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In this paper, local and nonlocal symmetry classifications are considered for four
equivalent nonlinear telegraph equations. A complete potential symmetry classifi-
cation of a scalar nonlinear telegraph equation is given through the point symmetry
classification of a related potential system. Six new classes of equations are shown
to admit potential symmetries. The relationships between localsincluding contactd
and nonlocalspotentiald symmetries of these equations are explored. A physical
example is considered for possible applications of the obtained potential
symmetries. ©2005 American Institute of Physics.fDOI: 10.1063/1.1841481g

I. INTRODUCTION

In Refs. 1–4, an algorithmic procedure has been developed to find nonlocal symmetries
spotential symmetriesd of partial differential equationssPDEsd to extend the classes of symmetries
admitted by PDEs. Various researchers have found examples of PDEs that admit potential sym-
metries or extended the procedure to find potential systems.5

In recent years, there have been several investigationssRefs. 6–8d to find symmetries for
nonlinear telegraph equations of the form

utt = fFsuduxgx + fGsudgx. s1d

PDE s1d is equivalent to the potential system

vx = ut,

vt = Fsudux + Gsud. s2d

In particular, if su,vd=sUsx,td ,Vsx,tdd solvess2d, thenu=Usx,td solvess1d. Conversely, for
anyu=Usx,td solving s1d, there exists a pair of functionssu,vd=sUsx,td ,Vsx,tdd solving s2d with
Vsx,td unique to within a constant.

Similarly, the potential systems2d is equivalent to the potential system

wt = v,

wx = u, s3d
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vt = Fsudux + Gsud,

and hence to the potential equation

wtt = Fswxdwxx + Gswxd. s4d

In particular, if u=Usx,td solvess1d, then from the integrability conditions associated withs3d
there exists a tripletsu,v ,wd=sUsx,td ,Vsx,td ,Wsx,tdd solving systems3d with w=Wsx,td solving
s4d. Conversely, if w=Wsx,td solves s4d, then su,vd=sWxsx,td ,Wtsx,tdd solves s2d and u
=Wxsx,td solvess1d.

Consequently, a symmetry of any one of the PDE systemss1d–s4d defines a symmetry of the
remaining three equivalent systems. Moreover, due to the relationship connecting these four
equivalent systems, it is possible for a local symmetry of any one of these systems to yield a
nonlocal symmetry of another one.9

Equations related tos1d include the nonlinear heat conduction equation whenFsud=0, and the
nonlinear inhomogeneous vibrating string equation whenGsud=0.

The group properties of the nonlinear heat equation for both the scalar forms1d and the
potential systems2d are presented in Ref. 2. The point symmetry classification of the nonlinear
wave equations1d with Gsud=0 andFsud replaced byFsx,ud is discussed in Ref. 6. The complete
point symmetry classifications of equations1d and the equivalent potential equations4d are given
in Refs. 7 and 8, respectively. Some exact solutions of systems2d are given in Ref. 10 for special
forms of Fsud andGsud.

Among the equivalent systemss1d–s4d, it appears that the potential systems2d arises most
directly in physical situations. One physical example directly related to systems2d is represented
by the equations of telegraphy of a two-conductor transmission line withv as the current in the
conductors,u as the voltage between the conductors,Gsud as the leakage current per unit length,
Fsud as the differential capacitance,t as a spatial variable andx as time.11 Another physical
example related to systems2d is the equation of motion of a hyperelastic homogeneous rod whose
cross-sectional area varies exponentially along the rod. Hereu is the displacement gradient related
to the difference between a spatial Eulerian coordinate and a Lagrangian coordinatex, v is the
velocity of a particle displaced by this difference,Gsud is essentially the stress tensor,Fsud
=lG8sud for some constantl, andt is time ssee Refs. 12 and 13d.

In this paper we give the complete point symmetry classification of the potential systems2d
and compare our results with the complete point symmetry classification of the scalar equations1d
included in Ref. 7 and the complete point symmetry classification of the potential equations4d
given in Ref. 8. In particular, we will show the following.

sId The point symmetry classifications of the scalar equationss1d ands4d are identical, i.e., for
any Fsud andGsud, a point symmetry admitted bys1d induces a point symmetry admitted bys4d
and vice versa.

sII d For wide classes ofFsud andGsud, there exist point symmetries of the potential systems2d
which are nonlocal symmetries of the scalar equations1d.

sIII d Each point symmetry of the potential systems2d which is a nonlocal symmetry ofs1d
yields a contact symmetry of the potential equations4d that isnot a point symmetry ofs4d.

sIV d For all but one particular class ofFsud andGsud, a point symmetry of the scalar equation
s1d is a point symmetry ofs2d.

In Sec. II, we give the set of determining equations for point symmetries of the potential
systems2d and the complete potential symmetry classification of the scalar equations1d related to
s2d. In Secs. III and IV, we present the complete point symmetry classifications of the scalar
equationss1d and s4d given in Refs. 7 and 8, respectively. In Sec. V, we compare the point
symmetry classifications of the systemss1d, s2d, ands4d by proving theorems that yield statements
sId–sIV d. The second physical example is considered in Sec. VI. Further comments are given in
Sec. VII.
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II. POTENTIAL SYMMETRY CLASSIFICATION OF THE SCALAR EQUATION „1…

Consider the potential systems2d.
The point symmetry

x * = x + «jsx,t,u,vd + Os«2d,

t * = t + «tsx,t,u,vd + Os«2d,

u * = u + «hsx,t,u,vd + Os«2d,

v * = v + «fsx,t,u,vd + Os«2d, s5d

is admitted by systems2d if and only if it satisfies the determining equations,

Xs1dsvx − utd = 0,

Xs1dsvt − Fsudux − Gsudd = 0, s6d

for any su,vd that solves systems2d;

X = jsx,t,u,vd
]

]x
+ tsx,t,u,vd

]

]t
+ hsx,t,u,vd

]

]u
+ fsx,t,u,vd

]

]v

is the infinitesimal generator of the point symmetrys5d;

Xs1d = X + hs1d ]

]ux
+ hs2d ]

]ut
+ fs1d ]

]vx
+ fs2d ]

]vt
,

with

hs1d =
Dh

Dx
−

Dj

Dx
ux −

Dt

Dx
ut, hs2d =

Dh

Dt
−

Dj

Dt
ux −

Dt

Dt
ut,

fs1d =
Df

Dx
−

Dj

Dx
vx −

Dt

Dx
vt, fs2d =

Df

Dt
−

Dj

Dt
vx −

Dt

Dt
vt,

is the first extensionsprolongationd of X;

D

Dx
=

]

]x
+ ux

]

]u
+ vx

]

]v
+ uxx

]

]ux
+ uxt

]

]ut
+ vxx

]

]vx
+ vxt

]

]vt
,

D

Dt
=

]

]t
+ ut

]

]u
+ vt

]

]v
+ uxt

]

]ux
+ utt

]

]ut
+ vxt

]

]vx
+ vtt

]

]vt

are total derivative operators. Note thathsid ,fsid are functions ofx,t ,u,v ,ux,ut ,vx,vt, i =1,2.
The global one-parameters«d Lie group of point symmetries associated withs5d is obtained by

solving the initial value problem for the first order system of ordinary differential equations
sODEsd

dx*

d«
= jsx * , t * , u * , v * d,
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dt*

d«
= tsx * , t * , u * , v * d,

du*

d«
= hsx * , t * , u * , v * d,

dv*

d«
= fsx * , t * , u * , v * d, s7d

with x* = x, t* = t, u* = u, v* = v at «=0.
A point symmetrys5d yields anonlocal symmetryof the scalar equations1d if and only if

jv
2+tv

2+hv
2Þ0, i.e., if and only if the infinitesimalsj ,t, andh have an essential dependence on the

potential variablev. Such a nonlocal symmetry is called apotential symmetryof scalar equation
s1d related to the potential systems2d sfor details, see Ref. 3d.

The determining equationss6d simplify to

jv − tu = 0,

hu − fv + jx − tt = 0,

Gsudhv + ht − fx + Gsudtx = 0,

ju − Fsudtv = 0,

fu − Gsudtu − Fsudhv = 0,

Gsudjv + jt − Fsudtx = 0,

ffv − tt − 2Gsudtv − hu + jxgFsud − F8sudh = 0,

ffv − tt − GsudtvgGsud − Fsudhx − G8sudh + ft = 0. s8d

We now consider the classification problem of finding allFsud, Gsud such that the potential
systems2d yields a potential symmetry ofs1d.

If

Fsud =
c

sau+ bd2, Gsud =
d

au+ b
+ f s9d

for arbitrary constantsa,b,c,d, f, or if

Fsud is arbitrary, Gsud = const,

then through the potential systems2d, the scalar equation admits an infinite number of potential
symmetries and the potential systems2d is linearizable by a point transformationssee Refs. 3 and
4d.

Various symbolic manipulation algorithms exist to solve the set of determining equationss8d
sfor example, see Refs. 14 and 15d. Using the symmetry manipulation algorithm presented in Ref.
15, one can prove the following results.

Theorem 1: The scalar equation (1) admits a potential symmetry related to potential system
(2) if and only if the functions Fsud and Gsud, with G8sudÞ0, satisfy the system of ODEs,
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sc4u + c5dF8sud − 2sc1 − c3 − c2GsuddFsud = 0, s10d

sc4u + c5dG8sud + c2G
2sud − sc1 − 2c3 + c4dGsud − c6 = 0, s11d

for any fixed constants c1,c2, . . . ,c6 with c2Þ0.
In the linearizable cases9d,

c1 = 0, c6 =
c3sc4 − c3d

c2
.

Theorem 2: For any Fsud, Gsud satisfying the system of ODEs (10) and (11) with c2Þ0, the
potential system (2) admits the point symmetry (5) with

j = c1x + c2E Fsuddu,

t = c3t + c2v,

h = c4u + c5,

f = c6t + sc1 − c3 + c4dv, s12d

and hence the scalar equation (1) admits the corresponding potential symmetry.
Now we find the functionsFsud andGsud satisfyings10d, s11d and the corresponding potential

symmetriess12d.
Note that the point transformation

x̄ = ax+ b, t̄ = ct + d, ū = au + b, v̄ = gv + rt

for any constantsa, b, c, d, a, b, g, and r such thatacagÞ0 andaa=cg is an equivalence
transformation for systems2d. Under this transformation, systems2d becomes the equivalent
system

v̄x̄ = ūt̄, v̄t̄ = F̄sūdūx̄ + Ḡsūd,

where

F̄sūd =
ag

ca
FS ū − b

a
D

and

Ḡsūd =
g

c
GS ū − b

a
D +

r

c
.

We use such equivalence transformations to simplify the analysis. For example, ifGsud=a0sb0u
+c0dd0+ f0, without loss of generality we can assume thatGsud=ud0.

Modulo translations and scalings inu andG, we obtain six distinct classes of ODEs forFsud
andGsud where scalar equations1d admits potential symmetries. These six classes of ODEs and
their solutionsfmodulo equivalence classes ofFsud andGsudg are presented in Table I. In Table II
for each class we display the corresponding infinitesimalssj ,t ,h ,fd and global group
sx* , t* , u* , v* d obtained from solving the corresponding ODEss7d.

All symmetries presented in Tables I and II are new for each of the equivalent systemss1d–s4d.
Note that classes 1 and 6 are linearizable4 if b=0 anda=1/2.
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III. POINT SYMMETRY CLASSIFICATION OF THE SCALAR EQUATION „1…

In Ref. 7, Kingston and Sophocleous considered the classification problem of finding allFsud,
Gsud such that the scalar equations1d admits a point symmetry. The point symmetry

x * = x + «jsx,t,ud + Os«2d,

TABLE I. Classes ofFsud andGsud yielding potential symmetries ofs1d.

Class
ODEs satisfied by

Fsud andGsud Gsud Fsud
Relationship between

Fsud andGsud

1 uG8−as1−G2d=0
uF8−sb−1−2aGdF=0

su2a−1d / su2a+1d
su2a+1d / su2a−1d

4u2a+b−1/ su2a+1d2

−4u2a+b−1/ su2a−1d2
Fsud=sub /adG8sud

2 uG8−as1+G2d=0
uF8+s1−b−2aGdF=0

tansa ln ud ub−1 sec2sa ln ud ’’

3 uG8+G2=0
uF8−sb−1−2GdF=0

sln ud−1 −ub−1sln ud−2 ’’

4 G8−G2−1=0
F8−2sb+GdF=0

tanu e2bu sec2 u Fsud=e2buG8sud

5 G8+G2−1=0
F8−2sb−GdF=0

tanhu
cothu

e2bu sech2 u
−e2bu csch2 u

’’

6 G8+G2=0
F8−2sb−GdF=0

u−1 −u−2e2bu ’’

TABLE II. Potential symmetries of s1d for each class fGsb ,F ,«d=eue2«
s−s1+bdsesFsxddxdds, Vsb ,F ,«d

=eu+«e−2bssesFsxddxddsg.

Class
Infinitesimals

j ,t ,h ,f Global group

1 Fsud=4u2a+b−1/ su2a+1d2

Gsud=su2a−1d / su2a+1d or
Fsud=−4u2a+b−1/ su2a−1d2

Gsud=su2a+1d / su2a−1d

j=2sbx+aeFsuddud
t=sb+1dt+2av

h=2u
f=2at+sb+1dv

x* = e2b«fx+aubsGsb ,F ,«d−Gsb ,F ,0ddg
t* = s1/2desb+1d«fst+vde2a«+st−vde−2a«g

u* = ue2«

v* = s1/2desb+1d«fst+vde2a«−st−vde−2a«g
2 Fsud=ub−1 sec2sa ln ud

Gsud=tansa ln ud
j=2sbx−aeFsuddud

t=sb+1dt−2av
h=2u

f=2at+sb+1dv

x* = e2b«fx−aubsGsb ,F ,«d−Gsb ,F ,0ddg
t* = esb+1d«ft cos 2a«−v sin 2a«g

u* = ue2«

v* = esb+1d«fv cos 2a«+ t sin 2a«g
3 Fsud=−ub−1sln ud−2

Gsud=sln ud−1
j=2sbx+e Fsuddud

t=sb+1dt+2v
h=2u

f=sb+1dv

x* = e2b«fx+ubsGsb ,F ,«d−Gsb ,F ,0ddg
t* = esb+1d«s2v«+ td

u* = ue2«

v* = vesb+1d«

4 Fsud=e2bu sec2 u
Gsud=tanu

j=2bx−eFsuddu
t=bt−v

h=1
f= t+bv

x* = e2b«fx−e2busVsb ,F ,«d−Vsb ,F ,0ddg
t* = eb«st cos«−v sin«d

u* = u+«

v* = eb«sv cos«+ t sin«d
5 Fsud=e2bu sech2 u

Gsud=tanhu or
Fsud=−e2bu csch2 u

Gsud=cothu

j=2bx+eFsuddu
t=bt+v

h=1
f= t+bv

x* = e2b«fx+e2busVsb ,F ,«d−Vsb ,F ,0ddg
t* = s1/2deb«sst+vde«+st−vde−«d

u* = u+«

v* = s1/2deb«sst+vde«−st−vde−«d
6 Fsud=−u−2e2bu

Gsud=u−1
j=2bx+eFsuddu

t=bt+v
h=1

f=bv

x* = e2b«fx+e2busVsb ,F ,«d−Vsb ,F ,0ddg
t* = eb«st+v«d

u* = u+«

v* = veb«

023505-6 Bluman, Temuerchaolu, and Sahadevan J. Math. Phys. 46, 023505 ~2005!

Downloaded 08 Jan 2009 to 137.82.36.67. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



t * = t + «tsx,t,ud + Os«2d,

u * = u + «hsx,t,ud + Os«2d, s13d

is admitted by the scalar equations1d if and only if it satisfies the determining equation

Xs2dsutt − sFsuduxdx − Gsudxd = 0 s14d

for any u solving the scalar equations1d;

X = jsx,t,ud
]

]x
+ tsx,t,ud

]

]t
+ hsx,t,ud

]

]u
,

is the infinitesimal generator of the point symmetrys13d; Xs2d is the second extension ofX.
From s14d, the determining equations forjsx,t ,ud, tsx,t ,ud, andhsx,t ,ud are given by

ju = tx = tu = huu = 0,

jt − Fsudtx = 0,

2Fsudsjx − ttd − F8sudh = 0,

htt − Fsudhxx − G8sudhx = 0,

2htu − ttt + Fsudtxx + G8sudtx = 0,

2Fsudhxu + jtt − Fsudjxx + 2F8sudhx − G8sudsjx − 2ttd + G9sudh = 0.

For arbitraryFsud andGsud, clearly each of the equivalent systemss1d–s4d admits translations
in xsj=1,t=0d and tsj=0,t=1d. For specificFsud and Gsud with G8sudÞ0, the results are
summarized in Table III.

Note that the classes presented in Ref. 7 whereFsud=1, Gsud=elu as well asFsud=1, Gsud
=ul+1 can be obtained, respectively, by appropriately scalingu in class A and settinga=0 in class
B.

IV. POINT SYMMETRY CLASSIFICATION OF THE SCALAR EQUATION „4…

In Ref. 8, the authors considered the classification problem of finding allFsud, Gsud such that
the scalar equations4d admits a point symmetry. The point symmetry

x * = x + «jsx,t,wd + Os«2d,

TABLE III. Classes ofFsud andGsud yielding point symmetries ofs1d.

Class Gsud Fsud Infinitesimalsj ,t ,h

A eu esa+1du j=2ax,t=sa−1dt ,h=2

B ua+b+1 ua j=2bx,t=sa+2bdt ,h=−2u

C u−1 u−2 Those in class B and
j=ex,t=0,h=−uex

D ln u ua j=2sa+1dx,t=sa+2dt ,h=2u

E u eau j=2ax,t=at ,h=2

F u−3 u−4 Those in class B and
j=0,t= t2,h=ut
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t * = t + «tsx,t,wd + Os«2d,

w * = w + «Vsx,t,wd + Os«2d, s15d

is admitted by the scalar equations4d if and only if it satisfies the determining equation

Xs2dswtt − Fswxdwxx − Gswxdd = 0

for any w solving the scalar equations4d;

X = jsx,t,wd
]

]x
+ tsx,t,wd

]

]t
+ Vsx,t,wd

]

]w
,

is the infinitesimal generator of the point symmetrys15d; Xs2d is the second extension ofX.
Modulo equivalence transformations, the results presented in Ref. 8 are summarized in Table

IV.

V. DISCUSSION OF THE SYMMETRY CLASSIFICATIONS

In this section we prove the statementssId–sIV d presented in the Introduction through proofs
of the following four theorems.

Theorem 3: The point symmetry classifications of the scalar equations (1) and (4) are iden-
tical, i.e., for any Fsud and Gsud a point symmetry admitted by (1) induces a point symmetry
admitted by (4) and vice versa.

Proof: The infinitesimals of a point symmetry of the scalar equations1d are of the form

j = jsxd, t = tstd, h = sfstd − j8sxddu + b

for some functionsjsxd, tstd, fstd and constantb. A corresponding point symmetry of the potential
scalar equations4d swith u=wxd must havej=jsxd, t=tstd, V=Vsx,t ,wd with Vsx,t ,wd satisfying

Vxs1d = h

in terms of its first extended infinitesimalVxs1d, i.e.,

Vxs1d =
DV

Dx
−

Dj

Dx
wx −

Dt

Dx
wt = Vx + Vwwx − j8sxdwx = sfstd − j8sxddwx + b. s16d

Hence from Eq.s16d, we must have

Vx = b, Vw = fstd.

Then it is necessary that

TABLE IV. Classes ofFsud andGsud yielding point symmetries ofs4d.

Class Gsud=Gswxd Fsud=Fswxd Infinitesimalsj ,t ,h

A eu esa+1du j=2ax,t=sa−1dt ,V=2saw+xd
B ua+b+1 ua j=2bx,t=sa+2bdt ,V=2sb−1dw
C u−1 u−2 Those in class B and

j=ex,t=0,V=0

D ln u ua j=2sa+1dx,t=sa+2dt ,V=2sa+2dw+ t2

E u eau j=2ax,t=at ,V=2aw+ t2+2x

F u−3 u−4 Those in class B and
j=0,t= t2,V= tw
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V = bx+ fstdw + gstd, s17d

for somegstd in order that a point symmetry of the scalar equations1d yields a point symmetry of
the scalar equations4d. From Tables III and IV, it is easy to check that conditions17d is satisfied
for each point symmetry of the scalar equations4d.

Conversely, the infinitesimals of a point symmetry ofs4d are of the form

j = jsxd, t = tstd, V = fstdw + bsx,td

for some functionsjsxd, tstd, fstd, and bsx,td. A corresponding point symmetry of the scalar
equations1d with u=wx must have

j = jsxd, t = tstd, h = hsx,t,ud.

In terms of the first extended infinitesimalVxs1d, the infinitesimalhsx,t ,ud must satisfy

h = Vxs1d =
DV

Dx
−

Dj

Dx
wx −

Dt

Dx
wt = Vx + Vwwx − j8sxdwx = bx + sfstd − j8sxddwx. s18d

From Tables III and IV, it is easy to check that conditions18d is satisfied for each point symmetry
of s1d. j

Theorem 4: For each of the six classes of Fsud and Gsud listed in Table I, there exist point
symmetries of the potential system (2) which are nonlocal symmetries of the scalar equation (1).

Proof: Since each point symmetry in Table II hastvÞ0, it follows that for all classes ofFsud
andGsud listed in Table Isalso repeated in Table IId there exist point symmetries of the potential
systems2d which are nonlocalspotentiald symmetries of the scalar equations1d. j

Note that only the classFsud=u−2, Gsud=u−1 is common for Tables I and III. This class is
linearizable since it admits potential symmetries leading to the linearization ofs2d by a point
transformation.4

Theorem 5: Each point symmetry of the potential system (2) which is a nonlocal symmetry of
the scalar equation (1) yields a contact symmetry of the potential equation (4) that isnot a point
symmetry of (4).

Proof: A contact symmetryof a PDE with dependent variablew and independent variablesx
and t is defined by

x * = x + «jsx,t,w,wx,wtd + Os«2d,

t * = t + «tsx,t,w,wx,wtd + Os«2d,

w * = w + «Vsx,t,w,wx,wtd + Os«2d, s19d

if and only if

]V

]wx
=

]j

]wx
wx +

]t

]wx
wt,

]V

]wt
=

]j

]wt
wx +

]t

]wt
wt. s20d

Let characteristic functionW=V−jwx−twt. A contact symmetrys19d is a point symmetry if and
only if

]2W

]swxd2 =
]2W

]swtd2 =
]2W

]wx]wt
= 0. s21d

For details, see Chap. 5 of Ref. 3.
A point symmetry of potential systems2d which is a nonlocal symmetry of the scalar equation

s1d ssee Table IId is of the form
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j = ax+ bEu

Fssdds, t = ct + dv,

h = fu + g, f = ht + kv, s22d

for some constantsa, b, c, d, f, g, h, andk with dÞ0, a+ f =c+k.
Solving s20d, after using the substitutions22d, we find that

Vsx,t,w,wx,wtd = bEwx

sFssdds+
d

2
wt

2 + Asx,t,wd s23d

yields a contact symmetry for an arbitrary functionAsx,t ,wd.
Now we findAsx,t ,wd so thats23d yields a contact symmetry of the potential equations4d.

Sinceu=wx, v=wt, it follows that we must have

h = Vxs1d =
DV

Dx
−

Dj

Dx
wx −

Dt

Dx
wt,

f = Vts1d =
DV

Dt
−

Dj

Dt
wx −

Dt

Dt
wt, s24d

in terms of first extended infinitesimalsVxs1d andVts1d. After solving the equationss24d, we find
that Asx,t ,wd=gx+sa+ fdw+ 1

2ht2 and hence

j = ax+ bEwx

Fssdds, t = ct + dwt,

V = bEwx

sFssdds+
d

2
wt

2 + gx+ sa + fdw +
1

2
ht2, s25d

defines a contact symmetry of the scalar potential equations4d. Using conditions21d, it is clear
that s25d is not a point symmetry ofs4d sincedÞ0. j

Theorem 6: A point symmetry of the scalar equation (1) yields a point symmetry of the
potential equation (2) if and only if the infinitesimals for Fsud and Gsud belong to classes A–E in
Table III.

Proof: A point symmetrysjsx,t ,ud ,tsx,t ,ud ,hsx,t ,udd of the scalar equations1d yields a
point symmetry ofs2d if and only if the set of determining equationss8d has a solution for
fsx,t ,u,vd. A solution of s8d exists if and only if the six integrability conditions involving the
second order mixed partial derivatives offsx,t ,u,vd are satisfied. Consequently, it is easy to show
that a point symmetry ofs1d yields a point symmetry ofs2d if and only if it satisfies the additional
conditions

ttt = 0, hxu + jxx = 0, htt = 0, F8sudhx − 2Fsudjxx = 0. s26d

The infinitesimals for classes A–E in Table III satisfys26d but those for class F do not since here
tttÞ0. j

As a consequence of Theorem 6, we see that the point symmetryX= t2s] /]td+uts] /]ud for
Gsud=u−3, Fsud=u−4 yields anonlocal symmetryof the potential systems2d.
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VI. A PHYSICAL EXAMPLE

We now specialize to the situation for the second physical example mentioned in the Intro-
duction. HereFsud=lG8sud. Consequently, in Tables I and II, we haveb=0 and eFsuddu
=Gsud. In Table V, we give the corresponding global group for each of the six classes yielding
potential symmetries of the scalar equations1d.

After translations and scalings ofu andG, class 5 includes bounded monotonic stress tensor
functionsGsud=a tanhsbu+gd for arbitrary constantsa, b, g, andd.

VII. FURTHER DISCUSSION

In this paper we found new symmetries for equivalent telegraph equationss1d–s4d. These
symmetries can be used to find families of solutions from any given solution and to construct
invariant solutions from the invariants of the symmetries or through the direct method discussed in
Ref. 3.

In future papers, we will find conservation laws fors1d–s4d through techniques introduced in
Refs. 16–18. Systemss1d–s4d are not self-adjoint. Hence a symmetry ofs1d–s4d does not yield a
conservation law through Noether’s theorem.

For the physical caseFsud=G8sud, the second equation in the potential systems2d becomes

TABLE V. Physical examplesfFsud=G8sudg yielding potential symmetries ofs1d.

Class
Infinitesimals

j ,t ,h ,f Global group

1.1 Gsud=su2a−1d / su2a+1d j=2assu2a−1d / su2a+1dd
t= t+2av

h=2u
f=2at+v

x* = x+lnssu2ae4a«+1d / su2a+1dd−2a«

t* = 1
2e«fst+vde2a«+st−vde−2a«g

u* = ue2«

v* = 1
2e«fst+vde2a«−st−vde−2a«g

1.2 Gsud=su2a+1d / su2a−1d j=2assu2a+1d / su2a−1dd
t= t+2av

h=2u
f=2at+v

x* = x+lnusu2ae4a«−1d / su2a−1du−2a«

t* = 1
2e«fst+vde2a«+st−vde−2a«g

u* = ue2«

v* = 1
2e«fst+vde2a«−st−vde−2a«g

2 Gsud=tansa ln ud j=−2a tansa ln ud
t= t−2av

h=2u
f=2at+v

x* = x+lnucossasln u+2«dd /cossa ln udu
t* = e«ft cos 2a«−v sin 2a«g

u* = ue2«

v* = e«fv cos 2a«+ t sin 2a«g
3 Gsud=sln ud−1 j=2sln ud−1

t= t+2v
h=2u
f=v

x* = x+lnu1+2« / ln uu
t* = e«s2v«+ td

u* = ue2«

v* = ve«

4 Gsud=tanu j=−tanu
t=−v
h=1
f= t

x* = x+lnucossu+«d /cosuu
t* = t cos«−v sin«

u* = u+«

v* = v cos«+ t sin«

5.1 Gsud=tanhu j=tanhu
t=v
h=1
f= t

x* = x+lnsse2su+«d+1d / se2u+1dd−«

t* = 1
2sst+vde«+st−vde−«d

u* = u+«

v* = 1
2sst+vde«−st−vde−«d

5.2 Gsud=cothu j=cothu
t=v
h=1
f= t

x* = x+lnuse2su+«d−1d / se2u−1du−«

t* = 1
2sst+vde«+st−vde−«d

u* = u+«

v* = 1
2sst+vde«−st−vde−«d

6 Gsud=u−1 j=u−1

t=v
h=1
f=0

x* = x+lnu1+« /uu
t* = t+v«

u* = u+«

v* = v
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sexvdt = sexGsuddx.

This leads to another equivalent potential system

vx = ut, wx = exv, wt = exGsud.

The problem of finding equivalent potential systems for a given PDE is considered in Refs. 4 and
5.
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