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Overview

Donaldson-Thomas theory: counting invariants of
sheaves on Calabi-Yau threefolds.

Symmetric obstruction theories and the virtual
fundamental class.

Additivity (over stratifications) of Donaldson-Thomas
invariants.

Motivic Donaldson-Thomas invariants.

Categorification of Donaldson-Thomas invariants.

Begin with: review of the local case: critical loci.
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The singular Gauß-Bonnet theorem
M smooth complex manifold (not compact),

f : M → C holomorphic function,

X = Crit f ⊂ M. Assume X compact.

Then X is the intersection of two Lagrangian submanifolds in ΩM

(complementary dimensions):

X //

��

M

Γdf

��
M

0 // ΩM

X is compact:
intersection number #virt(X ) = IΩM

(M, Γdf ) =
∫

[X ]virt 1 well-defined.

[X ]virt ∈ A0(X ) virtual fundamental class of the intersection scheme X .

Theorem (Singular Gauß-Bonnet)

IΩM
(M, Γdf ) = χ(X , µ)

µ : X → Z constructible function.
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Milnor fibre

X = Crit f ⊂ M f : M → C holomorphic Theorem: IΩM (M, Γdf ) = χ(X , µ)

FP : Milnor fibre of f at P: intersection of a nearby fibre of f with a
small ball around P.

µ(P) = (−1)dimM
(

1−χ(FP)
)

: Milnor number of f at P ∈ X = Crit f .

Consider two cases of the theorem: dimX = 0, X smooth.
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Milnor fibre example: f (x , y) = x2 + y 2

X = Crit(f ) = {P}. Isolated singularity. IΩM
(M, Γdf ) = 1.

Near P, the surface f −1(0) is a cone over the link of the singularity. The
cone is contractible.

The Milnor fibre is a manifold with boundary. The boundary is the link.

The Milnor fibre supports the vanishing cycles.The Milnor number

µ(P) = (−1)dimM
(

1− χ(FP)
)

is the number of vanishing cycles.

Here, χ(X , µ) = µ(P) = 1, and hence IΩM
(M, Γdf ) = χ(X , µ).
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Milnor fibre example: f (x , y) = x2 + y 3

X = Crit(f ) = {(x , y) | 2x = 0, 3y2 = 0} = SpecC[y ]/y2. Isolated
singularity of multiplicity 2. IΩM

(M, Γdf ) = 2.
Link: (2, 3) torus knot (trefoil). The singularity is a cone over the knot.
The link bounds the Milnor fibre. Homotopy type (Milnor fibre) =
bouquet of 2 circles. χ(FP) = 1− 2 = −1.
The Milnor number is µ(P) = (−1)2

(
1− (−1)

)
= 2. There are 2

vanishing cycles.
In this example, IΩM

(M, Γdf ) = 2 = χ(X , µ).

Theorem (Milnor, 1969)

For the case dimX = 0 (isolated singularities)
IΩM

(M, Γdf ) = Milnor number = χ(X , µ).
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The excess bundle

X = Crit f ⊂ M f : M → C holomorphic Theorem: IΩM (M, Γdf ) = χ(X , µ)

Suppose X is smooth. So N ∨
X/M = IX/I

2
X is a vector bundle on X .

Epimorphism TM
df // //IX ⊂ OM .

Restrict to X : TM |X
df // //

H(f )

44I /I 2 � � d //ΩM |X .

(Recall: I /I 2 d //ΩM |X //ΩX
//0.)

The Hessian matrix H(f ) is symmetric, so taking duals we get the same
diagram, so that I /I 2 = NX/M .

So the excess bundle (or obstruction bundle) is

X //

��

M

Γdf

��
M

0 // ΩM

ΩM |X
NX/M

=
ΩM |X
I /I 2

= ΩX .

Intrinsic to the intersection X . Always so for Lagrangian intersections.
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The excess bundle

X = Crit f ⊂ M f : M → C holomorphic Theorem: IΩM (M, Γdf ) = χ(X , µ)

In the case of clean intersection, the virtual fundamental class is the top
Chern class of the excess bundle, so:

Proposition

[X ]virt = ctopΩX ∩ [X ]

Hence,

IΩM
(M, Γdf ) =

∫
[X ]

ctopΩX

= (−1)dimX

∫
[X ]

ctopTX

= (−1)dimXχ(X ) , by Gauß-Bonnet

= χ(X , µX ) , with µX = (−1)dimX .

and for smooth X it turns out that µX ≡ (−1)dimX .

For X smooth, the theorem is equivalent to Gauß-Bonnet.
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Additive nature of #virt(X ).

f : M → C, X = Crit f .

Theorem (Singular Gauß-Bonnet)

#virt(X ) = χ(X , µ)

is a result of microlocal geometry, in the 1970s.

Main ingredient in proof: microlocal index theorem of Kashiwara,
MacPherson.

Also: determination of the characteristic variety of the perverse sheaf of
vanishing cycles.

Major significance: intersection number is motivic, i.e.,

• intersection number makes sense for non-compact schemes:
#virt(X ) = χ(X , µ),

• intersection number is additive over stratifications:
χ(X , µX ) = χ(X\Z , µX ) + χ(Z , µX ), if Z ↪→ X is closed.

This is unusual for intersection numbers,
only true for Lagrangian intersections.
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Motivic critical loci

Group of motivic weights K (Var): Grothendieck group of C-varieties
modulo scissor relations: [X ] = [X \ Z ] + [Z ], whenever Z → X is a closed
immersion.

There exists a lift (motivic virtual count of critical loci):

K (Var)

χ

��
critical loci

#virt
//

Φ
88

Z

where Φ(M, f ) = −q−
dim M

2 [φf ],

q = [C] motivic weight of the affine line,

[φf ] motivic vanishing cycles of Denef-Loeser (2000): motivic version of
Milnor fibres. (From their work on motivic integration.)
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Example: Hilbn(C3)

Hilbn(C3): scheme of three commuting matrices: critical locus of(
Mn×n(C)3 × Cn

)stab
/GLn −→ C, (A,B,C , v) 7−→ tr([A,B]C ).

Theorem (B.-Bryan-Szendrői)

∞∑
n=0

Φ
(
Hilbn(C3)

)
tn =

∞∏
m=1

m∏
k=1

1

1− qk+1−m
2 tm

Specialize: q
1
2 → −1, get

∞∑
n=0

#virt
(
Hilbn(C3)

)
tn =

∞∏
m=1

( 1

1− (−t)m

)m
.

This is (up to signs) the generating function for 3-dimensional partitions

∞∑
n=0

#{3D partitions of n} tn =
∞∏

m=1

( 1

1− tm

)m
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Categorified critical locus

f : M → C, X = Crit f .

Let Φ̃f = Φf [dimM − 1] ∈ Dc(CX ) be the perverse sheaf of (shifted)
vanishing cycles for f (Deligne, 1967).

Φf globalizes the reduced cohomology of the Milnor fibre:

H i (Φf |P) = H
i
(FP).

Theorem ∑
i (−1)i dimH i (X , Φ̃f ) = χ(X , µ)

So (X , Φ̃f ) categorifies the virtual count.

De Rham model: twisted de Rham complex. Pass to ground field C((~)).

Theorem (Sabbah, 2010)(
Ω•M((~)), df + ~d

)
[dimM] ∈ Dc(C((~))X ) is a perverse sheaf, and∑

i (−1)i dimC((~)) H
i
(
Ω•M((~)), df + ~d

)
= χ(X , µ) .
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Calabi-Yau threefolds

Definition

A Calabi-Yau threefold is a complex projective manifold Y of dimension 3,
endowed with a nowhere vanishing holomorphic volume form
ωY ∈ Γ(Y ,Ω3

Y ).

Example. Y = Z (x5
0 + . . .+ x5

4 ) ⊂ P4 the Fermat quintic.

Example. More generally, g(x0, . . . , x4) a generic polynomial of degree 5
in 5 variables. Y = Z (g) ⊂ P4 the quintic threefold.

Example. Algebraic torus C3/Z6 (sometimes excluded, because it is not
simply connected).

CY3: the compact part of 10-dimensional space-time according to
superstring theory.
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Moduli spaces of sheaves

Y : Calabi-Yau threefold.

Fix numerical invariants, and a stability condition.

X : associated moduli space of stable sheaves (derived category objects)
on Y .

Example: Fix integer n > 0. X = Hilbn(Y ), Hilbert scheme of n
points on Y .
E ∈ X ⇐⇒ E is the ideal sheaf of a (degenerate) set of n points in Y .

Example: Fix integers n ∈ Z, d > 0. X = In,d(Y ), [MNOP]
moduli space of (degenerate) curves of genus 1− n, degree d in Y .
E ∈ X ⇐⇒ E ideal sheaf of a 1-dimensional subscheme Z ⊂ Y .

Example: Fix r > 0, and ci ∈ H2i (Y ,Z). X : moduli space of stable
sheaves (degenerate vector bundles) of rank r , with Chern classes ci on Y .
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Donaldson-Thomas theory

X : can be a finite set of points.

Example. Y : quintic 3-fold in P4.
X = I1,1(Y ) moduli space of lines on Y . X : 2875 discrete points.
X = I1,2(Y ) moduli space of conics in Y . X : 609250 discrete points.

Slogan. If the world were without obstructions, all instances of X would
be finite sets of points.

Goal (of Donaldson-Thomas theory)

Count the (virtual) number of points of X .

Bad news. X almost never zero-dimensional, almost always very singular.

Good news. X is quite often compact: always for examples Hilbn(Y ) and
In,d(Y ), sometimes in the last example (depending on the ci ).

Thomas: constructs a virtual fundamental class [X ]virt ∈ A0(X ), and
defines #virt(X ) =

∫
[X ]virt 1 ∈ Z, if X compact.

Kuranishi: X is locally isomorphic to Crit f , for suitable f
(restrict Chern-Simons to local Kuranishi slices).



Obstruction theories 15/ 22

Derived schemes: virtual fundamental class

More fundamental geometric object, the derived moduli scheme X ↪→ X.

Induces morphism TX → TX|X in D(OX ) of tangent complexes.
This morphism is an obstruction theory for X .

All derived schemes come with an amplitude of smoothness:
TX|X ∈ D [0,n](X ) ⇐⇒ amplitude ≤ n.

(e.g. classical smooth schemes are derived schemes of amplitude 0)

Derived schemes X of amplitude ≤ 1 have a
virtual fundamental class [X ]virt ∈ ArkTX|X (X ).

[X ]virt = 0!
V[C] ,

V: the vector bundle stack associated to the obstruction theory TX|X ,
if TX|X = [V 0 → V 1], V = [V 1/V 0],

C: the intrinsic normal cone of X , [C] its fundamental cycle ∈ A0(V),
C = [CX/M/TM |X ], if X ↪→ M,

C ↪→ V (cone stack in vector bundle stack) comes from TX ↪→ TX|X ,

[X ]virt = 0!
V[C] the Gysin pullback, via 0V : X → V, of [C].
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Shifted symplectic structures

X : moduli space π : X × Y → X E on X × Y universal sheaf.

TX|X =
(
τ[1,2]Rπ∗R Hom(E ,E )

)
[1] ∈ D [0,1](X ).

If P = [E ], H0(TX|P) = Ext1
OY

(E ,E ) = TX |P , deformation space,

H1(TX|P) = Ext2
OY

(E ,E ), obstruction space.

Serre duality: Deformation space dual of obstruction space
H0(TX|P) = H1(TX|P)∨.

X = Crit f , TX|X = [TM |X
H(f ) //ΩM |X ].

In both cases, TX|X is a symmetric obstruction theory,

i.e., isomorphism θ : TX|X
∼−→ (TX|X )∨[−1], such that θ∨[−1] = −θ.

As a pairing: θ : Λ2TX|X → OX [−1].

This is the ‘classical shadow’ on the classical locus X ↪→ X of a shifted
symplectic structure on X.

Shifted Darboux theorem. Every −1 shifted symplectic structure is
locally a derived critical locus.
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Global version and generalization of singular Gauß-Bonnet

Y : is a complex projective Calabi-Yau threefold.

X : a moduli space of sheaves on Y ,
or any scheme endowed with a symmetric obstruction theory.

Theorem (B.)

Suppose that X is compact. Then the Donaldson-Thomas virtual count is∫
[X ]virt

1 = χ(X , νX ) .

νX : X → Z constructible function

νX (P) ∈ Z invariant of the singularity of X at P ∈ X .
Contribution of P ∈ X to the virtual count

νX (P) = µ(P) if there exists a holomorphic function f : M → C,
such that X = Crit f , near P.

Construction. νX is the local Euler obstruction of the image of [C] in X .

Proof. Globally embed X ↪→ M. When performing deformation to the
normal cone (locally) inside ΩM , you get Lagrangian cone. Then use K-M.
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Additivity of DT invariants

Now Donaldson-Thomas invariants exist for X not compact, and are
additive over stratifications.

Example: global version of∑∞
n=0

(
#virt Hilbn(C3)

)
tn =

∏∞
m=1

(
1

1−(−t)m

)m
Theorem (B.-Fantechi, Levine-Pandharipande, Li, 2008)

Y : Calabi-Yau threefold.

∞∑
n=0

(
#virt Hilbn Y

)
tn =

( ∞∏
m=1

( 1

1− (−t)m
)m)χ(Y )

Simplest non-trivial computation of Donaldson-Thomas invariants using
additive nature of the invariants.
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Motivic Donaldson-Thomas invariants

X moduli space of sheaves on Calabi-Yau threefold Y .

To define motivic Donaldson-Thomas invariants, use

• X is locally Crit f ,
• motivic vanishing cycles
• orientation data

K (Var)

χ

��
moduli spaces

#virt
//

Φ
77

Z

Theorem (B.-Bryan-Szendrői, 2013)
∞∑
n=0

Φ(Hilbn Y ) tn =
( ∞∏

m=1

m∏
k=1

1

1− qk−2−m
2 tm

)[Y ]

This formula uses the power structure on K (Var).

Elaborate theory of motivic invariants by Kontsevich-Soibelman.
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Categorification by gluing perverse sheaves

Kiem-Li, Joyce et al, (2013) have constructed a perverse sheaf Φ on X ,
such that

#virt(X ) = χ(X , νX ) =
∑

(−1)i dimH i (X ,Φ) ,

by gluing the locally defined perverse sheaves of vanishing cycles for locally
existing Chern-Simons potentials.
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Categorification via quantization

To globalize the de Rham categorification to moduli spaces X , expect to
need derived geometry, not just its ‘classical shadows’, such as TX|X .

Consider the local case X = Crit f , f : M → C, M smooth.

The derived critical locus:

A , with A −i = ΛiTM , the graded algebra of polyvector fields.

Contraction with df defines a derivation Q : A i → A i+1, such that
Q ◦ Q = 1

2 [Q,Q] = 0.

The differential graded scheme X = (M,A ,Q) is one model of the derived
scheme X.

X has a −1-shifted symplectic structure on it, of which [TM |X
H(f ) //ΩM |X ]

is the classical shadow.

A has the Lie Schouten bracket { , } of degree +1 on it. This is the
Poisson bracket on the algebra of functions of the shifted symplectic
scheme X. (Q is a derivation with respect to this bracket.)
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Categorification via quantization

X = (M,A ,Q) dg scheme, A = ΛTM , Q = y df { , }
Suppose given a volume form on M, (or just a flat connection on the
canonical line bundle on M.)

This defines a divergence operator ∆ : TM → OM , wich extends to
∆ : A → A [1], such that ∆2 = 0.

∆ generates the bracket { , }
∆(xy)− (−1)xx∆(y)−∆(x)y = {x , y}

and commutes with Q. (Batalin-Vilkovisky operator).

Then (A ((~)),Q + ~∆) categorifies #virt(Crit f ).

(Using a volume form on M, giving rise to the divergence ∆, we can
identify ΛTM = Ω•M [dimM], and then
(A ((~)),Q + ~∆) = (Ω•M((~)), df + ~d)[dimM] the twisted de Rham
complex from above.)

Kashiwara-Schapira (2007) globalized this construction to the case of a
Lagrangian intersections in a complex symplectic manifold.

The general global case is still open. Most promising work by [PTVV].



Thanks!
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