + ¢ = 0. 8
We now consider the classification problem of findingR(u), G(u) such that the potential

system(2) yields a potential symmetry dfl).
If

d
au+b

Fu)=——, G(U)=

(au+ b)?’

for arbitrary constants,b,c,d,f, or if

+f (9

F(u) is arbitrary, G(u)=const,

then through the potential syste(®), the scalar equation admits an infinite number of potential
symmetries and the potential systé® is linearizable by a point transformatigeee Refs. 3 and
4).

Various symbolic manipulation algorithms exist to solve the set of determining equésijons
(for example, see Refs. 14 and)1Bsing the symmetry manipulation algorithm presented in Ref.
15, one can prove the following results.

Theorem 1: The scalar equation (1) admits a potential symmetry related to potential system
(2) if and only if the functions 1) and GQlu), with G’ (u) # 0, satisfy the system of ODEs
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(cau+cs)F'(U) — 2(cy — c3 = ¢;,G(u))F(u) = 0, (10

(Cau+C5)G' (U) + C,G(u) = (€1 =~ 263+ C4)G(U) — €5 =0, (1)
for any fixed constants; ¢c,, ... ,Cg With ¢, # 0.
In the linearizable case),
_ C3(Ccs—Cy)
c,

Theorem 2: For any Hu), G(u) satisfying the system of ODEs (10) and (11) wijk©, the
potential system (2) admits the point symmetry (5) with

Ci1= 0, Cg

E=cx+ czf F(u)du,

T=C3t+CZU,
77:C4U+C5,

d=cgt+(cy—C3+Cyv, (12

and hence the scalar equation (1) admits the corresponding potential symmetry

Now we find the function&(u) andG(u) satisfying(10), (11) and the corresponding potential
symmetrieg12).

Note that the point transformation

X=ax+b, t=ct+d, U=au+pB, v=y+pt

for any constants, b, c, d, a, B8, 7, andp such thatacay# 0 andaa=cy is an equivalence
transformation for systenf2). Under this transformation, systef@) becomes the equivalent

system
Ux=Uy  vr=FUU+ G(U),
where
_ a U_
o 21{%)
Ca o
and

= Y~[U=B) P
G = CG( a ) S
We use such equivalence transformations to simplify the analysis. For exam@les) i ay(bgu
+Co) %+, without loss of generality we can assume ) =u.

Modulo translations and scalings inand G, we obtain six distinct classes of ODEs féfu)
andG(u) where scalar equatiofl) admits potential symmetries. These six classes of ODEs and
their solutiondmodulo equivalence classesfefu) andG(u)] are presented in Table I. In Table I
for each class we display the corresponding infinitesim@lsr,n,¢) and global group
(x*,t*,u*,v*) obtained from solving the corresponding ODE$.

All symmetries presented in Tables | and Il are new for each of the equivalent sydieis.

Note that classes 1 and 6 are linearizAifle3=0 anda=1/2.
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TABLE I. Classes of~(u) andG(u) yielding potential symmetries dfl).

ODEs satisfied by Relationship between
Class F(u) and G(u) G(u) F(u) F(u) and G(u)
1 uG' -a(1-G?»=0 (U?*=1)/ (uPe+1) AuPethl] (2 +1)2 F(u)=(uf/ )G’ (u)
UF'-(B-1-2aG)F=0 (UWPe+1)/(uP*-1) —AuetP ] (uPa-1)2
2 uG -a(1+G?»=0 tan(a In u) U lseé(alnu)
UF’ +(1-B-2aG)F=0
3 uG +G?=0 (Inu)™ -uf(Inu)=2
uF’'=(B-1-2G)F=0
4 G'-G2?-1=0 tanu Pisedu F(u)=€?'G’ (u)
F'-2(B+G)F=0
5 G'+G?-1=0 tanhu ePisecRu
F'-2(B-G)F=0 cothu —e?Picscitu
6 G'+G?=0 ut —u2e?Pu
F'-2(8-G)F=0

IIl. POINT SYMMETRY CLASSIFICATION OF THE SCALAR EQUATION (1)

In Ref. 7, Kingston and Sophocleous considered the classification problem of findf@gll
G(u) such that the scalar equati¢h) admits a point symmetry. The point symmetry

X* = x+e&(x,t,u) + O(?),

TABLE Il. Potential symmetries of (1) for each class [F(,B,F,a)=f“ezes‘(l*ﬂ)(st(x)dx)ds, Q(B,F,e)
= [Ureg 25 [SF(x)dx)ds].

Infinitesimals
Class & 1,1, Global group
1 F(u)=4u?**F-1/ (u2e+1)? £=2(px+a[F(u)du) x* =P [x+auf(l'(B,F,e)-T(B,F,0)]
G(u)=(u?*-1)/(u?*+1) or 7=(B+Dt+2av t* = (1/2)e PV (t+v) €2 + (t—v)e 2]
F(u)=—4u2etF-1] (U - 1)2 7=2u ur=ue®
G(u)=(u?*+1)/(u?>*-1) $=2at+(B+ v v*=(1/2) P Ve[ (t+v)e?e - (t-v)e 2]
2 F(u)=uftsed(alinu) £=2(Bx—afF(u)du) x* = 2P x—auf(I'(B,F,&)-T'(B,F,0))]
G(u)=tan(aInu) =(B+t-2av t* = e De[t cos e —v sin 2as]
n=2u u* = ue®
$=2at+(B+1)v v* =P V?[y cos Zve+t sin 2ae]
3 F(u)=-ufY(Inu)2 £=2(Bx+ [ F(u)du) x* = e2P[x+ub(I'(B,F,e)-I'(B,F,0))]
G(u)=(Inu)™* =(B+Dt+2v t*=elf*De(2pe +t)
n=2u u*=ue
d=(B+1)v v*=pelfre
4 F(u)=e?’"secu £=2Bx~-[F(u)du x* = 2P x—e?BY(Q(B,F,e)-Q(B,F,0)]
G(u)=tanu T=pt-v t*=e%(t coss—v Sing)
7=1 u*=u+e
d=t+pv v*=e%(v cose+t sing)
5 F(u)=e*"secRu £=2Bx+ [F(u)du x* = 2P x+e?PY (OB, F,e)-Q(B,F,0)]
G(u)=tanhu or =pBt+v t*=(1/2)e%((t+v)e’ +(t—-v)e™®)
F(u)=—e*cscifu 7=1 u*=u+eg
G(u)=cothu d=t+pv v*=(1/2)€e’((t+v)e*—(t-v)e™)
6 F(u)=-u-2e?hu £=2Bx+ [F(u)du x* = 2P x+e?PY(Q(B,F,e)-Q(B,F,0)]
G(u)=ut T=pt+v t* = e (t+ve)
7=1 u*=u+e
¢=pv v*¥=pef
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TABLE IIl. Classes ofF(u) andG(u) yielding point symmetries ofl).

Class G(u) F(u) Infinitesimalsé, 7,

A el gle+u £=2ax,m=(a-1t, p=2

B uthrL u® £=2px, =(a+2B)t, n=-2u

C ut u? Those in class B and
£=e,7=0,p=—-ue

D Inu u¥ £=2(a+1)x, 7=(a+2)t,p=2u

E u e &=2ax, 7=at, n=2

F us u Those in class B and
£=0,7=t?, 9p=ut

* = t+en(xt,u) +O(e?),
u* = u+en(xtu) +0(e?), (13)
is admitted by the scalar equatiét) if and only if it satisfies the determining equation

X (uy = (F(u)t), = G(u),) =0 (14

for any u solving the scalar equatiofl);

X= g(x,t,u)ﬁix + dx,t,u)g + n(x,t,u)a—(ij,

is the infinitesimal generator of the point symmethp); X? is the second extension &t
From (14), the determining equations fgtx,t,u), 7(x,t,u), and z(x,t,u) are given by

&= 7= 1= =0,
&-F(un=0,
2F(u)(§— =) -F'(u)n=0,
e~ F(U) 7= G’ (W) 77,=0,
2y = T+ F(U) 1+ G (U) 7= 0,

2F(U) 7y + & = F(U) &+ 2F" (W) 7 = G'(U) (&~ 27) + G"(u) = 0.

For arbitraryF(u) andG(u), clearly each of the equivalent systeig(4) admits translations
in x(é=1,7=0) and t(¢=0,7=1). For specificF(u) and G(u) with G’'(u)#0, the results are
summarized in Table 1.

Note that the classes presented in Ref. 7 wiidg =1, G(u)=e"" as well asF(u)=1, G(u)
=uM1 can be obtained, respectively, by appropriately scalifigclass A and setting=0 in class
B.

IV. POINT SYMMETRY CLASSIFICATION OF THE SCALAR EQUATION (4)

In Ref. 8, the authors considered the classification problem of findirfg(all G(u) such that
the scalar equatiof¥) admits a point symmetry. The point symmetry

X* = X+ g&(x,t,w) + O(&?),
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TABLE IV. Classes ofF(u) and G(u) yielding point symmetries of4).

Class G(u)=G(w) F(u)=F(w,) Infinitesimals¢, 7,
A el gle*u £=2ax, 7=(a—1)t,Q=2(aw+X)
B uetprL u® £=2Bx, =(a+2P)t,Q=2(B- 1w
C ut u? Those in class B and
¢=¢,7=0,0=0
D Inu u* E=2(a+ )X, 7= (a+2t,Q=2(a+2)w+t?
E u e £=2ax, 7= at, Q) =2aw+t?+2x
F us u Those in class B and
£=0,7=t2, Q=tw

t* = t+er(xt,w) + O(e?),

w* = w+ eQ(x,t,w) + O(?), (15)

is admitted by the scalar equatio®) if and only if it satisfies the determining equation

X(Z)(th — F(wy)w, — G(wy)) =0

for any w solving the scalar equatio@);

3 3 3
X: ,t, — + ,t1 _+Q 1t1 s
&(x,t,w) x 7(X,t,w) P (X,t,w) P

is the infinitesimal generator of the point symmethp); X? is the second extension &f
Modulo equivalence transformations, the results presented in Ref. 8 are summarized in Table
V.

V. DISCUSSION OF THE SYMMETRY CLASSIFICATIONS

In this section we prove the stateme(its<1V) presented in the Introduction through proofs
of the following four theorems.

Theorem 3: The point symmetry classifications of the scalar equations (1) and (4) are iden-
tical, i.e., for any Fu) and Gu) a point symmetry admitted by (1) induces a point symmetry
admitted by (4) and vice versa

Proof: The infinitesimals of a point symmetry of the scalar equatibnare of the form

§=&x), 7=, 7=(f1)-&X)u+b

for some functiong(x), 7(t), f(t) and constani. A corresponding point symmetry of the potential
scalar equatiofd) (with u=w,) must havet=£&(x), r==(t), Q=Q(x,t,w) with Q(x,t,w) satisfying

Qx(l) =y

in terms of its first extended infinitesim@ ¥, i.e.,

DO D¢ Dr , ,
o = Dx  Dx T Dyt = Ot i = 09w = (D) = £ (X)) wi + b (16)

Hence from Eq(16), we must have

Q.=b, Q,=f).

Then it is necessary that
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Q =bx+ f(hw+g(t), (17)

for someg(t) in order that a point symmetry of the scalar equatibnyields a point symmetry of
the scalar equatio®). From Tables IIl and 1V, it is easy to check that conditidrY) is satisfied
for each point symmetry of the scalar equatidi

Conversely, the infinitesimals of a point symmetry(4f are of the form

E=¢x), T=1(1), Q=fOw+ LX)

for some functionsé(x), 7(t), f(t), and B(x,t). A corresponding point symmetry of the scalar
equation(1) with u=w, must have

E=¢x), T=1(1), 7=nXxtu).

In terms of the first extended infinitesim@ ¥, the infinitesimalzn(x,t,u) must satisfy

DQ D D
p= W= 20 Sy - D=0, O - £ W= Bt (O£ 00w, (19
From Tables Ill and 1V, it is easy to check that conditid®) is satisfied for each point symmetry
of (1). [ |

Theorem 4: For each of the six classes oftJ and G(u) listed in Table I, there exist point
symmetries of the potential system (2) which are nonlocal symmetries of the scalar equation (1).

Proof: Since each point symmetry in Table Il hgs# 0, it follows that for all classes df(u)
andG(u) listed in Table I(also repeated in Table)lthere exist point symmetries of the potential
system(2) which are nonlocalpotentia) symmetries of the scalar equati@h. |

Note that only the clasE(u)=u"?, G(u)=ut is common for Tables | and IIl. This class is
linearizable since it admits potential symmetries leading to the linearizatiq®)dfy a point
transformatior.

Theorem 5: Each point symmetry of the potential system (2) which is a nonlocal symmetry of
the scalar equation (1) yields a contact symmetry of the potential equation (4) that aspoint
symmetry of (4).

Proof: A contact symmetrpf a PDE with dependent variable and independent variables
andt is defined by

X* = X+ e&(X,1,W, W, W) + O(?),

t* = t+e7(X,t,W, Wy, W) + O(e?),

W* = w+ e Q(X,t,W,Wy, W) + O(?), (19
if and only if
Q9 17 Q9 J
—= —gwx + —th, —= —gwx + —th. (20
an ﬂwx an C;'Wt 07Wt aWt

Let characteristic functiolV= - éw,— 7w;. A contact symmetry19) is a point symmetry if and
only if
PW AW PW o
Aw)? W) o,

(21)

For details, see Chap. 5 of Ref. 3.
A point symmetry of potential syste(®) which is a nonlocal symmetry of the scalar equation
(1) (see Table Il is of the form
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u
E=ax+ bf F(s)ds, r=ct+dv,

n=fu+g, ¢=ht+ko, (22)

for some constants, b, c, d, f, g, h, andk with d#0, a+f=c+k.
Solving (20), after using the substitutiof22), we find that

QX LW, W) = b J “sH(s)ds + gwf + AKX LW) (23)

yields a contact symmetry for an arbitrary functiatx,t,w).
Now we find A(x,t,w) so that(23) yields a contact symmetry of the potential equatidh
Sinceu=w,, v=Ww,, it follows that we must have

77:9“1):%—'3—5%— D7

—w,,
Dx Dx Dx

DO D¢ Dr

Qi =="2_ 25, - == , 24
¢ Dt Dt X Dt (24)
in terms of first extended infinitesima@®*® and Q™. After solving the equation&24), we find
that A(x,t,w)=gx+(a+f)w+3ht? and hence

Wy
E=ax+ bf F(s)ds, r=ct+dw,

Wy d 1
Q:bf sF(s)ds+§wt2+gx+(a+f)w+Ehtz, (25)

defines a contact symmetry of the scalar potential equatibnsing condition(21), it is clear
that (25) is not a point symmetry of4) sinced # 0. [ |

Theorem 6: A point symmetry of the scalar equation (1) yields a point symmetry of the
potential equation (2) if and only if the infinitesimals fo(Uy and Glu) belong to classes A—E in
Table .

Proof: A point symmetry(&(x,t,u), 7(x,t,u), n(x,t,u)) of the scalar equatiofil) yields a
point symmetry of(2) if and only if the set of determining equatiori8) has a solution for
¢(x,t,u,v). A solution of (8) exists if and only if the six integrability conditions involving the
second order mixed partial derivativesdi(ix,t,u,v) are satisfied. Consequently, it is easy to show
that a point symmetry ofl) yields a point symmetry of2) if and only if it satisfies the additional
conditions

=0, Mu+t&x=0, 7¢=0, F'(u)n—2F()é«=0. (26)

The infinitesimals for classes A-E in Table Il satig®6) but those for class F do not since here
Tﬁ 75 0 .

As a consequence of Theorem 6, we see that the point symietis(d/ dt) +ut(a/ ou) for
G(u)=u3, F(u)=u yields anonlocal symmetrpf the potential syster®).
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TABLE V. Physical examplegF(u)=G’(u)] yielding potential symmetries dfl).

Infinitesimals
Class &1, Global group
1.1 G(u)=(u2*-1)/(u?*+1) £=2a((UP*-1)/(u2*+1)) x* = x+In((u2*e*= + 1)/ (U2*+1)) - 2ae
=t+2av t* = 27 (t+0) &+ (t-v)e 2]
n=2u u*=ue®
¢=2at+v v* = e (t+0)E2 — (t—v)e 2]
1.2 G(u)=(u?*+1)/(uP*-1) £=2a((UP*+ 1)/ (UP*-1)) x* = x+In|(uet*e - 1)/ (U2~ 1)| - 2ae
T=t+2av tr= %eﬂ[(t+v)e2“+(t—v)e‘2“9]
n=2u u*=ue*
d=2at+v vr¥= %e*"‘[(t+v)ezae—(t—v)e_2“s]
2 G(u)=tan(aIn u) é=—2atan(aInu) x* = x+In|cog e(In u+2¢))/coda In u)|
T=t-2av t* = €°[t cos 2ve —v Sin 2ae]
n=2u u*=ue*
d=2at+v v*=¢€’[v cos e+t sin 2ae]
3 G(u=(nu)™* £=2(Inu)?t x*=x+In|1+2¢/In u|
T=t+2v t*=e*(2ue+t)
n=2u u*=ue*
d=v v*=ve’
4 G(u)=tanu £=—tanu x* = x+In|cogu+e)/cosu|
T=-0 t*=tcose-v sine
n=1 u*=u+e
¢=t v*=pcose+tsine
5.1 G(u)=tanhu £=tanhu x*=x+In((€2U)+1)/ (M +1)) ¢
=v t*=2((t+v)e° +(t-v)e™)
=1 u*=u+e
P=t v*=3((t+o)e - (t-v)e™)
5.2 G(u)=cothu £=cothu X* = x+In|(e2Ur) - 1)/ (M- 1)| - ¢
™=v t*= 1((t+v)ee+(t-v)e™)
n=1 u*=u+e
b=t v*=3((t+v)ef—(t-v)e™)
6 G(u=ut &=ut x*=x+In|1+&/U|
=V t*=t+ve
n=1 u*=u+e
»=0 v*=v

VI. A PHYSICAL EXAMPLE

We now specialize to the situation for the second physical example mentioned in the Intro-
duction. HereF(u)=AG’(u). Consequently, in Tables | and Il, we hay&=0 and [F(u)du
=G(u). In Table V, we give the corresponding global group for each of the six classes yielding
potential symmetries of the scalar equatian

After translations and scalings afand G, class 5 includes bounded monotonic stress tensor
functionsG(u) =« tanh Bu+ ) for arbitrary constants, 8, y, and 4.

VII. FURTHER DISCUSSION

In this paper we found new symmetries for equivalent telegraph equatign@l). These
symmetries can be used to find families of solutions from any given solution and to construct
invariant solutions from the invariants of the symmetries or through the direct method discussed in
Ref. 3.

In future papers, we will find conservation laws fdj—(4) through techniques introduced in
Refs. 16-18. Systemd)—(4) are not self-adjoint. Hence a symmetry(&j—(4) does not yield a
conservation law through Noether’s theorem.

For the physical case(u)=G’(u), the second equation in the potential syst@nbecomes
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(€)= (€'G(U))x-

This leads to another equivalent potential system
vy=U, W,=€v, w,=€G(u).

The problem of finding equivalent potential systems for a given PDE is considered in Refs. 4 and
5.

ACKNOWLEDGMENT

The authors acknowledge financial support from the National Sciences and Engineering Re-
search Council of Canada.

1G. Bluman and S. Kumei, J. Math. Phy28, 307 (1987).

2G. Bluman, S. Kumei, and G. Reid, J. Math. Phy®, 806(1988; 29, 232QE) (1988.

3G. Bluman and S. KumeBymmetries and Differential Equatigrsppl. Math. Sci. No. 81(Springer, New York, 1989

4G. Bluman and P. Doran-Wu, Acta Appl. Mathl1, 21 (1995.

5R. O. Popovych and N. M. lvanova, math-ph/0407008.

5M. Torrisi and A. Valenti, Int. J. Non-Linear Mect20, 135 (1985.

’G. Kingston and C. Sophocleous, Int. J. Non-Linear Me8,. 987 (2007).

8M. Gandarias, M. Torrisi, and A. Valenti, Int. J. Non-Linear Mec8, 389 (2004).

°G. Bluman,An Overview of Potential Symmetrjdsectures in Applied Mathematig®merican Mathematical Society,
Providence, RI, 1993 Vol. 29, pp. 97-109.

10E. Varley and B. Seymour, Stud. Appl. Matfi2, 241 (1985.

1|, G. Katayev,Electromagnetic Shock Wavééffe, London, 1966.

12 Jeffrey, Wave Motiond, 173 (1982.

Ba. C. Eringen and E. S. Suhul&lastodynamics 1: Finite MotionAcademic, New York, 1974

W. Hereman, Euromath Bull, 45 (1994).

5 Temuerchaolu, Adv. Math32, 208 (2003.

163, Anco and G. Bluman, Phys. Rev. Left8, 2869(1997).

s, Anco and G. Bluman, Eur. J. Appl. Mati3, 545 (2002.

183, Anco and G. Bluman, Eur. J. Appl. Mathi3, 567 (2002).

Downloaded 08 Jan 2009 to 137.82.36.67. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



