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Abstract

We present the basics of the algebraic theory of Gromov-Witten
invariants, as developed by the author in collaboration with Yu. Manin
and B. Fantechi in [4], [3] and [2]. We try to make these three articles
more accessible. Proofs are generally omitted and there is little new
material.
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0 Introduction

Gromov-Witten invariants are the basic enumerative invariants associated
to a (non-singular projective) algebraic variety W. Given a family I'y,..., T,
of algebraic cycles on W, one asks how many curves of fixed genus and fixed
degree (or homology class) pass through I',...,I',,. The answer is given by
the associated Gromov-Witten invariant. (If there is an infinite number of
such curves, the associated Gromov-Witten invariant is a cycle in the moduli
space of marked curves, instead of a number.) Noticing all the properties
these invariants satisfy (formulated as Axioms I,... ,VIII in this article) has
had tremendous impact on enumerative geometry in recent years. Moreover,
Gromov-Witten invariants tell us the correct way of counting curves. In
simple cases (e.g. W = P") the Gromov-Witten invariant simply gives the
actual number of curves through I'y,..., T, if I'y,..., '), are moved into
general position. But, in general, such a naive interpretation of Gromov-
Witten invariants is impossible, and so one should think of Gromov-Witten
invariants as the ideal number of curves through I'y, ..., T',.

Gromov-Witten invariants are defined as certain integrals over moduli
spaces of maps from curves to W. Integrating over the usual fundamental
class of the moduli space is problematic and can give the wrong result,
because the moduli space might be of higher dimension than expected. This
necessitates the construction of a so called virtual fundamental class. This
is the key step in the definition of Gromov-Witten invariants. Before the
virtual fundamental classes were understood, Gromov-Witten invariants had
only been constructed in special cases.

The history of Gromov-Witten invariants in symplectic geometry is ac-
tually much older than in algebraic geometry. Classically one perturbed the
almost complex structure on W, instead of constructing a virtual funda-
mental class. For an exposition of this theory and its development see the
article by Siebert in this volume.

It turns out that (over C) the Gromov-Witten invariants of W only
depend on the underlying symplectic structure of W. (The only aspect
one does not see from the symplectic point of view is the motivic nature
of Gromov-Witten invariants.) The fact that the invariants constructed in



symplectic geometry equal the algebraic ones is also explained in Siebert’s
article.

The necessity of virtual fundamental classes for the definition of Gromov-
Witten invariants in algebraic geometry was felt from the very beginning (see
the seminal papers [10] and [11]). Before the general construction, several
special cases had been studied in detail, usually in genus zero, or for W a
homogeneous space. For more information on the results obtained and the
history of this part of the subject see the survey [7].

The theory of virtual fundamental classes explained in this article is due
to B. Fantechi and the author (see [3]). Our work was inspired by a talk
of J. Li at the Santa Cruz conference on algebraic geometry in the summer
of 1995. In his talk, Li reported on work in progress with G. Tian on the
subject of virtual fundamental classes. At the time, that approach relied
on analytic methods, e.g. the existence of the Kuranishi map. Our work
[3] grew out of an attempt to understand Li and Tian’s work, to construct
virtual fundamental classes in an algebraic context, and, most of all, to give
as intrinsic a construction as possible. But, of course, our construction owes
its existence to theirs. For the approach of Li and Tian see [12].

Full details of the theory explained here can be found in the series of
papers [4], [3] and [2]. In this article, we put a lot of emphasis on the
geometric meaning of Gromov-Witten invariants and skip most proofs.

Our approach uses graphs to keep track of the moduli spaces involved.
The graph theory we use here is much simpler than the one in [4], for two
reasons. Firstly, we restrict to graphs which are ‘absolutely stable’ (in the
terminology of [4]). We lose a lot of invariants this way, but we gain a high
degree of simplification of the formalism. Even this simplified formalism
contains all invariants I, ;{ (B3) envisioned in [11], though. The other aspect
we do not go into here is that graphs form a category. Using the full power
of the categorical approach (or ‘operadic’ picture) it is possible to distill
the number of axioms for Gromov-Witten invariants down to two (from the
eight we need here), but only at the cost of a lot of formalities.

Introducing graphs here has two purposes. Firstly, we believe that graphs
(as presented here) actually simplify the theory of Gromov-Witten invari-
ants. The properties of Gromov-Witten invariants become more transparent.
For example, the famous ‘splitting axiom’ splits into three much simpler ax-
ioms if one uses graphs. We also hope that presenting a simplified graph
theoretical approach here will make [4] and [2] more accessible.

Our approach also relies heavily on the use of stacks. Again, stacks are
introduced to simplify the theory; still, a few remarks seem in order. There



are two ways in which stacks appear here, and two different kinds of stacks
that play a role.

First of all, the moduli stacks involved are Deligne-Mumford stacks.
These are analogues of orbifolds in algebraic geometry. Thus, if one works
over C and uses the analytic topology, such stacks are locally given as the
quotient of an analytic space by the action of a finite group (except for that
the stack ‘remembers’ these group actions in a certain sense). A good way
to think of a Deligne-Mumford stack is as a space (of points) together with
a finite group attached to each point. (So if the stack is the quotient of a
space by a finite group, the points of the stack are the orbits and the group
attached to an orbit is the isotropy group of any element of the orbit.)
If the stack is a moduli stack, then its points correspond to isomorphism
classes of the objects the stack classifies, and the group attached to such
an isomorphism class is the automorphism group of any object in the iso-
morphism class. The space of isomorphism classes is called the underlying
coarse moduli space.

Deligne-Mumford stacks behave in many aspects just like schemes. For
example, their cohomological and intersection theoretic properties are iden-
tical to those of schemes, at least if one uses rational coefficients. The only
place where one has to watch out is if one integrates a cohomology class
over a Deligne-Mumford stack (which is not a scheme). Then fractions may
appear (even if one integrates integral cohomology classes). More gener-
ally, one has to use fractions when doing proper pushforwards of homology
or Chow cycles, if the morphism one pushes forwards along is not repre-
sentable (i.e. has fibers which are stacks, not schemes).

For example, if our Deligne-Mumford stack X has one point, with finite
group G attached to it (notation X = BG; this may be thought of as the
quotient of a point by the action of G), then the Euler characteristic of X
(i.e. the integral of the top Chern class of the tangent bundle, in this case
the integral of 1 € H*(X)) is x(X) = [y 1 = ﬁ

To calculate such an integral [ w, over a Deligne-Mumford stack X, one
has to find a proper scheme X’ together with a generically finite morphism
f: X" — X, and then one has [, w = @ Jx+ f*w. In the above example
X = BG, we may take X' to the one-point variety and than X’ — X has
degree #G and so [z, 1 = # S 1= %

When explaining the general theory, it is not necessary to explicitly
calculate a non-representable proper pushforward, and so for this purpose
one might as well pretend that all moduli stacks are spaces (i.e. schemes).



We shall often do this, and so even if it says moduli space somewhere, it is
implicitly understood that moduli stack is meant.

One reason why, to do things properly, it is necessary to work with
moduli stacks is, that the corresponding coarse moduli spaces do not have
universal families over them. The construction of Gromov-Witten invariants
uses universal families in an essential way.

The second way in which stacks appear is in the construction of virtual
fundamental classes. Of course, one could construct the virtual fundamental
class without the use of stacks, but we believe that the language of stacks is
the natural language for formulating the construction. The stacks used in
this theory are so-called cone stacks, which are Artin stacks of a particular
type. Artin stacks are more general than Deligne-Mumford stacks in that
the groups attached to the points of the stack can be arbitrary algebraic
groups, not just finite groups. These groups are too big to sweep them
under the carpet as easily, and it is better not to pretend that Artin stacks
are spaces. Therefore we have included a ‘heuristic’ definition of cone stacks.
(Cone stacks are special, since their groups are always vector groups.) The
most important cone stack is the ‘intrinsic normal cone’. It is an invariant of
any Deligne-Mumford stack, and even for schemes it is an interesting object,
which is non-trivial as a stack.

1 What are Gromov-Witten Invariants?

Let k be a field' and W a smooth projective variety over k. We shall define
the Gromov-Witten invariants of W. These invariants take values in the
cohomology of moduli spaces of curves.

Cohomology Theories

So before we can begin, we have to choose a cohomology theory,

H* : (smooth proper DM-stacks/k) — (A-vector spaces)
X s HY(X)

This needs to be a ‘graded generalized cohomology theory with coefficients
in a field A of characteristic zero, with cycle map, such that P! satisfies epu’.

'Because the theory is somewhat limited in positive characteristic (see footnote 4) the
most important case is chark = 0.



It should be defined on the category of smooth and proper Deligne-Mumford
stacks over k. The precise definition can be found in [8].

Remark (for pedants) In [8] the cohomology theory is of course defined on
the category of smooth and proper varieties, but the generalization of the
definitions in [ibid.] to Deligne-Mumford stacks is not difficult. The only
point is that, strictly speaking, the category of (smooth, proper) Deligne-
Mumford stacks is a 2-category, and so the cohomology theory is a functor
from a 2- to a l-category (i.e. a usual category). This means that it fac-
tors through the associated 1-category of the 2-category of Deligne-Mumford
stacks, i.e. the category in which one passes to isomorphism classes of mor-
phisms. In other words, one pretends that the category of Deligne-Mumford
stacks is a usual category.

Rather than recalling the precise definition of a generalized cohomology
theory with the mentioned properties, we give a few examples.
1. If the ground field k is C and the coefficient field A is Q, then let

H*(X) = Hp(X) = Betti cohomology of X.

This can be defined in several ways. N
The easiest case is when X has a moduli space X. Then we can simply
set

Hp(X) = Hgye(X(C),Q)
the usual (singular) cohomology of the underlying topological space with
the analytic topology. All the X that we will consider have moduli spaces?.
More generally, one can consider [X (C)], the set of isomorphism classes
of the groupoid X (C), in other words, the set of isomorphism classes of the
objects the stack classifies. It comes with a natural topology, because the
quotient of any groupoid exists in the category of topological spaces. The
space [X(C)] is thus the quotient of the topological groupoid associated to
any presentation of X (with the analytic topology). Then we have
Hp(X) = Hg,o ([X(C)], Q)
The canonical definition is the following. To the algebraic C-stack X
we associate a topological stack X*P (a stack on the category of topological

2One should note, though, that the existence of the moduli spaces is a non-trivial,
additional fact, that is not ever needed.



spaces with the usual Grothendieck topology). To this is associated a site (or
topos) of sheaves X . (By abuse of notation we denote the usual topology
by the subscript ét.) The Betti cohomology of X is then the cohomology of
this topos

Hp(X) = H*(Xg",Q)

ét

This can also be defined in terms of geometric realizations.
2. Let ¢ be a prime not equal to the characteristic of k£ and consider the
coefficient field A = Q. Then we may take

HY(X)=H;(X)=H (X4 Q) = <li_mH”‘(Yét,Z/E"),

the f-adic cohomology of X. Here X = X x; k and X, denotes the étale
site of X.

3. In the case where chark = 0, we may take A = k and consider
algebraic deRham cohomology

HY(X) = Hig (X) = H" (Xa, Q%)
4. We may also take Chow cohomology
H*(X) = A*2(X),
where the coefficient field is A = Q. The Chow rings one needs for this
definition were constructed by Vistoli [13].

Moduli Stacks of Curves

Gromov-Witten invariants take values in the cohomology of moduli stacks
of curves. For efficient listing of the axioms of Gromov-Witten invariants we
need slightly more general moduli spaces than the well-known M, ,. These
are indexed by modular graphs.

Definition 1.1 A graph 7 is a quadruple (F;, V;, j;, 0;) where F is a finite
set, the set of flags, V; is another finite set, the set of wvertices, 0 : F; — V;
is a map and j, : F;, — F is an involution.

One uses the following notation:

S;={f € F;|jf=f} theset of tails of 7.
E: ={{f1, f2} CF:| fo=jf1,f1 # f2} the set of edges.



For every vertex v € V the set Fy(v) = 97!(v) is the set of flags of v and
#F,(v) the valence of v.

We draw graphs by representing vertices as dots, edges as curves con-
necting vertices and tails as half open curves, connected only at their closed
end to a vertex. (The vertex a flag is connected to is specified by 9.) Draw-
ing graphs in this manner suggests an obvious notion of geometric realization
of a graph. This is the topological space obtained in the way just indicated.
The geometric realization of a graph 7 is denoted by |7|.

Definition 1.2 A modular graph is a pair (7,g), where 7 is a graph and
g:Vy — Z>g is a map.

We use the terminology:
e g(v) is the genus of the vertex v.
o X(7) = x(|7]) = Xvev. 9(v) is the Euler characteristic of the graph .

If the geometric realization |7| of 7 is non-empty and connected then we call

g(r) = > g(v) +dimH'(|7],Q) = 1 — x(7)
veVr

the genus of 7. Graphs of genus zero are called trees, and not necessarily
connected graphs all of whose connected components are trees are called
forests. Non-empty connected graphs without edges are called stars. Note
that stars have exactly one vertex.

The moduli stacks we are interested in are indexed by modular graphs.
But not to every modular graph do we associate a moduli stack. Ounly for
the stable modular graphs do there exist corresponding moduli stacks which
are Deligne-Mumford stacks.

Definition 1.3 The modular graph 7 is stable, if each one of its vertices is
stable, i.e. if for all v € V. we have

29(v) + #Fr(v) >3

We are now ready to define the moduli stacks of curves. First, we define,
for a non-negative integer g and a finite set S such that 2g + #S > 3 the
stack

My.s



to be the moduli stack of stable curves of genus g with marked points indexed
by S.

Thus each point of Mg, s corresponds to a pair (C,x), where C' is a nodal
curve of arithmetic genus g (i.e. a curve whose worst singularities are nodes
and which is connected but not necessarily irreducible) and x is an injective
map x : S — C, which avoids all nodes. The pair (C, z) is moreover required
to be stable, meaning that for every irreducible component C’ of C' we have

2g(C") + #{special points of C'} > 3

Here a point of C” is called special, if it is in the image of x or if it is a node.
If both branches of a node belong to C’, then this node counts as two special
points. By ¢g(C’) we mean the geometric genus of C'.
If we choose an identification S = {1,...,n}, then we get an induced
identification
M g,S — M gn

where the Mg,n are the moduli stacks of stable marked curves introduced by
Mumford and Knudsen [9], and for n = 0 the stacks of stable curves defined
by Deligne and Mumford [5].

Definition 1.4 The moduli stack associated to a stable modular graph 7
is now simply defined to be

M, = [[ Myw).r. )
’UGVT

It may be surprising that the involution j; does not enter here. The
usefulness of this definition will become clear later.

Let (C,z) be a stable marked curve. We obtain its associated modular
graph by associating

e to each irreducible component C’ of C' a vertex of genus g(C’) (geo-
metric genus, i.e. genus of normalization),

e to each node of C' an edge connecting the vertices corresponding to
the two branches of the node,

¢ to each marked point of C' a tail attached to the vertex corresponding
to the component containing the marked point.



If 7 is the modular graph associated to (C,z), we say that (C,x) is of
degeneration type 7. Note that 7 is connected and g(7) = ¢(C) (arithmetic
genus).
If 7 is a stable modular graph which is non-empty and connected, there
exists a morphism
M; — Mg(T),S-,— )

defined by associating to a  V.-tuple of stable marked
curves (Cy, (zi)ieF, Jvev, the single curve (C,(z;)ics,.) obtained by identi-
fying any two marks x; that correspond to an edge of 7. This morphism is
finite and its image is the stack of curves of degeneration type T or worse.
It is of generic degree # Aut’(7) onto the image. Here Aut’(7) is the group
of automorphisms of 7 fixing the tails.

If one fixes g and n and considers all connected stable modular graphs
7 such that g(7) = g and S; = {1,...,n}, then one gets in this way the
stratification of M, by degeneration type.

Systems of Gromov-Witten invariants

Fix a smooth projective variety W over k. We use the notation

Hy(W)T = {¢ € Hom(Pic W, Z) |
¢(L) > 0 for all ample invertible sheaves L on W}
Of course, if k = C, then Hy(W)™ contains the semi-group of effective cycle

classes in Ho(W,Z) (or, in general, the semi-group of effective cycle classes
in A; (7)) and nothing would be lost by restricting to this sub-semi-group.

Definition 1.5 A system of Gromouv- Witten invariants for W is a collection
of (multi-)linear maps®

I(B) : H*(W)®% — H*(M;), (1)

for every stable modular graph 7 and every* Ho(W)*-marking 3 : V, —
Hy(W)™T of 7, satisfying a list of eight axioms, that will follow below.

3if one wants to take Tate twists into account, then one has to twist a certain way,
which is explained below, in context with the grading axiom. So what is said here is only
true up to Tate twists. Of course in the most important case, the Betti case, this is of no
concern.

* if chark > 0, then choose a very ample invertible sheaf L on W and consider only
B € Hx(W)* such that 3(L) < chark. This will assure that all maps considered are
separable, which is needed for all the arguments (as stated here) to go through. One only
does not get ‘as many’ Gromov-Witten invariants as in characteristic zero.
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Before we list the axioms, let us say a few words about the geometric
interpretation of Gromov-Witten invariants. For this, let us assume that we
are over C and are using singular cohomology. For purposes of intuition, it
is better to dualize. So using Poincaré duality we identify H* with H, and
get

(B) : HW)PS — H,(T,)

Note that, as the notation suggests, we are thinking of the IY(3) as multi-
linear maps (and we have chosen an identification S; = {1,...,n}).

To explain what LY (8) (71, - .,v) should be, choose cycles T'y,...,T), C
W, in sufficiently general position, representing the homology classes

Yise-oy Tn-
Consider all triples (C, z, f), where

e C' = (Cy)yev, is a family of connected curves,

o = (x;)icr, is a family of ‘marks’, i.e. for each i € F; the mark x; is
a point on the curve Cy(;). We also demand that (C, z) be a family of
stable marked curves.

e = (fu)vev. is a family of maps f, : C, = W, such that

1. for each edge {i1,i2} of T we have f3,)(%i,) = fa(i,)(Tis),
2. for all v € V we have f.[Cy] = B(v),
3. for all i € S; we have that fa)(x;) € I;.

Let T be the ‘space’ of all such triples up to isomorphism. (An isomorphism
from a triple (C,z, f) to a triple (D,y,g) is a Vi-tuple ¢ = (¢y)ypey. of
isomorphisms of curves ¢, : Ciy — D,, such that ¢g(;)(zi) = y;, for all i € F:
and g, o ¢, = fy, for all v € V)

We have a morphism ¢ : T — M, which simply maps a triple (C,z, f)
to the first two components (C,x). The ‘naive’ definition of I.(3) is then

LB)(v1s- -y 7m) = 64[T]

Remark For simplicity, assume that 7 is connected. To a triple (C,z, f)
we may associate, as above, a single marked curve (C,Z) by identifying the
two marks corresponding to each edge of 7, obtaining a stable marked curve

11



of degeneration type 7 or worse. The V -tuple of maps f induces a map
f :C—W.

Let T be the space of triples (D,y,g), where (D,y) is a stable marked
curve of degeneration type 7 and g : D — W is a morphism such that
g(y;) € Ty, for all i = 1,...,n and g.[D,] = B(v), for all v € V,.. (Here D,
is the component of D corresponding to v.) Then we have a rational map
T — T of degree # Aut/(7). (It is not defined everywhere, as we do not
allow worse degeneration types than 7 in T)5

So a slightly more naive but less abstract definition of I(3) would be

L(B)(1,- -, vn) = # Aut'(7)$.[T]

Note that in the most important case, where 7 is a star, the factor # Aut'(7)
is equal to 1.

For example, assume that 7 is finite. (This is actually often the case one
is most interested in.) Then

is the ‘ideal’ number of solutions to an enumerative geometry problem®.

More precisely, passing, as before, to (6’, z, f) and then to f(é’), we get a
curve in W passing through I'y, ..., [',,. If T'y,..., ', are sufficiently generic,
then (one would hope) this process sets up a bijection between points of T
and the curves of degeneration type 7 (or worse) through I'y,...,I',. Thus
mll(ﬁ)(yl,...,fyn) is (if the hope is justified) the number of such
curves intersecting I'y, ..., I',.

For example, let W = P? be the projective plane. Then Hy(W)* = Z >0
and one writes d = 3. Assume d > 2 and let n = 3d — 1. Let 7 be the star
of genus zero with n tails: S, = Fr = {1,...,n}. So we have
IV

T

(8) = Iy, (d) « H*(B*)®" — H*(Mo,n)

If we consider the homology class of a point in P2, call it v, and consider
Iy, (d)(v*™), where v*™ stands for the n-tuple (v,...,7), then the corre-
sponding ‘space’ T is a discrete set of points (if the n points T'y,..., T,
representing ~y are in sufficiently general position).

5 Allowing more degenerate curves in T would not make sense, because D, would not
be well-defined anymore.

6The word ‘ideal’ is very important here. In many cases the Gromov-Witten invariant
will differ form the actual curve count.
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One sees easily, that T' corresponds in a one-to-one fashion to the rational
curves of degree d through I'y,...,T",,. Thus

Ion(d)(y ™) = Ign(d)(v™")
= #{rational curves of degree d through n points

in general position}

For example, the number of conics through 5 points is Iy 5(2)(7*°) = 1,
and the number of rational cubics through 8 points is Ipg(3)(v*®) = 12.

In view of this ‘intuitive definition’ the following eight axioms that we
require of Gromov-Witten invariants are all very natural. Note, however,
that there are two problems with this definition. First of all, T" has to be
compactified, for ¢, in homology to make sense. This can be dealt with
using stable maps (see below). A more serious problem is that in general it
is not possible to put the I'; into sufficiently general position to assure that T
is smooth and of the ‘correct’ dimension. This necessitates the construction
of a ‘virtual fundamental class’ in T', which is a homology class in the correct
degree, whose image in M is taken to be the Gromov-Witten invariant.

Using this axiomatic approach has largely historical reasons. Kontsevich
and Manin [11] introduced these axioms before Gromov-Witten invariants
were rigorously defined. Today several natural constructions of invariants
satisfying the axioms exist. We will present one later.

One should note that the axioms do not determine the invariants
uniquely. For example, one can set all I equal to zero (except for the ones
forced to be non-zero by the mapping to point axiom). Certain re-scalings
are also possible.

The axioms do comprise all properties used to construct quantum coho-
mology out of the Gromov-Witten invariants, and certainly imply all charac-
teristic properties of Gromov-Witten invariants that do not involve change
of the variety W.

Axioms for Gromov-Witten invariants
I. The Grading Axiom
This says that

L(B) : H*(V)?* [2x(r) dim W] —  H*(M7)[25(7)(ww)]

13



respects the natural grading on both vector spaces’. Here we use ‘[-]’ to

denote shifts of grading: if H* = @ H" is a graded vector space then H*[m)]
is the graded vector space such that (H*[m])¥ = H*¥*™. In other words,
I.(B) raises degrees by 2(5(7)(ww) — x(7) dim W'). We use the notation

B(r)= > B)

’UEVT

and wyy is the canonical line bundle on W.

The idea behind this axiom is that the moduli ‘space’ T of triples, that
we alluded to in the section on geometric intuition, has an expected dimen-
sion. It is computed using deformation theory (assuming that there are no
obstructions). Even if there are obstructions, one still requires that I.(3)
changes the grading by this expected dimension (minus )_; deg~y;), which is
then called ‘virtual dimension’.

The reasoning behind this is, that one wants Gromov-Witten invariants
to be invariant under continuous (or better algebraic) deformations of the
whole situation, like all good enumerative geometry numbers are. So one
supposes that one could deform the situation into sufficiently general posi-
tion for the obstructions to vanish and the space T' to actually attain the
expected dimension.

Note however, that in general it is not possible to deform the variety W
algebraically to make it sufficiently generic in this sense.

For the computation of the expected dimension see Section 3. See also
Remark 2.3

II. Isomorphisms

Let ¢ : 0 — 7 be an isomorphism of Hy (W )T -marked stable modular graphs.
Then we get induced isomorphisms VSe — V5 and M, — M, and the
isomorphism axiom requires the diagram

to commute.

"If one is concerned about Tate twists, one needs to also twist by (x(7) dim W) on the
left and (B(7)(ww)) on the right.



This axiom leads to a covariant behavior of the I,, () with respect
to the action of the symmetric group on n letters. It is motivated by the
expectation that the ideal number of curves through the cycles I'y,..., T,
should not depend on the labelling of the cycles.

ITI. Contractions

Let ¢ : ¢ — 7 be a contraction of stable modular graphs. This means
that there exists an edge {f,f} of o which is, on the level of geometric
realizations literally, contracted to a vertex by ¢. It also implies a certain
compatibility between the genera of the vertices involved. There are two
cases to distinguish.

Case (a). The edge {f,f} is a loop with vertex v. Then if v’ is the
corresponding vertex of 7, the one our edge got contracted to, we have
g(v') =g(v) + 1. 3

Case (b). The edge {f, f} has two different vertices v; and vg. In this
case we let v be the vertex of 7 which is obtained by merging the vertices vy
and vy via the contraction ¢. The requirement is that g(v) = g(v1) + g(v2).

All other vertices of 7 have the genus of the corresponding vertex of o.

In both cases we get an induced morphism ® : M, — M. It is defined
as follows.

Case (a).

d: M, M.

N
C,...) — (C/xf:x7,...)

Here C' stands for the component of the V,-tuple of stable marked curves
corresponding to the vertex v. This curve has two marked points on it
which are indexed by f and f. The morphism @ identifies them with each
other, creating a node in the curve C' and losing two marked points in the
process. This curve obtained from C' by creating an additional node we call
C' and then C' is the component of the V,.-tuple of stable marked curves
corresponding to the index v’
Case (b).

o: M, — M,
(Cl,CQ,...) — (ClLICg/l‘f:l’—,...)

Here Cy and C are the components of the V -tuple of stable marked curves
corresponding to the vertices v; and vy, respectively. On C; there is a
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marked point indexed by f, and on Cs there is a marked point indexed by
f, and Cy 11 Cy/x f= 7 refers to the curve obtained by identifying these
two points in the disjoint union of these two curves. In the process one loses
two marked points, which is OK, because the graph also lost two flags.

In both cases the image of ® is a ‘boundary’ divisor in M,. Usually,
® is a closed immersion. Only if exchanging the two flags f and f can be
extended to an automorphism of ¢ inducing the identity on 7 (i.e. always in
Case (a), almost never in Case (b)) is ® a degree two cover followed by an
immersion. In Case (a) the image of ® can also intersect itself.

The axiom now demands that for each Ho(W)*-marking 8 on 7 the
diagram

-(8) Vi

H*(W)®5r =  H*(M,)
3 |
meovyess =257 g,

commutes. Here the vertical map on the left is the canonical isomorphism
coming from the fact that the contraction ¢ does not affect the tails of the
graphs involved.

The sum in the lower horizontal map is taken over all maps

BV, — Hy(W) ™"
that are compatible with 3. This means

e in Case (a) that #'(w) = B(w) for all w € V,. In particular that
B'(v) = B('),

e in Case (b) that 3'(w) = B(w) for all w # vy, v, and B (vy) + ' (ve) =
B(v).

Note that in Case (a) there is only one summand and in Case (b) there
is a finite number of summands.

The meaning of this axiom is very simple. For example, in Case (b) it
says that the number of curves in class # that have two components is the
sum over all pairs (31, 32) such that 3; 4+ 32 = (3 of the number of curves that
have two components whose first component is of class (3; and whose second
component is of class 32. (The invariant IY(3) might be a 1-cycle in M,
and ®* would intersect it with the boundary divisor M, and so count the
number of curves in the family I./(3) that have two components, where the
generic member has one.) In case ® is generically two to one, ®* involves
a multiplication by a factor of two, which reflects the ambiguity in marking
the two points lying over the node.
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IV. Gluing Tails

Let 7 be a stable modular graph and {f, f} an edge of 7. Let o be the
modular graph obtained from 7 by ‘cutting the edge’ {f, f}. This means
that all the data describing ¢ is the same as the data describing 7, except
for the involution j. In the case of 7, the set {f, f} is an orbit of j, and in
the case of ¢ it is the union of two orbits of j,.

In this situation we have a ‘morphism of stable modular graphs of type
cutting edges’ 7 — ¢ and an ‘extended isogeny of type gluing tails’ ¢ — 7.
For the definitions of these terms see [4]. It depends on the context, in which
direction the arrow between ¢ and 7 goes. In Part I of [4] the ‘morphism of
stable modular graphs’ approach is taken to describe the morphisms between
moduli spaces. In Part II, where Gromov-Witten invariants are given a
graph theoretic treatment, the ‘extended isogeny’ viewpoint is needed.

Anyway, to state our axiom, it is not relevant in what direction the arrow
between ¢ and 7 goes. What is important to note is that ¢ has two tails
more than 7, and therefore we have

H*(W)®5 = H*(W)®5 @ H*(W x W)
The axiom now requires that the diagram

1-(8)

H W) o H*wW)es & mrayyess Z8 mgear)
A =
HY (W x W) o HW)®S- = HW)ess =B ga1,)

commutes. Here p : W x W9 — W5 is the projection onto the second
factor, and A : W — W x W is the diagonal. This diagram is required to
commute for any Hy(W)*-marking 3 one can put on V, = V.

Note that the image of I'; X ... x 'y under A, op* is A xI'y X ... x Ty,
where A takes up the two first components in W5, So I,(3) o A, op* should
count the number of marked curves whose first two marks map to the same
point in W. These are exactly the curves that I.(3) should count.

V. Products

Let 7 and 7’ be two stable modular graphs and let o be the stable modular
graph whose geometric realization is the disjoint union of the geometric
realizations of 7 and 7/. We write 0 = 7 x 7/ (and not 7I117"). For Ho(W)™-
markings 3 on 7 and 3 on 7/ we denote by 3 x 3’ the induced Ho(W)*-
marking on o. The product axiom requires that under such conditions the
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diagram

H*(W)Q@ST ® H* (W)Sr’ iy H*(MT) ® H*(MT/)
+ +
H ()25 e 1*(,)

always commutes. Here the vertical maps are the isomorphisms induced by
the isomorphisms W = WS x W and M, = M, x M.

This axiom expresses the expectation that the number of solutions to
the enumerative geometry problem (7, 3) multiplied by the number of solu-
tions of the problem (7/,3') is the number of pairs solving the ‘composite
enumerative geometry problem’.

VI. Fundamental Class

Let o be a stable modular graph and f € S, a tail of 0. Let 7 be the
modular graph obtained by simply omitting f. We assume that 7 is still
stable.

Remark Since one can associate to any modular graph in a canonical way
(called ‘stabilization’) a stable modular graph, one might wonder if there is
also an axiom that applies in the case that 7 is not stable. The answer is that
such an axiom would follow from the others and is therefore not necessary.
To see this, assume that the stabilization of 7 is not empty. Then the process
of removing the tail from ¢ and stabilizing the graph thus obtained can also
be described (albeit not uniquely) as an edge contraction followed by a tail
omission that does not lead to an unstable graph®.

In this situation we get a morphism
o: M, — M, |,

defined in the following way: Take the curve corresponding to the vertex of
the tail f, which has a marked point on it, which is indexed by f. Omit this
point z and stabilize the marked curve thus obtained. To stabilize means to
contract (blow down) the component on which x lies, if it becomes unstable
by omitting xy. (This can only happen in case this component is rational.)

81t is precisely for this reason that the notion of ‘isogeny’ of stable graphs is introduced
in Part II of [4]. If one were to use only the morphisms defined in Part I, one would not
be able to decompose a tail omission that necessitates stabilization in this way.
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It is proved in [9] that M, — M, is the universal curve corresponding to
the vertex of f. More on stabilization in the next section.

Our axiom requires that the diagram

grwyes 28 par,)
e Lo
mrwy=s- =8 a1,
a
commutes, for every Hy(W)T-marking 3 one can put on V, = V,. Note
that o has exactly one tail more than 7 and that therefore we can identify
WS =W x W5 and p is the projection onto the second factor.

The geometric meaning of this axiom is that if one of the homology
classes v1,...,vn, say 71, is [W], then the space T7 obtained for ~q,...,v,
is a curve over the corresponding space T for s, ...,7,. This is because for
x1 to be in W is no condition, so it can move anywhere on C' leading to
Ty — T being the universal curve.

VII. Divisor

The setup is the same as in the axiom of the fundamental class. The divisor
axiom says that for every line bundle L € Pic(W') (and every [3) the diagram

e wys: HEED ()
(L) ) T ®.
HwW)es =D gt

commutes. Here the vertical map on the left is

H*(W)®St  —  H*(W) @ H*(W)®5"
v — a(l)®y

This axiom expresses the expectation that modifying an enumerative
problem by adding a divisor D (such that L = O(D)) to the list I'y,..., T,
multiplies the number of solutions by (L), because for a curve C of class
to intersect D is no condition, and in fact the additional marking on C' can
be any of the points of intersection of C' with D, of which there are 3(L)
many.

19



VIII. Mapping to Point

This axiom deals with the case that 8 = 0. Let 7 be a non-empty connected
stable modular graph. Over the moduli space M, there are universal curves,
one for each vertex of 7. They are obtained by pulling back the universal
curves from the factors of M,. If v € V; is a vertex of 7 then the associated
universal curve C, has sections (x), one for each flag f € F;(v). Now define
a new curve C' over M, by identifying 5 with T, for each edge {f, f} of
7. We call C' the universal curve over M ;. It has connected fibers since the
geometric realization of 7 is connected. Denote the structure morphism by
:C — M,.
Consider the direct product of M, and W, with projections labelled as
in the diagram
M,xWwW L w
et
M~

We get an induced homomorphism

p: H'(W) — H*(V,)
v o (") U (R'm 05 B Ti))
Here Ty stands for the tangent bundle of W and ¢,,, for the highest Chern

class, which in this case will be of degree g(7)dim W.
The mapping to point axiom now states that

L(0) : H*(W)®S" — H*(3,)
is given by
L(0)(v1, vy vm) = p(1 U .. Ury)
This axiom expresses the fact that in this case
T=M,xI'in...nl, ,

since a constant map to W has to map to I'y N ... N I,. Note that for
g(t) > 1 the factor cmp(RITr*Oé X Tw) is put in to satisfy the grading
axiom. It is a sort of excess intersection term coming from the fact that
there are obstructions in this case. More on this later (see Section 3).

Remark Axioms I,...,VIII imply the axioms listed in [11], except for the
motivic axiom. It will follow from the construction we give below. Numbers
ITI, IV and V (Contractions, Gluing Tails and Products) imply the splitting
and genus reduction axioms.
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2 Construction of Gromov-Witten Invariants

Stable Maps

Gromov-Witten invariants are constructed as integrals over moduli spaces.
These are moduli spaces of stable maps. The notion of stable map is due to
Kontsevich, and generalizes naturally the notion of stable curve (Deligne-
Mumford [5]) and stable marked curve (Knudsen-Mumford [9]). Let us recall
the definition.

Definition 2.1 Fix a smooth projective k-variety W.
A stable map (to W) over a k-scheme T, of genus g € Z>, class 3 €
Hy (W)™ and indexing set for marks S (a finite set) is

1. a flat and proper curve C' — T, such that all geometric fibers are
connected, one-dimensional, have as singularities only ordinary double
points (i.e. nodes) and have arithmetic genus 1 — x(O¢,) = ¢,

2. a family of sections (z;);cs, where xz; : T — C, such that for all
geometric points t € T the points (z;(t));cs are distinct points, not
equal to a node,

3. a morphism f : C' — W, such that for all geometric points ¢ € T,
denoting the restriction of f to the fiber C; by f; : C; — W, we have
B(L) = deg ff(L), for all L € PicW (or written more suggestively,

ft[Ct]) = ),
such that

for all geometric points ¢ € T' and for every normalization of an irreducible
component C’ of C; we have

ft(C") is a point = 2¢(C") + #{special points of C'} >3
where a special point is one that that lies over a mark x; or a node of C}.

A morphism of stable maps ¢ : (C,z, f) — (C',2', f") over T is a T-
isomorphism ¢ : C'— C' such that ¢(z;) = «} for all i € S and f'(¢) = f.

Let M, (W, 8) denote the k-stack of stable maps of type (g, 5, 3) to W.

Just like an algebraic space, or a scheme, or a variety (all over k), a stack is
defined by giving its set of T-valued points, for every k-scheme T, only that
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the set of T-valued points is not a set, but a category, in fact a category in
which all morphisms are isomorphisms, in other words a groupoid. So the
moduli stack My (W, 3) is given by

M, s(W, B)(T) = category of stable maps over T of type (g, S, 3) to W,

for every k-scheme T'.
The concept of stable maps was invented to make the following theorem
true.

Theorem 2.2 (Kontsevich) The k-stack My (W, 3) is a proper algebraic
Deligne-Mumford stack®.

The Deligne-Mumford property signifies that the ‘points’ of M, s(W, 3)
have finite automorphism groups. The properness says two things. First,
that every one-dimensional family in M, (W, 3) has a ‘limit’, and secondly
that this limit is unique. This translates into two facts about stable maps,
namely first of all that every stable map over T — {t}, where T is one-
dimensional, extends to a stable map over T'. For this to be true one has
to allow certain degenerate maps, namely those with singular curve. The
amazing fact is that by including exactly the degenerate maps which are
stable, one picks out exactly one extension to 7' from all the possible exten-
sions of the stable map over T' — {¢}. This makes the ‘limit’ unique, and
hence the stack M, (W, (3) proper.

For a proof of this theorem we refer to [7].

Note For each i € S there is an evaluation morphism

evi: Mys(W,8) — W

These moduli stacks are now taken as building blocks to define moduli
stacks of stable maps associated to graphs.

So let (7,3) be a stable modular graph with an Ho(W)*-marking. The
associated moduli stack which we are about to construct shall be denoted
by M (W, 7), abusing notation by leaving out 3. We will list three conditions
on these moduli stacks that will determine them completely.

%at least if char k = 0 or if 3(L) < char(k), for some ample invertible sheaf L on W
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1. Stars. If 7 is a star, i.e. a graph with only one vertex v, and set of
flags S, which are all tails, then

M(VV, T) = Mg(v),S(W’ B(v))

2. Products. If 7 and o are stable modular graphs with Ho(W)*-
markings, and o x 7 denotes the obvious stable modular graph with Hy(W)*-
marking whose geometric realization is the disjoint union of the geometric
realizations of o and 7, then

MW, x o) := MW, 1) x M(W,0)

3. Edges. If T has two tails ¢; and i3 and o is obtained from 7 by gluing
these two tails to an edge (so that conversely, 7 is obtained from o by cutting
an edge), then M (W, o) is defined to be the fibered product

M(W, o) — w

\ La
J— evil X evi2
M(W,7) “=7 WxW

It is not difficult to see that this well-defines M (W, L) , for every stable
modular graph 7 with Hy(W)™ marking. Moreover, all M (W, 7) are proper
Deligne-Mumford stacks.

Note For each tail i € S, there exists an evaluation morphism ev; :
M(W,7) — W. Taking the product, we get the evaluation morphism
ev: M(W,r) — W5,

For future reference, we shall now construct the universal curve on
M (W, 7). Fix a vertex v € V;. By construction, there exists a projection
morphism

H(W 7_) — Mg(v),FT (v) (VV7 ﬁ(v)) )

and we can pull back the universal stable map. This gives us a curve C,
over M (W, ) together with a morphism f, : C, — W, and sections z; :
M(W,7) — C,, for all i € F,.(v).

We glue the C, according to the edges of 7 (i.e. identify x; with z;_(;)) to
get a curve C — M (W, 1) called the universal curve, even though its fibers
are only connected if |7| is. There are induced sections (z;);cg, of C' and an
induced morphism f: C' — W.
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Stabilization

Let 7 = (7,3) be a stable modular graph with Hy(W)*-structure. There
exists a morphism
M(W T) — MT

given by ‘stabilization’. To define it, it suffices to consider the case that 7
is a star. So we are claiming that there exists a morphism

Mg,S(VVaﬁ) — Mg,S
(C,z, f) — (C,a)™”

In other words, we take a stable map (C,z, f) and forget about the map f,
retaining only the marked curve (C,z). The problem is that (C,z) might
not be stable, so to get a point in Mg,s we need to associate to (C,x) a
stable marked curve, in a natural way.

This is done as follows. Let m : C — T, be a curve with a family of
sections z : T'— C, © = (x;)ijes. Then the stabilization is defined to be the

curve

C’ = Projy (69 mL@”)) ,

v>0

where
L =wc/r (Z x,)
1€S
Here we 7 is the relative dualizing sheaf, which is being twisted by a Cartier
divisor given by the images of the sections x; in C'. Note that there is a
natural map C' — C’ and so one gets induced sections in C’.

One proves that C’ together with these induced sections is a stable
marked curve, and one calls it (C,z)***. For details on this construction
see [9].

The morphism C' — C” just contracts (blows down) all the unstable
rational components any fiber of C' — T might have.

The Construction: Overview

Let 7 = (7, 3) be as usual, a stable modular graph with vertices marked by
elements of Hy(W)™.

24



Consider the diagram

MW7) s WS
4 stab (2)

M,
We shall later construct a rational equivalence class
[M(W, 7)) € Agim(w,r) (M (W, 7))

called the ‘virtual fundamental class’ of M (W, 7). Here A stands for the
Chow group (with rational coefficients) of a separated Deligne-Mumford
stack constructed by Vistoli [13]. This class has degree

dim(WV, 7) = x(7)(dim W — 3) — B(r) (ww) + #S, — #B,

which is the ‘expected dimension’ of the moduli stack M (W, 7). If M(W,7)

happens to be of dimension dim(W, 7), then [M(W, )| = [M(W, )] will
be just the usual fundamental class.
Then the Gromov-Witten invariant

I(B): H*(W)®¥ — H*(M,)
v o L))

is defined by
I(B)(7) N [M;] = stab.(ev*(y) N [M(W,T)]"™) . (3)

Note that this condition defines I-(3)() uniquely, because of Poincaré du-
ality on the smooth stack olM..
Alternatively, consider the morphism

7 M(W,7) — M, x W5

(induced by Diagram 2) which is proper and so we may consider the push-
forward
m[MW, )",

which is a correspondence M, ~» W57, so we get I7(3) through pullback
via this correspondence:

L(8)(v) = pr.(p5(y) U clm[M(W, 7)]")
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Hence this construction implies the ‘motivic axiom’ of [11].
Now all the axioms required of I-(3) reduce to axioms for

J(W,7) = [M(W, 7)™

Before we list these, some more remarks.

Consider, as above, where we were discussing the geometric interpreta-
tion of Gromov-Witten invariants the situation where S = {1,...,n}, and
I'y,...,I', are dual cycles to the cohomology classes vi,...,v, € H*(W).
For ease of exposition, let us assume that the I'; are actually algebraic sub-
varieties of W. We can now give a more precise definition of the moduli
space 1" mentioned above. It is defined to be the fibered product

T — ' x...xTy,

3 3
MW,r) =% Wx...xW

This will in fact assure that 7" is proper, and thus we have solved the problem
of compactifying the earlier 7'

Now, if the I'; are in general position, then T should be smooth of the
expected dimension, which is

n
dim(W,7) = Y codimy T;

i=1
In fact, one could use this principle as a definition of general position, defin-
ing T1,...,T, to be in general position if T is smooth!'® of this dimension.
As mentioned above, the problem is that one cannot always find I'; which
are in general position.

But let us assume that I'y,...,I', are in general position. Then

[T] =ev*[['] x...xT]

and
Iy(ﬁ)([rl]’ .., [n]) = stab,[T]

because the virtual fundamental class agrees with the usual one in this case.

101Tn fact, purely of the expected dimension would be enough, if one is willing to count
components of 7" with multiplicities given by the scheme (or stack) structure. The dif-
ference is the same as the one between transversal and proper intersection in intersection
theory.
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So defining Gromov-Witten invariants by (3) leads to the situation antic-
ipated by our geometric interpretation detailed above. In particular, for the
case that M (W, 1) is of dimension dim(W, 7) the above heuristic arguments
explaining the motivations of the various axioms give proofs of the axioms.

Remark 2.3 If one prefers cohomology, in the case that M (W, 7) of smooth
of the expected dimension dim(W, 7), one can also think of I-(8) (71, .- -,7n)
as obtained by pulling back vi,...,7v, by the evaluation maps, taking the
cup product of these pullbacks and then integrating over the fibers of the
morphism stab : M (W, 7) — M,. Thus I.(3) should lower the grading by
twice the dimension of the fibers of this map, which is

dim(W, 1) —dim M, = x(7) dim W — B(7)(ww)

This gives another interpretation of the grading axiom.

Axioms for J(W,T)
We shall now list the properties that the

J(W,7) = [M(W,7)]"™

have to satisfy so that the induced Gromov-Witten invariants I (3) satisfy
their respective properties. This amounts to five axioms for J(W, ), which
we shall refer to by the names given to them in [4].

I. Mapping to Point

Assume that |7| is non-empty connected and that 3(7) = 0, so that in fact
B(v) =0, for all v € V.

In this situation the universal map f : C — W factors through the
structure map 7 : C'— M (W, 7) of the universal curve, since a map of class
zero maps to a single point in W. We call the resulting map ev : M (W, 1) —
W, since it is also equal to all the evaluation maps. Now the morphism

M(W,7) "5 3, x W

is an isomorphism, since giving a stable map to a point in W is the same as
giving a stable curve and a point in W.
The axiom is that

JW,7) = cyirydimw (R' .05 & Ty ) 0 [M (W, 7)]
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For future reference, let us give an alternative description of R17r*05 X
Tyw . Consider the vector bundle

R'm.f*Tyy = R'm.(r"ev* Tiy)
= R'7T.0c@ev* Ty
Note that we have a cartesian diagram

c = MW,r)

i 4 stab

c - M,
since in the case of mapping to a point, there is no need to stabilize and
thus the pullback of the universal curve over the moduli space of curves is
the universal curve over the moduli space of stable maps to a point. Thus
we can write the above tensor product as an exterior tensor product:

R'm, f*Tw = R'm.0z ® Ty

Note that rk Rl'm, f*Ty = g(C) dim W = g(7) dim W

I1. Products
Let o and 7 be stable modular graphs with Ho(W)*-marking. Recall that

we have
M(W,7 x o) = M(W,7) x M(W,0)
Our axiom is that

JW, T xo)=JW,7) x J(W,0)

III. Gluing Tails

Let 7 be obtained from o by cutting an edge. Recall that then we have a
cartesian diagram

M(W,o) — w

L La

MW, ) — WxW
Since W is smooth, A is a regular immersion, and so there exists the Gysin
pullback A' : A,(M(W,7)) — A,(M(W,0)). (See [6] Section 6.2 for Gysin
pullbacks in the context of schemes, [13] in the context of stacks.) The
axiom is that

AJW, 1) = J(W,0)
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IV. Forgetting Tails

Let o and 7 be as in the Fundamental Class axiom for Gromov-Witten
invariants. Endow both o and 7 with the same Hy(W)T-marking 3. Then
we get an induced morphism of moduli of stable maps

®: M(W,0) — M(W,T)

To construct it, it suffices to consider the case of stars. So let o be a star
with set of tails F, = S = {0,...} and let 7 have set of tails F;, = 5" = {...}.
Then @ is defined by

©: My s(W.0) — Mg (W,5)
(C, Zo, (l’l),f) — (C’7 (mi)yf)stab

The construction of the stabilization is similar as before. One chooses a
very ample invertible sheaf M on W. Then stabilization replaces the curve
m:C — T by
C' = Proj @ T (LOF) |
k>0
where L = we/r (X 7i) ® f*M®3. As before, this amounts to contracting
or blowing down any rational components that become unstable by leaving
out the section xg.
Now a slightly non-trivial fact is that

®:Mys(W,B8) — Mys(W,3)

is isomorphic to the universal curve over M, (W, ) (see [4] Corollary 4.6).
In the case of general graphs ¢ and 7 this translates into the fact that
in the diagram
MW,s) =% Cy
o\ |
M(W,7)
the morphism x( is an isomorphism. Here C), is the universal curve over
M (W, 1) corresponding to the vertex v = 9(0).
In particular, the morphism @ is flat of constant fiber dimension 1.
Therefore there exists the flat pullback homomorphism

o' A (MW, 7)) — A(M(W,0))
Our axiom is that

' J(W,T) = J(W,0)
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V. Isogenies

This axiom is really four axioms in one. The name of the axiom comes from
the fact that it deals with those operations on a graph that do not affect its
genus.

So let o be a stable modular graph and let 7 be obtained from & by
contracting an edge or omitting a tail. Assume that 7 is stable, too. Then
choose an Ho(W)T-structure on 7. In each case we shall construct a com-
mutative diagram

HM(W,0) — M(W,7)
4 J stab (4)
M, % I,
where the disjoint sum is taken over certain Hy(W)*-structures on o.

Case I. This is the case where we contract a loop in o to obtain 7.
Here there is only one possible Hy(W)T-structure on o compatible with the
one on 7. So [[M(W,s) = M(W,o) and the two horizontal maps in (4)
are obtained by gluing two marked points (or sections), as described above.
The two vertical maps are given by forgetting the map part of a triple and
then stabilizing.

Case II. Here we contract a non-looping edge of o, i.e. an edge with two
vertices. Let v be the edge of 7 onto which this edge is being contracted and
v1, v2 the two vertices of this edge in o. For an ordered pair 81, 52 € Ho(W)™
such that 1 + B2 = [B(v), define a marking on o by setting 3(v1) = (i,
B(vy) = (2 and for the other vertices of o take the marking induced from
7. Then take the disjoint union over all such pairs (31, 32) of the associated
stack of stable maps M (W, o). This shall be [[ M (W, o). The maps in (4)
are now defined the same way as in Case L.

Case III. This is the case where 7 is obtained from ¢ by forgetting
a tail. The Hy(W)*-structure on o is induced in a unique way from T,
[I M(W,0) = M(W, o) and all the maps in (4) have been explained already.

Case IV. In this case 7 is obtained from o by ‘relabelling’. In other words
there is given an isomorphism between ¢ and 7. The Ho(W)T-structure
on o is induced via this isomorphism from 7 and [[ M(W, o) = M (W, o).
Moreover, the horizontal maps in (4) are isomorphisms.

Now in each case the commutative diagram (4) induces a morphism

h:[IM(W,o) — M, X7, M(W,7)
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and our axiom states that
he (3" T(W,0)) = @' J(W, 7)

Note that @ is a local complete intersection morphism, since both M, and
M ; are smooth. Therefore the Gysin pullback

O A (MW, 7)) — Au(My x57. M(W, 7))

exists. Since all stacks involved are complete, the morphism A is proper and
so the proper pushforward exists.

Proposition 2.4 The five axioms for J(W,T) imply the eight axioms for
I:(B).

PROOF. The grading axiom follows from the fact that the J(W,7) have
the correct degree. The product, gluing tails and mapping to point axiom
for I follow from the axioms for J with the same name. The forgetting
tails axiom for J implies the divisor axiom for I. Finally, the isomorphisms,
contractions and fundamental class axioms for I all follow from the isogenies
axiom (with the same proof). O

Remark The part of the isogenies axiom dealing with omitting tails
(Case III) follows from the forgetting tails axiom (as can be seen, for exam-
ple, by examining the proof of the isogenies axiom in [2]). So technically,
the axioms for the virtual fundamental classes J(W, 7) contain some redun-
dancy.

The reason why the isogenies axiom is stated in this slightly redundant
form is that in this formulation it characterizes an aspect of the operadic
nature of J(W, -). The forgetting tails axiom does not feature in the op-
eradic picture, but it is still needed for the divisor axiom (which does not
fit naturally into the operadic framework).

By the ‘operadic’ nature of I we mean its description as a natural trans-
formation between functors from a category of graphs to a category of vector
spaces.

The Unobstructed Case

In the unobstructed case there is no need for a virtual fundamental class.
The usual fundamental class of the moduli stack will do the job.

31



Definition 2.5 Call a stable map f : (C,x) — W trivially unobstructed, if
HY(C, f*Ty) = 0.

Definition 2.6 A smooth and projective variety W is convez if for every
morphism f : P! — W we have H'(P!, f*Tyy) = 0.

Examples of convex varieties are projective spaces P”, generalized flag
varieties G/P (were G is a reductive algebraic group and P a parabolic
subgroup) and in fact all varieties whose tangent bundle is generated by
global sections.

The following proposition is not difficult to prove.

Proposition 2.7 If W is convex, then all stable maps of genus 0 to W are
trivially unobstructed.

Because of this, the ‘tree-level’ system of Gromov-Witten invariants for
convex varieties may be constructed without recourse to virtual fundamental
classes. By the tree-level system we mean all the invariants I,((3), where
the graph 7 is a forest.

Theorem 2.8 Let W be convex. Then for every forest T the stack M (W, 1)
is smooth of dimension

dim(W,7) = x(7)(dim W = 3) — () (ww) + #S5; — #E-

Moreover, the system of fundamental classes (where T runs over all stable
forests with Ho(W)*-marking)

J(W,7) = [M(W,7)]

satisfies the above five azioms'!.

PROOF. Details of the proof can be found in [4]. Essentially, what is going
on is that the definition of trivially unobstructed is of course precisely the
condition needed to assure that the obstructions vanish'?, which implies
that the moduli stack is smooth. (More about obstruction theory in a later
section.) The first four axioms for J follow from basic properties of Chern
classes and Gysin pullbacks. For the last axiom one has to note also that h
is an isomorphism generically. O

1 0Of course only those instances of the axioms for which all graphs involved are forests.
12The obstructions may also vanish if H*(C, f*Tw) # 0, but H(C, f*Tw) = 0 is the
only ‘general’ condition that always assures vanishing of the obstructions.

32



It is explained in [11] and [7] how to construct the quantum cohomology
algebra of W from the tree level system of Gromov-Witten invariants.

If one wants to count rational curves through a number of points in
general position on a convex variety, then the cycles I'y,..., I, are all just
points, and it follows from generic smoothness, that (at least in characteristic
zero) the points can be put into general position. Therefore these special
Gromov-Witten invariants actually solve numerical geometry problems (i.e.
they are enumerative).

For the case of generalized flag varieties G/ P all cohomology is algebraic
and so all Gromov-Witten invariants can be defined in terms of algebraic
cycles T'y,...,[';. Using results of Kleiman one can then prove that it is
possible to move I'y, ..., ', into general position. Therefore these tree level
Gromov-Witten invariants are enumerative. For more details see [7].

Let us now give a few examples of not trivially unobstructed stable maps.

1. Consider stable maps to W = P". If f: (C,z) — P" is such a map,
then we may pull back the exact sequence

0— 00— 0™ —=Tp —0
to C' to get the surjection
fro) ™t — f*Tpr — 0
and the surjection
HY(C, fro) " — H'Y(C, f*Tpr) — 0

So if C'is irreducible and deg f = deg f*O(1) > 2¢(C)—2, then f is trivially
unobstructed.

Thus the ‘good’ elements of M ,(P", d) (i.e. those corresponding to irre-
ducible C') are trivially unobstructed, for sufficiently high degree d > 2g — 2.
If My, (P",d) is irreducible, hence even its generic element is trivially unob-
structed. In that case the virtual fundamental class is equal to the usual one.
But it is far from clear whether it is the case that M, (P",d) is irreducible.
Anyway, the Gromov-Witten axioms involve the boundary of M, (P",d) in
an essential way, and so this unobstructedness result is not of much help.

2. For g > 0 already the constant maps are not trivially unobstructed.
As we already saw in the two mapping to point axioms, the moduli stack
M,,(W,0) has higher dimension than expected. On the other hand,
Mg,n(W,O) = Mg,n x W is smooth, so there are no obstructions. Constant
maps are unobstructed but not trivially so.
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The fact that Mg, (W,0) has higher dimension than expected, leads to
boundary components of M, ,(W,3) with 8 # 0 having higher dimension
than expected. For example, consider W = P" and the graph 7 with two
vertices, vg and vq, one edge connecting vy and v; and g(vg) =0, g(vy) = g.
Let d(vg) =d # 0 and d(v1) = 0. Then

M(]PT, 7') = ngl(]}br, d) X Mg,l

and so
dimM(P",7) =r +d(r + 1)+ 3g — 4

whereas the expected dimension is r + d(r + 1) + (3 — r)g — 4. The stack
M(P", 7) is a boundary component in M, (P",d), whose ‘good’ component
attains the expected dimension r + d(r + 1) + (3 — r)g — 3 in the range
d>2g—2. Soifd > 2g—2 and rg > 1 this boundary component has larger
dimension than the ‘good’ component.

3. Let W be a surface and E C W a rational curve with negative self-
intersection E?2 = —n. Let f : P! = E C W be a morphism of degree d # 0.
Pulling back the sequence

0—>TE—>TW—>NE/W—>0
via f, we get the sequence
0 — f*Tg — f"Tw — f*Ngyw — 0 . (5)

Now deg(Ng/w) = E?> = —n and so f*Ng,y = O(—dn). Moreover,
Tpr = O(2) and so f*Tp = O(2d). Therefore, we get from the long ex-
act cohomology sequence associated to (5) that

dim HY(P!, f*Ty) = dim H'(P!, O(—dn))
= dim H°(P', O(dn — 2))
= dn—1
Soif d > 1 or n > 1, then f is not trivially unobstructed. Since the
‘boundary’ of the moduli space will usually contain maps of degree larger

than 1, one has to deal with not trivially unobstructed maps as soon as the
surface W has —1 curves.
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3 Virtual Fundamental Classes

Construction of J(WW,7), Overview

We will give an overview of how to construct the virtual fundamental classes
J(W, 7). Many points will be discussed in greater detail in the following
sections.

This is when Artin stacks appear for the first time and so we have to stop
pretending that stacks are just spaces. Otherwise many facts would seem
counterintuitive. But the only Artin stacks involved are of a particularly
simple type, namely quotient stacks associated to the action of a vector
bundle on a scheme of cones.

Let 7 be, as usual, a stable modular graph with an Ho (W)
the vertices. Consider the universal stable map of type 7

T-marking on

c Lw
7
M(W,T)

From this diagram we get the complex Rm,f*Iy, which is an object of
D(M (W, 1)), the derived category of O-modules on M (W, 7). In fact we
may realize Rr, f*Tyw as a two-term complex [Ey — FEj] of vector bundles
on M(W, 7). Then we have ker(Ey — E;) = m.f*Ty and cok(Ey — Ep) =
Rm, f*Tyy.

The basics of obstruction theory in this context are, that for a morphism
f: C — W the vector space H°(C, f*Ty) classifies the infinitesimal defor-
mations of f and H'(f*Tyy) contains the obstructions to deformations of f.
Thus the complex R, f*Ty is intimately related to the obstruction theory
of M(W, ).

To Rm,f*Tyw we get an associated wvector bundle stack €, which is sim-
ply given by the stack quotient ¢ = [E;/Ep] (but is an invariant of the
isomorphism class of R, f*Ty in the derived category).

The next ingredient is the intrinsic normal cone. If X is any scheme
(or algebraic space or Deligne-Mumford stack), it has an associated intrinsic
normal cone, which, as the name indicates, is an intrinsic invariant of X, but
is constructed from the normal cones coming from various local embeddings
of X. The intrinsic normal cone is denoted €x and it is a cone stack, i.e.
a stack that is étale locally over X of the form [C/E], where E — C is a
vector bundle over X operating on a cone over X. (As above, [C'/E] denotes
the associated stack quotient.)
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The intrinsic normal cone €x is constructed as follows. We choose a local
embedding 7 : X — M, where M is smooth. Then we get an action of the
vector bundle ¢*Ts on the normal cone C'x/ys and the essential observation
is that the associated stack quotient [C'x/ys/i*Ta] is independent of the
choice of the local embedding i : X — M. Thus the various [Cx/ps/i*T]
coming from local embeddings of X glue together to give the cone stack €x
over X. A basic fact about €x is that it is always purely of dimension zero.

For our application we will use the relative intrinsic normal cone. This
is an intrinsic invariant of a morphism X — Y and is denoted €x/y. It has
the property that for every local embedding

X 5 M
N4
Y

of X into a scheme which is smooth over Y, it is canonically isomorphic to
Cx/v = [Cx/m /i Thyy]

In our case we consider the morphism M (W, 7) — 9,, where 9, has
the same definition as M., except that the stability requirement is waived.
So M, is an open substack of 9., and M, is not of finite type, or Deligne-
Mumford, or even separated, but still smooth. The map M (W, 7) — 9, is
given by forgetting f in a triple (C,x, f), but not stabilizing. We define

€ = 5w,y o,

Finally, we remark that there is a natural closed immersion of the cone
stack € into the vector bundle stack ¢ over M(W,7). This is because
Rm, f*Tw is what is called a (relative) obstruction theory for M (W, 1) over
M.

We now consider the pullback diagram

MW, 7) — ¢
{ l
M(W,7) e

where 0 is the zero section of the vector bundle stack . We obtain the
virtual fundamental class as the intersection of the cone stack ¢ with the
zero section of €.

J(W,r) = [M(W,7)]"" = 0'¢]
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We should point out, though, that lacking an intersection theory for
Artin stacks, we cannot apply this construction directly. Therefore we
choose as above a two-term complex of vector bundles [Ey — E;] repre-
senting R, f*Ty. Then € C € induces a cone C' C F; and we define

Cones and Cone Stacks

We explain the basics of the theory of cones and cone stacks. For proofs see
[3]. Let X be a Deligne-Mumford stack (or algebraic space or scheme) over
k, where k is our ground field. Later, X will be our moduli stack.

Cones

Let us recall the definition of a cone over X.
Consider a graded quasi-coherent sheaf of Ox-algebras

S=ps

i>0

such that S® = Ox, S' is coherent and S is locally generated by S'. Then
the affine X-scheme'? C' = Spec S is a cone over X.

The augmentation S — SY defines a section 0 : X — C, the vertex
of the cone C' — X. The morphism of Ox-algebras S — S[x] that maps a
homogeneous element s € S* of degree i to s2’, defines a morphism Al xC —
C, which we call the A'-action on C. It is an action in the sense that
(M) ¢ =Xp-¢), 1-¢c =cand 0-c = 0. Another, longer, but more
descriptive name for this map could be the ‘multiplicative contraction onto
the vertex’.

Example (Abelian Cones.) Let F be a coherent Ox-module. Then we
get an associated cone by

C(F) = Spec Sym F

Note that for a k-scheme T we have C'(F)(T) = Hom(Fr, Or), so that C(F)
is a group scheme over X. A cone obtained in this way is called an abelian
cone.

131t should be noted that whenever we talk of X-schemes or schemes over a stack X,
we actually mean stacks over X, that are relative schemes over X.
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If C is any cone, then Sym S' — @ S° defines a closed immersion C' <
C(S'). We denote C(S') by A(C) and call it the abelian hull of C. Tt
contains C as a closed subcone and is the smallest abelian cone with this

property.

Example (Vector Bundles.) Let £ — X be a vector bundle and £ the
corresponding Ox-module of sections. Then F = C'(£Y) is an abelian cone.
Note that a cone C' — X is smooth if and only if it is a vector bundle.

Example (Normal Cones.) Leti: X — Y be a closed immersion (or more
generally a local immersion), with ideal sheaf I. Then

CX/Y = SPeCX(EB In/InH)
n>0

is the normal cone of X in Y. Its abelian hull,
Nx)y = C(1/1?)

is the normal sheaf of X in Y. Note that ¢ is a regular immersion if and
only if Cx/y is abelian (i.e. Cx/y = Nx/y) which in turn is equivalent to
Cx/y being a vector bundle.

Vector Bundle Cones

Now consider the following situation. Let E be a vector bundle and C' a
cone over X, and let d : E — C be a morphism of cones (i.e. an X-morphism
that respects the vertices and the Al-actions). Passing to the abelian hulls
we get a morphism E — A(C) of cones over X, which is necessarily a
homomorphism of group schemes over X, so that E acts on A(C). If C is
invariant under the action of F on A(C), so that we get an induced action
of E on C, then we say that C is an E-cone.

Example Leti: X — M be a closed immersion, where M is smooth (over
k). Then Cx/ps is automatically an i*Tys-cone.

We now come to a construction that may seem intimidating, if one is not
familiar with the language of stacks. We will try to explain why it shouldn’t
be.

Whenever we have an E-cone C, we associate to it the stack quotient
[C/E]. At this point it is not very important to know what [C/E] is, it
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is only important to understand the main property, in fact the defining
property of [C'/E], namely that the diagram of stacks over X

ExCc L C

pl { (6)
C — [C/FE]

is cartesian and cocartesian'*. Here o and p are the action and projection,
respectively.

Recall that for an action of a group (like E) on a space (like C), the
quotient C'/E is defined to be the object (if it exists) which makes the
diagram (6) cocartesian, i.e. a pushout. (This applies to a lot of categories,
not just (schemes/X).) If (6) then turns out to be cartesian, too, then C'/E
is the best possible kind of quotient, since the diagram (6) being cartesian
means that the quotient map C' — C'/F is a principal E-bundle (or torsor,
in different terminology).

The construction of stacks like [C'/ E] should be viewed as a purely formal
process which supplies such ideal quotients if they do not exist. On a certain
level, this is analogous to the construction of the rational numbers from the
integers. If a certain division ‘doesn’t go’, one formally adjoins a quotient.

Applying this viewpoint to our situation, where we are trying to divide
cones by vector bundles, we may say that the division C/E ‘goes’ (or that
E divides C) if there exists a cone such that when inserted for [C'//E] in
(6) it makes (6) cartesian and cocartesian. If E does not divide C, then we
formally adjoin the quotient. Of course, one has to introduce an equivalence
relation on these formal quotients. So if C' is an E-cone and C’ an E’-cone,
and there exists a cartesian diagram

E —
| I (7)
EFE — C

where C' — C' is a smooth epimorphism, then we call the quotients [C/E]
and [C'/E'] isomorphic. This may be motivated by noting that if we have a
diagram (7) then there exists a vector bundle F, such that C' = C'/F and

!4Note that everything is happening over X; E is a relative group over X (so its fibers
over X are groups), C is a relative cone over X (so its fibers over X are ‘usual’ cones),
the action of E on C is relative to X and so in particular, the product E x C' is a product
over X.
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E = E'/F and thus we should have

(C/1E) = (o = C'/F

By this process one enlarges the category of cones over X, and obtains a
category where quotients of cones by vector bundles always exist. The one
convenience one has to give up in the process is that of having a category
of objects. The stacks that we obtain in this way form a 2-category, where
there are objects, morphisms, and isomorphisms of morphisms. But we shall
ignore that effect for the most part, to keep things simple.

Of course one has to do some work to prove that with these new objects
[C/E] one can still do geometry. If one does this, then the quotient map
C — [C/E] turns out to be an honest principal E-bundle. So over each
point = of X the fiber [C/E], is the quotient [C,/E,]. This a usual cone
divided by a usual vector bundle, but the quotient map C, — [Cy/E,] is a
principal E -bundle, which means that the fibers of C, — [Cy/E;] are all
copies of E, (but not canonically).

It also makes sense to speak of the dimension of [C'/E]. Since the fibers
of the morphism C' — [C/E] are vector spaces of dimension rk £ we have
dim[C/E] = dimC —rk E.

Two extreme cases might be worth pointing out: if £ = X, then [C/E] =
C. If C = X, then [C/E] = [X/E] is the stack over X whose fiber over z € X
is [{x}/E;], a point divided by a vector space. One also uses the notation
BE, = [pt /E;] and BE = [X/E]. So in the naive picture of a stack as a
collection of points with groups attached, BE has points {z | x € X} and
groups (E;)zcx. Note that dim BE = dim X — rk E.1°

Cone Stacks

We have to take one more step to get the category of cone stacks. We need
to localize, meaning that we want to call objects cone stacks if they locally
look like the [C/E] we just constructed. For the applications we have in
mind, this step is not really necessary, since in the end all cone stacks we
use will turn out to be of the form [C/E]. But for the general theory of
the intrinsic normal cone it would be an awkward restriction to require cone
stacks to be global quotients. So we make the following definition.

15The appearance of negative dimensions for Artin stacks is completely analogous to
the appearance of fractions when counting points of finite Deligne-Mumford stacks.
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Definition 3.1 Let ¢ — X be an algebraic stack with vertex 0 : X — ¢
and Al-action v : Al x ¢ — ¢. Then ¢ is a cone stack if, étale locally on X,
there exists a vector bundle F over X and an F-cone C over X such that
¢ =2 [C/E] as stacks over X with Al-action and vertex.

Every such C' is called a local presentation of €. If one can find local
presentations C' which are vector bundles (so that locally € = [E; / Ey], for a
homomorphism of vector bundles Ey — FE1, then € is called a vector bundle
stack.

The Intrinsic Normal Cone

Let X be, as before, a Deligne-Mumford stack over k.
A local embedding of X is a diagram

v oM
il
X

where 7 is étale, f a closed immersion and M is smooth.
A morphism of local embeddings is a commutative diagram

f/

v — M
l 1
v oM

where U’ — U is an étale X-morphism and M’ — M is smooth.
Given such a morphism of local embeddings we get a commutative dia-
gram
T — Ty — f*Tu|U’
\J \J \J

f,*TM’/M — CU’/M’ — CU/M|U,

The rows are exact sequences of cones. The square on the right is carte-
sian and Cprjppr — CU/M|U’ is a smooth epimorphism. All these are basic
properties of normal cones and tangent bundles.

As explained above, in this situation the quotients [Cy/ar/f*Ta]|U" and
[Cyryapr [ [ Tar] are canonically isomorphic. Thus all these locally defined
cone stacks (one for each local embedding) glue together to give rise to
a globally defined cone stack on X (note that X can be covered by étale
U — X that are embeddable into smooth varieties). This cone stack is
called the intrinsic normal cone of X and is denoted by €x.
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Proposition 3.2 The stack Cx is a cone stack of pure dimension'S zero.

For any local embedding we have
Cx|U = [Cum/ f T

Proor. It is a general property of normal cones that they always have
the dimension of the ambient variety. So we have dim Cy/ps = dim M and
therefore

dim[Cyr/ar/ f* T = dim Cypp — vk f*Thyr = dim M — dim M = 0
O

Remark One can do the same construction with normal sheaves Ny /yy
instead of normal cones Cyr/pr. Then one gets the intrinsic normal sheaf
Ny of X. Moreover, €x C IMx is a closed substack and 91x is the abelian
hull of €y (this notion makes sense for cone stacks, t0o).

Let Lx be the cotangent complex of X and 7> 1Lx the cutoff at —1.
Again, this is nothing deep, over a local embedding it is simply given by the
two term complex

(r> 1 Lx)|U = [I/I* = f*Qu]

where [ is the ideal sheaf, and the map is the map appearing in the second
fundamental exact sequence of Kéahler differentials.

One can prove that the stack 9y only depends on the quasi-isomorphism
class of 7~_1Lx, in other words it is an invariant of the object 7~_1Lx €

ob D£:h1’0](C’)X). In fact, one can define for every M* € ob DL;}’O (Ox) an
associated abelian cone stack ¢€(M*®). To do this, write (locally over X)
M* = [M~' - M with M? free. Then pass to C(M°) — C(M~1), the
associated abelian cones, and let €(M*) be the stack quotient €(M*) =
[C(M~Y)/C(MP)]. This construction globalizes and is functorial. Alter-
nate notations are ¢(M*) = h'/h°(M*Y), which is used in [3] or ¢(M*) =
ch(M*"), which is used in Exposé XVII of [1].

The following are a few basic results on the intrinsic normal cone. None
of them are deep or difficult to prove, they just reformulate known results
about normal cones and tangent bundles.

16 absolute dimension, not dimension over X
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Proposition 3.3 The following are equivalent.
1. X 1is a local complete intersection,
2. €x s a vector bundle stack,
3. €x =Ny.

If X is smooth then €x = Nx = BTYy.
Proposition 3.4 ¢y,y = €x X €y (absolute product).

Proposition 3.5 Let f : X = Y be a local complete intersection morphism.
Then there is a short exact sequence of cone stacks

Ny/y — Cx — fiey

Here 9Nyx/y = QZ(LB(/Y), which is a vector bundle stack. The notion of
short exact sequence of cone stacks is a straightforward generalization of
the notion of short exact sequence of cones. What it means is that the cone
stack on the right may be viewed as the quotient of the cone stack in the
middle by the action of the vector bundle stack on the left.

For example, if f is smooth we have an exact sequence

BTx/y — Cx — f*Q:Y ,
and if f is a regular immersion we have

Nx;y — €x — f*Cy

The Intrinsic Normal Cone and Obstructions

We will now look at the ‘fiber’ of the intrinsic normal cone over a point of
X. Solet p: Speck — X be a geometric point of X (which just means that
k is an algebraically closed field, not necessarily equal to the ground field,
by abuse of notation). Pulling back the intrinsic normal cone €x via p, we
get a cone stack over Speck.

If we look at cone stacks over an algebraically closed field, they are
necessarily given as the quotient [C'/E] associated to an E-cone C, where
E is just a vector space. In this case the quotient of C' by the image of
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d : E — C exists, and choosing a complementary subspace for kerd in F,
we get a cartesian diagram

E 4 ¢

! \
kerd -2 C/imd

showing that, as cone stacks, [C'//E] is isomorphic to the the quotient of
C" = C/imd by kerd acting trivially. So for studying this cone stack, we
may as well replace d : E — C by 0 : kerd — C’ and assume to begin with
that F acts trivially on C, i.e. that the map d : E — C' is the zero map.
Then we have that [C//E] =2 BE x C, where BE is the quotient of the point
Spec k by the vector space E.

Considering such a cone stack BE x C' over Spec k, we may interpret the
cone C' as the ‘coarse moduli space’ of BEXC. Any stack has a coarse moduli
space associated to it; it ‘is’ the set of isomorphism classes of whatever the
objects are that the stack classifies. The vector space E is the common
automorphism group of all the objects that the stack classifies.

Now let us determine what these objects and automorphisms are, for
the case of p*€x. Before dealing with the intrinsic normal cone, though, let
us consider the intrinsic normal sheaf. We have p*0x = p*¢(r>_1Lx) =
Q:(p*Tz_le).

Recall the ‘higher tangent spaces’

Tk, =Ext'(p*Lx,k) = ' (p*Lx)"

of X at p. For example, T)O(m = Hom(Qx, k) is the usual Zariski tangent
space. It classifies first order deformations of p, i.e. (isomorphism classes of)
diagrams
Speck — Speckle]
PN\ I
X

where k[e] is the ring of dual numbers (meaning that ¢ = 0). The first higher
tangent space T/%,p is the obstruction space, and classifies obstructions.
Now
p*TZ—lLX = [hil(p*Lx) i> ho(p*Lx)]

and so
PNy = BTY  x T}
X X,p X,p
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Thus the intrinsic normal sheaf classifies obstructions, with deformations as
automorphism group. Since the intrinsic normal cone is a closed substack
of 9x, we get that

pex = BT)O(’p xCxp

where Cx , C T/%,p is some cone of obstructions.

To describe what kind of obstructions the intrinsic normal cone classifies,
let us recall what an obstruction is. Let A’ — A be an epimorphism of local
artinian k-algebras with kernel k (i.e. a small extension). Let T' = Spec A
and T" = Spec A’ and assume given an extension z of p to A, i.e. a diagram

Speck — T

pN\ =z
X

In this situation we get a canonical morphism z*Lx — Lp, by the con-
travariant nature of the cotangent complex. From the morphism 7' — T’
we get a morphism Lo g oof degree 1. It is essentially the morphism
from Ly to Ly/7. Composing, we get a morphism z*Lx — k of degree 1,
in other words an element of

Ext'(z*Lx, k) — Ext'(p*Lx,k) = T%, ,

which is called the obstruction of (A’ — A,x). The justification for this
terminology is that it vanishes if and only if z extends to A’, i.e. if and only
if there exists 2’ : 7" — X making the diagram

T — T
Ny o
X

commute.

In more concrete terms the obstruction of (A" — A, z) can be described
as follows. Choose a local embedding f : U — M of X at p, where U and
M are affine. Let I be the corresponding sheaf of ideals, which we identify
with an ideal in the affine coordinate ring of M. Then we have

Ty, = cok(p* f*Tar — (p*1/1%)Y)

Now given z : T — X it is possible to choose z” : T' — M such that

T — T
‘,L,\L \I/IH
v LM
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commutes, since M is smooth. This diagram of two closed immersions in-
duces a morphism on the level of ideals, namely I — ker(A’ — A) = k. This
element of IV induces the obstruction in T}(,p (which is independent of the
choice of f and M and z").

The small extension A’ — A is called curvilinear if for some s > 1 it
is isomorphic to k[t]/t*T! — k[t]/t*. This notion gives the answer to our
question what the obstructions are that the intrinsic normal cone classifies:

Proposition 3.6 Fvery element of T/%,p obstructs some small extension. It
obstructs a small curvilinear extension if and only if it is in Cx p C T}(,p.

PROOF. See [3] Proposition 4.7. O

Obstruction Theory

Let us start with an example. Consider the cartesian diagram
X — Vv
I br (8)
Speck —» W

where f is a morphism between smooth varieties. Thus X is a fiber of f.
This is a typical intersection theory situation. One defines a cycle class on X
by [X]" = w'[V]. This class is called the specialization of [V] at w. The class
[X]"'" is first of all in the expected degree, namely dim V' —dim W, even if X
actually has larger dimension. Moreover, it leads to numerical data which
is independent of the parameter w € W. In the case that dimV = dim W
this means that the degree of the zero cycle [X]"'" is independent of w. If
dimV > dim W it is explained in [6], Chapter 10 what this means.

Because of this invariance of numerical data defined in terms of [X]*",
this class is a sensible one to use for questions in enumerative geometry. Let
us recall the construction of w'[V] (or at least how the definition is reduced
to the linear case). One replaces Diagram (8) by the following:

X — Cx/v
! I (9)
X % Tww) x X

Here Cy/y is the normal cone and the normal bundle of w : Speck — W
pulled back to X is Ty (w) x X, the tangent space to W at w times X.
Then [X]"" = 0'[Cxy].

2
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Now we also have a cartesian diagram

X —  [Cxpv/v*Tv]
d l (10)
X 5 [Tw(w)g/o*Ty]

which is obtained from (9) simply by dividing through (in the stack sense)
by v*Ty,. Now note that [C'x/y /v*Ty] = €x is just the intrinsic normal cone
of X and € = [Ty (w) y /v*Ty] is a vector bundle stack on X into which €x
is embedded.

If there was an intersection theory for Artin stacks (or just cone stacks),
then certainly 0![C’X/V] = 0%[¢x], where the first 0 is the zero section from
(9). So we can characterize the virtual fundamental class of X in terms of
the intrinsic normal cone of X, which is completely intrinsic to X and the
vector bundle stack &, which is, of course, not intrinsic to X, but it has to
do with the obstruction theory of X.

In fact, € = v*[f*Tw /Tv], and because [Ty, — f*Tw] = T3y is the
tangent complex of f, we have that € = v*€(Ly ). So € can be thought
of as the linearization of f. Moreover, ho(v*Tv/W) = Tx classifies the
first order deformations of X, and hl(v*TV/W) contains the obstructions to
deforming X.

So we have replaced the ambient morphism f, which defined a virtual
fundamental class on X, by this vector bundle stack &, which serves the
same purpose. Now if X is a moduli space (or stack), then it might be
hopeless to try to embed X globally into a smooth space (or stack) but
such an ¢ can sometimes still be found, in fact, it comes naturally from the
moduli problem that X solves.

The two essential properties of € are

1. ¢ is a vector bundle stack, i.e. it is locally defined in term of a complex
of two vector bundles [E~! — EY]. Such a complex is referred to as
being perfect of amplitude contained in [—1,0]. In other words, it is
an object of DP[,;%O](OX)”.

2. The intrinsic normal cone €x is embedded as a closed subcone stack
into €.

"Note that the superscript [—1,0] does not refer to the object of the derived category
having cohomology in the interval [—1,0], but to its perfect amplitude being in that
interval. The latter is stronger than the former.
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This motivates the following definition.

Definition 3.7 Let E be an object of Dl[);i’o]((’)x). A homomorphism

¢ : E — Lx (and by abuse of language also E itself) is called a perfect
obstruction theory for X if

1. h%(¢) is an isomorphism,

2. h~Y(¢) is surjective.

It is not difficult to prove that the two conditions on ¢ are equivalent
to the morphism Ny — € (where ¢ = ¢(FE)) induced by ¢ being a closed
immersion. Moreover, if p : Speck — X is a geometric point of X, then an
obstruction theory induces an isomorphism

TS, — K (p*EY)

and a monomorphism

Txp = h'(p"EY),
so, in a sense, F reflects the deformation theory of X and contains the
obstructions of X.

As an example, let C' be a prestable curve, W a smooth projective variety
and f: C — W a morphism. Then H°(C, f*Ty) classifies the infinitesimal
deformations of f. The obstructions are contained in H'(C, f*Ty). To
see this, let U, be an affine open cover of C. By the infinitesimal lifting
property the morphism f can be extended over each U,. Over the overlaps
Uap two extensions differ by an infinitesimal deformation, i.e. a section of
f*Tw over Uyg. The vanishing of this Cech-1-cocycle with values in f*Ty,
means extendibility of f.

These observations can be translated into the following statement. Let
X = Mor(C, W) be the scheme of morphisms from C to W. Then there is
a perfect obstruction theory on X given by (R, f*Ty )" — Lx, where

ocxx Low
Tl
X

is the universal map. Note that since 7 : C' x X — X has one-dimensional
fibers, the complex (R, f*Tw )" is indeed perfect of amplitude 1.

This is in fact the obstruction theory we want to use to construct the
virtual fundamental class on M (W, 7). But a deformation of a stable map
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may deform the curve C as well as the map f : C — W. So we note that the
morphism M (W, 1) — 9., that forgets the map (and does not stabilize) has
fibers of the form Mor(C,W). So we would like to adapt the above theory
to this relative situation.

Working in the relative rather than the absolute setting has the advan-
tage that the obstruction theory is much simpler. Also, many of the axioms
we will have to check involve the relative setting of M (W, 7) over M,. So
the relative obstruction theory is better suited for proving the axioms of
Gromov-Witten theory. (Note, however, the difference between M, and
M. It is the main difficulty in proving the axioms.)

The reason why the relative obstruction theory works, is that the base
M, is smooth.

So we replace the base Speck by Y, where Y is any smooth algebraic
k-stack of constant dimension n. It does not even have to be of Deligne-
Mumford type. Let X — Y be a morphism which makes X a relative
Deligne-Mumford stack over Y. This just means that any base change to
a base Y’, where Y’ is a scheme, makes the fibered product X’ a Deligne-
Mumford stack.

Embedding X locally into stacks that are smooth and relative schemes
over Y, one defines just as in the absolute case the intrinsic normal cone
€x/y and its abelian hull Mx/y. A complex of Ox-modules E, that is
locally quasi-isomorphic to a two term complex of vector bundles, together
with a map in the derived category £ — Lx/y is called a perfect relative
obstruction theory, if it induces a closed immersion of cone stacks Cx/y —
¢(E).

It follows from [3], Proposition 2.7 that the relative intrinsic normal
cone €y/y is ‘just’ the quotient of the absolute intrinsic normal cone €x
by the natural action of the tangent vector bundle stack Ty of Y. The
same is true for the intrinsic normal sheaves. Moreover, in our application,
the relationship between the vector bundle stacks given by the relative and
absolute obstruction theories, respectively, is also the same. This implies
that the virtual fundamental class defined in the relative setting is the same
as the one defined in the absolute setting.

Let us make more precise the sense in which a relative obstruction theory
E — Lx,y governs the obstructions of X over Y.

Let
T % X
' ] (11)
T — Y
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be a commutative diagram, where T — T’ is a square zero extension of
(affine) schemes, with ideal N (i.e. a closed immersion with ideal sheaf
N, such that N? = 0). Such a diagram induces an obstruction o €
Ext!(z*E,N), which vanishes if and only if a map 7’ — X completing
Diagram (11) exists. Moreover, if the obstruction o vanishes, then all ar-
rows T" — X completing (11) form a torsor under Ext®(z*E, N), i.e. there
exists a natural action of Ext’(z*E, N) on the set of such arrows 7" — X,
which is simply transitive.

The obstruction o is obtained as follows. A fundamental fact about the
cotangent complex is that is classifies extensions of algebras, i.e. that

Extalgy (T, N) = Ext'(Ly/y, N)

Thus T — T' gives a morphism of degree one Ly /v — N. Composing with
the natural maps 2*Lx/y — Lr/y and 2*E — 2*Lx,y we get a morphism
of degree one x*E — N, in other words an element o € Ext!(z*E, N).

Note In the case that X — Y is a morphism of smooth schemes, we can
take the identity L% = LY /y as relative obstruction theory for X over
Y. Pulling this relative obstruction theory back to a fiber of X — Y, we
get the absolute obstruction theory of the fiber described earlier.

Fundamental Classes

Since the relative case is no more difficult than the absolute one, we assume
right away that we have a perfect relative obstruction theory E for X over
Y. To define the associated virtual fundamental class we need to assume
that E has global resolutions, i.e. that E is globally quasi-isomorphic to a
two term complex [E~! — E°] of vector bundles over X. This condition is
satisfied for the relative obstruction theory of M(W,7) (see Proposition 5
in [2]). Then the stack € = ¢(F£) associated to E is isomorphic to [E;/Ep],
where E; denotes the dual bundle of E~*. Since € is a closed subcone stack
of &, it induces a closed subcone C of F; and we define

[X]™ = [X, B] = 03, [C],

which is a class in Vistoli’'s Chow group with rational coefficients
Adgimyrk g(X). This class is independent of the global resolution chosen
to define it. The fact that this class is in the expected degree dimY +rk B
follows immediately from the fact that the relative intrinsic normal cone
has pure dimension dimY" (which corresponds to the fact that the absolute
intrinsic normal cone has pure dimension zero).
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Example 3.8 If X is smooth over Y, then h%(E) = hO(LX/Y) = Qx/y
is locally free. Hence E~! — E° has locally free h® and h~!, and so the
same holds for the dual ¢ : Ey — Ey. Also, €x/y = BTx/y < [E1/Eo]
identifies BTx/y with Bker ¢, which is isomorphic to [im ¢/Ep], and so the
cone induced by €x in FE is equal to im ¢. Hence

[X]™ = 0O, [img]
= Ctop(cok ¢) N[X]
— Cp(h1(BY) N [X]

In the above example of Mor(C, W) we have
(X = cuop (RV, Tyr) 1 [X]

Proposition 3.9 If X has the expected dimension dimY +rk E, then X is
a local complete intersection and [C, E] = [X], the usual fundamental class.

Proor. For simplicity, let us explain the absolute case Y = pt. Let k be al-
gebraically closed and A a localization of a finite type k-algebra at a maximal
ideal. Write A = (k[z1,...,2n]/(f1;--+s fr))(@1,....0n)> l6t m be the maximal
ideal of k[z1,...,%n](gy, 0,y a0d I = (f1,..., fr) C k[z1,.. ., T0l(a),.0)-
Then the cutoff at —1 of the cotangent complex of A is I/I? — Qfzr, 20 OA
and if we tensor it over A with k we get I/m — m/m? and so there is an
exact sequence

0 — THA)Y — I/ml — m/m?> — T°(4)Y — 0

where T%(A) is the i-th tangent space of A at the maximal ideal.

After projecting Spec A into its tangent space at the origin, which only
changes A by an étale map, we may assume that I C m?. This entails that
I/mI — m/m? is the zero map and hence T°(A)Y = m/m? and T'(A)Y =

I/wmI. Clearly, Ty, ..., T, is a basis of m/m2. By Nakayama’s lemma we may
also assume that f,..., f, form a basis of I/mI. Hence n = dimT°(A) and
r=TYA).

Now clearly, dim A > n —r. If equality holds, then f1,..., f, is a regular
sequence for k[z1,... ,x,«](xl,m,xr) and so A is Cohen-Macaulay and a local

complete intersection.

Now assume given a perfect obstruction theory E* for A. Then T%(A) =
R°(E*Y ® k) and T'(A) — h'(E*Y ® k). Hence n —r > rk E* and so
dim A > rk E*. By the previous argument dim A = rk E* implies that A is a
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local complete intersection. Moreover, dim A = rk E*® implies n —r = rk E'*
and T'(A) = hY(E*Y ® k). This, in turn, implies that E* — L% is an
isomorphism and so [X, E*] = [X]. O

Corollary 3.10 If the expected and actual dimension are both zero, then
(XY counts the number of points of X with their scheme (or stack) theoretic
multiplicity.

Remark If X can be embedded into a smooth scheme M and E* is an
absolute obstruction theory for X then we have (in the notation above)

[X’ E.] = (c(Br) Ns(C))rkpe

where s(C') is the Segre class of C' and ¢ denotes the total Chern class. The
subscript denotes the degree rk E*-component. (See [6], Chapter 6.) Now
we have

c(E1)Nns(C) = ¢

where ¢, (X) is the canonical class of X (see [ibid.]). Hence
[X, E*] = (e(BY) " es (X)) e

Thus the intrinsic normal cone may be viewed as the geometric object un-
derlying the canonical class. As such it glues (which cycle classes usually do
not) and is thus also defined for non-embeddable X.

Gromov-Witten Invariants

As always, let W be a smooth projective k-variety and 7 a stable modular
graph with an Ho(WW)*-marking 3.
As indicated, we use the Artin stacks

My = [ My)re)
’UGVT

where 9, ¢ is the stack of S-marked prestable curves of genus g. Prestable
means that the singularities are at worst nodes and all marks avoid the
nodes. Note that 9, is smooth of dimension

dim(7) = #S; — #E; — 3x(7)
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We consider the morphism

M(VV,T) — M,
(Cyz, f) — (Cz)

where no stabilization takes place. Note that the fiber of this morphism
over a point of 9, corresponding to a curve C' is an open subscheme of the

scheme of morphisms Mor(C, W).

Let, as before, 7 : C — M (W, 7) be the universal curve and f : C' — W
the universal map. Then we have a perfect relative obstruction theory (even

though this was only explained in the absolute case)

(Rﬂ*f*TW)v — LH(W,T)/zmT )

and hence a virtual fundamental class
J(W,r) = [M(W,T)]Vir = [M(W,T), (Rﬂ*f*Tw)v]

in A, (M (W, 7)) of degree dim(7) + rk R, f*Tyy .
Let us check that this is the degree we claimed [M (W, 7)]*" to have:

dim(7) + rk R, f* Ty
= #S; — #E: —3x(1) + x(f"Tw)
= #Sr — #E; — 3x(7) + deg [ Tw + dim Wx(Oc)
= #Sr —#E; — 3x(7) — Blww) + dim Wx(Oc)
= X(7)(dimW =3) — Blww) + #S7 — #E+
= dim(W, )

This calculation justifies the grading axiom for Gromov-Witten invariants.

Theorem 3.11 The classes J(W, T) satisfy all five axioms required.

PRrOOF. The mapping to point axiom follows from the Example 3.8. For the
proofs of the other axioms see [2]. One has to prove various compatibilities
of virtual fundamental classes. These follow from the properties of normal

cones proved by Vistoli [13]. O

Corollary 3.12 The Gromov-Witten invariants I.(3) defined in terms of

J(W, 1) satisfy all eight azioms required.
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Complete Intersections

These ideas can easily be adapted to construct the tree level system of
Gromov-Witten invariants for possibly singular complete intersections.

So let W € P" be a complete intersection, ¢ : W — P" the inclusion
morphism. Then [i*Tp» — Nyy/pn] is the tangent complex of W. So as ob-
struction theory for M (W, 7) — M, we may take (R, f*[i*Tpn — Nyy/pn])".
This will be a perfect obstruction theory if we restrict to the case where 7
is a forest, because then the higher direct images under 7 of f*i*Tp» and
J* Ny pn vanish. So we get the tree level system of Gromov-Witten invari-
ants of W.

As an example, consider a cone over a plane cubic, which is a degenerate
cubic surface in P3. There is a one-dimensional family of lines on this cubic,
namely the ruling of the cone. On the other hand, the expected dimension
of the space of lines on a cubic in P? is zero. Therefore the Gromov-Witten
invariant Iy (1) is a number, which turns out to be 27. So the ‘ideal’ number
of lines on a cubic is 27, even in degenerate cases.
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