
Super-rigid Donaldson-Thomas Invariants

Kai Behrend and Jim Bryan

January 15, 2007

Abstract

We solve the part of the Donaldson-Thomas theory of Calabi-Yau
threefolds which comes from super-rigid rational curves. As an appli-
cation, we prove a version of the conjectural Gromov-Witten/Donaldson-
Thomas correspondence of [MNOP] for contributions from super-rigid ra-
tional curves. In particular, we prove the full GW/DT correspondence for
the quintic threefold in degrees one and two.
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1 Introduction

Let Y be a smooth complex projective Calabi-Yau threefold. Let In(Y, β)
be the moduli space of ideal sheaves IZ ⊂ OY , where the associated
subscheme Z has maximal dimension equal to one, the holomorphic Euler
characteristic χ(OZ) is equal to n, and the associated 1-cycle has class
β ∈ H2(Y ).

Recall that In(Y, β) has a natural symmetric obstruction theory
[Th00], [BF05]. Hence we have the (degree zero) virtual fundamental
class of In(Y, β), whose degree Nn(Y, β) ∈ Z is the associated Donaldson-
Thomas invariant.

Let

C =

sX
i=1

diCi

be an effective cycle on Y , and assume that the Ci are pairwise disjoint,
smoothly embedded rational curves with normal bundle NCi/Y

∼= O(−1)⊕
O(−1). Such curves are called super-rigid rational curves in Y [Pa99,
BP01]. Assume that the class of C is β.

Let Jn(Y, C) ⊂ In(Y, β) be the locus corresponding to subschemes
Z ⊂ Y whose associated cycle under the Hilbert-Chow morphism is equal
to C (see Definition 2.1). Since Jn(Y, C) ⊂ In(Y, β) is open and closed (see
Remark 2.2), we get an induced virtual fundamental class on Jn(X, C) by
restriction. We call

Nn(Y, C) = deg[Jn(Y, C)]vir

the contribution of C to the Donaldson-Thomas invariant Nn(Y, β).
The goal of this paper is to compute the invariants Nn(Y, C).
To formulate our results, we define a series Pd(q) ∈ Z[[q]], for all

integers d ≥ 0 by

∞Y
m=1

(1 + qmv)m =

∞X
d=0

Pd(q)vd . (1)

Moreover, recall the McMahon function

M(q) =

∞Y
m=1

1

(1− qm)m
. (2)

Then we prove (Theorem 2.14) that

∞X
n=0

Nn(Y, C)qn = M(−q)χ(Y )
sY

i=1

(−1)diPdi(−q) .

Maulik, Nekrasov, Okounkov, and Pandharipande have conjectured a
beautiful correspondence between Gromov-Witten theory and Donaldson-
Thomas theory which we call the GW/DT correspondence.

As an application of the above formula we prove the GW/DT corre-
spondence for the contributions from super-rigid rational curves (Theo-
rem 3.1). In particular, we prove the full degree β GW/DT correspon-
dence (Conjecture 3 of [MNOP]) for any β for which it is known that all
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cycle representatives are supported on super-rigid rational curves (Corol-
lary 3.2). For example, our results yield the GW/DT correspondence for
the quintic threefold in degrees one and two (Corollary 3.3). As far as we
know, these are the first instances of the GW/DT conjecture to be proved
for compact Calabi-Yau threefolds.

The local GW/DT correspondence for super-rigid rational curves fol-
lows from the results of [MNOP] as a special case of the correspondence
for toric Calabi-Yau threefolds. In contrast to Gromov-Witten theory,
passing from the local invariants of super-rigid curves to global invariants
is non-trivial in Donaldson-Thomas theory, and can be regarded as the
main contribution of this paper.

1.1 Weighted Euler characteristics

Our main tool will be the weighted Euler characteristics introduced in
[Be05]. Every scheme X has a canonical Z-valued constructible function
νX on it. The weighted Euler characteristic eχ(X) of X is defined as

eχ(X) = χ(X, νX) =
X
n∈Z

n χ
`
ν−1

X (n)
´

.

More generally, we use relative weighted Euler characteristics eχ(Z , X)
defined as eχ(Z , X) = χ(Z, f∗νX) ,

for any morphism f : Z → X. Three fundamental properties are

(i) if X → Y is étale, then eχ(Z , X) = eχ(Z , Y ),

(ii) if Z = Z1 tZ2 is a disjoint union, eχ(Z , X) = eχ(Z1 , X) + eχ(Z2 , X),

(iii) eχ(Z1 , X1) eχ(Z2 , X2) = eχ`Z1 × Z2 , X1 ×X2

´
.

The main result of [Be05], Theorem 4.18, asserts that if X is a projec-
tive scheme with a symmetric obstruction theory on it, then

deg[X]vir = eχ(X) .

Thus we can calculate Nn(Y, C) as eχ (Jn(Y, C)).
We will also need the following fact. If X is an affine scheme with

an action of an algebraic torus T and an isolated fixed point p ∈ X, and
X admits a symmetric obstruction theory compatible with the T -action,
then

νX(p) = (−1)dim TpX ,

where TpX is the Zariski tangent space of X at p. This is the main
technical result of [BF05], Theorem 3.4.

Finally, we will use the following result from [BF05]. If X is a smooth
threefold (not necessarily proper), then

∞X
m=0

eχ(Hilbm X)qm = M(−q)χ(X) .

In the case where X is projective and Calabi-Yau, the above proves Con-
jecture 1 of [MNOP]. Note that Conjecture 1 of [MNOP] has also been
proved in [Li06] and [LP06].
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2 The Calculation

2.1 The open subscheme Jn(Y, C)

Definition 2.1 Let C1, . . . , Cs be pairwise distinct, super-rigid rational
curves on Y and let (d1, . . . , ds) be an s-tuple of non-negative integers.
Let C =

P
i diCi be the associated 1-cycle on Y and let β be the class of

C in homology. Define

Jn(Y, C) ⊂ In(Y, β)

to be the open and closed subscheme consisting of subschemes Z ⊂ Y
whose associated 1-cycle is equal to C.

Remark 2.2 To see that Jn(Y, C) is, indeed, open and closed, consider
the Hilbert-Chow morphism, see [Ko96], Chapter I, Theorem 6.3, which
is a morphism

f : In(Y, β)sn −→ Chow(Y, d) ,

where Chow(Y, d) is the Chow scheme of 1-dimensional cycles of degree
d = deg β on Y . It is a projective scheme. Moreover, In(Y, β)sn is the
semi-normalization of In(Y, β). The structure morphism In(Y, β)sn →
In(Y, β) is a homeomorphism of underlying Zariski topological spaces.
Therefore the Hilbert-Chow morphism descends to a continuous map of
Zariski topological spaces

|f | : |In(Y, β)| −→ |Chow(Y, d)| .

Because the Ci are super-rigid, the cycle C corresponds to an isolated
point of |Chow(Y, d)|. So the preimage of this point under |f | is open and
closed in |In(Y, β)|. The open subscheme of In(Y, β) defined by this open
subset is Jn(Y, C).

Definition 2.3 As Jn(Y, C) is open in In(Y, β), it has an induced (sym-
metric) obstruction theory and hence a virtual fundamental class of degree
zero. Since Jn(Y, C) is closed in In(Y, β) it is projective, and so we can
consider the degree of the virtual fundamental class

Nn(Y, C) = deg[Jn(Y, C)]vir ,

and call it the contribution of C to the Donaldson-Thomas invariant
Nn(Y, β).

2.2 The closed subset J̃n(Y, C)

Definition 2.4 Let C =
P

i diCi be as above and denote by supp C the
reduced closed subscheme of Y underlying C. Let

eJn(Y, C) ⊂ Jn(Y, C) ⊂ In(Y, β)

be the closed subset consisting of subschemes Z ⊂ Y whose underlying
closed subset Zred ⊂ Y is contained in supp C.

4



Remark 2.5 To see that eJn(Y, C) is closed in In(Y, β), let Wm ⊂ Y be
the m-th infinitesimal neighborhood of supp C ⊂ Y . For fixed numerical
invariants n and β there exists a sufficiently large m, such that for any
subscheme Z ⊂ Y , with invariants n and β, and such that Zred ⊂ supp C,
we have Z ⊂ Wm. For such an m, consider the Hilbert scheme In(Wm, β),
which is a closed subscheme of In(Y, β), as Wm is a closed subscheme of

Y . The underlying closed subset of In(Y, β) is equal to eJn(Y, C).

Remark 2.6 Informally speaking, Jn(Y, C) parameterizes subschemes
whose one dimensional components are confined to C, but may have em-
bedded points anywhere in Y , whereas eJn(Y, C) parameterizes subschemes
where both the one dimensional components and the embedded points are
supported on C.

2.3 The open Calabi Yau N = O(−1)⊕O(−1)

We consider the open Calabi-Yau N , which is the total space of the vector
bundle O(−1) ⊕ O(−1) on P1. We denote by C0 ⊂ N the zero section.
We consider the Hilbert scheme In(N, [dC0]).

Let N denote P
`
O ⊕ O(−1) ⊕ O(−1)

´
and let D∞ = N\N . Since

3D∞ is an anti-canonical divisor of N , the corresponding section defines
a trivialization of KN . N is naturally a toric variety, D∞ is an invariant
divisor, and we let T0 be the subtorus whose elements act trivially on
KN . Then T0 induces a T0-equivariant symmetric obstruction theory on
In(N, [dC0]), by Proposition 2.4 of [BF05]. Moreover, the T0 fixed points
in In(N, [dC0]) are isolated points whose Zariski tangent spaces have no
trivial factors as T0 representations (the proof of Lemma 4.1, Part (a) and
(b) in [BF05] is easily adapted to prove this).

As in [MNOP], the T0 fixed points in In(N, [dC0]) correspond to sub-
schemes which are given by monomial ideals on the restriction to the two
affine charts of N . The number of such fixed points is given by p(n, d)
described below.

Let p(n, d) be the number of triples (π0, λ, π∞), where π0 and π∞
are 3-dimensional partitions and λ a 2-dimensional partition. The 3-
dimensional partitions each have one infinite leg with asymptotics λ, and
no other infinite legs. Moreover, d = |λ| and n is given by ([MNOP]
Lemma 5)

n = |π0|+ |π∞|+
X

(i,j)∈λ

(i + j + 1) ,

where the size of a three dimensional partition with an infinite leg of shape
λ along the z axis is defined by

|π| = #{(i, j, k) ∈ Z3
≥0 : (i, j, k) ∈ π, (i, j) 6∈ λ}.

Proposition 2.7 We have

eχ`In(N, [dC0])
´

= (−1)n−dp(n, d) .
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Proof. By Corollary 3.5 of [BF05], we have

eχ`In(N, [dC0])
´

=
X

p

(−1)dim Tp ,

where the sum is over all T0-fixed points on In(N, [dC0]) and Tp is the
Zariski tangent space of In(N, [dC0]) at p. The parity of dim Tp can
be easily deduced from Theorem 2 of [MNOP] (just as in the proof of
Lemma 4.1 (c) in [BF05]). The result is n− d. So all we have to notice is
that p(n, d) is the number of fixed points of T0 on In(N, [dC0]). �

Corollary 2.8 We have

eχ“ eJn(N, dC0) , In(N, [dC0])
”

= (−1)n−dp(n, d) .

Proof. We just have to notice that all T0-fixed points are contained ineJn(N, dC0). �

2.4 The box counting function p(n, d)

Counting three dimensional partitions with given asymptotics has been
shown by Okounkov, Reshetikhin, and Vafa [ORV] to be equivalent to
the topological vertex formalism which occurs in Gromov-Witten theory.
They give general formulas for the associated generating functions in terms
of q values of Schur functions which we will use to prove the following
Lemma.

Lemma 2.9 The generating function for p(n, d) is given by

∞X
n=0

p(n, d) qn = M(q)2Pd(q) ,

where the power series Pd(q) and M(q) are defined in Equations (1) and
(2).

Proof. The generating function for the number of 3-dimensional parti-
tions with one infinite leg of shape λ is given by equation 3.21 in [ORV]:X

3d partitions π
asymptotic to λ

q|π| = M(q)q−(λ
2)−

|λ|
2 sλt(q1/2, q3/2, q5/2, . . . )

where λt is the transpose partition,
`

λ
2

´
=
P

i

`
λi
2

´
, |λ| =

P
i λi, and

sλt(q1/2, q3/2, q5/2, . . . )

is the Schur function associated to λt evaluated at xi = q(2i−1)/2. Using
the homogeneity of Schur functions and writing

sλt(q) = sλt(1, q, q2, . . . )

we can rewrite the right hand side of the above equation as

M(q)q−(λ
2)sλt(q).
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Observing that

X
(i,j)∈λ

(i + j + 1) = |λ|+

 
λ

2

!
+

 
λt

2

!
,

we get

∞X
n,d=0

p(n, d)qnvd = M(q)2
X

λ

sλt(q)2q|λ|+(λt

2 )−(λ
2)v|λ|.

The hook polynomial formula for sλt(q) (I.3 ex 2 pg 45,[Mac95]) is

sλt(q) = q(
λ
2)
Y

x∈λt

(1− qh(x))−1 (3)

from which one easily sees that

sλt(q) = q(
λ
2)−(λt

2 )sλ(q).

Therefore

∞X
n,d=0

p(n, d)qnvd = M(q)2
X

λ

sλ(q)sλt(q)q|λ|v|λ|

= M(q)2
X

λ

sλ(q, q2, q3, . . . )sλt(v, vq, vq2, . . . )

= M(q)2
∞Y

i,j=1

(1 + qi+j−1v)

where the last equality comes from the orthogonality of Schur functions
(I.4 equation (4.3)′ of [Mac95]). By rearranging this last sum and taking
the vd term, the lemma is proved. �

Remark 2.10 From the proof of the lemma we see that

Pd(q) = qd
X
λ`d

sλ(q)sλt(q).

From Equation (3), it is immediate that Pd(q) is a rational function in
q. Moreover, using the formula for total hooklength (pg 11, I.1 ex 2,
[Mac95]), it is easy to check that Pd(q) is invariant under q 7→ 1/q.

2.5 General Y

Lemma 2.11 Let C be a super-rigid rational curve on the Calabi-Yau
threefold Y . Then

eχ` eJn(Y, dC) , Jn(Y, dC)
´

= (−1)n−dp(n, d) ,

for all n, d.
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Proof. First of all, by Theorem 3.2 of [La81], an analytic neighborhood of
C in Y is isomorphic to an analytic neighborhood of C0 in N . Therefore,
by the analytic theory of Hilbert schemes (or Douady spaces), see [Do66],

we obtain an analytic isomorphism of eJn(Y, dC) with eJn(N, dC0) which

extends to an isomorphism of a tubular neighborhood of eJn(Y, dC) in

In(Y, [dC]) with a tubular neighborhood of eJn(N, dC0) in In(N, [dC0]).
The formula for νX(P ) in terms of a linking number, Proposition 4.22

of [Be05], shows that νX(P ) is an invariant of the underlying analytic
structure of a scheme X. Thus, we have

eχ` eJn(Y, dC) , In(Y, [dC])
´

= eχ` eJn(N, dC0) , In(N, [dC0])
´
.

Finally, apply Corollary 2.8. �

Lemma 2.12 Let f : X → Y be an étale morphism of separated schemes
of finite type over C. Let Z ⊂ X be a constructible subset. Assume that the
restriction of f to the closed points of Z, f : Z(C) → Y (C), is injective.
Then we have eχ`f(X) , Y

´
= eχ(Z , X) .

We remark that by Chevalley’s theorem (EGA IV, Cor. 1.8.5), f(Z) is
constructible, so that eχ(f(X) , Y ) is defined.

Proof. Without loss of generality, Z ⊂ X is a closed subscheme and so
Z → Y is unramified.

We claim that there exists a decomposition Y = Y1 t . . . t Yn into
locally closed subsets, such that, putting the reduced structure on Yi, the
induced morphism Zi = Z ×Y Yi → Yi is either an isomorphism, or Zi is
empty.

In fact, by generic flatness (EGA IV, Cor. 6.9.3), we may assume
without loss of generality that Z → Y is flat, hence étale. By Zariski’s
Main Theorem (EGA IV, Cor. 18.12.13), we may assume that Z → Y is
finite, hence finite étale. Then, by our injectivity assumption, the degree
of Z → Y is 1 and so Z → Y is an isomorphism.

Once we have this decomposition of Y , the lemma follows from addi-
tivity of the Euler characteristic over such decompositions and the étale
invariance of the canonical constructible function ν. �

Now we consider the case of a curve with several components. Let

C~d =

sX
i=1

diCi

be an effective cycle, where the Ci are pairwise disjoint super-rigid rational
curves in Y . We assume di > 0, for all i = 1, . . . , s.

For an (s + 1)-tuple of non-negative integers ~m = (m0, m1, . . . , ms),
we let |~m| =

Ps
i=0 mi. Consider, for |~m| = n the open subscheme

U~m ⊂ Hilbm0(Y )×
sY

i=1

Jmi(Y, diCi) ,

consisting of subschemes (Z0, (Zi)) with pairwise disjoint support.
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Lemma 2.13 Mapping (Z0, (Zi)) to Z0∪
S

i Zi defines an étale morphism

f : U~m −→ Jn(Y, C~d) .

Proof. This is straightforward. See also Lemma 4.4 in [BF97]. �

Let us write Y̊ for Y \ supp C and remark that

Z~m = Hilbm0(Y̊ )×
Y
i>0

eJmi(Y, diCi)

is contained in U~m. Moreover, the restriction f : Z~m → Jn(Y, C~d) is injec-
tive on closed points. Finally, every closed point of Jn(Y, C~d) is contained
in f(Z~m), for a unique ~m, such that |~m| = n.

We will apply Lemma 2.12 to the diagram

Z~m = Hilbm0(Y̊ )×
Q

i>0
eJmi(Y, diCi)

injective

**UUUUUUUUUUUUUUUUU

closed subset

��
U~m

étale

f //

open embedding

��

Jn(Y, C~d)

Hilbm0(Y )×
Q

i>0 Jmi(Y, diCi)

Thus, we may calculate as follows:

eχ`Jn(Y, C~d)
´

=
X
|~m|=n

eχ`f(Z~m) , Jn(Y, C~d)
´

=
X
|~m|=n

eχ“Z~m , U~m

´
=
X
|~m|=n

eχ“Hilbm0(Y̊ )×
Y
i>0

eJmi(Y, diCi) , Hilbm0(Y )×
Y
i>0

Jmi(Y, diCi)
”

=
X
|~m|=n

eχ“Hilbm0(Y̊ ) , Hilbm0(Y )
”Y

i>0

eχ“ eJmi(Y, diCi) , Jmi(Y, diCi)
”

=
X
|~m|=n

eχ`Hilbm0(Y̊ )
´Y

i>0

(−1)mi−dip(mi, di) .

Now we perform the summation:

∞X
n=0

eχ`Jn(Y, C~d)
´
qn

=

∞X
n=0

 X
|~m|=n

eχ`Hilbm0(Y̊ )
´ sY

i=1

(−1)mi−dip(mi, di)

!
qn

=

∞X
n=0

X
|~m|=n

eχ`Hilbm0(Y̊ )
´
qm0

sY
i=1

(−1)dip(mi, di)(−q)mi

9



=

 
∞X

m0=0

eχ`Hilbm0(Y̊ )
´
qm0

!X
~m′

sY
i=1

(−1)dip(mi, di)(−q)mi

= M(−q)χ(Y̊ )
sY

i=1

(−1)di

∞X
mi=0

p(mi, di)(−q)mi

= M(−q)χ(Y̊ )
sY

i=1

M(−q)2(−1)diPdi(−q)

= M(−q)χ(Y̊ )M(−q)2s
sY

i=1

(−1)diPdi(−q)

= M(−q)χ(Y )
sY

i=1

(−1)diPdi(−q)

By the main result of [Be05], Theorem 4.18, we have

Nn(Y, C~d) = eχ`Jn(Y, C~d)
´
.

This finishes the proof of:

Theorem 2.14 The partition function for the contribution of C~d to the
Donaldson-Thomas invariants of Y is given by

Z(Y, C~d) =

∞X
n=0

Nn(Y, C~d) qn = M(−q)χ(Y )
sY

i=1

(−1)diPdi(−q) .

Corollary 2.15 Define the reduced partition function

Z′(Y, C~d) =
Z(Y, C~d)

Z(Y, 0)
.

Then we have

Z′(Y, C~d) =

sY
i=1

(−1)diPdi(−q) ,

a rational function in q, invariant under q 7→ 1/q.

Proof. Behrend and Fantechi prove [BF05] that

Z(Y, 0) =

∞X
n=0

eχ(Hilbn Y )qn = M(−q)χ(Y );

the formula for Z′(Y, C~d) then follows immediately from Theorem 2.14.
For the proof that Z′(Y, C~d) is a rational function invariant under q 7→ 1/q,
see Remark 2.10. �
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3 The super-rigid GW/DT correspon-
dence.

3.1 The usual GW/DT correspondence

The Gromov-Witten/Donaldson-Thomas correspondence of [MNOP] can
be formulated as follows.

Let Y be a Calabi-Yau threefold and let

ZDT (Y, β) =
X
n∈Z

Nn(Y, β)qn

be the partition function for the degree β Donaldson-Thomas invariants.
Let

Z′
DT (Y, β) =

ZDT (Y, β)

ZDT (Y, 0)

be the reduced partition function.
In Gromov-Witten theory, the reduced partition function for the de-

gree β Gromov-Witten invariants, Z′
GW (Y, β), is given by the coefficients

of the exponential of the β 6= 0 part of the potential function:

1 +
X
β 6=0

Z′
GW (Y, β)vβ = exp

0@X
β 6=0

NGW
g (Y, β)u2g−2vβ

1A . (4)

Here
NGW

g (Y, β) = deg[Mg(Y, β)]vir

is the genus g, degree β Gromov-Witten invariant of Y .
The conjectural GW/DT correspondence states that

(i) The degree 0 partition function in Donaldson-Thomas theory is given
by

ZDT (Y, 0) = M(−q)χ(Y ),

(ii) Z′
DT (Y, β) is a rational function in q, invariant under q 7→ 1/q, and

(iii) the equality
Z′

GW (Y, β) = Z′
DT (Y, β)

holds under the change of variables q = −eiu.

Part (i) is proved for all Y in [BF05].

3.2 The super-rigid GW/DT correspondence

In an entirely parallel manner, we can formulate the GW/DT correspon-
dence for Nn(Y, C~d), the contribution from a collection of super-rigid ra-
tional curves C~d =

P
i diCi.

Just as in Donaldson-Thomas theory, there is an open component of
the moduli space of stable maps

Mg(Y, C~d) ⊂ Mg(Y, β)
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parameterizing maps whose image lies in the support of C~d. There are
corresponding invariants given by the degree of the virtual class:

NGW
g (Y, C~d) = deg[Mg(Y, C~d)]vir

We define Z′
GW (Y, C~d) by replacing NGW

g (Y, β) on the right side of for-
mula (4) by NGW

g (Y, C~d).
Then we can formulate our results as follows.

Theorem 3.1 The GW/DT correspondence holds for the contributions
from super-rigid rational curves. Namely, let C~d = d1C1 + · · · + dsCs be
a cycle supported on pairwise disjoint super-rigid rational curves Ci in a
Calabi-Yau threefold Y , and let Z′

DT (Y, C~d) and Z′
GW (Y, C~d) be defined

as above. Then

(ii) Z′
DT (Y, C~d) is a rational function of q, invariant under q 7→ 1/q,

and

(iii) the equality
Z′

DT (Y, C~d) = Z′
GW (Y, C~d)

holds under the change of variables q = −eiu.

Proof. For (ii), see Corollary 2.15. To prove (iii), we reproduce a calcu-
lation well known to the experts (e.g. [Ka06]).

By the famous multiple cover formula of Faber-Pandharipande [FP00]
(see also [Pa99]),

NGW
g (Y, C~d) =

sX
i=1

c(g, di) ,

where c(g, d) is given by

X
g≥0

c(g, d)u2g−2 =
1

d

„
sin

„
du

2

««−2

.

We compute Z′
GW (Y, C~d) and make the substitution q = −eiu:

1 +

∞X
(d1,...,ds) 6=0

Z′
GW (Y, C~d)vd1

1 · · · vds
s

= exp

0@ sX
j=1

∞X
dj=1

∞X
g=0

c(g, dj)u
2g−2v

dj

j

1A
=

sY
j=1

exp

0@ ∞X
dj=1

v
dj

j

dj

„
2 sin

dju

2

«−2
1A

=

sY
j=1

exp

0@ ∞X
dj=1

v
dj

j

dj

−eidju`
1− eidju

´2
1A

=

sY
j=1

exp

0@ ∞X
dj=1

∞X
mj=1

−mj

dj
eidjmjuv

dj

j

1A
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=

sY
j=1

exp

0@ ∞X
mj=1

mj log
“
1− vje

imju
”1A

=

sY
j=1

∞Y
mj=1

(1− (−q)mj vj)
mj

=

sY
j=1

∞X
dj=0

Pdj (−q)(−vj)
dj

=
X

(d1,...,ds)

sY
j=1

(−1)dj Pdj (−q)v
dj

j .

Therefore,

Z′
GW (Y, C~d) =

sY
j=1

(−1)dj Pdj (−q)

and so by comparing with Corollary 2.15 the theorem is proved. �

The following corollary is immediate.

Corollary 3.2 Let Y be a Calabi-Yau threefold and let β ∈ H2(Y, Z) be
a curve class such that all cycle representatives of β are supported on a
collection of pairwise disjoint, super-rigid rational curves. Then the degree
β GW/DT correspondence holds:

Z′
DT (Y, β) = Z′

GW (Y, β).

For example, we have:

Corollary 3.3 Let Y ⊂ P4 be a quintic threefold, and let L be the class
of the line. Then for β equal to L or 2L, the GW/DT correspondence
holds.

Proof. By deformation invariance of both Donaldson-Thomas and
Gromov-Witten invariants, it suffices to let Y be a generic quintic three-
fold. It is well known that there are exactly 2875 pairwise disjoint lines
on Y and they are all super-rigid. The conics on Y are all planar and
hence rational, and it is known that there are exactly 609250 pairwise
disjoint conics and they are super-rigid as well. For these facts and more,
see [Ka86]. �

Note that we cannot prove the GW/DT conjecture by this method
for the quintic in degree three (and higher) due to the presence of elliptic
curves in degree three.

Explicit formulas for the reduced Donaldson-Thomas partition func-
tion of a generic quintic threefold Y in degrees one and two are given
below:

Z′
DT (Y, L) = 2875

q

(1− q)2

Z′
DT (Y, 2L) = 609250

q

(1− q)2
· 2875 · −2q3

(1 + q)4(1− q)2

= −3503187500
1

(q − q−1)4

13
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