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Abstract

We construct the de Rham cohomology of differentiable stacks via a double com-
plex associated to any Lie groupoid presenting the stack. This is a straightforward
generalization of the Čech-de Rham complex of a differentiable manifold. We explain
the relationship to the Cartan model of equivariant cohomology.

To get a theory of Poincaré duality, we construct the companion theory of coho-
mology with compact supports. We explain how cohomology acts on cohomology with
compact supports, and how to integrate compact support cohomology classes.

We specialize to differentiable stacks of Deligne-Mumford type (these include orb-
ifolds), where we prove that one can calculate cohomology, as well as compact support
cohomology, via the complex of global differential forms. Finally, for proper differen-
tiable stacks of Deligne-Mumford type we prove Poincaré duality between de Rham
cohomology and itself.

We go on to define the cohomology class of a closed substack and intersection
numbers. We do a few sample calculations from the theory of moduli stacks.

In the second part of these notes we construct the singular homology and coho-
mology of a topological stack. Among the results we prove is that singular homology
equals equivariant homology in the case of a quotient stack. We also prove that the
Q-valued singular cohomology of a Deligne-Mumford stack is equal to that of its coarse
moduli space. We conclude with a discussion of Chern classes and a few examples.
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The integral, Poincaré duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Deligne-Mumford stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
The class of a substack, intersection numbers . . . . . . . . . . . . . . . . . . . . . 17
Example: the stack of elliptic curves . . . . . . . . . . . . . . . . . . . . . . . . . 18
The Lefschetz trace formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Singular homology 21
The singular chain complex of a topological groupoid . . . . . . . . . . . . . . . . 22
What do cycles look like? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Invariance under Morita equivalence . . . . . . . . . . . . . . . . . . . . . . . . . 25
Equivariant homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Relation to de Rham cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Relation to the cohomology of the coarse moduli space . . . . . . . . . . . . . . . 29
Chern classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

References 32



1

Introduction

In these lectures we give a short introduction to the cohomology of stacks. We first focus
on the de Rham theory for differentiable stacks. Then we go on to singular homology of
topological stacks. All the technical tools we use are explained in [2]. Our constructions are
often straightforward generalizations of constructions in [ibid.]

When defining the cohomology groups Hk(X,R) for a manifold X with values in the real
numbers R, there are two approaches:

(i) resolve the coefficient sheaf R using, for example, the de Rham complex

R −→ Ω0 −→ Ω1 −→ Ω2 −→ . . .

and define Hk(X,R) as the cohomology groups of the complex of global sections Γ(X,Ω•).
(ii) resolve the manifold X, using a good cover {Ui} (a cover where all intersections

are diffeomorphic to Rn), and define Hk(X,R) as the the Čech cohomology groups of the
constant sheaf R with respect to the covering.

Approach (i) is justified because for every q, the higher cohomology groups of Ωq on any
manifold vanish, i.e., because the sheaves Ωq are acyclic over manifolds.

Approach (ii) is justified because for every p, the manifold

Up =
∐

i0,...,ip

Ui0 ∩ . . . ∩ Uip

has no higher cohomology groups (with values in R). In other words Up is acyclic, for every
p.

It can be useful to combine the two approaches into one by considering the Čech-de Rham
complex, a double complex made up from all Ωq(Up). (See [2], Chapter II.)

For stacks things are less simple. Approach (i) breaks down, because the Ωq are not
acyclic over stacks(see Exercise 6). Approach (ii) breaks down, because of the lack of good
covers. But we can always resolve a stack using a simplicial manifold and all Ωq are acyclic
for manifolds. Therefore the combination of the two approaches using the Čech-de Rham
complex works well for stacks.

We will explain this approach in detail.

Remark It is possible to define the cohomology of stacks by resolving the coefficient sheaf
alone. For this we would have to use injective (or other) resolutions in the big site of the
stack. For details, see [1].

To define the cohomology of a stack by resolving the stack alone, we would have to use
hypercovers.

Neither of these two approaches will be discussed in these notes, except for the brief
Remark 11.

De Rham cohomology

Differentiable stacks are stacks over the category of differentiable manifolds. They are the
stacks associated to Lie groupoids. A groupoid X1 ⇒ X0, is a Lie groupoid if both X0 and
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X1 are differentiable (i.e., C∞) manifolds, all structure maps are differentiable and source
and target map are (differentiable) submersions.

Two Lie groupoids X1 ⇒ X0 and Y1 ⇒ Y0 give rise to essentially the same stack, if and
only if they are Morita equivalent, which means that there is a third Lie groupoid Z1 ⇒ Z0,
together with Morita morphisms Z• → X• and Z• → Y•. A morphism of Lie groupoids
f : X• → Y• is a Morita morphism if f0 : X0 → Y0 is a surjective submersion and the
diagram

X1

(s,t) //

f1

��

X0 ×X0

f0×f0

��
Y1

(s,t) // Y0 × Y0

(1)

is cartesian, i.e., a pullback diagram of differentiable manifolds. We say that a Morita
morphism f : X• → Y• admits a section if X0 → Y0 admits a section.

Recall that a functor is an equivalence of categories if it is fully faithful and essentially
surjective. Diagram (1) being cartesian translates into f being fully faithful. The require-
ment on f0 is much stronger than essential surjectivity (and there are certain weakenings
of the notion of Morita morphism taking this into account). For abstract categories, any
equivalence has an inverse. For a Morita morphism of Lie groupoids, this is not the case,
unless it admits a section.

Any section s : X0 → Y0 of a Morita morphism f : X• → Y• induces uniquely a groupoid
morphism s : Y• → X• with the properties

• f ◦ s = idY• ,

• s ◦ f ∼= idX• , which means that there exits a 2-isomorphism θ : s ◦ f ⇒ idX• .

(Recall that a 2-isomorphism between two morphisms of Lie groupoids, θ : f ⇒ g, where
f, g : X• → Y• are morphisms,

X•

f
''

g
77

�� ��
�� θ Y•

is a differentiable map θ : X0 → Y1 satisfying the formal properties of a natural transforma-
tion between functors.)

Another construction from the theory of groupoids we will use is restriction. LetX1 ⇒ X0

be a Lie groupoid. Let Y0 → X0 be a submersion. Define Y1 by the cartesian diagram

Y1
//

��

Y0 × Y0

��
X1

// X0 ×X0

(Note that we need the assumption that Y0 → X0 is a submersion, in order that Y1 will be
a manifold and the two maps Y1 ⇒ Y0 will be submersions.) One checks that Y• is again a
Lie groupoid. It is called the restriction of X• via Y0 → X0. Note also that if Y0 → X0 is
surjective, then the natural morphism Y• → X• is a Morita morphism.
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The simplicial nerve of a Lie groupoid

Let X1 ⇒ X0 be a Lie groupoid. Then we can produce a simplicial manifold X• as follows.
For every p ≥ 0 we let Xp be the manifold of composable sequences of elements of X1 of
length p. In other words,

Xp = X1 ×X0 X1 ×X0 . . .×X0 X1︸ ︷︷ ︸
p

.

Then we have p+1 differentiable maps ∂i : Xp → Xp−1, for i = 0, . . . , p, where ∂i is given by
‘leaving out the i-th object’. Thus ∂0 leaves out the first arrow, ∂p leaves out the last arrow,
and ∂1, . . . , ∂p−1 are given by composing two successive arrows. More precisely, ∂i maps the
element

x0
φ1 //x1

φ2 // . . .
φi−1 //xi−1

φi //xi
φi+1 //xi+1

φi+2 // . . .
φp //xp

of Xp to the element

x0
φ1 //x1

φ2 // . . .
φi−1 //xi−1

φi∗φi+1 //xi+1
φi+2 // . . .

φp //xp

of Xp−1. (There are also maps Xp−1 → Xp, given by inserting identity arrows, but they
are less important for us.) Note that for the composition of maps Xp → Xp−2 we have the
relations

∂i∂j = ∂j−1∂i , for all 0 ≤ i < j ≤ p. (2)

We summarize this data by the diagram of manifolds

. . . // //
////X2

//////X1 ////X0 . (3)

Čech cohomology

Let X1 ⇒ X0 be a Lie groupoid and X• the associated simplicial manifold. Letting Ωq be
the sheaf of q-forms, we get an induced cosimplicial set

Ωq(X0) ////Ωq(X1) //////Ω
q(X2) ////

//// . . . (4)

simply by pulling back q-forms. Since this is, in fact, a cosimplicial abelian group, we can
associate a complex

Ωq(X0)
∂ //Ωq(X1)

∂ //Ωq(X2)
∂ // . . .

Here ∂ : Ωq(Xp−1) → Ωq(Xp) is given by

∂ =

p∑
i=0

(−1)i∂∗i .

We call this complex the Čech complex associated to the sheaf Ωq and the Lie groupoid X•.
Its cohomology groups Hk(X,Ωq) are called the Čech cohomology groups of the groupoid
X = [X1 ⇒ X0] with values in the sheaf of q-forms Ωq.
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Remark 1 (naturality) Given a morphism of Lie groupoids f : X• → Y•, we get an
induced homomorphism of Čech complexes

f ∗ : Č•(Y,Ωq) → Č•(X,Ωq) .

It is given by the formula

f ∗(ω)(φ1 . . . φp) = ω
(
f(φ1) . . . ...f(φp)

)
,

for ω ∈ Ωq(Yp). Here φ1 . . . φp abbreviates the element

x0
φ1 //x1

φ2 // . . .
φp //xp

in Xp. This follows directly from the presheaf property of Ωq and the functoriality of f .
More interestingly, if we have a 2-isomorphism θ : f ⇒ g between the two morphisms

f, g : X• → Y•, then we get an induced homotopy θ∗ : f ∗ ⇒ g∗, between the two induced
homomorphisms f ∗, g∗ : Č•(Y,Ωq) → Č•(X,Ωq). In fact, θ∗ : Ωq(Yp+1) → Ωq(Xp) is defined
by the formula

θ∗(ω)(φ1 . . . φp) =

p∑
i=0

(−1)iω
(
f(φ1) . . . f(φi)θ(xi)g(φi+1) . . . g(φp)

)
.

One checks (this is straightforward but tedious) that

∂θ∗ + θ∗∂ = g∗ − f ∗ .

As consequences of these naturality properties we deduce that

• groupoid morphisms induce homomorphisms on Čech cohomology groups,

• 2-isomorphic groupoid morphisms induce identical homomorphisms on Čech cohomol-
ogy groups,

• a Morita morphism admitting a section induces isomorphisms on Čech cohomology
groups.

Note that these naturality properties follow formally from the presheaf properties of Ωq,
and thus hold for any contravariant functor F : (manifolds) → (abelian groups).

Proposition 2 If X1 ⇒ X0 is the banal groupoid associated to a surjective submersion of
manifolds X0 → Y , then the Čech cohomology groups Hk(X,Ωq) vanish, for all k > 0 and
all q ≥ 0. Moreover, H0(X,Ωq) = Γ(Y,Ωq).

Proof. Recall that the banal groupoid associated to a submersion X0 → Y is defined by
setting X1 = X0 ×Y X0. Since X1 → X0 ×X0 is then an equivalence relation on X0, we get
a groupoid structure on X1 ⇒ X0. Note that such a banal groupoid comes with a canonical
Morita morphism X• → Y , where Y is considered as a groupoid Y ⇒ Y in the trivial way.
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...

�� �� ����

...

�� �� ����

...

�� �� ����

...

�� �� ����
. . .

// //
//// W22

�� ����

////// W12

�� ����

//// W02

�� ����

// V2

�� ����
. . .

// //
//// W21

�� ��

////// W11

�� ��

//// W01

�� ��

// V1

�� ��
. . .

// //
//// W20

��

////// W10

��

//// W00

��

// V0

��
. . .

// //
//// X2

////// X1 //// X0
// Y

Figure 1: The bisimplicial manifold

For example, if {Ui} is an open cover of Y , and X0 =
∐
Ui, then X1 =

∐
Uij, where

Uij = Ui ∩ Uj. In this case the proposition is a standard fact, which follows essentially from
the existence of partitions of unity. See for example Proposition 8.5 of [2], where this result
is called the generalized Mayer-Vietoris sequence. (Note that in [loc. cit.] alternating Čech
cochains are used, whereas we do not make this restriction. The result is the same.)

Another case where the proof is easy, is the case of a surjective submersion with a section.
This is because a section s : Y → X0 induces a section of the Morita morphism X• → Y .
Thus by naturality we have Hk(X,Ωq) = Hk(Y ⇒ Y,Ωq), which vanishes for k > 0, and
equals Γ(Y,Ωq), for k = 0.

The general case now follows from these two special cases by a double fibration argument.
Let {Ui} be an open cover of Y over which X0 → Y admits local sections and let V0 =

∐
Ui.

We consider the banal groupoid V• given by V0 → Y .

The key is to introduce W00 = X0×Y V0. Thus W00 → V0 is now a surjective submersion
which admits a section. We define Wmn = Xm ×Y Vn, for all m,n ≥ 0.

Wmn

��

// Vn

��
Xm

// Y

Then W•• is a bisimplicial manifold. This means that we have an array as in Figure 1. It
is important to notice that W•n is the simplicial nerve of the banal groupoid associated to
W0n → Vn, and Wm• is the simplicial nerve of the banal groupoid associated to Wm0 → Xm.
All W0n → Vn are submersions admitting sections and all Wm0 → Xm are submersions
coming from open covers. Thus we already know the proposition for all of these submersions.

We apply Ωq to this array to obtain a double complex Ωp(W••) mapping to the two
complexes Ωq(X•) and Ωq(V•), see Figure 2. Passing to cohomology we get a commutative
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...

��

...

��

...

��

...

��
. . . // Ωq(W22)

��

// Ωq(W12)

��

// Ωq(W02)

��

// Ωq(V2)

��
. . . // Ωq(W21)

��

// Ωq(W11)

��

// Ωq(W01)

��

// Ωq(V1)

��
. . . // Ωq(W20)

��

// Ωq(W10)

��

// Ωq(W00)

��

// Ωq(V0)

. . . // Ωq(X2) // Ωq(X1) // Ωq(X0)

Figure 2: The double complex

diagram

H∗(W,Ωq)

��

// H∗(V,Ωq)

∼=
��

H∗(X,Ωq) // H∗(Y ⇒ Y,Ωq)

and noticing that the two arrows originating at H∗(W,Ωq) are isomorphisms, which follows
by calculating cohomology of the double complex in two different ways, we get the required
result. �

Corollary 3 Any Morita morphism of Lie groupoids f : X• → Y• induces isomorphisms
on Čech cohomology groups f ∗ : Hk(Y,Ωq)

∼→ Hk(X,Ωq). Morita equivalent groupoids have
canonically isomorphic Čech cohomology groups with values in Ωq.

Proof. Let X be the differentiable stack given by the groupoid Y•. The composed morphism
X• → X identifies X as the stack given byX•. Form the fibered product Z00 = X0×XY0. Then
define a bisimplicial manifold Z•• as in the previous proof and apply the same kind of double
fibration argument to produce isomorphisms H∗(Z,Ωq) → H∗(X,Ωq) and H∗(Z,Ωq) →
H∗(Y,Ωq). �

Thus we can make the following definition.

Definition 4 Let X be a differentiable stack. Then

Hk(X,Ωq) = Hk(X1 ⇒ X0,Ω
q) ,

for any Lie groupoid X1 ⇒ X0 giving an atlas for X. In particular, this defines

Γ(X,Ωq) = H0(X,Ωq) .
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Example 5 If G is a Lie group then Hk(BG,Ω0) is the group cohomology of G calculated
with differentiable cochains. (Recall that BG is the differentiable stack given by the Lie
group G itself, considered as a Lie groupoid G ⇒ ∗.) Thus there are stacks for which these
cohomology groups are non-trivial (see the following exercise).

Exercise 6 Calculate H1(BR+,Ω0).

Remark 7 We can formalize the above constructions. Let

F : (manifolds) → (abelian groups)

be a contravariant functor such that
(i) if we restrict F to any given manifold and its open subsets we get a sheaf on this

manifold,
(ii) for every manifold this sheaf has vanishing Čech cohomology groups.

Then we can define Hk(X, F ) for any differentiable stack as the Čech cohomology of any
groupoid presenting X. The above proof of well-definedness carries through.

A contravariant functor F satisfying (i), is called a big sheaf, on the category of manifolds.
Thus Ωq is an example of a big sheaf.

The de Rham complex

The exterior derivative d : Ωq → Ωq+1 connects the various Čech complexes of a Lie groupoid
with each other. We thus get a double complex

...
...

...

Ω2(X0)

d

OO

∂ // Ω2(X1)

d

OO

∂ // Ω2(X2)

d

OO

∂ // . . .

Ω1(X0)

d

OO

∂ // Ω1(X1)

d

OO

∂ // Ω1(X2)

d

OO

∂ // . . .

Ω0(X0)

d

OO

∂ // Ω0(X1)

d

OO

∂ // Ω0(X2)

d

OO

∂ // . . .

(5)

We make a total complex out of this by setting

Cn
DR(X) =

⊕
p+q=n

Ωq(Xp)

and defining the total differential δ : Cn
DR(X) → Cn+1

DR (X) by

δ(ω) = ∂(ω) + (−1)pd(ω), for ω ∈ Ωq(Xp) .

The sign change is introduced in order that δ2 = 0.
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Definition 8 The complex C•
DR(X) is called the de Rham complex of the Lie groupoid

X1 ⇒ X0. Its cohomology groups

Hn
DR(X) = hn

(
C•

DR(X)
)

are called the de Rham cohomology groups of X = [X1 ⇒ X0].

If X1 ⇒ X0 is the banal groupoid associated to an open cover X0 → Y of a manifold Y ,
then the de Rham complex of X1 ⇒ X0 is just the usual Čech-de Rham complex as treated,
for example, in Chapter II of [2].

Definition 9 One can use Proposition 2 and a double fibration argument to prove that de
Rham cohomology is invariant under Morita equivalence and hence well-defined for differen-
tiable stacks:

Hn
DR(X) = Hn

DR(X1 ⇒ X0) ,

for any groupoid atlas X1 ⇒ X0 of the stack X.

Remark 10 Because the de Rham complex Ω• of big sheaves resolves the big constant sheaf
R, we may consider HDR(X) as the cohomology of X with values in R.

Remark 11 Recall that any sheaf F on a topological space has a canonical flabby resolution.
(This resolution starts out by embedding F into its associated sheaf of discontinuous sections
and continuing in like manner.) For example, denote by Z• the canonical flabby resolution
of Z, the constant sheaf. Because of the canonical nature of Z•, we actually obtain for every
q a big sheaf Zq, satisfying the two conditions of Remark 7.

Now we can imitate the construction of de Rham cohomology: define the cohomology of
the stack X with values in Z as the cohomology of the total complex of the double complex
Z•(X•), where X• is the nerve of any groupoid presenting X. The proof of well-definedness
is identical to the case of de Rham cohomology.

For this construction, we don’t even need the stack X or the groupoid X1 ⇒ X0 to
be differentiable. It works for arbitrary topological stacks. In this way we can define the
cohomology of an arbitrary topological stack with values in an arbitrary (abelian) big sheaf.

Equivariant Cohomology

We will explain why the de Rham cohomology of a quotient stack is equal to equivariant
cohomology. (Another proof follows from the results of the section on singular homology.)

Let G be a Lie group with Lie algebra g and X a G-manifold. To fix ideas, assume that
G always acts from the left. There is a well-known generalization of the de Rham complex
to the equivariant case, namely the Cartan complex Ω•

G(X), defined by

Ωn
G(X) =

⊕
2k+i=n

(
Skg∨ ⊗ Ωi(X)

)G
.

Here S•g∨ is the symmetric algebra on the dual of g, which can also be thought of as the space
of polynomial functions on g. The group G acts by the adjoint representation on g∨ and by
pullback of differential forms on Ω•(X). The Cartan complex consists of the G-invariants
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for the induced action on S•g∨ ⊗ Ω•(X). The Cartan differential d : Ωn
G(x) → Ωn+1

G (X) is
given as the sum d = dDR− ι, where dDR : Skg∨⊗Ωi(X) → Skg∨⊗Ωi+1(X) is the de Rham
differential and ι : Skg∨ ⊗ Ωi(X) → Sk+1g∨ ⊗ Ωi−1(X) is the tensor induced by the vector
bundle homomorphism gX → TX coming from differentiating the action. Note that we have
to pass to G-invariants in the Cartan complex before the Cartan differential satisfies d2 = 0.

The functorial properties of the Cartan complex are analogous to the functorial properties
of the de Rham complex: if f : X → Y is an equivariant map ofG-manifolds, we get a natural
morphism of complexes Ω•

G(Y ) → Ω•
G(X). More generally, if G → H is a morphism of Lie

groups and X → Y is equivariant from a G-manifold X to an H-manifold Y , we have a
natural map Ω•

H(Y ) → Ω•
G(X). In particular, there is always a quotient map Ω•

G(X) →
Ω•(X). If G acts trivially on X, there is a canonical section Ω•(X) → Ω•

G(X), making
Ω•(X) a direct summand of ΩG(X).

Recall that if G is compact, the cohomology groups H i
G(X) = hi

(
Ω•

G(X)
)

are the equiv-
ariant cohomology groups of X.

We will now formulate an equivariant analog of Proposition 2. Let X → Y be a surjective
submersion of G-manifolds. Then the simplicial nerve of the associated banal groupoid X•

consists of G-manifolds and equivariant maps. Thus we get an associated double complex
Ω•

G(X•) together with an augmentation map Ω•
G(Y ) → Ω•

G(X•).

Lemma 12 If G is compact, the augmentation is a quasi-isomorphism, i.e., induces iso-
morphisms

H i
G(Y ) −→ hi

(
tot Ω•

G(X•)
)
,

for all i.

Proof. We cannot imitate the proof of Proposition 2, because X → Y will, in general, not
have sufficiently many local equivariant sections. This is also why we have to restrict to the
case that G is compact. Recall that a compact Lie group admits a left invariant gauge form,
i.e., a top degree form ω on G, which is left invariant and satisfies

∫
G
ω = 1. Integrating

against ω, we can define a natural projection operator V ⊗Ω•(X) →
(
V ⊗Ω•(X)

)G
, for any

(finite-dimensional) representation V of G.
Now, to prove the lemma, we note that by Proposition 2, the augmentation Ω•(Y ) →

Ω•(X•) is a quasi-isomorphism. Tensoring with the representation S•g∨, this remains a
quasi-isomorphism. Moreover, because of the existence of the natural projection onto G-
invariants, after taking G-invariants, we still have a quasi-isomorphism. Of course, so far, we
are using only the differential dDR on Ω•

G(X•). But there is a spectral sequence, starting with
the cohomology of Ω•

G(X•) with respect to dDR and abutting to the cohomology of Ω•
G(X•)

with respect to d = dDR − ι. There is a corresponding spectral sequence for Ω•
G(Y ), but it

degenerates. Convergence of the spectral sequences now implies the result. �

We can use this lemma to define a Morita-invariant notion of equivariant cohomology for
groupoids. This is not our goal here. Rather we are interested in the following setup:

Let X be a G-manifold. Consider the transformation groupoid G ×X ⇒ X, which has
projection and operation as structure maps. (The associated stack is the quotient stack
[X/G].) We consider the pair (g, x) as a morphism with source gx and target x:

gx
(g,x) // x
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Proposition 13 If G is compact, there is a natural isomorphism

H i
G(X) −→ H i

DR(G×X ⇒ X) = H i
DR([X/G]) .

Proof. Denote the simplicial nerve of the transformation groupoid G × G → G (left
multiplication of G on itself) by EG•. Then the simplicial manifold EG• ×X is isomorphic
to the simplicial nerve of the banal groupoid associated to the projection G ×X → X. In
particular, by Lemma 12, we have a quasi-isomorphism Ω•

G(X) → Ω•
G(EG• ×X).

On the other hand, we have a morphism of simplicial manifolds π• : EG•×X → Γ•, where
Γ• is the simplicial nerve of the transformation groupoid G×X ⇒ X. Thus Γn = Gn ×X.
The morphism EGn × X = Gn+1 × X → Γn = Gn × X is given by ∂n+1, which maps
(g0, . . . , gn, x) to (g0, . . . , gn−1, gn+1x). Note that π• is a (level-wise) principal G-bundle.

Now we invoke the theorem of Cartan: if P →M is a principal G-bundle, the canonical
homomorphism Ω•(M) → Ω•

G(M) → Ω•
G(P ) is a quasi-isomorphism. Here we need to use

the fact that G is compact for the second time. We apply the theorem of Cartan levelwise
to the principal G-bundle π• and obtain a quasi-isomorphism Ω•(Γ•) → Ω•

G(EG• ×X). �

Corollary 14 For a compact Lie group G we have H∗
DR(BG) = (S2∗g∨)G.

Exercise 15 For example, H•
DR(BS1) = R[c]. Let dt be a gauge form on S1, i.e.,

∫
S1 dt = 1.

This form defines a basis element in (s1)∨, which we denote by c. Prove that dt defines a
2-cocycle in the de Rham complex of the groupoid S1 ⇒ ∗. Find the sign ε, such that under
the identification of H2

DR(S1 ⇒ ∗) with H2
G(∗), the class of dt corresponds to εc.

Remark 16 If G is not compact, then HDR([X/G]) is still equal to equivariant cohomology.
This is not difficult to believe, as the main ingredient in our proof of Proposition 13 was
the fact that H•

G(P ) = H•(M), for every principal G-bundle P over a manifold M . This
fact holds for equivariant cohomology in general. Only, in general, the Cartan complex is
insufficient to calculate equivariant cohomology.

Remark 17 Most differentiable stacks occurring ‘in nature’ are quotient stacks of a group
action on a manifold (although not always quotients by a compact group). Thus, the coho-
mology of all such stacks is simply equivariant cohomology. The stack point of view adds
one essential insight: if transformation groupoids G×X ⇒ X and H × Y ⇒ Y are Morita
equivalent, then H•

G(X) = H•
H(Y ). In other words, if G and H act freely and compatibly on

a manifold Z, then H•
G(Z/H) = H•

H(Z/G).

Exercise 18 Let G be a compact group acting on a manifold X. Prove that there exists a
manifold Y with a U(n)-action, for some n, such that H•

G(X) = H•
U(n)(Y ).

Multiplicative structure

We define a multiplication on the double complex (5) as follows. Let ω ∈ Ωq(Xp) and
η ∈ Ωq′(Xp′). Then we set

ω ∪ η = (−1)qp′π∗1ω ∧ π∗2η ∈ Ωq+q′(Xp+p′) . (6)
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Here the map π1 : Xp+p′ → Xp projects the element

◦ φ1 // . . .
φp //◦

φp+1 // . . .
φp+p′ //◦ ∈ Xp+p′ (7)

to

◦ φ1 // . . .
φp //◦

and π2 : Xp+p′ → Xp′ projects the same element (7) to

◦
φp+1 // . . .

φp+p′ //◦ .

One checks that
δ(ω ∪ η) = δ(ω) ∪ η + (−1)p+qω ∪ δ(η) ,

and so we get an induced cup product

Hn
DR(X•)⊗Hm

DR(X•) −→ Hn+m
DR (X•) .

The cup product is associative on the level of cochains. But note that this is not true for
(skew) commutativity. The cup product is commutative only on the level of cohomology.

Cohomology with compact supports

As with cohomology, cohomology with compact supports is defined via a double complex.
As usual, let X1 ⇒ X0 be a Lie groupoid. But now we have to also assume that X1 ⇒ X0

is oriented. This means that both the manifolds X1 and X0 and the submersions s and t
are oriented, in a compatible way. Moreover, assume that both X0 and X1 have constant
dimension. Define two numbers r, n by the formulas

r = dimX1 − dimX0, n = 2 dimX0 − dimX1 .

Note that n is the dimension of the stack defined by X1 ⇒ X0 and r is the relative dimension
of X1 over X0.

Let Ωq
c(Xp) denote the space of differential forms on Xp which have compact support.

Note that Ωq
c is not a sheaf. We consider the double complex

. . . −∂! // Ωn+3r
c (X2)

∂! // Ωn+2r
c (X1)

−∂! // Ωn+r
c (X0)

. . . −∂! // Ωn+3r−1
c (X2)

d

OO

∂! // Ωn+2r−1
c (X1)

d

OO

−∂! // Ωn+r−1
c (X0)

d

OO

. . . −∂! // Ωn+3r−2
c (X2)

d

OO

∂! // Ωn+2r−2
c (X1)

d

OO

−∂! // Ωn+r−2
c (X0)

d

OO

...

d

OO

...

d

OO

...

d

OO

(8)
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For a form γ ∈ Ω
n+(p+1)r−j
c (Xp) its horizontal degree is −p and its vertical degree is n−j. The

vertical differential is the usual exterior derivative d. The horizontal differential is defined
in terms of

∂! =
∑

i

(−1)i∂i! ,

where ∂i! : Ωq+r
c (Xp) → Ωq

c(Xp−1) is the map obtained from ∂i : Xp → Xp−1 by integration
over the fiber. In fact, for γ ∈ Ωq

c(Xp), the horizontal differential is defined as

γ 7−→ (−1)p∂!γ .

To make a single complex out of (8), we define

Cν
c (X) =

⊕
q−rp−p−r=ν

Ωq
c(Xp) ,

and set the total differential equal to

δ(γ) = (−1)p
(
∂!γ + dγ

)
, for γ ∈ Ωq

c(Xp) .

Note that the total degree of an element of Ωq
c(Xp) is equal to q − r(p+ 1)− p, which is the

sum of its vertical and horizontal degrees.
We also introduce notation for the horizontal cohomology of (8). Namely, we denote the

k-th homology of
(
Ω

(•+1)r−q
c (X•),±∂!

)
by Hk

c (X,Ωq). This defines Hk
c (X,Ωq) for k ≤ 0 and

q ≤ n. We also denote H0
c (X,Ωq) by Γc(X,Ω).

Module structure

Now we shall turn (8) into a module over (5). Thus, given ω ∈ Ωq(Xp) and γ ∈ Ωq′
c (Xp′), we

set
ω ∩ γ = (−1)−qp′π1!

(
π∗2ω ∧ γ

)
,

where π1 and π2 have similar meanings as in (6). More precisely, they are defined according
to the cartesian diagram

Xp′

π1

��

π2 // Xp

0-th projection

��
Xp′−p

(p′ − p)-th projection

// X0 .

Note that ω ∩ γ ∈ Ωq+q′−pr
c (Xp′−p) and hence we have

deg(ω ∩ γ) = degω + deg γ .

Of course, if p′ < p, then it is understood that ω ∩ γ = 0.
Using the projection formula

f!(f
∗η ∧ τ) = η ∧ f!(τ)
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it is not difficult to check associativity

(τ ∪ ω) ∩ γ = τ ∩ (ω ∩ γ) .

Using that integration over the fiber commutes with exterior derivative, one can also check
the derivation property

δ(ω ∩ γ) = δω ∩ γ + (−1)deg ωω ∩ δγ ,

which implies that the cap product passes to cohomology, and we have that H∗
c (X) is a

graded module over the graded ring H∗(X).

The integral, Poincaré duality

We can define and integral ∫
X

: Hn
c (X) −→ R

by noticing that the integral Ωn+r
c (X0) → R vanishes on coboundaries of the total complex

of C•
c (X•).

Finally, we define a pairing

H•
DR(X)⊗H•

c (X) −→ R (9)

ω ⊗ γ 7−→
∫

X

ω ∩ γ ,

For Poincaré duality, let us assume that X1 and X0 are of finite type, i.e., that they both
have a finite good cover (see [2, §5]) and that these covers are compatible via s and t.

Proposition 19 (Poincaré duality) Under this assumption, the pairing (9) sets up a per-
fect pairing

Hp(X)⊗Hn−p
c (X) −→ R ,

for all p ≥ 0.

Proof. Consider the homomorphism of complexes

C•(X) −→
(
C•

c (X)[n]
)∨

ω 7−→
∫

X0

ω ∩ ( · ) .

It suffices to prove that this is a quasi-isomorphism. But this we can check by considering
the associated spectral sequences whose E1-terms are given by Hq(Xp) and Hn−q

c (Xp)
∨,

respectively. Thus we conclude using usual Poincaré duality for manifolds (see [ibid.]) �

Definition 20 A differentiable stack is of finite type, if there exists a Lie groupoid X1 ⇒
X0 presenting it, where X0 and X1 are differentiable manifolds of finite type admitting
compatible finite good covers.
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Let X be a finite type differentiable stack. Then Poincaré duality implies that cohomology
with compact supports is independent of the groupoid chosen to present X. Thus we get
well-defined Hp

c (X) and an integral ∫
X

Hn
c (X) −→ R ,

where n = dim X. Poincaré duality holds:

Hp(X)⊗Hn−p
c (X) −→ R

is a perfect pairing.

Example 21 Recall that H∗(BS1) = R[c] is a polynomial ring in one variable. By Poincaré
duality, we have

Hp
c (BS1) ∼=

{
R if p is odd and negative,

0 otherwise.

To exhibit the module structure, let

ψi = (−1)
1
2
i(i+1)1 ∈ Ω0

(
(S1)i

)
,

which represents an element ψi ∈ H−2i−1
c (BS1). Note that c∩ ψi = ψi−1, for all i and hence∫

BS1

ci ∩ ψi = 1 ,

for all i, so that {ψi} is the dual basis of {ci}. Note that the R[c]-module H∗
c (BS1) is

divisible.

Deligne-Mumford stacks

¿From now on, we will assume that our Lie groupoids are étale, which means that s : X1 →
X0 and t : X1 → X0 are étale (i.e., induce isomorphisms on tangent spaces). We will also
assume that X1 → X0 ×X0 is proper and unramified, with finite fibers (unramified means
injective on tangent spaces). These conditions mean that the associated differentiable stack
is of Deligne-Mumford type.

Definition 22 A partition of unity for the groupoid X1 ⇒ X0 is an R-valued C∞-function
ρ on X0 with the property that s∗ρ has proper support with respect to t : X1 → X0 and

t!s
∗ρ ≡ 1 .

Partitions of unity may not exist, unless we pass to a Morita equivalent groupoid. This
process works as follows.

For a groupoid as above there always exists an open cover {Ui} of X0, with the property
that the restricted groupoid Vi ⇒ Ui (which is the restriction of X1 ⇒ X0 via Ui → X0) is
a transformation groupoid associated to the action of a finite group Gi on Ui. Given such a
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cover, we let U =
∐
Ui and V ⇒ U be the restriction of X1 ⇒ X0 via U → X0. Thus we

have a Morita morphism from V ⇒ U to X1 ⇒ X0.
Now we consider the coarse moduli space X of X•, which is also the coarse moduli space

of V ⇒ U . One way to define X is as the quotient of X0 by the equivalence relation given
by the image of X1 → X0 ×X0. Note that the coarse moduli space is Morita invariant and
thus depends only on the stack defined by X•.

The open cover {Ui} of X0 induces an open cover of X. Choose a differentiable partition
of unity for X subordinate to this cover. Pull back to U . This gives over each Ui a Gi-
invariant differentiable function ρi. Define ρ : U → R by setting ρ |Ui = 1

#Gi
ρi. It is then

straightforward to check that ρ is, indeed, a partition of unity for the groupoid V ⇒ U .

Proposition 23 Assume that the groupoid X1 ⇒ X0 admits a partition of unity. Then for
every q we have long exact sequences

. . .
∂! //Ωq

c(X1)
∂! //Ωq

c(X0) //Γc(X,Ω
q) //0

and

0 //Γ(X,Ωq) //Ωq(X0)
∂ //Ωq(X1)

∂ // . . .

If we can find a partition of unity with compact support, then there is a long exact sequence

. . .
−∂! //Ωq

c(X1)
∂! //Ωq

c(X0) //Ωq(X0)
∂ //Ωq(X1)

∂ // . . . (10)

Here the central map Ωq
c(X0) → Ωq(X0) is given by ω 7→ s!t

∗ω = t!s
∗ω. So in this latter

case, we have a canonical isomorphism

Γc(X•,Ω
q)

∼−→ Γ(X•,Ω
q) .

Proof. To prove (10), let ρ : X0 → R be a partition of unity for X•, such that ρ has
compact support. We define a contraction operator

K : Ωq(Xp) −→ Ωq(Xp−1)

ω 7−→ ∂0!

(
(π∗0ρ)ω

)
.

Here π0 : Xp → X0 maps onto the zeroth object, ∂0 : Xp → Xp−1 leaves out the zeroth
object. This definition is valid for p > 0. We also define

K : Ωq
c(Xp) −→ Ωq

c(Xp+1)

ω 7−→ (−1)p+1π∗0ρ ∂
∗
0ω .

This definition is valid for p ≥ 0. We finally defineK : Ωq(X0) → Ωq
c(X0) as multiplication by

ρ. This defines a contraction operator for the total complex (10), i.e. we have Kδ+δK = id,
where δ is the boundary operator of (10).

The only place where we used properness was when we used multiplication by ρ to define
Ωq(X0) → Ωc(X0). For this, ρ needs to have compact support, which is only true if X is
proper. In this case, we may choose X0 to come from a finite cover Ui.

The first two claims follow by just using part of K. �
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Definition 24 A differentiable Deligne-Mumford stack X is proper if
(i) we can find a groupoid presentation X1 ⇒ X0 such that X1 → X0 ×X0 is proper
(ii) the coarse moduli space of X (which is locally the quotient of a differentiable manifold

by a finite group action) is proper.

Corollary 25 For a differentiable Deligne-Mumford stack X we have:

• the de Rham cohomology groups Hk(X) can be calculated as the cohomology groups of
the global de Rham complex

(
Γ(X,Ω•), d

)
.

• the compact support cohomology groups Hk
c (X) can be calculated using the global com-

plex
(
Γc(X,Ω

•), d
)
.

If X is proper, we also have:

• these two complexes are equal, i.e., for every q we have

Γc(X,Ω
q) = Γ(X,Ωq) ,

• for every k we have
Hk(X) = Hk

c (X) ,

in particular, there exists an integral∫
X

: Hn(X) −→ R , (11)

• the induced pairing
Hk(X)⊗Hn−k(X) −→ R

is perfect.

Let us denote the structure map of an atlas X0 admitting a partition of unity by π :
X0 → X. With this notation, we may write the integral (11) as follows:∫

X

ω =

∫
X0

ρ π∗ω .

Example 26 Let us consider a finite type Deligne-Mumford stack X of dimension zero. We
can present X by a groupoid X1 ⇒ X0, where both X1 and X0 are zero-dimensional, i.e.,
just finite collections of points. Then it is obvious, that X1 ⇒ X0 is Morita equivalent
to a disjoint union of groups: X0 = {∗1, . . . , ∗n}, X1 =

∐n
i=1Gi, for finite groups Gi, and

one-point manifolds ∗i.
We have H0(X) = H0

c (X) = Rn and all other cohomology groups vanish. There is the
canonical element 1 ∈ H0(X), which together with the integral

∫
X

: H0(X) → R, defines a
canonical number

∫
X

1 ∈ R.

To calculate
∫

X
1, note that ρ(∗i) = 1

#Gi
defines a partition of unity for X1 ⇒ X0. Thus

we have ∫
X

1 =
n∑

i=1

∫
∗i

1

#Gi

=
n∑

i=1

1

#Gi

= #X .

The number of points of an abstract finite groupoid X is defined as

#X =
∑

x∈X/∼=

1

# Aut(x)
.
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The class of a substack, intersection numbers

Let f : Y → X be a proper representable morphism of differentiable oriented Deligne-
Mumford stacks. In terms of presenting groupoids, this means that we can find X1 ⇒ X0

for X, Y1 ⇒ Y0 for Y and a morphism of groupoids f• : Y• → X• presenting f , with the
properties:

(i) the diagram

Y1

f1

��

s // Y0

f0

��
X1

s // X0

is a pullback diagram of manifolds (this is the representability of f)
(ii) f0 is proper.

One checks that a proper representable morphism f admits a wrong way map Ωq
c(Xp) →

Ωq
c(Yp), by pulling back compactly supported forms. This map passes to cohomology with

compact supports and we denote the induced map by f ∗ : H i
c(X) → H i

c(Y). By duality,
we get an induced map on de Rham cohomology, which goes in the opposite direction. We
denote it by f! : H i(Y) → H i−c(X), where c = dim Y− dim X.

Let dim Y = k. We get a linear form

Hk
c (X) −→ R

γ 7−→
∫

Y

f ∗γ ,

and hence by duality and element cl(Y) ∈ Hn−k(X), the class of Y. Alternatively, cl(Y) =
f!(1).

Example 27 If E → X is a vector bundle of rank r, then the class of the zero section in
Hr(E), pulls back (via the zero section) to an element e(E) ∈ Hr(X), known as the Euler
class of E.

Every differentiable Deligne-Mumford stack X has a tangent bundle TX. The Euler num-
ber of a compact X is defined as

e(X) =

∫
X

e(TX) .

Proposition 28 Consider a cartesian (i.e. pullback) diagram of differentiable stacks of
Deligne-Mumford type

W

u

��

// Z

��
Y // X

Assume that all maps are proper and representable. Moreover, assume that for all w ∈ W
we have TW,w = TY,w ∩ TZ,w ⊂ TX,w (a condition which can be checked and defined by pulling
back to an étale presentation X0 → X). Then we have

cl(Y) ∪ cl(Z) = f!e(E) ,
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where E is the excess bundle
E = u∗NY/X/NW/Z ,

and f : W → X is the structure morphism. (Strictly speaking, this formula should be a sum
over the connected components of W, because the excess bundle will not have constant rank,
in general.)

Proof. We have been very careful to state a proposition that does not contain any global
compactness assumptions on X. Thus the proof can be reduced to the case of manifolds by
using an étale presentation of X. �

If X is proper, we define the intersection number of two proper representable stacks
Y → X and Z → X to be ∫

X

cl(Y) ∪ cl(Z) ∈ R .

As applications of Proposition 28, we get
(i) if Y and Z intersect transversally, (again a condition that can be checked and defined

after pullback to any étale presentation of X) and dim Y + dim Z = dim X, we have∫
X

cl(Y) ∪ cl(Z) = #W .

(ii) if Y = Z we have the self-intersection formula∫
X

cl(Y)2 =

∫
W

e(u∗NY/X) .

Example: the stack of elliptic curves

Consider the stack M1,2 of stable genus one curves with two marked points. If we consider
M1,2 as a stack over C, ignoring its arithmetic structure, we obtain a proper differentiable
Deligne-Mumford stack. Alternatively, we can think of M1,2 as the stack of degenerate
elliptic curves with a marked point (an elliptic curve is a genus one curve with a marked
point serving as origin for the group law). The complex dimension of M1,2 is two and M1,2

is generically a scheme. (Exercise: determine the stacky points of M1,2.)
Recall that M1,2 has a natural morphism π to M1,1, exhibiting it as the universal family

of (degenerate) elliptic curves over the stack M1,1 of (degenerate) elliptic curves. Thus we
can picture the surface M1,2 as elliptically fibered over the curve M1,1.

There are two natural ‘boundary divisors’ on M1,2. First there is the universal section of
π : M1,2 → M1,1. It maps every elliptic curve E in M1,1 onto its base point (zero element)
P ∈ E, where we identify E with the fiber of π over E. Another way to think of the universal
section is as the image of the morphism

M1,1 = M0,3 ×M1,1 −→M1,2 ,

which maps a genus one curve with one mark (E,P ) to the degenerate genus one curve with
two marks obtained by gluing P1 with three marks to E, by identifying the third mark on P1
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with the mark P on E. By abuse of notation, we will denote this divisor on M1,2 by M1,1.
It is in fact a substack, and hence an ‘honest’ divisor.

¿From this description it follows that the normal bundle of M1,1 in M1,2 is the pullback
of he relative tangent bundle of π to M1,1. This may also be thought of as the bundle of Lie
algebras associated to the family of groups π. Let us call this complex line bundle N .

The other divisor we are interested in is the degenerate fiber of our elliptic fibration.
Already, there is a lot of ambiguity in this statement. To be more precise, let us consider the
morphism M0,4 → M1,2 which takes a genus zero curve with four marks and glues together
the marks labeled ‘3’ and ‘4’ to obtain a degenerate elliptic curve (with a marked point).
This morphism gives rise to the class cl(M0,4) ∈ H2(M1,2). The image of this morphism is
a closed substack of M1,2. It is irreducible of codimension one, so a Weil divisor on M1,2,
which we shall denote by W .

Note that W is generically a scheme, but it has three stacky points: two smooth and one
singular. (Exercise: what are the three corresponding degenerate curves with two marks?)

Another way to describe W is as the fiber of π over the closed substack BZ2 ⊂ M1,1

representing the degenerate curve. (Reduced closed substacks are determined by underlying
point sets.) This shows that the morphism P1 = M0,4 → W factors through the fiber of

π over {∗} → M1,1. This fiber is a nodal elliptic curve, let us call it W̃ . The morphism

P1 = M0,4 → W̃ is the normalization map, the morphism W̃ → W is finite étale of degree
1
2
. It is the quotient map by the action of the inverse map on the nodal elliptic curve W̃ .

Yet another way to describe W is as the zero locus of a section of a complex line bundle.
Consider the coarse moduli map j : M1,1 → P1 (the j-invariant). Pulling back, via j, the
line bundle O(∞) with its global section 1 ∈ Γ

(
P1,O(∞)

)
, gives a line bundle L on M1,1

with a section whose zero locus is BZ2 ⊂M1,1. Pulling back further to M1,2, we get the line
bundle π∗L, which has a global section, whose zero locus is W .

To compute the self-intersection of M0,4 in M1,2 note that cl(M0,4) = cl(W̃ ) = 1
2
e(π∗L).

Thus, we have ∫
M1,2

cl(M0,4)
2 =

1

4

∫
M1,2

π∗e(L)2

=
1

4

∫
M1,1

e(L)2 ∪ π!(1)

= 0 ,

as expected.
Next, let us calculate the intersection of M0,4 and M1,1 inside M1,2. We have a cartesian

diagram

{∗} � � //

��

M0,4

��

M1,1
� � // M1,2

To see that this intersection is transversal, note that the intersection point correponds to
a curve with two nodes and smoothing each node gives a tangent direction to {∗} in M1,2.
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Along M1,1, one of the nodes is smoothed, along M0,4, the other. We conclude that∫
M1,2

cl(M1,1) ∪ cl(M0,4) = 1 .

More interesting is the self-intersection of M1,1. Suppose given a family of degenerate
elliptic curves E, parameterized by P1. We then get an induced cartesian diagram

E

��

// M1,2

π

��

P1
f // M1,1

by the universal mapping property of π. It follows that f ∗e(N) = e(NP1/E) and∫
P1

e(NP1/E) =

∫
P1

f ∗e(N)

=

∫
M1,1

f!f
∗e(N)

= deg(f)

∫
M1,1

e(N) ,

which we can solve for
∫

M1,1
e(N).

The degree of f is in fact twice the number of rational fibres of E → P1 (supposing that
f is unramified over j = ∞). If we call

∫
P1 e(NP1/E) the degree of the fibration E → P1,

denoted deg(E), we see that ∫
M1,2

e(N) =
degE

2#{ratl. fibers}
,

for any elliptic fibration E/P1.
For example, we may consider the pencil of plane cubics through 8 generic points. In

this case E is the blow up of P2 in 9 points. Thus the number of rational fibres is equal to

χ(E) = χ(P2) + 9 = 12 .

Any of the exceptional lines of the blow up can be chosen as section of E → P1, proving
that the degree of this elliptic fibration is −1. We conclude that∫

M1,2

cl(M1,1)
2 =

∫
M1,1

e(N) = − 1

24
.

The Lefschetz trace formula

Let f : X → X be an endomorphism of a proper oriented differentiable Deligne-Mumford
stack X. Assume that f has non-degenerate fixed locus, which means that there exists a
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differentiable stack F fitting into a cartesian diagram

F

��

// X

Γf

��
X

∆ // X× X

such that TF = TX ∩ TX. The usual proof applies and we get the Lefschetz trace formula

tr f ∗|H∗(X) = e(F) .

If F is zero-dimensional, then this says

tr f ∗|H∗(X) = #F .

For f the identity of X, our assumption on F is automatically satisfied, and then the fixed
stack F equals the inertia stack IX of X. We get

χDR(X) = e(IX) .

In particular, the inertia stack has integer Euler number.
The Euler number of the inertia stack is hence a cohomological invariant. This is not

true for the Euler number of the stack itself.

Example 29 Consider the trivial example of a finite group G acting on a finite set X, with
zero-dimensional quotient stack X. The Euler number of X is #X

#G
, the Euler number of the

inertia stack of X is #(X/G), the number of orbits.

Example 30 We can use these results to compute the Euler number of M1,1. The inertia
stack of M1,1 is the disjoint union of two identical copies of M1,1, two copies of BZ4 and four
copies of BZ6. Thus the Euler number of the inertia stack equals 2e(M1,1) + 2

4
+ 4

6
. On the

other hand, the cohomological Euler characteristic of M1,1 is the same as the cohomological
Euler characteristic of the coarse moduli space P1 (see Proposition 36), which is 2. Hence
e(M1,1) = 5

12
.

Singular homology

The de Rham theory has the drawback that it works only for differentiable stacks. Many
algebraic stacks are singular, and hence do not have de Rham cohomology groups in the sense
of the first section. That is why we need to develop a cohomology theory for topological
stacks. In this part we will do this by generalizing singular homology and cohomology to
stacks.

We do not try to develop the most general notion of topological stack here. A good
notion is given by those stacks on the category of topological spaces which can be presented
by topological groupoids X1 ⇒ X0 satisfying the properties

(i) both X1 and X0 are topological spaces, all structure maps are continuous
(ii) the source and target maps s, t : X1 → X0 are topological submersions.
We will tacitly assume all topological groupoids to satisfy these properties. This notion

of topological stack includes all stacks appearing in algebraic geometry, where one assumes
s and t always to be at least smooth.
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The singular chain complex of a topological groupoid

To set up notation, recall the singular chain complex of a topological space X. We shall
denote it by C•(X). Thus Cq(X) is the abelian group of formal integer linear combinations
of continuous maps ∆q → X. Let us denote the boundary maps by di : ∆q−1 → ∆q,
for i = 0, . . . , q. Then we have induced maps di : Maps(∆q, X) → Maps(∆q−1, X) and
d : Cq(X) → Cq−1(X) defined by d(γ) =

∑q
j=0(−1)jdj(γ). It is a standard fact that d2 = 0,

so that C•(X) is, indeed, a complex. The singular chain complex is covariant: if f : X → Y
is continuous, we get an induced homomorphism of complexes f∗ : C•(X) → C•(Y ). Often
we write f for f∗.

As in de Rham theory, we study stacks via presenting groupoids. Every topological
groupoid defines a simplicial nerve

. . . ////
////X2

//////X1 ////X0 , (12)

because we can form fibered products liberally.
Now applying C• to (12), we get the diagram

. . . // //
////C•(X2) // ////C•(X1) ////C•(X0) . (13)

By defining ∂ =
∑p

i=0(−1)i∂j we get a morphism of complexes ∂ : C•(Xp) → C•(Xp−1).
Thus we have defined a double complex

. . . ∂ // C0(X2)
∂ // C0(X1)

∂ // C0(X0)

. . . ∂ // C1(X2)

d

OO

∂ // C1(X1)

d

OO

∂ // C1(X0)

d

OO

. . . ∂ // C2(X2)

d

OO

∂ // C2(X1)

d

OO

∂ // C2(X0)

d

OO

...

d

OO

...

d

OO

...

d

OO

We define the associated total complex C•(X)

Cn(X) =
⊕

p+q=n

Cq(Xp)

with the differential δ : Cn(X) → Cn−1(X) given by

δ(γ) = (−1)p+q∂(γ) + (−1)qd(γ) , if γ ∈ Cq(Xp) .

It is immediate that δ2 = 0.

Definition 31 The complex
(
C•(X), δ

)
is called the singular chain complex of the topo-

logical groupoid X = [X1 ⇒ X0]. Its homology groups, denoted Hn(X,Z), are called the
singular homology groups of X1 ⇒ X0.
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What do cycles look like?

Typical examples of 1-cycles look like this:

◦
α

◦ω

◦
ω 55

55
55

	 ◦
α

◦ α ◦
ω

						

(14)

Here the solid lines are paths inX0, in other words paths of objects in the groupoidX1 ⇒ X0.
The dotted lines are elements in X1, in other words morphisms in the groupoid X1 ⇒ X0.
The little circles represent elements of X0, i.e., objects of X1 ⇒ X0

Moreover, the cycle (14) has to be endowed with an orientation. This induces an orien-
tation on each of the edges. Thus a path of objects (labeled ω) is then an oriented path in
X0. Each dotted line corresponds more precisely to an arrow and its inverse in the groupoid
X1 ⇒ X0. Among these two arrows we choose the one which points in the direction given
by the orientation of (14).

Thus there are two ways to travel around a circle such as (14), connecting several objects
of our groupoid: we can continuously deform one object to the next, or we can use an
isomorphism to move us along.

2-cycles are a little more difficult to describe. Picture an oriented closed surface S.
Assume that S has been tiled with triangles and quadrilaterals. The edges of this tiling
come it two types: solid ones called ω-edges and dotted ones called α-edges, just as in (14).

The triangles in our tiling also come in two types, type α and type ω. Triangles of type
α are always bounded by three α-edges and triangles of type ω are always bounded by three
ω-edges.

Finally, the quadrilaterals are all bounded by two α- and two ω-edges, in an alternating
fashion.

Given such a tiled surface, every vertex will correspond to an object of X1 ⇒ X0. Every
ω-edge will represent a path of objects, every α-edge a morphism and its inverse in X1 ⇒ X0.
The ω-triangles correspond to continuous maps from ∆2 to X0, the quadrilaterals to paths
in X1 and the α-triangles to points in X2. Thus the ω-triangles represent 2-simplices of
objects, the quadrilaterals paths of morphisms and the α-triangles represent commutative
triangles in X1 ⇒ X0.

Here is an example of such a tiled surface, but this one has a boundary, so it does not
give rise to a cycle. Instead, its boundary is the cycle given by (14).

◦
FF

FF ◦
xx

xx
ω

◦

◦
FF

FF

ω
33

33
33

33
α ◦

xx
xx

◦ ◦

◦ ◦
ω

��������

(15)

This time we have labeled the four triangles according to their type.
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Let us be more precise about sign questions. Our tiled surface is oriented, so it induces
an orientation on each ω-triangle and so every ω-triangle does, in fact, give rise to a well-
defined element of C2(X0), at least an element which is well-defined up to a boundary in the
complex C•(X0).

For the quadrilaterals, we make the convention that if we look at one in such a way that
the α-edges are on the left and right, and the ω-edges on the top and bottom

◦ ◦
	

◦
1

OO

◦
0

OO

then we choose the morphisms in the groupoid to point ‘up’ and let the right arrow correspond
to the value t = 0, and the left arrow to the value t = 1, where t is a coordinate on ∆1.
(Exercise: check that the appearant ambiguity in this definition leads to two choices which
differ by a boundary in the total complex C•(X1 ⇒ X0).)

Finally, we also get induced orientations on the α-triangles. For every α-triangle we
choose arrows or their inverses in such a way that we end up with a commutative triangle in
the groupoid X1 ⇒ X0, whose orientation is compatible with the given one. In this case, we
get an element of C0(X2), which is well-defined up to a boundary in the complex

(
C0(X•), ∂

)
.

One can now check that our closed oriented tiled surface, together with the additional
data of singular triangles in X0, paths in X1 and points in X2 does, indeed, give rise to a
2-cycle in the singular chain complex C•(X1 ⇒ X0). It is also true, that every 2-cycle is a
linear combination of such tiled surfaces.

Note that a 1-cycle such as (14) represents 0 in H1(X1 ⇒ X0), if and only if there exists
a disc as in (15) (or of a more complicated type) whose boundary is the given 1-cycle.

Examples

Let us consider a transformation groupoid G×X ⇒ X, where the group G is discrete. Then
our double complex gives rise to a spectral sequence

E2
p,q = Hq

(
G,Hp(X)

)
=⇒ Hp+q(G×X ⇒ X) .

To see this, note that when taking vertical cohomology of the singular chain complex of
G×X ⇒ X, we end up with a complex computing the group homology of G with values in
the G-module H∗(X). A simple case where this spectral sequence degenerates is the case of
contractible X. In this case we get immediately that

Hp(G×X ⇒ X) = Hp(G,Z) ,

so that the homology of the transformation groupoid is equal to the homology of the group
G. For example, the stack of triangles up to similarity may be represented by the groupoid
S3 ×∆2 ⇒ ∆2. Thus the homology of the stack of triangles is equal to the homology of the
symmetric group S3.

Similarly, the stack of elliptic curves M1,1 may be represented by the action of SL2(Z)
by linear fractional transformations on the upper half plane in C. Thus the homology of the
stack of elliptic curves is equal to the homology of SL2(Z).



25

Invariance under Morita equivalence

We have already said that the homology of a stack is defined via the homology of a topological
groupoid presenting the stack. For this to make sense, the homology of a groupoid has to
be invariant under Morita equivalence.

It is helpful to examine the 2-functorial properties of the singular chain complex of
topological groupoids. These are analogous to the properties of a contravariant functor of
Remark 1. In fact, let F be any covariant functor from the category of topological spaces to
the category of abelian groups.

Then a morphism of groupoids f : X• → Y• induces a homomorphism of homological
complexes f∗ : F (X•) → F (Y•). A 2-morphism θ : f ⇒ g between the two morphisms of
groupoids f, g : X• → Y• induces a homotopy θ∗ : f∗ ⇒ g∗, defined as follows: The map
θ : X0 → Y1 extends to maps θ0, . . . , θp : Xp → Yp+1. Here θi maps the element

x0
φ1 //x1

φ2 // . . .
φp //xp

of Xp to the element

f(x0)
f(φ1) // f(x1)

f(φ2) // . . . f(φi)// f(xi)

θ(xi)

��
g(xi)

g(φi+1) // . . . g(φp)// g(xp)

of Yp+1. Then θ∗ : F (Xp) → F (Yp+1) is the alternating sum of the maps induced by θ0, . . . , θp.
Applying this to the singular chain complex functor F = C•, we get that groupoid

morphisms induce homomorphisms of singular chain complexes and 2-isomorphic groupoid
morphisms induce homotopic chain maps. We also get that groupoid morphisms induce
homomorphisms on singular homology groups, 2-isomorphic groupoid morphisms induce
identical homomorphisms on homology and Morita morphisms with a section induce isomor-
phisms on homology. We need to prove that this is true also for Morita morphisms admitting
only local sections. This will use double fibrations and a Mayer-Vietoris argument.

Let X be a topological stack and X0 → X and Y0 → X two presentations. Let X• and Y•
be the induced topological groupoids, or rather their induced simplicial topological spaces.
We define Wmn = Xm ×X Yn, for all m,n ≥ 0.

Wmn

��

// Yn

��
Xm

// X

Then W•• is a bisimplicial topological space. We apply C• to W•• to obtain a triple com-
plex C•(W••) mapping to the two double complexes C•(X•) and C•(Y•), see Figure 3.
We claim that both induced maps on total complexes tot

(
C•(W••)

)
→ tot

(
C•(X•)

)
and

tot
(
C•(W••)

)
→ tot

(
C•(Y•)

)
are quasi-isomorphisms. But this follows immediately from

the following lemma.
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...

��

...

��

...

��

...

��
. . . // C•(W22)

��

// C•(W12)

��

// C•(W02)

��

// C•(Y2)

��
. . . // C•(W21)

��

// C•(W11)

��

// C•(W01)

��

// C•(Y1)

��
. . . // C•(W20)

��

// C•(W10)

��

// C•(W00)

��

// C•(Y0)

. . . // C•(X2) // C•(X1) // C•(X0)

Figure 3: The triple complex

Lemma 32 Let Y → X be a surjective submersion of topological spaces. Let

Yp = Y ×X Y ×X . . .×X Y︸ ︷︷ ︸
p+1

be the simplicial nerve of the banal groupoid Y1 ⇒ Y0 associated to Y → X. Then C•(Y1 ⇒
Y0) → C•(X) is a quasi-isomorphism.

Proof. Let {Ui} be an open cover of X over which Y → X admits sections. Let U =
∐

i Ui.
Thus Y → X admits a section over U → X. As above, we consider the fibered product

W

��

// U

��
Y // X .

A similar argument as above, reduces to considering the two cases W → Y and W → U .
The first one is the case of an open cover, the second is the case of a map with a section.

The case of a map with section follows from 2-functoriality of the singular chain complex
construction.

The case of an open cover is a classical fact. It is used in the proof of the Mayer-Vietoris
sequence of singular homology, see for example Proposition 15.2 of [2]. �

Thus we have now proved that the singular homologies of two topological groupoids
presenting the same stack are canonically isomorphic. We can thus make the following
definition.
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Definition 33 Let X be a topological stack. Then we define the k-th homology group of X
with values in the integers to be

Hk(X,Z) = Hk(X1 ⇒ X0,Z) ,

for any groupoid X1 ⇒ X0 presenting X.

Equivariant homology

Consider a Lie group G acting continuously on a topological space X. We get an associ-
ated topological groupoid Γ = [G ×X ⇒ X] and the associated topological quotient stack
[X/G]. We will prove that the homology H∗([X/G]) of this quotient stack is equal to the
G-equivariant homology of X.

For this, consider BG, the topological classifying space1 of G. Over BG there is a
principal G-bundle EG, and EG is a contractible topological space. We consider the action
of G on the product EG × X given by g(e, x) = (eg−1, gx). This is a free action whose
quotient is denoted by XG. (This is also called the homotopy quotient of X by G.) The
homology of XG is by definition the equivariant homology of X.

Since the quotient map EG × X → XG is a principal G-bundle, the transformation

groupoid Γ̃ = [G×(EG×X) ⇒ (EG×X)] is the banal groupoid associated to the topological
submersion (EG×X) → XG. Thus, by Lemma 32, we have a canonical isomorphism

H∗(Γ̃) −→ H∗(XG) = HG
∗ (X) .

Now the projection onto the second factor EG × X → X is equivariant, so induces a

morphism of groupoids Γ̃ → Γ. Because EG is contractible, the morphism Γ̃• → Γ• of
simplicial topological spaces is a level-wise homotopy equivalence. This implies immediately
that the induced homomorphism

H∗(Γ̃) −→ H∗(Γ) = H∗([X/G])

is an isomorphism.

Cohomology

For a topological groupoid X = [X1 ⇒ X0], we denote the dual of the complex C•(X) by
C•(X). Thus we have

Cn(X) = Hom
(
Cn(X),Z

)
.

The cohomology groups of C•(X) are called the singular cohomology groups of X. By the
above results, it is immediate that the singular cohomology groups are the same, for different
presentations of a given topological stack. Thus, for a topological stack X, we set

Hn(X,Z) = Hn(X,Z) ,

1Only in this paragraph do we use the notation BG for the topological classifying space. Throughout the
rest of these notes BG always denotes the stack [∗/G].
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where X is any groupoid presenting X.
If A is an arbitrary abelian group we define

Hk(X, A) = hk(C•(X)⊗Z A)

and
Hk(X, A) = hk(C•(X)⊗Z A) ,

for any groupoid X, presenting the stack X.
Directly by construction we have pairings

Hk(X,Z)⊗Hk(X,Z) −→ Z .

After tensoring with Q, these give rise to natural identifications Hk(X,Q) = Hk(X,Q)∨.

Relation to de Rham cohomology

Consider a Lie groupoid X1 ⇒ X0 and consider singular cohomology defined using differen-
tiable chains.

Define a pairing

C•
DR(X)⊗ C•(X) −→ R (16)

ω ⊗ γ 7−→
∫

γ

ω .

If ω ∈ Ωq(Xp) and γ ∈ Cq′(Xp′), then
∫

γ
ω is understood to vanish, unless p = p′ and q = q′.

To make sure that we get a homomorphism of complexes C•
DR(X)⊗C•(X) → R, we need to

check that this pairing vanishes on coboundaries of total degree zero. (To turn C•(X) into
a cochain complex multiply all degrees by −1.) Thus we have to check that∫

γ

δω + (−1)p+q

∫
δγ

ω = 0 .

But this fact follows directly from the chain rule and Stokes’ theorem.
The pairing (16) induces a paring

Hk
DR(X)⊗Hk(X) −→ R, ,

for any differentiable stack X. This pairing can be used to define when a de Rham cohomology
class [ω] is integral, namely by requiring

∫
γ
ω ∈ Z, for all [γ] ∈ Hk(X).

The pairing (16) also gives rise to a homomorphism of complexes

C•
DR(X) −→ C•(X)⊗ R .

The fact that this homomorphism induces isomorphisms on cohomology, reduces via a spec-
tral sequence argument immediately to the corresponding result for manifolds. We conclude
that for every differentiable stack X we have

H∗
DR(X) = H∗(X,R) .
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Relation to the cohomology of the coarse moduli space

We define a topological Deligne-Mumford stack to be any topological stack which can be
represented by a topological groupoid X1 ⇒ X0, such that

(i) source and target maps X1 → X0 are local homeomorphisms,
(ii) the diagonal X1 → X0 ×X0 is proper.

These conditions imply that the diagonal has finite fibers.

Exercise 34 If X1 ⇒ X0 is a topological groupoid satisfying Conditions (i) and (ii), X0 can
be covered by open subsets Ui, such that the restriction of the groupoid X1 ⇒ X0 to Ui is a
transformation groupoid Gi × Ui ⇒ Ui for a finite group Gi acting on Ui, for all i. We say
that a topological Deligne-Mumford stack is locally a finite group quotient.

Recall that the image of the diagonal X1 → X0×X0 is an equivalence relation on X0. In
fact, by Assumption (ii), this equivalence relation is closed, and hence admits a Hausdorff
quotient space X.

Exercise 35 Prove that X depends only on the Morita equivalence class of the groupoid
X, and is hence an invariant of the associated topological stack X. The topological space X
is called the coarse moduli space of X, notation X.

For example, the coarse moduli space of the stack BG, for a finite group G is the point
{∗}. This trivial example shows that the singular cohomology of a stack and its coarse
moduli space can be quite different: the cohomology of BG is group cohomology, whereas
the cohomology of {∗} is trivial. But note that all higher cohomology groups of finite groups
are torsion.

This is a general fact: the difference between the cohomology of a Deligne-Mumford stack
and its coarse moduli space is entirely due to torsion phenomena:

Proposition 36 Let X be a topological Deligne-Mumford stack with coarse moduli space X.
Then the canonical morphism X → X induces isomorphisms on Q-valued cohomology groups:

Hk(X,Q)
∼−→ Hk(X,Q) .

Proof. Using Exercise 34, we reduce to the case of a finite group quotient. This is because X
has an open cover by the quotient stacks [Ui/Gi] and we can use the Čech spectral sequence.

So let us assume that X = [X/G] for a finite group G acting on the topological space X.
Then we have a spectral sequence

Ep,q
2 = Hp

(
G,Hq(X,Q)

)
=⇒ Hp+q(X,Q) .

It degenerates, because all higher group cohomology over Q vanishes, and we deduce

Hp(X,Q) = Hp(X,Q)G ,

for all p. The coarse moduli space of X is the quotient space X/G, and it is well-known that
Hp(X/G,Q) = Hp(X,Q)G. �
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Chern classes

Consider the general linear group GLn = GLn(C). We have

H∗(BGLn,Z) = Z[t1, . . . , tn] . (17)

The element ti is called the i-th universal Chern class, ti ∈ H2i(BGLn,Z). The equality (17)
can be interpreted as meaning that every characteristic class of a complex vector bundle can
be expressed in terms of Chern classes, and there are no universally true relations among
Chern classes.

Given a rank n complex vector bundle E over a stack X, we get an associated morphism
of stacks f : X → BGLn. The diagram

P //

��

∗

��
X

f // BGLn

is a cartesian diagram of topological stacks. Here P is the principal GLn-bundle of frames
of E. We also have, by passing back to the associated vector bundles, a cartesian diagram

E

��

// [An/GLn]

��
X

f // BGLn

Giving f : X → BGLn is entirely equivalent to giving a complex vector bundle over X. (A
similar principal holds for algebraic stacks: a morphism of algebraic stacks X → BGLn is
the same thing as an algebraic vector bundle over X.)

We define the i-th Chern class ci(E) ∈ H2i(X,Z) to be equal to the pullback of ti via f :

ci(E) = f ∗ti .

In everything that follows, we will be considering singular cohomology with integer coef-
ficients.

Lemma 37 Let π : E → X be a complex vector bundle with zero section ι : X → E. Then
π∗ : H∗(X) → H∗(E) is an isomorphism with inverse ι∗.

Proof. Given a groupoid X1 ⇒ X0 presenting X, we obtain a groupoid E1 ⇒ E0 presenting
E by forming the fibered products

Ei

��

// E

��
Xi

// X

We also get a morphism of groupoids E → X and Ei is a vector bundle over Xi, for all i.
(Conversely, any such groupoid E → X, which consists of vector bundles, defines a vector
bundle over X. For example, if X is a transformation groupoid, a vector bundle on X is the
same thing as an equivariant bundle.)

The induced homomorphism of cochain complexes C•(X) → C•(E) is easily seen to be
a quasi-isomorphism by a spectral sequence argument. �
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We define a homomorphism Hk(X) → Hk+2n(E) by sending ω ∈ Hk(X) to π∗(ω ∪ cnE).
(In de Rham theory, this homomorphism is equal to i!.)

Proposition 38 There is a long exact sequence

. . . ·cn

// Hk+2n−1(E) // Hk+2n−1(E \ X)

ssgggggggggggggggggggggggggg

Hk(X) ·cn

// Hk+2n(E) // Hk+2n(E \ X)

ssggggggggggggggggggggggggg

Hk+1(X) ·cn

// Hk+2n+1(E) // . . .

Proof. Let X be a groupoid presenting X, and E the induced groupoid presenting E. We
wish to construct a short exact sequence of cochain complexes

0 //C•(X)[−2n] //C•(E) //C•(E \X) //0 . (18)

To do this, choose a cochain φ ∈ C2n(X) representing cn(E). Then the first map in (18) is
given by cupping with φ and pulling back. The second map in (18) is simply restriction.
Now we need to prove exactness of (18). This we do by filtering the complexes involved in
such a way that the associated graded pieces look like

0 //C•(Xp)[−2n] //C•(Ep) //C•(Ep \Xp) //0 ,

and we are reduced to the case of spaces. The key point is that even though φ itself might
not be of pure bidegree, i.e., not entirely contained in C2n(X0), after passing to the graded
pieces, the other contributions drop out. �

Corollary 39 If all odd cohomology of X vanishes, we have

H∗(E \ X) = H∗(X)/cn(E) .

Example 40 Consider X = BGm = BC∗, with H∗(BGm) = Z[t]. Any character (one-
dimensional representation) of Gm = C∗ defines a complex line bundle over BGm. If the
character is χj(λ) = λj, then the first Chern class of the corresponding line bundle Lj is jt.

Note that Lj \BGm = [Gm/Gm] = Bµj, where µj is the group of j-th roots of unity. Thus
we get

H∗(Bµj) = Z[t]/jt = Z⊕ Z/jZ⊕ Z/jZ⊕ . . .

Taking the direct sum of Lj1 , . . . , Ljn , we get that E \ X = An − {0}/Gm, where the
action is through λ(x1, . . . , xn) = (λj1x1, . . . , λ

jnxn). This is the weighted projective space
stack P(j1, . . . , jn). The top Chern class of a direct sum of line bundles is the product of the
first Chern classes of the line bundles. Hence we obtain

H∗(P(j1, . . . , jn)
)

= Z[t]/(j1 . . . jnt
n) .

Note how this reduces to the cohomology of projective space after moding out by torsion.
For example, M1,1 = P(4, 6). We conclude

H∗(M1,1) = Z[t]/24t2 = Z⊕ Z⊕ Z/24Z⊕ Z/24Z⊕ . . .
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