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Donaldson-Thomas theory: counting invariants of
sheaves on Calabi-Yau threefolds.

Symmetric obstruction theories and the virtual
fundamental class.

Additivity (over stratifications) of Donaldson-Thomas
Invariants.

Motivic Donaldson-Thomas invariants.

Categorification of Donaldson-Thomas invariants.

Begin with: review of the local case: critical loci.



Local discussion

The singular GauB-Bonnet theorem

M smooth complex manifold (not compact),

f: M — C holomorphic function,

X =Critf C M. Assume X compact.
Then X is the intersection of two Lagrangian submanifolds in Q,
(complementary dimensions):
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X is compact:
intersection number #7"(X) = Zq,, (M, 4) = f[X]vm 1 well-defined.

[X]""* € Ao(X) virtual fundamental class of the intersection scheme X.
Theorem (Singular GauB-Bonnet)
Iﬂm(Ma I_df) = X(Xa M)

u: X — 7Z constructible function.




Singular GauB-Bonnet theorem

Milnor fibre

X=CritfC M f : M — C holomorphic Theorem: Zq,,(M,T4r) = x(X, 1)
Fp: Milnor fibre of f at P: intersection of a nearby fibre of f with a
small ball around P.
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u(P) = (—1)dimM<1 - X(Fp)): Milnor number of f at P € X = Crit .

Consider two cases of the theorem: dimX =0, X smooth.



Case dm X =0

Milnor fibre example:
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X = Crit(f) = {P}. Isolated singularity.  Zgq,,(M,T4) = 1.

Near P, the surface f~1(0) is a cone over the link of the singularity. The
cone is contractible.

The Milnor fibre is a manifold with boundary. The boundary is the link.
The Milnor fibre supports the vanishing cycles. The Milnor number
p(P) = (—1)dim M(l - X(FP)) is the number of vanishing cycles.
Here, x(X, ) = u(P) =1, and hence Zg,,(M,T4) = x(X, p).



Case dim X = 0: Milnor’s theorem

Milnor fibre example:
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X = Crit(f) = {(x,y) | 2x = 0,3y? = 0} = SpecC[y]/y?. lsolated
singularity of multiplicity 2. Za,, (M, T4r) = 2.

Link: (2,3) torus knot (trefoil). The singularity is a cone over the knot.
The link bounds the Milnor fibre. Homotopy type (Milnor fibre) =
bouquet of 2 circles. x(Fp) =1—-2=—1.

The Milnor number is y(P) = (—1)(1 — (—1)) = 2. There are 2
vanishing cycles.

In this example, Zq,, (M, 4r) = 2 = x(X, ).

Theorem (Milnor, 1969)

For the case dim X = 0 (isolated singularities)
Zq,, (M, T 4¢) = Milnor number = x(X, ).




Case X smooth

The excess bundle

X=CritfC M f : M — C holomorphic Theorem: Zq,,(M,T4r) = x(X, 1)
Suppose X is smooth. So ‘/VX\//M = fx/f)% is a vector bundle on X.
Epimorphism TMi»ﬂX COp.
Restrict to X: TM|X—df»-f/j2 (—d>QM|X.
v
H(f)
(Recall: .7/.972—9 - Q|x—=Qx—>0.)
The Hessian matrix H(f) is symmetric, so taking duals we get the same

diagram, so that .% /.72 = Nx /M-
So the excess bundle (or obstruction bundle) is
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Intrinsic to the intersection X. Always so for Lagrangian intersections.



Case X smooth / 22
The excess bundle

X =CritfCM f : M — C holomorphic Theorem: Zq,,(M,T4r) = x(X, 1)

In the case of clean intersection, the virtual fundamental class is the top
Chern class of the excess bundle, so:

Proposition
[XT7™ = copf2x N [X]

Hence,

IQM(M7 rdf) = / CtopQX
[X]

= (c1)fimX / Con Tx
[X]

= (—1)9mX\(X), by GauB-Bonnet

= x(X,px), with px = (—=1)9mX.
and for smooth X it turns out that py = (—1)4mX.
For X smooth, the theorem is equivalent to GauB-Bonnet.



General case

Additive nature of #"(X).
fM—C, X=Critf.

Theorem (Singular GauB-Bonnet)

#(X) = x(X,p)

is a result of microlocal geometry, in the 1970s.

Main ingredient in proof: microlocal index theorem of Kashiwara,
MacPherson.

Also: determination of the characteristic variety of the perverse sheaf of
vanishing cycles.

Major significance: intersection number is motivic, i.e.,
e intersection number makes sense for non-compact schemes:
#4(X) = x(X, ),
e intersection number is additive over stratifications:
X(X,pux) = x(X\Z, ux) + x(Z, ux), if Z — X is closed.
This is unusual for intersection numbers,
only true for Lagrangian intersections.



Generalization:

Motivic critical loci

Group of motivic weights K(Var): Grothendieck group of C-varieties
modulo scissor relations: [X] = [X\ Z] 4 [Z], whenever Z — X is a closed
immersion.

There exists a lift (motivic virtual count of critical loci):

K (Var)
ey
X
#virt
critical loci ——=7Z

dim

where ®(M, ) = —q~ %" [¢¢],
g =[C] motivic weight of the affine line,

[¢f]  motivic vanishing cycles of Denef-Loeser (2000): motivic version of
Milnor fibres. (From their work on motivic integration.)



Generalization:

Example: Hilb"(C?)

Hilb"(C3): scheme of three commuting matrices: critical locus of
(Mnxn(C)® x C")™/GL, — C, (A, B, C,v) +— tx([A, B]C).

Theorem (B.-Bryan-Szendr6i)

n=0 m=1 k=1 1- q

Specialize: q% — —1, get

i#Vi”(Hilb”(@)) o T (ﬁ)m

n=0 m=1

This is (up to signs) the generating function for 3-dimensional partitions

i#{3D partitions of n} t" = H (1 = tm)m e 1o

n=0 m=1 J



Generalization:

Categorified critical locus

fM—C, X=Critf.

Let &f = ®¢[dim M — 1] € D.(Cx) be the perverse sheaf of (shifted)
vanishing cycles for f (Deligne, 1967).

®¢  globalizes the reduced cohomology of the Milnor fibre:

Hi(®¢|p) = H'(Fp).

Theorem
S (=1) dim HI(X, ®f) = x(X, p)
So (X, <T>f) categorifies the virtual count.

De Rham model: twisted de Rham complex. Pass to ground field C((%)).

Theorem (Sabbah, 2010)
(23,(n)), df + hd)[dim M] € D(C((h)x) is a perverse sheaf, and

Zi(—l)i dim(c((h)) Hi (Qxﬂ((h)), df ol hd) = X(X, ,u) .



Donaldson-Thomas invariants

Calabi-Yau threefolds

Definition
A Calabi-Yau threefold is a complex projective manifold Y of dimension 3,

endowed with a nowhere vanishing holomorphic volume form
wy € F(Y,Q%,).

Example. Y = Z(x3 +... +x3) CP* the Fermat quintic.

Example. More generally, g(xo, ..., xa) a generic polynomial of degree 5
in 5 variables. Y = Z(g) CP* the quintic threefold.

Example. Algebraic torus C3/Z° (sometimes excluded, because it is not
simply connected).

CY3:  the compact part of 10-dimensional space-time according to
superstring theory.



Donaldson-Thomas invariants

Moduli spaces of sheaves
Y: Calabi-Yau threefold.

Fix numerical invariants, and a stability condition.

X: associated moduli space of stable sheaves (derived category objects)
onY.

Example: Fix integer n > 0. X =Hilb"(Y), Hilbert scheme of n
points on Y.

E € X <= E is the ideal sheaf of a (degenerate) set of n points in Y.
Example: FixintegersneZ,d>0. X =1,4(Y), [MNOP]

moduli space of (degenerate) curves of genus 1 — n, degree d in Y.

E € X <= E ideal sheaf of a 1-dimensional subscheme Z C Y.
Example: Fix r >0, and ¢; € H*(Y,Z).  X: moduli space of stable
sheaves (degenerate vector bundles) of rank r, with Chern classes ¢; on Y.



Donaldson-Thomas invariants

Donaldson-Thomas theory

X:  can be a finite set of points.

Example. Y: quintic 3-fold in P*.

X = I1.1(Y) moduli space of lines on Y.  X: 2875 discrete points.

X =l 2(Y) moduli space of conics in Y.  X: 609250 discrete points.
Slogan. If the world were without obstructions, all instances of X would
be finite sets of points.

Goal (of Donaldson-Thomas theory)
Count the (virtual) number of points of X.

Bad news. X almost never zero-dimensional, almost always very singular.
Good news. X is quite often compact: always for examples Hilb"(Y') and
In4(Y), sometimes in the last example (depending on the ¢;).

Thomas: constructs a virtual fundamental class [X]"** € Ag(X), and
defines #"*(X) = f[X]Vlrt 1€ Z, if X compact.

Kuranishi: X is locally isomorphic to Crit f, for suitable f

(restrict Chern-Simons to local Kuranishi slices).



Obstruction theories

Derived schemes: virtual fundamental class

More fundamental geometric object, the derived moduli scheme X — X.

Induces morphism Tx — Tx|x in D(Ox) of tangent complexes.
This morphism is an obstruction theory for X.

All derived schemes come with an amplitude of smoothness:
Tx|x € DO"(X) <= amplitude < n.
(e.g. classical smooth schemes are derived schemes of amplitude 0)

Derived schemes X of amplitude < 1 have a
virtual fundamental class [X]"" € Ayt (X).

X] = o e].
0: the vector bundle stack associated to the obstruction theory Tx|x,
if Tx|x =[V0— V1], 9=[vl/V],
¢: the intrinsic normal cone of X, [C] its fundamental cycle € Ao(Y),
Q::[CX/M/TI\/I|X]v if X — M,
¢ — U (cone stack in vector bundle stack) comes from Tx — Tx|x,
[X]"'* = 04[€] the Gysin pullback, via Oy : X — U, of [€].



Symmetric obstruction theories

Shifted symplectic structures

X: modulispace 7: X xY —=X & on X x Y universal sheaf.
Tx|x = (muyR™R Hom(&, &))[1] € DOI(X).

If P=[E], H(Tx|p)= Extlﬁy(E, E) = Tx|p, deformation space,
HY(Tx|p) = Ext?ﬁy(E, E), obstruction space.

Serre duality: Deformation space dual of obstruction space
HO(Tx|p) = H'(Txlp)".

) H(f
X = Crit f, Tx|x:[TM|XL>QM‘X]-

In both cases, Tx|x is a symmetric obstruction theory,

i.e., isomorphism 6 : Tx|x — (Tx|x)[—1], such that ¥[—1] = —6.
As a pairing: 0 : N2Tx|x — Ox[-1].

This is the ‘classical shadow’ on the classical locus X < X of a shifted
symplectic structure on X.

Shifted Darboux theorem. Every —1 shifted symplectic structure is
locally a derived critical locus.



Symmetric obstruction theories 17/ 22

Global version and generalization of singular GauB-Bonnet

Y': is a complex projective Calabi-Yau threefold.

X: a moduli space of sheaves on Y,
or any scheme endowed with a symmetric obstruction theory.

Theorem (B.)

Suppose that X is compact. Then the Donaldson-Thomas virtual count is

/ 1= x(X,vx).
[X]v1rt

vx : X — 7Z constructible function

vx(P) € Z invariant of the singularity of X at P € X
Contribution of P € X to the virtual count

vx(P) = u(P) if there exists a holomorphic function f : M — C,
such that X = Crit f, near P.
Construction. vy is the local Euler obstruction of the image of [€] in X.

Proof. Globally embed X < M. When performing deformation to the
normal cone (locally) inside Qy, you get Lagrangian cone. Then use K-M.



Applications

Additivity of DT invariants

Now Donaldson-Thomas invariants exist for X not compact, and are
additive over stratifications.

Example: global version of

Yoot (A HIL(C?) £ = [T, (=) "

Theorem (B.-Fantechi, Levine-Pandharipande, Li, 2008)
Y : Calabi-Yau threefold.

[e.e]

Z (#V‘”Hlb” ( H 1 _( i )X(Y)

n=0 m=1

Simplest non-trivial computation of Donaldson-Thomas invariants using
additive nature of the invariants.



Applications

Motivic Donaldson-Thomas invariants

X moduli space of sheaves on Calabi-Yau threefold Y.

To define motivic Donaldson-Thomas invariants, use
e X is locally Crit f,
e motivic vanishing cycles
e orientation data

K(Var)

/Vt
X
#lr

moduli spaces ——— 7Z

Theorem (B.-Bryan-Szendrdi, 2013)

Z¢ Hilb" V) ¢" _(HH ztm)m

mlkl

This formula uses the power structure on K(Var).
Elaborate theory of motivic invariants by Kontsevich-Soibelman.



Applications

Categorification by gluing perverse sheaves

Kiem-Li, Joyce et al, (2013) have constructed a perverse sheaf ® on X,
such that

#virt(X) — X(X7 VX) — Z(—l)i dim Hi(X, q>)a

by gluing the locally defined perverse sheaves of vanishing cycles for locally
existing Chern-Simons potentials.



Applications

Categorification via quantization

To globalize the de Rham categorification to moduli spaces X, expect to
need derived geometry, not just its ‘classical shadows’, such as Tx|x.

Consider the local case X =Critf, f: M — C, M smooth.

The derived critical locus:

o/, with &/~ = N Ty, the graded algebra of polyvector fields.
Contraction with df defines a derivation Q : &7’ — o/t such that
QOQ:%[Q,Q]ZO.

The differential graded scheme X = (M, <7, Q) is one model of the derived

scheme X.

f
X has a —1-shifted symplectic structure on it, of which [TM|X£>QM|X]

is the classical shadow.

o/ has the Lie Schouten bracket { ,} of degree +1 on it. This is the
Poisson bracket on the algebra of functions of the shifted symplectic
scheme X. (Q is a derivation with respect to this bracket.)



Applications

Categorification via quantization

X =(M,o,Q) dg scheme, & =ATy, Q= Jdf {,}
Suppose given a volume form on M, (or just a flat connection on the
canonical line bundle on M.)

This defines a divergence operator A : Ty — Oy, wich extends to
Ao/ — @/[1], such that A2 = 0.

A generates the bracket {, }

Axy) — (=1)*xA(y) — A(x)y = {x, y}
and commutes with Q. (Batalin-Vilkovisky operator).
Then (&7((h)), Q + hA) categorifies # " (Crit f).
(Using a volume form on M, giving rise to the divergence A, we can
identify ATy = Q3,[dim M], and then
((h), Q + hA) = (Q2%,((h)), df + hd)[dim M] the twisted de Rham
complex from above.)

Kashiwara-Schapira (2007) globalized this construction to the case of a
Lagrangian intersections in a complex symplectic manifold.

The general global case is still open. Most promising work by [PTVV].



Thanks!

http://www.math.ubc.ca/ behrend/talks/ams14.pdf
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