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Preface

This text is a merger of the CLP Differential Calculus textbook and problembook.
It is, at the time that we write this, still a work in progress; some bits and pieces
around the edges still need polish. Consequently we recommend to the student that
they still consult the textbook webpage for links to the errata — especially if they
think there might be a typo or error. We also request that you send us an email at
clp@ugrad.math.ubc.ca

Additionally, if you are not a student at UBC and using these texts please send us
an email — we’d love to hear from you.

Joel Feldman, Andrew Rechnitzer and Elyse Yeager
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To our students.

And to the many generations of scholars who have freely
shared all this knowledge with us.
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Usingtheexercises inthisbook

Each problem in this book is split into four parts: Question, Hint, Answer, and Solution.
As you are working problems, resist the temptation to prematurely peek at the hint or
to click through to the answers and solutions in the appendix! It’s important to allow
yourself to struggle for a time with the material. Even professional mathematicians
don’t always know right away how to solve a problem. The art is in gathering your
thoughts and figuring out a strategy to use what you know to find out what you don’t.

If you find yourself at a real impasse, go ahead and look at the linked hint. Think
about it for a while, and don’t be afraid to read back in the notes to look for a key idea
that will help you proceed. If you still can’t solve the problem, well, we included the
Solutions section for a reason! As you’re reading the solutions, try hard to understand
why we took the steps we did, instead of memorizing step-by-step how to solve that
one particular problem.

If you struggled with a question quite a lot, it’s probably a good idea to return to it
in a few days. That might have been enough time for you to internalize the necessary
ideas, and you might find it easily conquerable. Pat yourself on the back — sometimes
math makes you feel good! If you’re still having troubles, read over the solution again,
with an emphasis on understanding why each step makes sense.

One of the reasons so many students are required to study calculus is the hope
that it will improve their problem-solving skills. In this class, you will learn lots of
concepts, and be asked to apply them in a variety of situations. Often, this will involve
answering one really big problem by breaking it up into manageable chunks, solving
those chunks, then putting the pieces back together. When you see a particularly long
question, remain calm and look for a way to break it into pieces you can handle.

• Working with Friends:

Study buddies are fantastic! If you don’t already have friends in your class,
you can ask your neighbours in lecture to form a group. Often, a question that
you might bang your head against for an hour can be easily cleared up by a
friend who sees what you’ve missed. Regular study times make sure you don’t
procrastinate too much, and friends help you maintain a positive attitude when
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you might otherwise succumb to frustration. Struggle in mathematics is desirable,
but suffering is not.

When working in a group, make sure you try out problems on your own before
coming together to discuss with others. Learning is a process, and getting answers
to questions that you haven’t considered on your own can rob you of the practice
you need to master skills and concepts, and the tenacity you need to develop to
become a competent problem-solver.

• Types of Questions:

Questions outlined by a blue box make up the “RQS” representative question
set. This set of questions is intended to cover the most essential ideas in each
section. These questions are usually highly typical of what you’d see on an exam,
although some of them are atypical but carry an important moral. If you find
yourself unconfident with the idea behind one of these, it’s probably a good idea
to practice similar questions.

This representative question set is our suggestion for a minimal selection of ques-
tions to work on. You are highly encouraged to work on more.

In addition to original problems, this book contains problems pulled from quizzes
and exams given at UBC for Math 100 and 180 (first-semester calculus) and Math
120 (honours first-semester calculus). These problems are marked by “(*)”. The
authors would like to acknowledge the contributions of the many people who
collaborated to produce these exams over the years.

Finally, the questions are organized into three types: Stage 1 , Stage 2 and
Stage 3 .

◦ Exercises — Stage 1
The first category is meant to test and improve your understanding of basic
underlying concepts. These often do not involve much calculation. They
range in difficulty from very basic reviews of definitions to questions that
require you to be thoughtful about the concepts covered in the section.

◦ Exercises — Stage 2
Questions in this category are for practicing skills. It’s not enough to under-
stand the philosophical grounding of an idea: you have to be able to apply
it in appropriate situations. This takes practice!

◦ Exercises — Stage 3
The last questions in each section go a little farther than “Exercises —
Stage 2 ”. Often they will combine more than one idea, incorporate review
material, or ask you to apply your understanding of a concept to a new
situation.

In exams, as in life, you will encounter questions of varying difficulty. A good
skill to practice is recognizing the level of difficulty a problem poses. Exams will
have some easy questions, some standard questions, and some harder questions.

x



Feedbackaboutthetext

This combined edition of the CLP differential calculus text is still undergoing testing
and changes. Because of this we request that if you find a problem or error in the text
then:

1. Please check the errata list that can be found at the textbook webpage.

2. Is the problem in the online version or the PDF version or both?

3. Note the URL of the online version and the page number in the PDF

4. Send an email to clp@ugrad.math.ubc.ca. Please be sure to include

• a description of the error

• the URL of the page, if found in the online edition

• and if the problem also exists in the PDF, then the page number in the PDF
and the compile date on the front page of PDF.
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Thebasics
Chapter 0

We won’t make this section of the text too long — all we really want to do here is to take
a short memory-jogging excursion through little bits and pieces you should remember
about sets and numbers. The material in this chapter will not be (directly) examined.

0.1q Numbers

Before we do anything else, it is very important that we agree on the definitions and
names of some important collections of numbers.

• Natural numbers — These are the “whole numbers” 1,2,3,. . . that we learn first
at about the same time as we learn the alphabet. We will denote this collection
of numbers by the symbol “N”. The symbol N is written in a type of bold-face
font that we call “black-board bold” (and is definitely not the same symbol as N).
You should become used to writing a few letters in this way since it is typically
used to denote collections of important numbers. Unfortunately there is often
some confusion as to whether or not zero should be included 1. In this text the
natural numbers does not include zero.

Notice that the set of natural numbers is closed under addition and multiplication.
This means that if you take any two natural numbers and add them you get
another natural number. Similarly if you take any two natural numbers and
multiply them you get another natural number. However the set is not closed

1 This lack of agreement comes from some debate over how “natural” zero is — “how can nothing
be something?” It was certainly not used by the ancient Greeks who really first looked at proof
and number. If you are a mathematician then generally 0 is not a natural number. If you are a
computer scientist then 0 generally is.

1



The basics 0.1 Numbers

under subtraction or division; we need negative numbers and fractions to make
collections of numbers closed under subtraction and division.

Two important subsets of natural numbers are:

◦ Prime numbers — a natural number is prime when the only natural numbers
that divide it exactly are 1 and itself. Equivalently it cannot be written as
the product of two natural numbers neither of which are 1. Note that 1 is
not a prime number 2.

◦ Composite numbers — a natural number is a composite number when it is
not prime.

Hence the number 7 is prime, but 6 = 3× 2 is composite.

• Integers — all positive and negative numbers together with the number zero. We
denote the collection of all integers by the symbol “Z”. Again, note that this is
not the same symbol as “Z”, and we must write it in the same black-board bold
font. The Z stands for the German Zahlen meaning numbers 3. Note that Z is
closed under addition, subtraction and multiplication, but not division.

Two important subsets of integers are:

◦ Even numbers — an integer is even if it is exactly divisible by 2, or equiv-
alently if it can be written as the product of 2 and another integer. This
means that −14, 6 and 0 are all even.

◦ Odd numbers — an integer is odd when it is not even. Equivalently it can
be written as 2k + 1 where k is another integer. Thus 11 = 2 × 5 + 1 and
−7 = 2× (−4) + 1 are both odd.

• Rational numbers — this is all numbers that can be written as the ratio of two
integers. That is, any rational number r can be written as p/q where p, q are
integers. We denote this collection by Q standing for quoziente which is Italian
for quotient or ratio. Now we finally have a set of numbers which is closed under
addition, subtraction, multiplication and division (of course you still need to be
careful not to divide by zero).

• Real numbers — generally we think of these numbers as numbers that can be
written as decimal expansions and we denote it by R. It is beyond the scope of
this text to go into the details of how to give a precise definition of real numbers,
and the notion that a real number can be written as a decimal expansion will be
sufficient.

It took mathematicians quite a long time to realise that there were numbers that

2 If you let 1 be a prime number then you have to treat 1×2×3 and 2×3 as different factorisations
of the number 6. This causes headaches for mathematicians, so they don’t let 1 be prime.

3 Some schools (and even some provinces!!) may use “I” for integers, but this is extremely non-
standard and they really should use correct notation.

2



The basics 0.1 Numbers

could not be written as ratios of integers 4. The first numbers that were shown
to be not-rational are square-roots of prime numbers, like

√
2. Other well known

examples are π and e. Usually the fact that some numbers cannot be represented
as ratios of integers is harmless because those numbers can be approximated by
rational numbers to any desired precision.

The reason that we can approximate real numbers in this way is the surprising
fact that between any two real numbers, one can always find a rational number.
So if we are interested in a particular real number we can always find a rational
number that is extremely close. Mathematicians refer to this property by saying
that Q is dense in R.

So to summarise
Definition 0.1.1 Sets of numbers.

This is not really a definition, but you should know these symbols

• N = the natural numbers,

• Z = the integers,

• Q = the rationals, and

• R = the reals.

0.1.0.1ttt More on Real Numbers

In the preceding paragraphs we have talked about the decimal expansions of real num-
bers and there is just one more point that we wish to touch on. The decimal expansions
of rational numbers are always periodic, that is the expansion eventually starts to repeat
itself. For example

2

15
= 0.133333333 . . .

5

17
= 0.294117647058823529411764705882352941176470588235294117647058823 . . .

4 The existence of such numbers caused mathematicians (particularly the ancient Greeks) all sorts
of philosophical problems. They thought that the natural numbers were somehow fundamental
and beautiful and “natural”. The rational numbers you can get very easily by taking “ratios” — a
process that is still somehow quite sensible. There were quite influential philosophers (in Greece
at least) called Pythagoreans (disciples of Pythagoras originally) who saw numbers as almost
mystical objects explaining all the phenomena in the universe, including beauty — famously they
found fractions in musical notes etc and “numbers constitute the entire heavens”. They believed
that everything could be explained by whole numbers and their ratios. But soon after Pythagoras’
theorem was discovered, so were numbers that are not rational. The first proof of the existence
of irrational numbers is sometimes attributed to Hippasus in around 400BCE (not really known).
It seems that his philosopher “friends” were not very happy about this and essentially exiled him.
Some accounts suggest that he was drowned by them.

3



The basics 0.1 Numbers

where we have underlined some of the last example to make the period clearer. On the
other hand, irrational numbers, such as

√
2 and π, have expansions that never repeat.

If we want to think of real numbers as their decimal expansions, then we need those
expansions to be unique. That is, we don’t want to be able to write down two different
expansions, each giving the same real number. Unfortunately there are an infinite set
of numbers that do not have unique expansions. Consider the number 1. We usually
just write “1”, but as a decimal expansion it is

1.00000000000 . . .

that is, a single 1 followed by an infinite string of 0’s. Now consider the following
number

0.99999999999 . . .

This second decimal expansions actually represents the same number — the number 1.
Let’s prove this. First call the real number this represents q, then

q = 0.99999999999 . . .

Let’s use a little trick to get rid of the long string of trailing 9’s. Consider 10q:

q = 0.99999999999 . . .

10q = 9.99999999999 . . .

If we now subtract one from the other we get

9q = 9.0000000000 . . .

and so we are left with q = 1.0000000 . . .. So both expansions represent the same real
number.

Thankfully this sort of thing only happens with rational numbers of a particular
form — those whose denominators are products of 2s and 5s. For example

3

25
= 0.1200000 · · · = 0.119999999 . . .

− 7

32
= −0.2187500000 · · · = −0.2187499999 . . .

9

20
= 0.45000000 · · · = 0.4499999 . . .

We can formalise this result in the following theorem (which we haven’t proved in
general, but it’s beyond the scope of the text to do so):

4



The basics 0.2 Sets

Theorem 0.1.2

Let x be a real number. Then x must fall into one of the following two categories,

• x has a unique decimal expansion, or

• x is a rational number of the form a
2k5`

where a ∈ Z and k, l are non-negative
integers.

In the second case, x has exactly two expansions, one that ends in an infinite
string of 9’s and the other ending in an infinite string of 0’s.

When we do have a choice of two expansions, it is usual to avoid the one that ends
in an infinite string of 9’s and write the other instead (omitting the infinite trailing
string of 0’s).

0.2q Sets

All of you will have done some basic bits of set-theory in school. Sets, intersection,
unions, Venn diagrams etc etc. Set theory now appears so thoroughly throughout
mathematics that it is difficult to imagine how Mathematics could have existed without
it. It is really quite surprising that set theory is a much newer part of mathematics
than calculus. Mathematically rigorous set theory was really only developed in the
19th Century — primarily by Georg Cantor 1. Mathematicians were using sets before
then (of course), however they were doing so without defining things too rigorously and
formally.

In mathematics (and elsewhere, including “real life”) we are used to dealing with
collections of things. For example

• a family is a collection of relatives.

• hockey team is a collection of hockey players.

• shopping list is a collection of items we need to buy.

Generally when we give mathematical definitions we try to make them very formal
and rigorous so that they are as clear as possible. We need to do this so that when we

1 An extremely interesting mathematician who is responsible for much of our understanding of
infinity. Arguably his most famous results are that there are more real numbers than integers,
and that there are an infinite number of different infinities. His work, though now considered to
be extremely important, was not accepted by his peers, and he was labelled “a corrupter of youth”
for teaching it. For some reason we know that he spent much of his honeymoon talking and doing
mathematics with Richard Dedekind.
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The basics 0.2 Sets

come across a mathematical object we can decide with complete certainty whether or
not it satisfies the definition.

Unfortunately, it is the case that giving a completely rigorous definition of “set”
would take up far more of our time than we would really like 2.

Definition 0.2.1 A not-so-formal definition of set.

A “set” is a collection of distinct objects. The objects are referred to as “elements”
or “members” of the set.

Now — just a moment to describe some conventions. There are many of these in
mathematics. These are not firm mathematical rules, but just traditions. It makes it
much easier for people reading your work to understand what you are trying to say.

• Use capital letters to denote sets, A,B,C,X, Y etc.

• Use lower case letters to denote elements of the sets a, b, c, x, y.

So when you are writing up homework, or just describing what you are doing, then
if you stick with these conventions people reading your work (including the person
marking your exams) will know — “Oh A is that set they are talking about” and “a is
an element of that set.”. On the other hand, if you use any old letter or symbol it is
correct, but confusing for the reader. Think of it as being a bit like spelling — if you
don’t spell words correctly people can usually still understand what you mean, but it
is much easier if you spell words the same way as everyone else.

We will encounter more of these conventions as we go — another good one is

• The letters i, j, k, l,m, n usually denote integers (like 1, 2, 3,−5, 18, · · · >).

• The letters x, y, z, w usually denote real numbers (like 1.4323, π,
√

2, 6.0221415×
1023, . . . and so forth).

So now that we have defined sets, what can we do with them? There is only thing
we can ask of a set

“Is this object in the set?”

and the set will answer

“yes” or “no”

For example, if A is the set of even numbers we can ask “Is 4 in A?” We get back the
answer “yes”. We write this as

4 ∈ A

2 The interested reader is invited to google (or whichever search engine you prefer — DuckDuckGo?)
“Russell’s paradox”, “Axiomatic set theory” and “Zermelo-Fraenkel set theory” for a more complete
and far more detailed discussion of the basics of sets and why, when you dig into them a little,
they are not so basic.

6



The basics 0.2 Sets

While if we ask “Is 3 in A?”, we get back the answer “no”. Mathematically we would
write this as

3 /∈ A

So this symbol “∈” is mathematical shorthand for “is an element of”, while the same
symbol with a stroke through it “ /∈” is shorthand for “is not an element of”.

Notice that both of these statements, though they are written down as short strings
of three symbols, are really complete sentences. That is, when we read them out we
have

“4 ∈ A” is read as “Four is an element of A.”
“3 /∈ A” is read as “Three is not an element of A.”

The mathematical symbols like “+”, “=” and “∈” are shorthand 3 and mathematical
statements like “4 + 3 = 7” are complete sentences.

This is an important point — mathematical writing is just like any other sort of
writing. It is very easy to put a bunch of symbols or words down on the page, but if
we would like it to be easy to read and understand, then we have to work a bit harder.
When you write mathematics you should keep in mind that someone else should be
able to read it and understand it.

Easy reading is damn hard writing.

— Nathaniel Hawthorne, but possibly also a few others like Richard Sheri-
dan.

We will come across quite a few different sets when doing mathematics. It must be
completely clear from the definition how to answer the question “Is this object in the
set or not?”

• “Let A be the set of even integers between 1 and 13.” — nice and clear.

• “Let B be the set of tall people in this class room.” — not clear.

More generally if there are only a small number of elements in the set we just list them
all out

• “Let C = {1, 2, 3}.”

When we write out the list we put the elements inside braces “{·}”. Note that the order
we write things in doesn’t matter

C = {1, 2, 3} = {2, 1, 3} = {3, 2, 1}

3 Precise definitions aside, by “shorthand” we mean a collection of accepted symbols and abbrevia-
tions to allow us to write more quickly and hopefully more clearly. People have been using various
systems of shorthand as long as people have been writing. Many of these are used and understood
only by the individual, but if you want people to be able to understand what you have written,
then you need to use shorthand that is commonly understood.
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because the only thing we can ask is “Is this object an element of C?” We cannot ask
more complex questions like “What is the third element of C?” — we require more
sophisticated mathematical objects to ask such questions 4. Similarly, it doesn’t matter
how many times we write the same object in the list

C = {1, 1, 1, 2, 3, 3, 3, 3, 1, 2, 1, 2, 1, 3} = {1, 2, 3}

because all we ask is “Is 1 ∈ C?”. Not “how many times is 1 in C?”.
Now — if the set is a bit bigger then we might write something like this

• C = {1, 2, 3, . . . , 40} the set of all integers between 1 and 40 (inclusive).

• A = {1, 4, 9, 16, . . . } the set of all perfect squares 5

The “ . . .” is again shorthand for the missing entries. You have to be careful with this
as you can easily confuse the reader

• B = {3, 5, 7, . . . } — is this all odd primes, or all odd numbers bigger than 1 or
?? What is written is not sufficient for us to have a firm idea of what the writer
intended.

Only use this where it is completely clear by context. A few extra words can save the
reader (and yourself) a lot of confusion.

Always think about the reader.

0.3q Other Important Sets

We have seen a few important sets above — namely N,Z,Q and R. However, arguably
the most important set in mathematics is the empty set.

Definition 0.3.1 Empty set.

The empty set (or null set or void set) is the set which contains no elements. It
is denoted ∅. For any object x, we always have x /∈ ∅; hence ∅ = {}.

Note that it is important to realise that the empty set is not nothing ; think of it as
an empty bag. Also note that with quite a bit of hard work you can actually define the
natural numbers in terms of the empty set. Doing so is very formal and well beyond
the scope of this text.

When a set does not contain too many elements it is fine to specify it by listing out
its elements. But for infinite sets or even just big sets we can’t do this and instead we

4 The interested reader is invited to look at “lists”, “multisets”, “totally ordered sets” and “partially
ordered sets” amongst many other mathematical objects that generalise the basic idea of sets.

5 i.e. integers that can be written as the square of another integer.
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have to give the defining rule. For example the set of all perfect square numbers we
write as

S = {x s.t. x = k2 where k ∈ Z}
Notice we have used another piece of shorthand here, namely s.t. , which stands for
“such that” or “so that”. We read the above statement as “S is the set of elements x
such that x equals k-squared where k is an integer”. This is the standard way of writing
a set defined by a rule, though there are several shorthands for “such that”. We shall
use two them:

P = {p s.t. p is prime} = {p | p is prime}
Other people also use “:” is shorthand for “such that”. You should recognise all three
of these shorthands.

Example 0.3.2 examples of sets.

Even more examples. . .

• Let A = {2, 3, 5, 7, 11, 13, 17, 19} and let

B = {a ∈ A|a < 8} = {2, 3, 5, 7}
the set of elements of A that are strictly less than 8.

• Even and odd integers

E = {n|n is an even integer}
= {n|n = 2k for some k ∈ Z }
= {2n|n ∈ Z},

and similarly

O = {n|n is an odd integer}
= {2n+ 1|n ∈ Z}.

• Square integers

S = {n2|n ∈ Z}.
The set a S ′ = {n2|n ∈ N} is not the same as S because S ′ does not contain the
number 0, which is definitely a square integer and 0 is in S. We could also write
S = {n2|n ∈ Z, n ≥ 0} and S = {n2|n = 0, 1, 2, . . . }.

a Notice here we are using another common piece of mathematical short-hand. Very often in math-
ematics we will be talking or writing about some object, like the set S above, and then we will
create a closely related object. Rather than calling this new object by a new symbol (we could
have used T or R or. . . ), we instead use the same symbol but with some sort of accent — such as
the little single quote mark we added to the symbol S to make S′ (read “S prime”). The point of
this is to let the reader know that this new object is related to the original one, but not the same.
You might also see Ṡ, Ŝ, S̄, S̃ and others.
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The sets A and B in the above example illustrate an important point. Every element
in B is an element in A, and so we say that B is a subset of A

Definition 0.3.3

Let A and B be sets. We say “A is a subset of B” if every element of A is also
an element of B. We denote this A ⊆ B (or B ⊇ A). If A is a subset of B and A
and B are not the same , so that there is some element of B that is not in A then
we say that A is a proper subset of B. We denote this by A ⊂ B (or B ⊃ A).

Two things to note about subsets:

• Let A be a set. It is always the case that ∅ ⊆ A.

• If A is not a subset of B then we write A 6⊆ B. This is the same as saying that
there is some element of A that is not in B. That is, there is some a ∈ A such
that a /∈ B.

Example 0.3.4 subsets.

Let S = {1, 2}. What are all the subsets of S? Well — each element of S can either
be in the subset or not (independent of the other elements of the set). So we have
2 × 2 = 4 possibilities: neither 1 nor 2 is in the subset, 1 is but 2 is not, 2 is but 1 is
not, and both 1 and 2 are. That is

∅, {1}, {2}, {1, 2} ⊆ S

This argument can be generalised with a little work to show that a set that contains
exactly n elements has exactly 2n subsets.

In much of our work with functions later in the text we will need to work with subsets
of real numbers, particularly segments of the “real line”. A convenient and standard
way of representing such subsets is with interval notation.

Definition 0.3.5 Open and closed intervals of R.

Let a, b ∈ R such that a < b. We name the subset of all numbers between a and
b in different ways depending on whether or not the ends of the interval (a and
b) are elements of the subset.

• The closed interval [a, b] = {x ∈ R : a ≤ x ≤ b} — both end points are
included.

• The open interval (a, b) = {x ∈ R : a < x < b} — neither end point is
included.

We also define half-open a intervals which contain one end point but not the
other:

(a, b] = {x ∈ R : a < x ≤ b} [a, b) = {x ∈ R : a ≤ x < b}
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We sometimes also need unbounded intervals

[a,∞) = {x ∈ R : a ≤ x} (a,∞) = {x ∈ R : a < x}
(−∞, b] = {x ∈ R : x ≤ b} (−∞, b) = {x ∈ R : x < b}

These unbounded intervals do not include “±∞”, so that end of the interval is
always open b.

a Also called “half-closed”. The preference for one term over the other may be related to
whether a 500ml glass containing 250ml of water is half-full or half-empty.

b Infinity is not a real number. As mentioned in an earlier footnote, Cantor proved that
there are an infinite number of different infinities and so it is incorrect to think of ∞ as
being a single number. As such it cannot be an element in an interval of the real line. We
suggest that the reader that wants to learn more about how mathematics handles infinity
look up transfinite numbers and transfinite arithmetic. Needless to say these topics are
beyond the scope of this text.

0.3.1 tt More on Sets

So we now know how to say that one set is contained within another. We will now
define some other operations on sets. Let us also start to be a bit more precise with
our definitions and set them out carefully as we get deeper into the text.

Definition 0.3.6

Let A and B be sets. We define the union of A and B, denoted A∪B, to be the
set of all elements that are in at least one of A or B.

A ∪B = {x|x ∈ A or x ∈ B}

It is important to realise that we are using the word “or” in a careful mathematical
sense. We mean that x belongs to A or x belongs to B or both. Whereas in normal
every-day English “or” is often used to be “exclusive or” — A or B but not both 1.

We also start the definition by announcing “Definition” so that the reader knows “We
are about to define something important”. We should also make sure that everything
is (reasonably) self-contained — we are not assuming the reader already knows A and
B are sets.

It is vital that we make our definitions clear otherwise anything we do with the
definitions will be very difficult to follow. As writers we must try to be nice to our

1 When you are asked for your dining preferences on a long flight you are usually asked something
like “Chicken or beef?” — you get one or the other, but not both. Unless you are way at the
back near the toilets in which case you will be presented with which ever meal was less popular.
Probably fish.
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readers 2.
Definition 0.3.7

Let A and B be sets. We define the intersection of A and B, denoted A ∩ B, to
be the set of elements that belong to both A and B.

A ∩B = {x | x ∈ A and x ∈ B}

Again note that we are using the word “and” in a careful mathematical sense (which
is pretty close to the usual use in English).

Example 0.3.8 Union and intersection.

Let A = {1, 2, 3, 4}, B = {p : p is prime}, C = {5, 7, 9} and D =
{even positive integers}. Then

A ∩B = {2, 3}
B ∩D = {2}
A ∪ C = {1, 2, 3, 4, 5, 7, 9}
A ∩ C = ∅

In this last case we see that the two sets have no elements in common — they are said
to be disjoint.

0.4q Functions

Now that we have reviewed basic ideas about sets we can start doing more interesting
things with them — functions.

When we are introduced to functions in mathematics, it is almost always as formulas.
We take a number x and do some things to it to get a new number y. For example,

y = f(x) = 3x− 7

Here, we take a number x, multiply it by 3 and then subtract seven to get the result.
This view of functions — a function is a formula — was how mathematicians defined

them up until the 19th century. As basic ideas of sets became better defined, people
revised ideas surrounding functions. The more modern definition of a function between
two sets is that it is a rule which assigns to each element of the first set a unique element
of the second set.

Consider the set of days of the week, and the set containing the alphabet

A = {Sunday, Monday,Tuesday, Wednesday,Thursday, Friday, Saturday, Sunday}

2 If you are finding this text difficult to follow then please complain to us authors and we will do
our best to improve it.
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B = {a,b,c,d,e, . . . , x,y,z}
We can define a function f that takes a day (that is, an element of A) and turns it into
the first letter of that day (that is, an element of B). This is a valid function, though
there is no formula. We can draw a picture of the function as

Clearly such pictures will work for small sets, but will get very messy for big ones.
When we shift back to talking about functions on real numbers, then we will switch to
using graphs of functions on the Cartesian plane.

This example is pretty simple, but this serves to illustrate some important points.
If our function gives us a rule for taking elements in A and turning them into elements
from B then

• the function must be defined for all elements of A — that is, no matter which
element of A we choose, the function must be able to give us an answer. Every
function must have this property.

• on the other hand, we don’t have to “hit” every element from B. In the above
example, we miss almost all the letters in B. A function that does reach every
element of B is said to be “surjective” or “onto”.

• a given element of B may be reached by more than one element of A. In the
above example, the days “Tuesday” and “Thursday” both map to the letter T and
similarly the letters S is mapped to by both “Sunday” and “Saturday”. A function
which does not do this, that is, every element in A maps to a different element
in B is called “injective” or “one-to-one” — again we will come back to this later
when we discuss inverse function in Section 0.6.

Summarising this more formally, we have
Definition 0.4.1

Let A,B be non-empty sets. A function f from A to B, is a rule or formula that
takes elements of A as inputs and returns elements of B as outputs. We write
this as

f : A→ B

and if f takes a ∈ A as an input and returns b ∈ B then we write this as f(a) = b.
Every function must satisfy the following two conditions

13
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• The function must be defined on every possible input from the set A. That
is, no matter which element a ∈ A we choose, the function must return an
element b ∈ B so that f(a) = b.

• The function is only allowed to return one result for each input a. So if
we find that f(a) = b1 and f(a) = b2 then the only way that f can be a
function is if b1 is exactly the same as b2.

a You may have learned this in the context of plotting functions on the Cartesian plane, as
“the vertical line test”. If the graph intersects a vertical line twice, then the same x-value
will give two y-values and so the graph does not represent a function.

We must include the input and output sets A and B in the definition of the function.
This is one of the reasons that we should not think of functions as just formulas. The
input and output sets have proper mathematical names, which we give below:

Definition 0.4.2

Let f : A→ B be a function. Then

• the set A of inputs to our function is the “domain” of f ,

• the set B which contains all the results is called the codomain,

• We read “f(a) = b” as “f of a is b”, but sometimes we might say “f maps
a to b” or “b is the image of a”.

• The codomain must contain all the possible results of the function, but it
might also contain a few other elements. The subset of B that is exactly
the outputs of A is called the “range” of f . We define it more formally by

range of f = {b ∈ B | there is some a ∈ A so that f(a) = b}
= {f(a) ∈ B | a ∈ A}

The only elements allowed in that set are those elements of B that are the
images of elements in A.

Example 0.4.3 domains and ranges.

Let us go back to the “days of the week” function example that we worked on above,
we can define the domain, codomain and range:

• The domain, A, is the set of days of the week.

• The codomain, B, is the 26 letters of the alphabet.

• The range is the set {F,M, T, S,W} — no other elements of B are images of
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Example 0.4.3

inputs from A.

Example 0.4.4 more domains and ranges.

A more numerical example — let g : R→ R be defined by the formula g(x) = x2. Then

• the domain and codomain are both the set of all real numbers, but

• the range is the set [0,∞).

Now — let h : [0,∞)→ [0,∞) be defined by the formula h(x) =
√
x. Then

• the domain and codomain are both the set [0,∞), that is all non-negative real
numbers, and

• in this case the range is equal to the codomain, namely [0,∞).

Example 0.4.5 piece-wise function.

Yet another numerical example.

V : [−1, 1]→ R defined by V (t) =

{
0 if − 1 ≤ t < 0

120 if 0 ≤ t ≤ 1

This is an example of a “piece-wise” function — that is, one that is not defined by a
single formula, but instead defined piece-by-piece. This function has domain [−1, 1]
and its range is {0, 120}. We could interpret this function as measuring the voltage
across a switch that is flipped on at time t = 0.

Almost all the functions we look at from here on will be formulas. However it is
important to note, that we have to include the domain and codomain when we describe
the function. If the domain and codomain are not stated explicitly then we should
assume that both are R.

0.5q Parsing Formulas

Consider the formula

f(x) =
1 + x

1 + 2x− x2
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This is an example of a simple rational function — that is, the ratio of two polynomials.
When we start to examine these functions later in the text, it is important that we are
able to understand how to evaluate such functions at different values of x. For example

f(5) =
1 + 5

1 + 10− 25
=

6

−14
= −3

7

More important, however, is that we understand how we decompose this function into
simpler pieces. Since much of your calculus course will involve creating and studying
complicated functions by building them up from simple pieces, it is important that you
really understand this point.

Now to get there we will take a small excursion into what are called parse-trees.
You already implicitly use these when you evaluate the function at a particular value
of x, but our aim here is to formalise this process a little more.

We can express the steps used to evaluate the above formula as a tree-like diagram
1. We can decompose this formula as the following tree-like diagram

Figure 0.5.1: A parse tree of the function 1+x
1+2x−x2 .

Let us explain the pieces here.

• The picture consists of boxes and arrows which are called “nodes” and “edges”
respectively.

• There are two types of boxes, those containing numbers and the variable x, and
those containing arithmetic operations “+”,“−”, “×” and “/”.

• If we wish to represent the formula 3 + 5, then we can draw this as the following
cherry-like configuration

1 Such trees appear in many areas of mathematics and computer science. The reason for the name
is that they look rather like trees — starting from their base they grow and branch out towards
their many leaves. For some reason, which remains mysterious, they are usually drawn upside
down.
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which tells us to take the numbers “3” and “5” and add them together to get 8.

evaluates to

• By stringing such little “cherries” together we can describe more complicated
formulas. For example, if we compute “(3 + 5) × 2”, we first compute “(3 + 5)”
and then multiply the result by 2. The corresponding diagrams are

evaluates to evaluates to

The tree we drew in Figure 0.5.1 above representing our formula has x in some of
the boxes, and so when we want to compute the function at a particular value of x —
say at x = 5 — then we replace those “x”s in the tree by that value and then compute
back up the tree. See the example below

Start 7→
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7→ 7→

7→ and we are done.

This is not the only parse tree associated with the formula for f(x); we could also
decompose it as

We are able to do this because when we compute the denominator 1 + 2x− x2, we
can compute it as

1 + 2x− x2 = either (1 + 2x)− x2 or = 1 + (2x− x2).

Both 2 are correct because addition is “associative”. Namely

a+ b+ c = (a+ b) + c = a+ (b+ c).

Multiplication is also associative:

a× b× c = (a× b)× c = a× (b× c).

2 We could also use, for example, 1 + 2x− x2 = (1− x2) + 2x.
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Example 0.5.2 parsing a formula.

Consider the formula

g(t) =

(
t+ π

t− π

)
· sin

(
t+ π

2

)
.

This introduces a new idea — we have to evaluate t+π
2

and then compute the sine of
that number. The corresponding tree can be written as

If we want to evaluate this at t = π/2 then we get the following. . .
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Example 0.5.2

Start 7→

7→ 7→

7→ and we are done.

It is highly unlikely that you will ever need to explicitly construct such a tree for
any problem in the remainder of the text. The main point of introducing these objects
and working through a few examples is to realise that all the functions that we will
examine are constructed from simpler pieces. In particular we have constructed all the
above examples from simple “building blocks”

• constants — fixed numbers like 1, π and so forth

• variables — usually x or t, but sometimes other symbols

• standard functions — like trigonometric functions (sine, cosine and tangent),
exponentials and logarithms.

These simple building blocks are combined using arithmetic
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• addition and subtraction — a+ b and a− b

• multiplication and division — a · b and a
b

• raising to a power — an

• composition — given two functions f(x) and g(x) we form a new function f(g(x))
by evaluating y = g(x) and then evaluating f(y) = f(g(x)).

During the rest of the course when we learn how to compute limits and derivatives, our
computations require us to understand the way we construct functions as we have just
described.

That is, in order to compute the derivative 3 of a function we have to see how to
construct the function from these building blocks (i.e. the constants, variables and
standard functions) using arithmetic operations. We will then construct the derivative
by following these same steps. There will be simple rules for finding the derivatives of
the simpler pieces and then rules for putting them together following the arithmetic
used to construct the function.

0.6q Inverse Functions

There is one last thing that we should review before we get into the main material of
the course and that is inverse functions. As we have seen above functions are really just
rules for taking an input (almost always a number), processing it somehow (usually by
a formula) and then returning an output (again, almost always a number).

input number x 7→ f does “stuff” to x 7→ return number y

In many situations it will turn out to be very useful if we can undo whatever it is that
our function has done. ie

take output y 7→ do “stuff” to y 7→ return the original x

When it exists, the function “which undoes” the function f(x) is found by solving
y = f(x) for x as a function of y and is called the inverse function of f . It turns out
that it is not always possible to solve y = f(x) for x as a function of y. Even when it
is possible, it can be really hard to do 1.

For example — a particle’s position, s, at time t is given by the formula s(t) = 7t
(sketched below). Given a calculator, and any particular number t, you can quickly
work out the corresponding positions s. However, if you are asked the question “When
does the particle reach s = 4?” then to answer it we need to be able to “undo” s(t) = 4

3 We get to this in Chapter 2 — don’t worry about exactly what it is just now.
1 Indeed much of encryption exploits the fact that you can find functions that are very quick to

do, but very hard to undo. For example — it is very fast to multiply two large prime numbers
together, but very hard to take that result and factor it back into the original two primes. The
interested reader should look up trapdoor functions.
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to isolate t. In this case, because s(t) is always increasing, we can always undo s(t) to
get a unique answer:

s(t) = 7t = 4 if and only if t =
4

7
.

However, this question is not always so easy. Consider the sketch of y = sin(x)
below; when is y = 1

2
? That is, for which values x is sin(x) = 1

2
? To rephrase it again,

at which values of x does the curve y = sinx (which is sketched in the right half of
Figure 0.6.1) cross the horizontal straight line y = 1

2
(which is also sketched in the same

figure)?

Figure 0.6.1

We can see that there are going to be an infinite number of x-values that give
y = sin(x) = 1

2
; there is no unique answer.

Recall (from Definition 0.4.1) that for any given input, a function must give a unique
output. So if we want to find a function that undoes s(t), then things are good —
because each s-value corresponds to a unique t-value. On the other hand, the situation
with y = sin x is problematic — any given y-value is mapped to by many different
x-values. So when we look for an unique answer to the question “When is sinx = 1

2
?”

we cannot answer it.
This “uniqueness” condition can be made more precise:

Definition 0.6.2

A function f is one-to-one (injective) when it never takes the same y value more
than once. That is

if x1 6= x2 then f(x1) 6= f(x2)

There is an easy way to test this when you have a plot of the function — the
horizontal line test.

Definition 0.6.3 Horizontal line test.

A function is one-to-one if and only if no horizontal line y = c intersects the graph
y = f(x) more than once.
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i.e. every horizontal line intersects the graph either zero or one times. Never twice
or more. This test tell us that y = x3 is one-to-one, but y = x2 is not. However note
that if we restrict the domain of y = x2 to x ≥ 0 then the horizontal line test is passed.
This is one of the reasons we have to be careful to consider the domain of the function.

When a function is one-to-one then it has an inverse function.
Definition 0.6.4

Let f be a one-to-one function with domain A and range B. Then its inverse
function is denoted f−1 and has domain B and range A. It is defined by

f−1(y) = x whenever f(x) = y

for any y ∈ B.

So if f maps x to y, then f−1 maps y back to x. That is f−1 “undoes” f . Because
of this we have

f−1(f(x)) = x for any x ∈ A
f(f−1(y)) = y for any y ∈ B

We have to be careful not to confuse f−1(x) with
1

f(x)
. The “−1” is not an exponent.

Example 0.6.5 Inverse of x5 + 3.

Let f(x) = x5 + 3 on domain R. To find its inverse we do the following

• Write y = f(x); that is y = x5 + 3.

• Solve for x in terms of y (this is not always easy) — x5 = y− 3, so x = (y− 3)1/5.

• The solution is f−1(y) = (y − 3)1/5.
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Example 0.6.5

• Recall that the “y” in f−1(y) is a dummy variable. That is, f−1(y) = (y − 3)1/5

means that if you feed the number y into the function f−1 it outputs the number
(y − 3)1/5. You may call the input variable anything you like. So if you wish to
call the input variable “x” instead of “y” then just replace every y in f−1(y) with
an x.

• That is f−1(x) = (x− 3)1/5.

Example 0.6.6 Inverse of
√
x− 1.

Let g(x) =
√
x− 1 on the domain x ≥ 1. We can find the inverse in the same way:

y =
√
x− 1

y2 = x− 1

x = y2 + 1 = f−1(y) or, writing input variable as “x”:
f−1(x) = x2 + 1.

Let us now turn to finding the inverse of sin(x) — it is a little more tricky and we
have to think carefully about domains.

Example 0.6.7 Inverse of sin(x).

We have seen (back in Figure 0.6.1) that sin(x) takes each value y between −1 and +1
for infinitely many different values of x (see the left-hand graph in the figure below).
Consequently sin(x), with domain −∞ < x <∞ does not have an inverse function.

But notice that as x runs from −π
2
to +π

2
, sin(x) increases from −1 to +1. (See the

middle graph in the figure above.) In particular, sin(x) takes each value −1 ≤ y ≤ 1
for exactly one −π

2
≤ x ≤ π

2
. So if we restrict sinx to have domain −π

2
≤ x ≤ π

2
, it

does have an inverse function, which is traditionally called arcsine (see Appendix A.9).
That is, by definition, for each −1 ≤ y ≤ 1, arcsin(y) is the unique −π

2
≤ x ≤ π

2
obeying

sin(x) = y. Equivalently, exchanging the dummy variables x and y throughout the last
sentence gives that for each −1 ≤ x ≤ 1, arcsin(x) is the unique −π

2
≤ y ≤ π

2
obeying
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The basics 0.6 Inverse Functions

Example 0.6.7

sin(y) = x.

It is an easy matter to construct the graph of an inverse function from the graph of
the original function. We just need to remember that

Y = f−1(X) ⇐⇒ f(Y ) = X

which is y = f(x) with x renamed to Y and y renamed to X.
Start by drawing the graph of f , labelling the x– and y–axes and labelling the curve

y = f(x).

Now replace each x by Y and each y by X and replace the resulting label X = f(Y )
on the curve by the equivalent Y = f−1(X).

Finally we just need to redraw the sketch with the Y axis running vertically (with
Y increasing upwards) and the X axis running horizontally (with X increasing to the
right). To do so, pretend that the sketch is on a transparency or on a very thin piece of
paper that you can see through. Lift the sketch up and flip it over so that the Y axis
runs vertically and the X axis runs horizontally. If you want, you can also convert the
upper case X into a lower case x and the upper case Y into a lower case y.
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The basics 0.6 Inverse Functions

Another way to say “flip the sketch over so as to exchange the x– and y–axes” is
“reflect in the line y = x”. In the figure below the blue “horizontal” elliptical disk that is
centred on (a, b) has been reflected in the line y = x to give the red “vertical” elliptical
disk centred on (b, a).

Example 0.6.8 Sketching inverse of y = x2.

As an example, let f(x) = x2 with domain 0 ≤ x <∞.

• When x = 0, f(x) = 02 = 0.

• As x increases, x2 gets bigger and bigger.

• When x is very large and positive, x2 is also very large and positive. (For example,
think x = 100.)

The graph of y = f(x) = x2 is the blue curve below. By definition, Y = f−1(X) if
X = f(Y ) = Y 2. That is, if Y =

√
X. (Remember that, to be in the domain of f , we

must have Y ≥ 0.) So the inverse function of “square” is “square root”. The graph of
f−1 is the red curve below. The red curve is the reflection of the blue curve in the line
y = x.
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Example 0.6.8
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Limits
Chapter 1

So very roughly speaking, “Differential Calculus” is the study of how a function changes
as its input changes. The mathematical object we use to describe this is the “derivative”
of a function. To properly describe what this thing is we need some machinery; in
particular we need to define what we mean by “tangent” and “limit”. We’ll get back to
defining the derivative in Chapter 2.

1.1q Drawing Tangents and a First Limit

1.1.1 tt Drawing Tangents and a First Limit

Our motivation for developing “limit” — being the title and subject of this chapter —
is going to be two related problems of drawing tangent lines and computing velocity.

Now — our treatment of limits is not going to be completely mathematically rigor-
ous, so we won’t have too many formal definitions. There will be a few mathematically
precise definitions and theorems as we go, but we’ll make sure there is plenty of expla-
nation around them.

Let us start with the “tangent line” problem. Of course, we need to define “tangent”,
but we won’t do this formally. Instead let us draw some pictures.
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Limits 1.1 Drawing Tangents and a First Limit

Here we have drawn two very rough sketches of the curve y = x2 for x ≥ 0. These
are not very good sketches for a couple of reasons

• The curve in the figure does not pass through (0, 0), even though (0, 0) lies on
y = x2.

• The top-right end of the curve doubles back on itself and so fails the vertical
line test that all functions must satisfy 1 — for each x-value there is exactly one
y-value for which (x, y) lies on the curve y = x2.

So let’s draw those more carefully.

Figure 1.1.1: Sketches of the curve y = x2. (left) shows a tangent line, while (right)
shows a line that is not a tangent.

These are better. In both cases we have drawn y = x2 (carefully) and then picked
a point on the curve — call it P . Let us zoom in on the “good” example:

1 Take a moment to go back and reread Definition 0.4.1.
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Limits 1.1 Drawing Tangents and a First Limit

Figure 1.1.2: We see that, the more we zoom in on the point P , the more the graph
of the function (drawn in black) looks like a straight line — that line is the tangent
line (drawn in blue).

We see that as we zoom in on the point P , the graph of the function looks more
and more like a straight line. If we kept on zooming in on P then the graph of the
function would be indistinguishable from a straight line. That line is the tangent line
(which we have drawn in blue). A little more precisely, the blue line is “the tangent
line to the function at P ”. We have to be a little careful, because if we zoom in at a
different point, then we will find a different tangent line.

Now let’s zoom in on the “bad” example we see that the blue line looks very different
from the function; because of this, the blue line is not the tangent line at P .

Figure 1.1.3: Zooming in on P we see that the function (drawn in black) looks
more and more like a straight line — however it is not the same line as that drawn in
blue. Because of this the blue line is not the tangent line.

Here are a couple more examples of tangent lines
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Limits 1.1 Drawing Tangents and a First Limit

Figure 1.1.4: More examples of tangent lines.

The one on the left is very similar to the good example on y = x2 that we saw
above, while the one on the right is different — it looks a little like the “bad” example,
in that it crosses our function the curve at some distant point. Why is the line in
Figure 1.1.4(right) a tangent while the line in Figure 1.1.1(right) not a tangent? To
see why, we should again zoom in close to the point where we are trying to draw the
tangent.

As we saw above in Figure 1.1.3, when we zoom in around our example of “not a
tangent line” we see that the straight line looks very different from the curve at the
“point of tangency” — i.e. where we are trying to draw the tangent. The line drawn in
Figure 1.1.4(right) looks more and more like the function as we zoom in.

This example raises an important point — when we are trying to draw a tangent
line, we don’t care what the function does a long way from the point; the tangent line
to the curve at a particular point P , depends only on what the function looks like close
to that point P .

To illustrate this consider the sketch of the function y = sin(x) and its tangent line
at (x, y) = (0, 0):
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Limits 1.1 Drawing Tangents and a First Limit

As we zoom in, the graph of sin(x) looks more and more like a straight line — in
fact it looks more and more like the line y = x. We have also sketched this tangent line.
What makes this example a little odd is that the tangent line crosses the function. In
the examples above, our tangent lines just “kissed” the curve and did not cross it (or
at least did not cross it nearby).

Using this idea of zooming in at a particular point, drawing a tangent line is not
too hard. However, finding the equation of the tangent line presents us with a few
challenges. Rather than leaping into the general theory, let us do a specific example.
Let us find the the equation of the tangent line to the curve y = x2 at the point P with
coordinates 2 (x, y) = (1, 1).

To find the equation of a line we either need

• the slope of the line and a point on the line, or

• two points on the line, from which we can compute the slope via the formula

m =
y2 − y1

x2 − x1

and then write down the equation for the line via a formula such as

y = m · (x− x1) + y1.

We cannot use the first method because we do not know what the slope of the
tangent line should be. To work out the slope we need calculus — so we’ll be able to
use this method once we get to the next chapter on “differentiation”.

It is not immediately obvious how we can use the second method, since we only
have one point on the curve, namely (1, 1). However we can use it to “sneak up” on
the answer. Let’s approximate the tangent line, by drawing a line that passes through
(1, 1) and some nearby point — call it Q. Here is our recipe:

• We are given the point P = (1, 1) and we are told

Find the tangent line to the curve y = x2 that passes through P = (1, 1).

2 Note that the coordinates (x, y) is an ordered pair of two numbers x and y. Traditionally the first
number is called the abscissa while the second is the ordinate, but these terms are a little archaic.
It is now much more common to hear people refer to the first number as the x-coordinate and the
second as y-coordinate.
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Limits 1.1 Drawing Tangents and a First Limit

• We don’t quite know how to find a line given just 1 point, however we do know
how to find a line passing through 2 points. So pick another point on the curves
whose coordinates are very close to P . Now rather than picking some actual
numbers, I am going to write our second point as Q = (1 + h, (1 + h)2). That is,
a point Q whose x-coordinate is equal to that of P plus a little bit — where the
little bit is some small number h. And since this point lies on the curve y = x2,
and Q’s x-coordinate is 1 + h, Q’s y-coordinate must be (1 + h)2.

If having h as an variable rather than a number bothers you, start by thinking of
h as 0.1.

• A picture of the situation will help.

• This line that passes through the curve in two places P and Q is called a “secant
line”.

• The slope of the line is then

m =
y2 − y1

x2 − x1

=
(1 + h)2 − 1

(1 + h)− 1
=

1 + 2h+ h2 − 1

h
=

2h+ h2

h
= 2 + h

where we have expanded (1 + h)2 = 1 + 2h+ h2 and then cleaned up a bit.

Now this isn’t our tangent line because it passes through 2 nearby points on the curve —
however it is a reasonable approximation of it. Now we can make that approximation
better and so “sneak up” on the tangent line by considering what happens when we
move this point Q closer and closer to P . i.e. make the number h closer and closer to
zero.
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Limits 1.1 Drawing Tangents and a First Limit

First look at the picture. The original choice of Q is on the left, while on the right
we have drawn what happens if we choose h′ to be some number a little smaller than
h, so that our point Q becomes a new point Q′ that is a little closer to P . The new
approximation is better than the first.

So as we make h smaller and smaller, we bring Q closer and closer to P , and make
our secant line a better and better approximation of the tangent line. We can observe
what happens to the slope of the line as we make h smaller by plugging some numbers
into our formula m = 2 + h:

h = 0.1 m = 2.1

h = 0.01 m = 2.01

h = 0.001 m = 2.001.

So again we see that as this difference in x becomes smaller and smaller, the slope
appears to be getting closer and closer to 2. We can write this more mathematically as

lim
h→0

(1 + h)2 − 1

h
= 2

This is read as

The limit, as h approaches 0, of (1+h)2−1
h

is 2.

This is our first limit! Notice that we can see this a little more clearly with a quick bit
of algebra:

(1 + h)2 − 1

h
=

(1 + 2h+ h2)− 1

h

=
2h+ h2

h
(2 + h)

So it is not unreasonable to expect that

lim
h→0

(1 + h)2 − 1

h
= lim

h→0
(2 + h) = 2.

Our tangent line can be thought of as the end of this process — namely as we bring
Q closer and closer to P , the slope of the secant line comes closer and closer to that of
the tangent line we want. Since we have worked out what the slope is — that is the
limit we saw just above — we now know the slope of the tangent line is 2. Given this,
we can work out the equation for the tangent line.
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Limits 1.1 Drawing Tangents and a First Limit

• The equation for the line is y = mx+ c. We have 2 unknowns m and c — so we
need 2 pieces of information to find them.

• Since the line is tangent to P = (1, 1) we know the line must pass through (1, 1).
From the limit we computed above, we also know that the line has slope 2.

• Since the slope is 2 we know that m = 2. Thus the equation of the line is
y = 2x+ c.

• We know that the line passes through (1, 1), so that y = 2x + c must be 1 when
x = 1. So 1 = 2 · 1 + c, which forces c = −1.

So our tangent line is y = 2x− 1.

1.1.2 tt Exercises

Exercises — Stage 1

1. On the graph below, draw:

a The tangent line to y = f(x) at P ,

b the tangent line to y = f(x) at Q, and

c the secant line to y = f(x) through P and Q.

x

y
y = f(x)

P

Q

2. Suppose a curve y = f(x) has tangent line y = 2x+ 3 at the point x = 2.

a True or False: f(2) = 7

b True or False: f(3) = 9

3. Let L be the tangent line to a curve y = f(x) at some point P . How many
times will L intersect the curve y = f(x)?
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Limits 1.2 Another Limit and Computing Velocity

1.2q Another Limit and Computing Velocity

1.2.1 tt Another Limit and Computing Velocity

Computing tangent lines is all very well, but what does this have to do with applications
or the “Real World”? Well - at least initially our use of limits (and indeed of calculus) is
going to be a little removed from real world applications. However as we go further and
learn more about limits and derivatives we will be able to get closer to real problems
and their solutions.

So stepping just a little closer to the real world, consider the following problem. You
drop a ball from the top of a very very tall building. Let t be elapsed time measured
in seconds, and s(t) be the distance the ball has fallen in metres. So s(0) = 0.

Quick aside: there is quite a bit going on in the statement of this problem. We have
described the general picture — tall building, ball, falling — but we have also introduced
notation, variables and units. These will be common first steps in applications and are
necessary in order to translate a real world problem into mathematics in a clear and
consistent way.

Galileo 1 worked out that s(t) is a quadratic function:

s(t) = 4.9t2.

The question that is posed is

How fast is the ball falling after 1 second?

Now before we get to answering this question, we should first be a little more precise.
The wording of this question is pretty sloppy for a couple of reasons:

• What we do mean by “after 1 second”? We know the ball will move faster and
faster as time passes, so after 1 second it does not fall at one fixed speed.

• As it stands a reasonable answer to the question would be just “really fast”. If
the person asking the question wants a numerical answer it would be better to
ask “At what speed” or “With what velocity”.

1 Perhaps one of the most famous experiments in all of physics is Galileo’s leaning tower of Pisa ex-
periment, in which he dropped two balls of different masses from the top of the tower and observed
that the time taken to reach the ground was independent of their mass. This disproved Aristotle’s
assertion that heavier objects fall faster. It is quite likely that Galileo did not actually perform
this experiment. Rather it was a thought-experiment. However a quick glance at Wikipedia will
turn up some wonderful footage from the Apollo 15 mission showing a hammer and feather being
dropped from equal height hitting the moon’s surface at the same time. Finally, Galileo deter-
mined that the speed of falling objects increases at a constant rate, which is equivalent to the
formula stated here, but it is unlikely that he wrote down an equation exactly as it is here.
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Limits 1.2 Another Limit and Computing Velocity

We should also be careful using the words “speed” and “velocity” — they are not inter-
changeable.

• Speed means the distance travelled per unit time and is always a non-negative
number. An unmoving object has speed 0, while a moving object has positive
speed.

• Velocity, on the other hand, also specifies the direction of motion. In this text we
will almost exclusively deal with objects moving along straight lines. Because of
this velocities will be positive or negative numbers indicating which direction the
object is moving along the line. We will be more precise about this later 2.

A better question is

What is the velocity of the ball precisely 1 second after it is dropped?

or even better:

What is the velocity of the ball at the 1 second mark?

This makes it very clear that we want to know what is happening at exactly 1 second
after the ball is dropped.

There is something a little subtle going on in this question. In particular, what do
we mean by the velocity at t = 1?. Surely if we freeze time at t = 1 second, then the
object is not moving at all? This is definitely not what we mean.

If an object is moving at a constant velocity 3 in the positive direction, then that
velocity is just the distance travelled divided by the time taken. That is

v =
distance moved

time taken

An object moving at constant velocity that moves 27 metres in 3 seconds has velocity

v =
27m

3s
= 9m/s.

When velocity is constant everything is easy.
However, in our falling object example, the object is being acted on by gravity and

its speed is definitely not constant. Instead of asking for THE velocity, let us examine
the “average velocity” of the object over a certain window of time. In this case the
formula is very similar

average velocity =
distance moved

time taken

But now I want to be more precise, instead write

average velocity =
difference in distance
difference in time

2 Getting the sign of velocity wrong is a very common error — you should be careful with it.
3 Newton’s first law of motion states that an object in motion moves with constant velocity unless

a force acts on it — for example gravity or friction.
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Now in spoken English we haven’t really changed much — the distance moved is the
difference in position, and the time taken is just the difference in time — but the latter
is more mathematically precise, and is easy to translate into the following equation

average velocity =
s(t2)− s(t1)

t2 − t1
.

This is the formula for the average velocity of our object between time t1 and t2.
The denominator is just the difference between these times and the numerator is the
difference in position — i.e. position at time t1 is just s(t1) and position at time t2 is
just s(t2).

So what is the average velocity of the falling ball between 1 and 1.1 seconds? All
we need to do now is plug some numbers into our formula

average velocity =
difference in position
difference in time

=
s(1.1)− s(1)

1.1− 1

=
4.9(1.1)2 − 4.9(1)

0.1
=

4.9× 0.21

0.1
= 10.29m/s

And we have our average velocity. However there is something we should notice about
this formula and it is easier to see if we sketch a graph of the function s(t)

So on the left I have drawn the graph and noted the times t = 1 and t = 1.1. The
corresponding positions on the axes and the two points on the curve. On the right I
have added a few more details. In particular I have noted the differences in position
and time, and the line joining the two points. Notice that the slope of this line is

slope =
change in y
change in x

=
difference in s
difference in t

which is precisely our expression for the average velocity.
Let us examine what happens to the average velocity as we look over smaller and

smaller time-windows.

time window average velocity
1 ≤ t ≤ 1.1 10.29

1 ≤ t ≤ 1.01 9.849
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1 ≤ t ≤ 1.001 9.8049

1 ≤ t ≤ 1.0001 9.80049

As we make the time interval smaller and smaller we find that the average velocity is
getting closer and closer to 9.8. We can be a little more precise by finding the average
velocity between t = 1 and t = 1 + h — this is very similar to what we did for tangent
lines.

average velocity =
s(1 + h)− s(1)

(1 + h)− 1

=
4.9(1 + h)2 − 4.9

h

=
9.8h+ 4.9h2

h
= 9.8 + 4.9h

Now as we squeeze this window between t = 1 and t = 1 + h down towards zero, the
average velocity becomes the “instantaneous velocity” — just as the slope of the secant
line becomes the slope of the tangent line. This is our second limit

v(1) = lim
h→0

s(1 + h)− s(1)

h
= 9.8

More generally we define the instantaneous velocity at time t = a to be the limit

v(a) = lim
h→0

s(a+ h)− s(a)

h

We read this as

The velocity at time a is equal to the limit as h goes to zero of s(a+h)−s(a)
h

.

While we have solved the problem stated at the start of this section, it is clear that
if we wish to solve similar problems that we will need to understand limits in a more
general and systematic way.

1.2.2 tt Exercises

Exercises — Stage 1
1. As they are used in this section, what is the difference between speed and

velocity?
2. Speed can never be negative; can it be zero?

3. Suppose you wake up in the morning in your room, then you walk two
kilometres to school, walk another two kilometres to lunch, walk four kilo-
metres to a coffee shop to study, then return to your room until the next
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morning. In the 24 hours from morning to morning, what was your average
velocity? (In CLP-1, we are considering functions of one variable. So, at
this stage, think of our whole world as being contained in the x-axis.)

4. Suppose you drop an object, and it falls for a few seconds. Which is larger: its
speed at the one second mark, or its average speed from the zero second mark
to the one second mark?

5. The position of an object at time t is given by s(t). Then its average velocity

over the time interval t = a to t = b is given by
s(b)− s(a)

b− a . Explain why

this fraction also gives the slope of the secant line of the curve y = s(t)
from the point t = a to the point t = b.

6. Below is the graph of the position of an object at time t. For what periods
of time is the object’s velocity positive?

t

y

1 2 3 4 5 6 7

y = s(t)

Exercises — Stage 2

7. Suppose the position of a body at time t (measured in seconds) is given by
s(t) = 3t2 + 5.

a What is the average velocity of the object from 3 seconds to 5 seconds?

b What is the velocity of the object at time t = 1?

8. Suppose the position of a body at time t (measured in seconds) is given by
s(t) =

√
t.

a What is the average velocity of the object from t = 1 second to t = 9
seconds?

b What is the velocity of the object at time t = 1?

c What is the velocity of the object at time t = 9?
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1.3q The Limit of a Function

1.3.1 tt The Limit of a Function

Before we come to definitions, let us start with a little notation for limits.

Definition 1.3.1

We will often write

lim
x→a

f(x) = L

which should be read as

The limit of f(x) as x approaches a is L.

The notation is just shorthand — we don’t want to have to write out long sentences
as we do our mathematics. Whenever you see these symbols you should think of that
sentence.

This shorthand also has the benefit of being mathematically precise (we’ll see this
later), and (almost) independent of the language in which the author is writing. A
mathematician who does not speak English can read the above formula and understand
exactly what it means.

In mathematics, like most languages, there is usually more than one way of writing
things and we can also write the above limit as

f(x)→ L as x→ a

This can also be read as above, but also as

f(x) goes to L as x goes to a

They mean exactly the same thing in mathematics, even though they might be written,
read and said a little differently.

To arrive at the definition of limit, we want to start 1 with a very simple example.

1 Well, we had two limits in the previous sections, so perhaps we really want to “restart” with a
very simple example.
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Example 1.3.2 A simple limit.

Consider the following function.

f(x) =


2x x < 3

9 x = 3

2x x > 3

This is an example of a piece-wise function a. That is, a function defined in several
pieces, rather than as a single formula. We evaluate the function at a particular value
of x on a case-by-case basis. Here is a sketch of it

Notice the two circles in the plot. One is open, ◦ and the other is closed •.

• A filled circle has quite a precise meaning — a filled circle at (x, y) means that
the function takes the value f(x) = y.

• An open circle is a little harder — an open circle at (3, 6) means that the point
(3, 6) is not on the graph of y = f(x), i.e. f(3) 6= 6. We should only use the open
circle where it is absolutely necessary in order to avoid confusion.

This function is quite contrived, but it is a very good example to start working with
limits more systematically. Consider what the function does close to x = 3. We already
know what happens exactly at 3 — f(x) = 9 — but I want to look at how the function
behaves very close to x = 3. That is, what does the function do as we look at a point
x that gets closer and closer to x = 3.
If we plug in some numbers very close to 3 (but not exactly 3) into the function we see
the following:

x 2.9 2.99 2.999 ◦ 3.001 3.01 3.1
f(x) 5.8 5.98 5.998 ◦ 6.002 6.02 6.2

So as x moves closer and closer to 3, without being exactly 3, we see that the function
moves closer and closer to 6. We can write this as

lim
x→3

f(x) = 6

That is
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Example 1.3.2

The limit as x approaches 3 of f(x) is 6.

So for x very close to 3, without being exactly 3, the function is very close to 6 — which
is a long way from the value of the function exactly at 3, f(3) = 9. Note well that the
behaviour of the function as x gets very close to 3 does not depend on the value of the
function at 3.

a We saw another piecewise function back in Example 0.4.5.

We now have enough to make an informal definition of a limit, which is actually
sufficient for most of what we will do in this text.

Definition 1.3.3 Informal definition of limit.

We write

lim
x→a

f(x) = L

if the value of the function f(x) is sure to be arbitrarily close to L whenever the
value of x is close enough to a, without a being exactly a.

a You may find the condition “without being exactly a” a little strange, but there is a good
reason for it. One very important application of limits, indeed the main reason we teach
the topic, is in the definition of derivatives (see Definition 2.2.1 in the next chapter). In

that definition we need to compute the limit lim
x→a

f(x)− f(a)

x− a . In this case the function

whose limit is being taken, namely f(x)−f(a)
x−a , is not defined at all at x = a.

In order to make this definition more mathematically correct, we need to make
the idea of “closer and closer” more precise — we do this in Section 1.7. It should
be emphasised that the formal definition and the contents of that section are optional
material.

For now, let us use the above definition to examine a more substantial example.

Example 1.3.4 lim
x→2

x− 2

x2 + x− 6
.

Let f(x) = x−2
x2+x−6

and consider its limit as x→ 2.

• We are really being asked

lim
x→2

x− 2

x2 + x− 6
= what?
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Example 1.3.4

• Now if we try to compute f(2) we get 0/0 which is undefined. The function is not
defined at that point — this is a good example of why we need limits. We have
to sneak up on these places where a function is not defined (or is badly behaved).

• Very important point: the fraction 0
0
is not ∞ and it is not 1, it is not defined.

We cannot ever divide by zero in normal arithmetic and obtain a consistent and
mathematically sensible answer. If you learned otherwise in high-school, you
should quickly unlearn it.

• Again, we can plug in some numbers close to 2 and see what we find

x 1.9 1.99 1.999 ◦ 2.001 2.01 2.1
f(x) 0.20408 0.20040 0.20004 ◦ 0.19996 0.19960 0.19608

• So it is reasonable to suppose that

lim
x→2

x− 2

x2 + x− 6
= 0.2

The previous two examples are nicely behaved in that the limits we tried to compute
actually exist. We now turn to two nastier examples 2 in which the limits we are
interested in do not exist.

Example 1.3.5 A bad example.

Consider the following function f(x) = sin(π/x). Find the limit as x→ 0 of f(x).
We should see something interesting happening close to x = 0 because f(x) is undefined
there. Using your favourite graph-plotting software you can see that the graph looks
roughly like

2 Actually, they are good examples, but the functions in them are nastier.
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Example 1.3.5

How to explain this? As x gets closer and closer to zero, π/x becomes larger and larger
(remember what the plot of y = 1/x looks like). So when you take sine of that number,
it oscillates faster and faster the closer you get to zero. Since the function does not
approach a single number as we bring x closer and closer to zero, the limit does not
exist.
We write this as

lim
x→0

sin
(π
x

)
does not exist

It’s not very inventive notation, however it is clear. We frequently abbreviate “does not
exist” to “DNE” and rewrite the above as

lim
x→0

sin
(π
x

)
= DNE

In the following example, the limit we are interested in does not exist. However the
way in which things go wrong is quite different from what we just saw.

Example 1.3.6 A non-existent limit.

Consider the function

f(x) =


x x < 2

−1 x = 2

x+ 3 x > 2

• The plot of this function looks like this

• So let us plug in numbers close to 2.

x 1.9 1.99 1.999 ◦ 2.001 2.01 2.1
f(x) 1.9 1.99 1.999 ◦ 5.001 5.01 5.1

45



Limits 1.3 The Limit of a Function

Example 1.3.6

• This isn’t like before. Now when we approach from below, we seem to be getting
closer to 2, but when we approach from above we seem to be getting closer to 5.
Since we are not approaching the same number the limit does not exist.

lim
x→2

f(x) = DNE

While the limit in the previous example does not exist, the example serves to intro-
duce the idea of “one-sided limits”. For example, we can say that

As x moves closer and closer to two from below the function approaches 2.

and similarly

As x moves closer and closer to two from above the function approaches 5.

Definition 1.3.7 Informal definition of one-sided limits.

We write

lim
x→a−

f(x) = K

when the value of f(x) gets closer and closer to K when x < a and x moves
closer and closer to a. Since the x-values are always less than a, we say that x
approaches a from below. This is also often called the left-hand limit since the
x-values lie to the left of a on a sketch of the graph.
We similarly write

lim
x→a+

f(x) = L

when the value of f(x) gets closer and closer to L when x > a and x moves closer
and closer to a. For similar reasons we say that x approaches a from above, and
sometimes refer to this as the right-hand limit.

Note — be careful to include the superscript + and − when writing these limits. You
might also see the following notations:

lim
x→a+

f(x) = lim
x→a+

f(x) = lim
x↓a

f(x) = lim
x↘a

f(x) = L right-hand limit

lim
x→a−

f(x) = lim
x→a−

f(x) = lim
x↑a

f(x) = lim
x↗a

f(x) = L left-hand limit

but please use with the notation in Definition 1.3.7 above.
Given these two similar notions of limits, when are they the same? The following

theorem tell us.
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Theorem 1.3.8 Limits and one sided limits.

lim
x→a

f(x) = L if and only if lim
x→a−

f(x) = L and lim
x→a+

f(x) = L

Notice that this is really two separate statements because of the “if and only if”

• If the limit of f(x) as x approaches a exists and is equal to L, then both the
left-hand and right-hand limits exist and are equal to L. AND,

• If the left-hand and right-hand limits as x approaches a exist and are equal, then
the limit as x approaches a exists and is equal to the one-sided limits.

That is — the limit of f(x) as x approaches a will only exist if it doesn’t matter which
way we approach a (either from left or right) AND if we get the same one-sided limits
when we approach from left and right, then the limit exists.

We can rephrase the above by writing the contrapositives 3 of the above statements.

• If either of the left-hand and right-hand limits as x approaches a fail to exist, or if
they both exist but are different, then the limit as x approaches a does not exist.
AND,

• If the limit as x approaches a does not exist, then the left-hand and right-hand
limits are either different or at least one of them does not exist.

Here is another limit example

Example 1.3.9 Left- and right-handed limits.

Consider the following two functions and compute their limits and one-sided limits as
x approaches 1:

3 Given a statement of the form “If A then B”, the contrapositive is “If not B then not A”. They are
logically equivalent — if one is true then so is the other. We must take care not to confuse the
contrapositive with the converse. Given “If A then B”, the converse is “If B then A”. These are
definitely not the same. To see this consider the statement “If he is Shakespeare then he is dead.”
The converse is “If he is dead then he is Shakespeare” — clearly garbage since there are plenty
of dead people who are not Shakespeare. The contrapositive is “If he is not dead then he is not
Shakespeare” — which makes much more sense.
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Example 1.3.9

These are a little different from our previous examples, in that we do not have formulas,
only the sketch. But we can still compute the limits.

• Function on the left — f(x):

lim
x→1−

f(x) = 2 lim
x→1+

f(x) = 2

so by the previous theorem

lim
x→1

f(x) = 2

• Function on the right — g(t):

lim
t→1−

g(t) = 2 and lim
t→1+

g(t) = −2

so by the previous theorem

lim
t→1

g(t) = DNE

We have seen 2 ways in which a limit does not exist — in one case the function
oscillated wildly, and in the other there was some sort of “jump” in the function, so that
the left-hand and right-hand limits were different.

There is a third way that we must also consider. To describe this, consider the
following four functions:

Figure 1.3.10

None of these functions are defined at x = a, nor do the limits as x approaches a
exist. However we can say more than just “the limits do not exist”.

Notice that the value of function 1 can be made bigger and bigger as we bring x
closer and closer to a. Similarly the value of the second function can be made arbitrarily
large and negative (i.e. make it as big a negative number as we want) by bringing x
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closer and closer to a. Based on this observation we have the following definition.
Definition 1.3.11

We write

lim
x→a

f(x) = +∞

when the value of the function f(x) becomes arbitrarily large and positive as x
gets closer and closer to a, without being exactly a.
Similarly, we write

lim
x→a

f(x) = −∞

when the value of the function f(x) becomes arbitrarily large and negative as x
gets closer and closer to a, without being exactly a.

A good examples of the above is

lim
x→0

1

x2
= +∞ lim

x→0
− 1

x2
= −∞

IMPORTANT POINT: Please do not think of “+∞” and “−∞” in these statements
as numbers. You should think of lim

x→a
f(x) = +∞ and lim

x→a
f(x) = −∞ as special cases

of lim
x→a

f(x) = DNE. The statement

lim
x→a

f(x) = +∞

does not say “the limit of f(x) as x approaches a is positive infinity”. It says “the function
f(x) becomes arbitrarily large as x approaches a”. These are different statements;
remember that ∞ is not a number 4.

Now consider functions 3 and 4 in Figure 1.3.10. Here we can make the value of the
function as big and positive as we want (for function 3) or as big and negative as we
want (for function 4) but only when x approaches a from one side. With this in mind
we can construct similar notation and a similar definition:

Definition 1.3.12

We write

lim
x→a+

f(x) = +∞

when the value of the function f(x) becomes arbitrarily large and positive as x

4 One needs to be very careful making statements about infinity. At some point in our lives we get
around to asking ourselves “what is the biggest number”, and we realise there isn’t one. That is,
we can go on counting integer after integer, for ever and not stop. Indeed the set of integers is
the first infinite thing we really encounter. It is an example of a countably infinite set. The set
of real-numbers is actually much bigger and is uncountably infinite. In fact there are an infinite
number of different sorts of infinity! Much of the theory of infinite sets was developed by Georg
Cantor; we mentioned him back in Section 0.2 and he is well worth googling.
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gets closer and closer to a from above (equivalently — from the right), without
being exactly a.
Similarly, we write

lim
x→a+

f(x) = −∞

when the value of the function f(x) becomes arbitrarily large and negative as x
gets closer and closer to a from above (equivalently — from the right), without
being exactly a.
The notation

lim
x→a−

f(x) = +∞ lim
x→a−

f(x) = −∞

has a similar meaning except that limits are approached from below / from the
left.

So for function 3 we have

lim
x→a−

f(x) = +∞ lim
x→a+

f(x) = some positive number

and for function 4

lim
x→a−

f(x) = some positive number lim
x→a+

f(x) = −∞

More examples:

Example 1.3.13 lim
x→π

1

sin(x)
.

Consider the function

g(x) =
1

sin(x)

Find the one-sided limits of this function as x→ π.
Probably the easiest way to do this is to first plot the graph of sin(x) and 1/x and then
think carefully about the one-sided limits:
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Example 1.3.13

• As x → π from the left, sin(x) is a small positive number that is getting closer
and closer to zero. That is, as x→ π−, we have that sin(x)→ 0 through positive
numbers (i.e. from above). Now look at the graph of 1/x, and think what happens
as we move x→ 0+, the function is positive and becomes larger and larger.

So as x→ π from the left, sin(x)→ 0 from above, and so 1/ sin(x)→ +∞.

• By very similar reasoning, as x → π from the right, sin(x) is a small negative
number that gets closer and closer to zero. So as x→ π from the right, sin(x)→ 0
through negative numbers (i.e. from below) and so 1/ sin(x) to −∞.

Thus

lim
x→π−

1

sin(x)
= +∞ lim

x→π+

1

sin(x)
= −∞

Again, we can make Definitions 1.3.11 and 1.3.12 into mathematically precise formal
definitions using techniques very similar to those in the optional Section 1.7. This is
not strictly necessary for this course.

Up to this point we explored limits by sketching graphs or plugging values into a
calculator. This was done to help build intuition, but it is not really the basis of a
systematic method for computing limits. We have also avoided more formal approaches
5 since we do not have time in the course to go into that level of detail and (arguably)
we don’t need that detail to achieve the aims of the course. Thankfully we can develop
a more systematic approach based on the idea of building up complicated limits from
simpler ones by examining how limits interact with the basic operations of arithmetic.

1.3.2 tt Exercises

Exercises — Stage 1
1. Given the function shown below, evaluate the following:

a lim
x→−2

f(x)

b lim
x→0

f(x)

c lim
x→2

f(x)

5 The formal approaches are typically referred to as “epsilon-delta limits” or “epsilon-delta proofs”
since the symbols ε and δ are traditionally used throughout. Take a peek at Section 1.7 to see.
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x

y

y = f(x)

−2 2

−2

1

2

2. Given the function shown below, evaluate lim
x→0

f(x).

x

y y = f(x)

−1

1

3. Given the function shown below, evaluate:

a lim
x→−1−

f(x)

b lim
x→−1+

f(x)

c lim
x→−1

f(x)

d lim
x→−2+

f(x)

e lim
x→2−

f(x)
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x

y

y = f(x)

−2 −1 1 2

−2

2

4. Draw a curve y = f(x) with lim
x→3

f(x) = f(3) = 10.

5. Draw a curve y = f(x) with lim
x→3

f(x) = 10 and f(3) = 0.

6. Suppose lim
x→3

f(x) = 10. True or false: f(3) = 10.

7. Suppose f(3) = 10. True or false: lim
x→3

f(x) = 10.

8. Suppose f(x) is a function defined on all real numbers, and lim
x→−2

f(x) = 16.

What is lim
x→−2−

f(x)?

9. Suppose f(x) is a function defined on all real numbers, and lim
x→−2−

f(x) =

16. What is lim
x→−2

f(x)?

Exercises — Stage 2 In Questions 1.3.2.10 through 1.3.2.17, evaluate the given
limits. If you aren’t sure where to begin, it’s nice to start by drawing the function.

10. lim
t→0

sin t

11. lim
x→0+

log x

12. lim
y→3

y2

13. lim
x→0−

1

x

14. lim
x→0

1

x
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15. lim
x→0

1

x2

16. lim
x→3

1

10

17. lim
x→3

f(x), where f(x) =

{
sinx x ≤ 2.9

x2 x > 2.9
.

1.4q Calculating Limits with Limit Laws

1.4.1 tt Calculating Limits with Limit Laws

Think back to the functions you know and the sorts of things you have been asked to
draw, factor and so on. Then they are all constructed from simple pieces, such as

• constants — c

• monomials — xn

• trigonometric functions — sin(x), cos(x) and tan(x)

These are the building blocks from which we construct functions. Soon we will add a
few more functions to this list, especially the exponential function and various inverse
functions.

We then take these building blocks and piece them together using arithmetic

• addition and subtraction — f(x) = g(x) + h(x) and f(x) = g(x)− h(x)

• multiplication — f(x) = g(x) · h(x)

• division — f(x) = g(x)
h(x)

• substitution — f(x) = g(h(x)) — this is also called the composition of g with h.

The idea of building up complicated functions from simpler pieces was discussed in
Section 0.5.

What we will learn in this section is how to compute the limits of the basic building
blocks and then how we can compute limits of sums, products and so forth using “limit
laws”. This process allows us to compute limits of complicated functions, using very
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simple tools and without having to resort to “plugging in numbers” or “closer and closer”
or “ε− δ arguments”.

In the examples we saw above, almost all the interesting limits happened at points
where the underlying function was badly behaved — where it jumped, was not defined
or blew up to infinity. In those cases we had to be careful and think about what was
happening. Thankfully most functions we will see do not have too many points at which
these sorts of things happen.

For example, polynomials do not have any nasty jumps and are defined everywhere
and do not “blow up”. If you plot them, they look smooth 1. Polynomials and limits
behave very nicely together, and for any polynomial P (x) and any real number a we
have that

lim
x→a

P (x) = P (a)

That is — to evaluate the limit we just plug in the number. We will build up to this
result over the next few pages.

Let us start with the two easiest limits 2

Theorem 1.4.1 Easiest limits.

Let a, c ∈ R. The following two limits hold

lim
x→a

c = c and lim
x→a

x = a.

Since we have not seen too many theorems yet, let us examine it carefully piece by
piece.

• Let a, c ∈ R — just as was the case for definitions, we start a theorem by defining
terms and setting the scene. There is not too much scene to set: the symbols a
and c are real numbers.

• The following two limits hold — this doesn’t really contribute much to the
statement of the theorem, it just makes it easier to read.

• lim
x→a

c = c — when we take the limit of a constant function (for example think of
c = 3), the limit is (unsurprisingly) just that same constant.

• lim
x→a

x = a — as we noted above for general polynomials, the limit of the function
f(x) = x as x approaches a given point a, is just a. This says something quite
obvious — as x approaches a, x approaches a (if you are not convinced then sketch
the graph).

1 We have used this term in an imprecise way, but it does have a precise mathematical meaning.
2 Though it lies outside the scope of the course, you can find the formal ε-δ proof of this result at

the end of Section 1.7.
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Armed with only these two limits, we cannot do very much. But combining these
limits with some arithmetic we can do quite a lot. For a moment, take a step back
from limits for a moment and think about how we construct functions. To make the
discussion a little more precise think about how we might construct the function

h(x) =
2x− 3

x2 + 5x− 6

If we want to compute the value of the function at x = 2, then we would

• compute the numerator at x = 2

• compute the denominator at x = 2

• compute the ratio

Now to compute the numerator we

• take x and multiply it by 2

• subtract 3 to the result

While for the denominator

• multiply x by x

• multiply x by 5

• add these two numbers and subtract 6

This sequence of operations can be represented pictorially as the tree shown in Fig-
ure 1.4.2 below.

Figure 1.4.2
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Such trees were discussed in Section 0.5 (now is not a bad time to quickly review
that section before proceeding). The point here is that in order to compute the value
of the function we just repeatedly add, subtract, multiply and divide constants and x.

To compute the limit of the above function at x = 2 we can do something very
similar. From the previous theorem we know how to compute

lim
x→2

c = c and lim
x→2

x = 2

and the next theorem will tell us how to stitch together these two limits using the
arithmetic we used to construct the function.

Theorem 1.4.3 Arithmetic of limits.

Let a, c ∈ R, let f(x) and g(x) be defined for all x’s that lie in some interval
about a (but f, g need not be defined exactly at a).

lim
x→a

f(x) = F lim
x→a

g(x) = G

exist with F,G ∈ R. Then the following limits hold

• lim
x→a

(f(x) + g(x)) = F +G — limit of the sum is the sum of the limits.

• lim
x→a

(f(x)− g(x)) = F −G — limit of the difference is the difference of the
limits.

• lim
x→a

cf(x) = cF .

• lim
x→a

(f(x) · g(x)) = F ·G — limit of the product is the product of limits.

• If G 6= 0 then lim
x→a

f(x)

g(x)
=
F

G
and, in particular, lim

x→a
1

g(x)
=

1

G
.

Note — be careful with this last one — the denominator cannot be zero.

The above theorem shows that limits interact very simply with arithmetic. If you
are asked to find the limit of a sum then the answer is just the sum of the limits.
Similarly the limit of a product is just the product of the limits.

How do we apply the above theorem to the rational function h(x) we defined above?
Here is a warm-up example:

Example 1.4.4 Using limit laws.

You are given two functions f, g (not explicitly) which have the following limits as x
approaches 1:

lim
x→1

f(x) = 3 and lim
x→1

g(x) = 2
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Example 1.4.4

Using the above theorem we can compute

lim
x→1

3f(x) = 3× 3 = 9

lim
x→1

3f(x)− g(x) = 3× 3− 2 = 7

lim
x→1

f(x)g(x) = 3× 2 = 6

lim
x→1

f(x)

f(x)− g(x)
=

3

3− 2
= 3

Another simple example

Example 1.4.5 More using limit laws.

Find lim
x→3

4x2 − 1

We use the arithmetic of limits:

lim
x→3

4x2 − 1 =
(

lim
x→3

4x2
)
− lim

x→3
1 difference of limits

=
(

lim
x→3

4 · lim
x→3

x2
)
− lim

x→3
1 product of limits

= 4 ·
(

lim
x→3

x2
)
− 1 limit of constant

= 4 ·
(

lim
x→3

x
)
·
(

lim
x→3

x
)
− 1 product of limits

= 4 · 3 · 3− 1 limit of x
= 36− 1

= 35

This is an excruciating level of detail, but when you first use this theorem and
try some examples it is a good idea to do things step by step by step until you are
comfortable with it.

Example 1.4.6 Yet more using limit laws.

Yet another limit — compute lim
x→2

x

x− 1
.

To apply the arithmetic of limits, we need to examine numerator and denominator
separately and make sure the limit of the denominator is non-zero. Numerator first:

lim
x→2

x = 2 limit of x

and now the denominator:

lim
x→2

x− 1 =
(

lim
x→2

x
)
−
(

lim
x→2

1
)

difference of limits
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Example 1.4.6

= 2− 1 limit of x and limit of constant = 1

Since the limit of the denominator is non-zero we can put it back together to get

lim
x→2

x

x− 1
=

lim
x→2

x

lim
x→2

(x− 1)

=
2

1
= 2

In the next example we show that many different things can happen if the limit of
the denominator is zero.

Example 1.4.7 Be careful with limits of ratios.

We must be careful when computing the limit of a ratio — it is the ratio of the limits
except when the limit of the denominator is zero. When the limit of the denominator
is zero Theorem 1.4.3 does not apply and a few interesting things can happen

• If the limit of the numerator is non-zero then the limit of the ratio does not exist

lim
x→a

f(x)

g(x)
= DNE when lim

x→a
f(x) 6= 0 and lim

x→a
g(x) = 0

For example, lim
x→0

1

x2
= DNE.

• If the limit of the numerator is zero then the above theorem does not give us
enough information to decide whether or not the limit exists. It is possible that

◦ the limit does not exist, eg. lim
x→0

x

x2
= lim

x→0

1

x
= DNE

◦ the limit is ±∞, eg. lim
x→0

x2

x4
= lim

x→0

1

x2
= +∞ or lim

x→0

−x2

x4
= lim

x→0

−1

x2
= −∞.

◦ the limit is zero, eg. lim
x→0

x2

x
= 0

◦ the limit exists and is non-zero, eg. lim
x→0

x

x
= 1

Now while the above examples are very simple and a little contrived they serve to
illustrate the point we are trying to make — be careful if the limit of the denominator
is zero.

We now have enough theory to return to our rational function and compute its limit
as x approaches 2.
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Example 1.4.8 More on limits of ratios.

Let h(x) =
2x− 3

x2 + 5x− 6
and find its limit as x approaches 2.

Since this is the limit of a ratio, we compute the limit of the numerator and denominator
separately. Numerator first:

lim
x→2

2x− 3 =
(

lim
x→2

2x
)
−
(

lim
x→2

3
)

difference of limits

= 2 ·
(

lim
x→2

x
)
− 3 product of limits and limit of constant

= 2 · 2− 3 limits of x
= 1

Denominator next:

lim
x→2

x2 + 5x− 6 =
(

lim
x→2

x2
)

+
(

lim
x→2

5x
)
−
(

lim
x→2

6
)

sum of limits

=
(

lim
x→2

x
)
·
(

lim
x→2

x
)

+ 5 ·
(

lim
x→2

x
)
− 6

product of limits and limit of constant
= 2 · 2 + 5 · 2− 6 limits of x
= 8

Since the limit of the denominator is non-zero, we can obtain our result by taking the
ratio of the separate limits.

lim
x→2

2x− 3

x2 + 5x− 6
=

lim
x→2

2x− 3

lim
x→2

x2 + 5x− 6
=

1

8

The above works out quite simply. However, if we were to take the limit as x→ 1 then
things are a bit harder. The limit of the numerator is:

lim
x→1

2x− 3 = 2 · 1− 3 = −1

(we have not listed all the steps). And the limit of the denominator is

lim
x→1

x2 + 5x− 6 = 1 · 1 + 5− 6 = 0

Since the limit of the numerator is non-zero, while the limit of the denominator is zero,
the limit of the ratio does not exist.

lim
x→1

2x− 3

x2 + 5x− 6
= DNE
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It is IMPORTANT TO NOTE that it is not correct to write

lim
x→1

2x− 3

x2 + 5x− 6
=
−1

0
= DNE

Because we can only write

lim
x→a

f(x)

g(x)
=

lim
x→a

f(x)

lim
x→a

g(x)
= something

when the limit of the denominator is non-zero (see Example 1.4.7 above).
With a little care you can use the arithmetic of limits to obtain the following rules

for limits of powers of functions and limits of roots of functions:

Theorem 1.4.9 More arithmetic of limits — powers and roots.

Let n be a positive integer, let a ∈ R and let f be a function so that

lim
x→a

f(x) = F

for some real number F . Then the following holds

lim
x→a

(f(x))n =
(

lim
x→a

f(x)
)n

= F n

so that the limit of a power is the power of the limit. Similarly, if

• n is an even number and F > 0, or

• n is an odd number and F is any real number

then

lim
x→a

(f(x))1/n =
(

lim
x→a

f(x)
)1/n

= F 1/n

More generallya, if F > 0 and p is any real number,

lim
x→a

(f(x))p =
(

lim
x→a

f(x)
)p

= F p

a You may not know the definition of the power bp when p is not a rational number, so here
it is. If b > 0 and p is any real number, then bp is the limit of br as r approaches p through
rational numbers. We won’t do so here, but it is possible to prove that the limit exists.

Notice that we have to be careful when taking roots of limits that might be negative
numbers. To see why, consider the case n = 2, the limit

lim
x→4

x1/2 = 41/2 = 2
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lim
x→4

(−x)1/2 = (−4)1/2 = not a real number

In order to evaluate such limits properly we need to use complex numbers which are
beyond the scope of this text.

Also note that the notation x1/2 refers to the positive square root of x. While 2 and
(−2) are both square-roots of 4, the notation 41/2 means 2. This is something we must
be careful of 3.

So again — let us do a few examples and carefully note what we are doing.

Example 1.4.10 lim
x→2

(4x2 − 3)1/3.

lim
x→2

(4x2 − 3)1/3 =
(

(lim
x→2

4x2)− (lim
x→2

3)
)1/3

=
(
4 · 22 − 3

)1/3

= (16− 3)1/3

= 131/3

By combining the last few theorems we can make the evaluation of limits of poly-
nomials and rational functions much easier:

Theorem 1.4.11 Limits of polynomials and rational functions.

Let a ∈ R, let P (x) be a polynomial and let R(x) be a rational function. Then

lim
x→a

P (x) = P (a)

and provided R(x) is defined at x = a then

lim
x→a

R(x) = R(a)

If R(x) is not defined at x = a then we are not able to apply this result.

So the previous examples are now much easier to compute:

lim
x→2

2x− 3

x2 + 5x− 6
=

4− 3

4 + 10− 6
=

1

8

lim
x→2

(4x2 − 1) = 16− 1 = 15

lim
x→2

x

x− 1
=

2

2− 1
= 2

3 Like ending sentences in prepositions — “This is something up with which we will not put.” This
quote is attributed to Churchill though there is some dispute as to whether or not he really said
it.
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It is clear that limits of polynomials are very easy, while those of rational functions
are easy except when the denominator might go to zero. We have seen examples where
the resulting limit does not exist, and some where it does. We now work to explain this
more systematically. The following example demonstrates that it is sometimes possible
to take the limit of a rational function to a point at which the denominator is zero.
Indeed we must be able to do exactly this in order to be able to define derivatives in
the next chapter.

Example 1.4.12 Numerator and denominator both go to 0.

Consider the limit

lim
x→1

x3 − x2

x− 1
.

If we try to apply the arithmetic of limits then we compute the limits of the numerator
and denominator separately

lim
x→1

x3 − x2 = 1− 1 = 0

lim
x→1

x− 1 = 1− 1 = 0

Since the denominator is zero, we cannot apply our theorem and we are, for the moment,
stuck. However, there is more that we can do here — the hint is that the numerator
and denominator both approach zero as x approaches 1. This means that there might
be something we can cancel.
So let us play with the expression a little more before we take the limit:

x3 − x2

x− 1
=
x2(x− 1)

x− 1
= x2 provided x 6= 1.

So what we really have here is the following function

x3 − x2

x− 1
=

{
x2 x 6= 1

undefined x = 1

If we plot the above function the graph looks exactly the same as y = x2 except that
the function is not defined at x = 1 (since at x = 1 both numerator and denominator
are zero).
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Example 1.4.12

When we compute a limit as x → a, the value of the function exactly at x = a is
irrelevant. We only care what happens to the function as we bring x very close to a.
So for the above problem we can write

x3 − x2

x− 1
= x2 when x is close to 1 but not at x = 1

So the limit as x→ 1 of the function is the same as the limit lim
x→1

x2 since the functions
are the same except exactly at x = 1. By this reasoning we get

lim
x→1

x3 − x2

x− 1
= lim

x→1
x2 = 1

The reasoning in the above example can be made more general:

Theorem 1.4.13

If f(x) = g(x) except when x = a then lim
x→a

f(x) = lim
x→a

g(x) provided the limit of
g exists.

How do we know when to use this theorem? The big clue is that when we try to
compute the limit in a naive way, we end up with 0

0
. We know that 0

0
does not make

sense, but it is an indication that there might be a common factor between numerator
and denominator that can be cancelled. In the previous example, this common factor
was (x− 1).

Example 1.4.14 Another numerator and denominator both go to 0 limit.

Using this idea compute

lim
h→0

(1 + h)2 − 1

h

• First we should check that we cannot just substitute h = 0 into this — clearly we
cannot because the denominator would be 0.

• But we should also check the numerator to see if we have 0
0
, and we see that the

numerator gives us 1− 1 = 0.

• Thus we have a hint that there is a common factor that we might be able to
cancel. So now we look for the common factor and try to cancel it.

(1 + h)2 − 1

h
=

1 + 2h+ h2 − 1

h
expand
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Example 1.4.14

=
2h+ h2

h
=
h(2 + h)

h
factor and then cancel

= 2 + h

• Thus we really have that

(1 + h)2 − 1

h
=

{
2 + h h 6= 0

undefined h = 0

and because of this

lim
h→0

(1 + h)2 − 1

h
= lim

h→0
2 + h

= 2

Of course — we have written everything out in great detail here and that is way
more than is required for a solution to such a problem. Let us do it again a little more
succinctly.

Example 1.4.15 lim
h→0

(1 + h)2 − 1

h
.

Compute the following limit:

lim
h→0

(1 + h)2 − 1

h

If we try to use the arithmetic of limits, then we see that the limit of the numerator
and the limit of the denominator are both zero. Hence we should try to factor them
and cancel any common factor. This gives

lim
h→0

(1 + h)2 − 1

h
= lim

h→0

1 + 2h+ h2 − 1

h
= lim

h→0
2 + h

= 2

Notice that even though we did this example carefully above, we have still written
some text in our working explaining what we have done. You should always think about
the reader and if in doubt, put in more explanation rather than less. We could make
the above example even more terse
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Example 1.4.16 Redoing previous example with fewer words.

Compute the following limit:

lim
h→0

(1 + h)2 − 1

h

Numerator and denominator both go to zero as h→ 0. So factor and simplify:

lim
h→0

(1 + h)2 − 1

h
= lim

h→0

1 + 2h+ h2 − 1

h
= lim

h→0
2 + h = 2

A slightly harder one now

Example 1.4.17 A harder limit with cancellations.

Compute the limit

lim
x→0

x√
1 + x− 1

If we try to use the arithmetic of limits we get

lim
x→0

x = 0

lim
x→0

√
1 + x− 1 =

√
lim
x→0

1 + x− 1 = 1− 1 = 0

So doing the naive thing we’d get 0/0. This suggests a common factor that can be
cancelled. Since the numerator and denominator are not polynomials we have to try
other tricks a. We can simplify the denominator

√
1 + x − 1 a lot, and in particular

eliminate the square root, by multiplying it by its conjugate
√

1 + x+ 1.

x√
1 + x− 1

=
x√

1 + x− 1
×
√

1 + x+ 1√
1 + x+ 1

multiply by
conjugate
conjugate

= 1

=
x
(√

1 + x+ 1
)(√

1 + x− 1
) (√

1 + x+ 1
) bring things together

=
x
(√

1 + x+ 1
)(√

1 + x
)2 − 1 · 1

since (a−b)(a+b) = a2−b2

=
x
(√

1 + x+ 1
)

1 + x− 1
clean up a little

=
x
(√

1 + x+ 1
)

x

=
√

1 + x+ 1 cancel the x
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Example 1.4.17

So now we have

lim
x→0

x√
1 + x− 1

= lim
x→0

√
1 + x+ 1

=
√

1 + 0 + 1 = 2

a While these tricks are useful (and even cuteb — this footnote is better in the online edition),
Taylor polynomials (see Section 3.4) give us a more systematic way of approaching this problem.

How did we know what to multiply by? Our function was of the form
a√
b− c

so, to eliminate the square root from the denominator, we employ a trick — we multiply
by 1. Of course, multiplying by 1 doesn’t do anything. But if you multiply by 1 carefully
you can leave the value the same, but change the form of the expression. More precisely

a√
b− c

=
a√
b− c

· 1

=
a√
b− c

·
√
b+ c√
b+ c︸ ︷︷ ︸
=1

=
a
(√

b+ c
)

(√
b− c

)(√
b+ c

) expand denominator carefully

=
a
(√

b+ c
)

√
b ·
√
b− c

√
b+ c

√
b− c · c

do some cancellation

=
a
(√

b+ c
)

b− c2

Now the numerator contains roots, but the denominator is just a polynomial.
Before we move on to limits at infinity, there is one more theorem to see. While

the scope of its application is quite limited, it can be extremely useful. It is called a
sandwich theorem or a squeeze theorem for reasons that will become apparent.

Sometimes one is presented with an unpleasant ugly function such as

f(x) = x2 sin(π/x)

It is a fact of life, that not all the functions that are encountered in mathematics will
be elegant and simple; this is especially true when the mathematics gets applied to real
world problems. One just has to work with what one gets. So how can we compute

lim
x→0

x2 sin(π/x)?
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Since it is the product of two functions, we might try

lim
x→0

x2 sin(π/x) =
(

lim
x→0

x2
)
·
(

lim
x→0

sin(π/x)
)

= 0 ·
(

lim
x→0

sin(π/x)
)

= 0

But we just cheated — we cannot use the arithmetic of limits theorem here, because
the limit

lim
x→0

sin(π/x) = DNE

does not exist. Now we did see the function sin(π/x) before (in Example 1.3.5), so you
should go back and look at it again. Unfortunately the theorem “the limit of a product
is the product of the limits” only holds when the limits you are trying to multiply
together actually exist. So we cannot use it.

However, we do see that the function naturally decomposes into the product of two
pieces — the functions x2 and sin(π/x). We have sketched the two functions in the
figure on the left below.

While x2 is a very well behaved function and we know quite a lot about it, the
function sin(π/x) is quite ugly. One of the few things we can say about it is the
following

−1 ≤ sin(π/x) ≤ 1 provided x 6= 0

But if we multiply this expression by x2 we get (because x2 ≥ 0)

−x2 ≤ x2 sin(π/x) ≤ x2 provided x 6= 0

and we have sketched the result in the figure above (on the right). So the function we
are interested in is squeezed or sandwiched between the functions x2 and −x2.

If we focus in on the picture close to x = 0 we see that x approaches 0, the functions
x2 and −x2 both approach 0. Further, because x2 sin(π/x) is sandwiched between them,
it seems that it also approaches 0.

The following theorem tells us that this is indeed the case:
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Theorem 1.4.18 Squeeze theorem (or sandwich theorem or pinch theorem).

Let a ∈ R and let f, g, h be three functions so that

f(x) ≤ g(x) ≤ h(x)

for all x in an interval around a, except possibly exactly at x = a. Then if

lim
x→a

f(x) = lim
x→a

h(x) = L

then it is also the case that

lim
x→a

g(x) = L

Using the above theorem we can compute the limit we want and write it up nicely.

Example 1.4.19 lim
x→0

x2 sin(π/x).

Compute the limit
lim
x→0

x2 sin(π/x)

Since −1 ≤ sin(θ) ≤ 1 for all real numbers θ, we have

−1 ≤ sin(π/x) ≤ 1 for all x 6= 0

Multiplying the above by x2 we see that

−x2 ≤ x2 sin(π/x) ≤ x2 for all x 6= 0

Since lim
x→0

x2 = lim
x→0

(−x2) = 0 by the sandwich (or squeeze or pinch) theorem we have

lim
x→0

x2 sin(π/x) = 0

Notice how we have used “words”. We have remarked on this several times already
in the text, but we will keep mentioning it. It is okay to use words in your answers
to maths problems — and you should do so! These let the reader know what you are
doing and help you understand what you are doing.

Example 1.4.20 Another sandwich theorem example.

Let f(x) be a function such that 1 ≤ f(x) ≤ x2 − 2x+ 2. What is lim
x→1

f(x)?
We are already supplied with an inequality, so it is likely that it is going to help us.
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Example 1.4.20

We should examine the limits of each side to see if they are the same:

lim
x→1

1 = 1

lim
x→1

x2 − 2x+ 2 = 1− 2 + 2 = 1

So we see that the function f(x) is trapped between two functions that both approach
1 as x→ 1. Hence by the sandwich / pinch / squeeze theorem, we know that

lim
x→1

f(x) = 1

To get some intuition as to why the squeeze theorem is true, consider when x is very
very close to a. In particular, consider when x is sufficiently close to a that we know
h(x) is within 10−6 of L and that f(x) is also within 10−6 of L. That is

|h(x)− L| < 10−6 and |f(x)− L| < 10−6.

This means that

L− 10−6 < f(x) ≤ h(x) < L+ 10−6

since we know that f(x) ≤ h(x).
But now by the hypothesis of the squeeze theorem we know that f(x) ≤ g(x) ≤ h(x)

and so we have

L− 10−6 < f(x) ≤ g(x) ≤ h(x) < L+ 10−6

And thus we know that
L− 10−6 ≤ g(x) ≤ L+ 10−6

That is g(x) is also within 10−6 of L.
In this argument our choice of 10−6 was arbitrary, so we can really replace 10−6 with

any small number we like. Hence we know that we can force g(x) as close to L as we
like, by bringing x sufficiently close to a. We give a more formal and rigorous version
of this argument at the end of Section 1.9.

1.4.2 tt Exercises

Exercises — Stage 1

1. Suppose lim
x→a

f(x) = 0 and lim
x→a

g(x) = 0. Which of the following limits can
you compute, given this information?

a lim
x→a

f(x)

2
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b lim
x→a

2

f(x)

c lim
x→a

f(x)

g(x)

d lim
x→a

f(x)g(x)

2. Give two functions f(x) and g(x) that satisfy lim
x→3

f(x) = lim
x→3

g(x) = 0 and

lim
x→3

f(x)

g(x)
= 10.

3. Give two functions f(x) and g(x) that satisfy lim
x→3

f(x) = lim
x→3

g(x) = 0 and

lim
x→3

f(x)

g(x)
= 0.

4. Give two functions f(x) and g(x) that satisfy lim
x→3

f(x) = lim
x→3

g(x) = 0 and

lim
x→3

f(x)

g(x)
=∞.

5. Suppose lim
x→a

f(x) = lim
x→a

g(x) = 0. What are the possible values of lim
x→a

f(x)

g(x)
?

Exercises — Stage 2 For Questions 1.4.2.6 through 1.4.2.41, evaluate the given
limits.

6. lim
t→10

2(t− 10)2

t

7. lim
y→0

(y + 1)(y + 2)(y + 3)

cos y

8. lim
x→3

(
4x− 2

x+ 2

)4

9. ∗. lim
t→−3

(
1− t
cos(t)

)

10. ∗. lim
h→0

(2 + h)2 − 4

2h

11. ∗. lim
t→−2

(
t− 5

t+ 4

)
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12. ∗. lim
x→1

√
5x3 + 4

13. ∗. lim
t→−1

(
t− 2

t+ 3

)
14. ∗. lim

x→1

log(1 + x)− x
x2

15. ∗. lim
x→2

(
x− 2

x2 − 4

)

16. ∗. lim
x→4

x2 − 4x

x2 − 16

17. ∗. lim
x→2

x2 + x− 6

x− 2

18. ∗. lim
x→−3

x2 − 9

x+ 3

19. lim
t→2

1

2
t4 − 3t3 + t

20. ∗. lim
x→−1

√
x2 + 8− 3

x+ 1
.

21. ∗. lim
x→2

√
x+ 7−

√
11− x

2x− 4
.

22. ∗. lim
x→1

√
x+ 2−

√
4− x

x− 1

23. ∗. lim
x→3

√
x− 2−

√
4− x

x− 3
.

24. ∗. lim
t→1

3t− 3

2−
√

5− t .

25. lim
x→0
−x2 cos

(
3

x

)

26. lim
x→0

x4 sin
(

1
x

)
+ 5x2 cos

(
1
x

)
+ 2

(x− 2)2

27. ∗. lim
x→0

x sin2

(
1

x

)
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28. lim
w→5

2w2 − 50

(w − 5)(w − 1)

29. lim
r→−5

r

r2 + 10r + 25

30. lim
x→−1

√
x3 + x2 + x+ 1

3x+ 3

31. lim
x→0

x2 + 2x+ 1

3x5 − 5x3

32. lim
t→7

t2x2 + 2tx+ 1

t2 − 14t+ 49
, where x is a positive constant

33. lim
d→0

x5 − 32x+ 15, where x is a constant

34. lim
x→1

(x− 1)2 sin

[(
x2 − 3x+ 2

x2 − 2x+ 1

)2

+ 15

]
35. ∗. Evaluate lim

x→0
x1/101 sin

(
x−100

)
or explain why this limit does not exist.

36. ∗. lim
x→2

x2 − 4

x2 − 2x

37. lim
x→5

(x− 5)2

x+ 5

38. Evaluate lim
t→ 1

2

1
3t2

+ 1
t2−1

2t− 1
.

39. Evaluate lim
x→0

(
3 +
|x|
x

)
.

40. Evaluate lim
d→−4

|3d+ 12|
d+ 4

41. Evaluate lim
x→0

5x− 9

|x|+ 2
.

42. Suppose lim
x→−1

f(x) = −1. Evaluate lim
x→−1

xf(x) + 3

2f(x) + 1
.

43. ∗. Find the value of the constant a for which lim
x→−2

x2 + ax+ 3

x2 + x− 2
exists.
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44. Suppose f(x) = 2x and g(x) = 1
x
. Evaluate the following limits.

a lim
x→0

f(x)

b lim
x→0

g(x)

c lim
x→0

f(x)g(x)

d lim
x→0

f(x)

g(x)

e lim
x→2

[f(x) + g(x)]

f lim
x→0

f(x) + 1

g(x+ 1)

Exercises — Stage 3

45. The curve y = f(x) is shown in the graph below. Sketch the graph of

y =
1

f(x)
.

x

y

1

1
y = f(x)

46. The graphs of functions f(x) and g(x) are shown in the graphs below. Use

these to sketch the graph of
f(x)

g(x)
.
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x

y

1

1
y = f(x)

x

y

1

1 y = g(x)

47. Suppose the position of a white ball, at time t, is given by s(t), and the
position of a red ball is given by 2s(t). Using the definition from Section 1.2
of the velocity of a particle, and the limit laws from this section, answer the
following question: if the white ball has velocity 5 at time t = 1, what is the
velocity of the red ball?

48. Let f(x) = 1
x
and g(x) = −1

x
.

a Evaluate lim
x→0

f(x) and lim
x→0

g(x).

b Evaluate lim
x→0

[f(x) + g(x)]

c Is it always true that lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x)?

49. Suppose

f(x) =


x2 + 3 if x > 0

0 if x = 0

x2 − 3 if x < 0

a Evaluate lim
x→0−

f(x).

b Evaluate lim
x→0+

f(x).

c Evaluate lim
x→0

f(x).

50. Suppose

f(x) =


x2 + 8x+ 16

x2 + 30x− 4
if x > −4

x3 + 8x2 + 16x if x ≤ −4

a Evaluate lim
x→−4−

f(x).
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b Evaluate lim
x→−4+

f(x).

c Evaluate lim
x→−4

f(x).

1.5q Limits at Infinity

1.5.1 tt Limits at Infinity

Up until this point we have discussed what happens to a function as we move its input
x closer and closer to a particular point a. For a great many applications of limits we
need to understand what happens to a function when its input becomes extremely large
— for example what happens to a population at a time far in the future.

The definition of a limit at infinity has a similar flavour to the definition of limits
at finite points that we saw above, but the details are a little different. We also need
to distinguish between positive and negative infinity. As x becomes very large and
positive it moves off towards +∞ but when it becomes very large and negative it moves
off towards −∞.

Again we give an informal definition; the full formal definition can be found in (the
optional) Section 1.8 near the end of this chapter.

Definition 1.5.1 Limits at infinity — informal.

We write

lim
x→∞

f(x) = L

when the value of the function f(x) gets closer and closer to L as we make x
larger and larger and positive.
Similarly we write

lim
x→−∞

f(x) = L

when the value of the function f(x) gets closer and closer to L as we make x
larger and larger and negative.

Example 1.5.2 Limits to +∞ and −∞.

Consider the two functions depicted below
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Limits 1.5 Limits at Infinity

Example 1.5.2

The dotted horizontal lines indicate the behaviour as x becomes very large. The function
on the left has limits as x→∞ and as x→ −∞ since the function “settles down” to a
particular value. On the other hand, the function on the right does not have a limit as
x→ −∞ since the function just keeps getting bigger and bigger.

Just as was the case for limits as x→ a we will start with two very simple building
blocks and build other limits from those.

Theorem 1.5.3

Let c ∈ R then the following limits hold

lim
x→∞

c = c lim
x→−∞

c = c

lim
x→∞

1

x
= 0 lim

x→−∞
1

x
= 0

Again, these limits interact nicely with standard arithmetic:

Theorem 1.5.4 Arithmetic of limits at infinity.

Let f(x), g(x) be two functions for which the limits

lim
x→∞

f(x) = F lim
x→∞

g(x) = G

exist. Then the following limits hold

lim
x→∞

f(x)± g(x) = F ±G
lim
x→∞

f(x)g(x) = FG

lim
x→∞

f(x)

g(x)
=
F

G
provided G 6= 0

and for real numbers p

lim
x→∞

f(x)p = F p provided F p and f(x)p are defined for all x
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The analogous results hold for limits to −∞.

Note that, as was the case in Theorem 1.4.9, we need a little extra care with powers
of functions. We must avoid taking square roots of negative numbers, or indeed any
even root of a negative number 1.

Hence we have for all rational r > 0

lim
x→∞

1

xr
= 0

but we have to be careful with

lim
x→−∞

1

xr
= 0

This is only true if the denominator of r is not an even number 2.
For example

• lim
x→∞

1

x1/2
= 0, but lim

x→−∞
1

x1/2
does not exist, because x1/2 is not defined for x < 0.

• On the other hand, x4/3 is defined for negative values of x and lim
x→−∞

1

x4/3
= 0.

Our first application of limits at infinity will be to examine the behaviour of a
rational function for very large x. To do this we use a “trick”.

Example 1.5.5 lim
x→∞

x2 − 3x+ 4

3x2 + 8x+ 1
.

Compute the following limit:

lim
x→∞

x2 − 3x+ 4

3x2 + 8x+ 1

As x becomes very large, it is the x2 term that will dominate in both the numerator
and denominator and the other bits become irrelevant. That is, for very large x, x2 is
much much larger than x or any constant. So we pull out these dominant parts

x2 − 3x+ 4

3x2 + 8x+ 1
=
x2
(
1− 3

x
+ 4

x2

)
x2
(
3 + 8

x
+ 1

x2

)
=

1− 3
x

+ 4
x2

3 + 8
x

+ 1
x2

remove the common factors

1 To be more precise, there is no real number x so that xeven power is a negative number. Hence we
cannot take the even-root of a negative number and express it as a real number. This is precisely
what complex numbers allow us to do, but alas there is not space in the course for us to explore
them.

2 where we write r = p
q with p, q integers with no common factors. For example, r = 6

14 should be
written as r = 3

7 when considering this rule.
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Example 1.5.5

lim
x→∞

x2 − 3x+ 4

3x2 + 8x+ 1
= lim

x→∞

1− 3
x

+ 4
x2

3 + 8
x

+ 1
x2

=

lim
x→∞

(
1− 3

x
+

4

x2

)
lim
x→∞

(
3 +

8

x
+

1

x2

) arithmetic of limits

=
lim
x→∞

1− lim
x→∞

3

x
+ lim

x→∞
4

x2

lim
x→∞

3 + lim
x→∞

8

x
+ lim

x→∞
1

x2

more arithmetic of limits

=
1 + 0 + 0

3 + 0 + 0
=

1

3

The following one gets a little harder

Example 1.5.6 Be careful of limits involving roots.

Find the limit as x→∞ of
√

4x2+1
5x−1

We use the same trick — try to work out what is the biggest term in the numerator
and denominator and pull it to one side.

• The denominator is dominated by 5x.

• The biggest contribution to the numerator comes from the 4x2 inside the square-
root. When we pull x2 outside the square-root it becomes x, so the numerator is
dominated by x ·

√
4 = 2x

• To see this more explicitly rewrite the numerator
√

4x2 + 1 =
√
x2(4 + 1/x2) =

√
x2
√

4 + 1/x2 = x
√

4 + 1/x2.

• Thus the limit as x→∞ is

lim
x→∞

√
4x2 + 1

5x− 1
= lim

x→∞
x
√

4 + 1/x2

x(5− 1/x)

= lim
x→∞

√
4 + 1/x2

5− 1/x

=
2

5

Now let us also think about the limit of the same function,
√

4x2+1
5x−1

, as x → −∞.
There is something subtle going on because of the square-root. First consider the
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function 3

h(t) =
√
t2

Evaluating this at t = 7 gives

h(7) =
√

72 =
√

49 = 7

We’ll get much the same thing for any t ≥ 0. For any t ≥ 0, h(t) =
√
t2 returns exactly

t. However now consider the function at t = −3

h(−3) =
√

(−3)2 =
√

9 = 3 = −(−3)

that is the function is returning −1 times the input.
This is because when we defined √ , we defined it to be the positive square-root.

i.e. the function
√
t can never return a negative number. So being more careful

h(t) =
√
t2 = |t|

Where the |t| is the absolute value of t. You are perhaps used to thinking of absolute
value as “remove the minus sign”, but this is not quite correct. Let’s sketch the function

It is a piecewise function defined by

|x| =
{
x x ≥ 0

−x x < 0

Hence our function h(t) is really

h(t) =
√
t2 =

{
t t ≥ 0

−t t < 0

So that when we evaluate h(−7) it is

h(−7) =
√

(−7)2 =
√

49 = 7 = −(−7)

We are now ready to examine the limit as x → −∞ in our previous example. Mostly
it is copy and paste from above.

3 Just to change things up let’s use t and h(t) instead of the ubiquitous x and f(x).
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Example 1.5.7 Be careful of limits involving roots — continued.

Find the limit as x→ −∞ of
√

4x2+1
5x−1

We use the same trick — try to work out what is the biggest term in the numerator
and denominator and pull it to one side. Since we are taking the limit as x→ −∞ we
should think of x as a large negative number.

• The denominator is dominated by 5x.

• The biggest contribution to the numerator comes from the 4x2 inside the square-
root. When we pull the x2 outside a square-root it becomes |x| = −x (since we are
taking the limit as x→ −∞), so the numerator is dominated by −x ·

√
4 = −2x

• To see this more explicitly rewrite the numerator
√

4x2 + 1 =
√
x2(4 + 1/x2) =

√
x2
√

4 + 1/x2

= |x|
√

4 + 1/x2 and since x < 0 we have

= −x
√

4 + 1/x2

• Thus the limit as x→ −∞ is

lim
x→−∞

√
4x2 + 1

5x− 1
= lim

x→−∞
−x
√

4 + 1/x2

x(5− 1/x)

= lim
x→−∞

−
√

4 + 1/x2

5− 1/x

= −2

5

So the limit as x → −∞ is almost the same but we gain a minus sign. This is
definitely not the case in general — you have to think about each example separately.

Here is a sketch of the function in question.
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Example 1.5.8 Do not try to add and subtract infinity.

Compute the following limit:

lim
x→∞

(
x7/5 − x

)
In this case we cannot use the arithmetic of limits to write this as

lim
x→∞

(
x7/5 − x

)
=
(

lim
x→∞

x7/5
)
−
(

lim
x→∞

x
)

=∞−∞

because the limits do not exist. We can only use the limit laws when the limits exist.
So we should go back and think some more.
When x is very large, x7/5 = x · x2/5 will be much larger than x, so the x7/5 term will
dominate the x term. So factor out x7/5 and rewrite it as

x7/5 − x = x7/5

(
1− 1

x2/5

)
Consider what happens to each of the factors as x→∞

• For large x, x7/5 > x (this is actually true for any x > 1). In the limit as x→ +∞,
x becomes arbitrarily large and positive, and x7/5 must be bigger still, so it follows
that

lim
x→∞

x7/5 = +∞.

• On the other hand, (1− x−2/5) becomes closer and closer to 1 — we can use the
arithmetic of limits to write this as

lim
x→∞

(1− x−2/5) = lim
x→∞

1− lim
x→∞

x−2/5 = 1− 0 = 1

So the product of these two factors will be come larger and larger (and positive) as x
moves off to infinity. Hence we have

lim
x→∞

x7/5
(
1− 1/x2/5

)
= +∞

But remember +∞ and −∞ are not numbers; the last equation in the example is
shorthand for “the function becomes arbitrarily large”.

In the previous section we saw that finite limits and arithmetic interact very nicely
(see Theorems 1.4.3 and 1.4.9). This enabled us to compute the limits of more compli-
cated function in terms of simpler ones. When limits of functions go to plus or minus
infinity we are quite a bit more restricted in what we can deduce. The next theorem
states some results concerning the sum, difference, ratio and product of infinite limits
— unfortunately in many cases we cannot make general statements and the results will
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depend on the details of the problem at hand.

Theorem 1.5.9 Arithmetic of infinite limits.

Let a, c,H ∈ R and let f, g, h be functions defined in an interval around a (but
they need not be defined at x = a), so that

lim
x→a

f(x) = +∞ lim
x→a

g(x) = +∞ lim
x→a

h(x) = H

• lim
x→a

(f(x) + g(x)) = +∞

• lim
x→a

(f(x) + h(x)) = +∞

• lim
x→a

(f(x)− g(x)) undetermined

• lim
x→a

(f(x)− h(x)) = +∞

• lim
x→a

cf(x) =


+∞ c > 0

0 c = 0

−∞ c < 0

• lim
x→a

(f(x) · g(x)) = +∞.

• lim
x→a

f(x)h(x) =


+∞ H > 0

−∞ H < 0

undetermined H = 0

• lim
x→a

f(x)

g(x)
undetermined

• lim
x→a

f(x)

h(x)
=


+∞ H > 0

−∞ H < 0

undetermined H = 0

• lim
x→a

h(x)

f(x)
= 0

• lim
x→a

f(x)p =


+∞ p > 0

0 p < 0

1 p = 0

Note that by “undetermined” we mean that the limit may or may not exist, but
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cannot be determined from the information given in the theorem. See Example 1.4.7
for an example of what we mean by “undetermined”. Additionally consider the following
example.

Example 1.5.10 Be careful with the arithmetic of infinite limits.

Consider the following 3 functions:

f(x) = x−2 g(x) = 2x−2 h(x) = x−2 − 1.

Their limits as x→ 0 are:

lim
x→0

f(x) = +∞ lim
x→0

g(x) = +∞ lim
x→0

h(x) = +∞.

Say we want to compute the limit of the difference of two of the above functions as
x→ 0. Then the previous theorem cannot help us. This is not because it is too weak,
rather it is because the difference of two infinite limits can be, either plus infinity, minus
infinity or some finite number depending on the details of the problem. For example,

lim
x→0

(f(x)− g(x)) = lim
x→0
−x−2 = −∞

lim
x→0

(f(x)− h(x)) = lim
x→0

1 = 1

lim
x→0

(g(x)− h(x)) = lim
x→0

x−2 + 1 = +∞

1.5.2 tt Exercises

Exercises — Stage 1

1. Give a polynomial f(x) with the property that both lim
x→∞

f(x) and
lim

x→−∞
f(x) are (finite) real numbers.

2. Give a polynomial f(x) that satisfies lim
x→∞

f(x) 6= lim
x→−∞

f(x).

Exercises — Stage 2

3. Evaluate lim
x→∞

2−x

4. Evaluate lim
x→∞

2x
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5. Evaluate lim
x→−∞

2x

6. Evaluate lim
x→−∞

cosx

7. Evaluate lim
x→∞

x− 3x5 + 100x2.

8. Evaluate lim
x→∞

√
3x8 + 7x4 + 10

x4 − 2x2 + 1
.

9. ∗. lim
x→∞

[√
x2 + 5x−

√
x2 − x

]
10. ∗. Evaluate lim

x→−∞
3x√

4x2 + x− 2x
.

11. ∗. Evaluate lim
x→−∞

1− x− x2

2x2 − 7
.

12. ∗. Evaluate lim
x→∞

(√
x2 + x− x

)
13. ∗. Evaluate lim

x→+∞
5x2 − 3x+ 1

3x2 + x+ 7
.

14. ∗. Evaluate lim
x→+∞

√
4x+ 2

3x+ 4
.

15. ∗. Evaluate lim
x→+∞

4x3 + x

7x3 + x2 − 2
.

16. Evaluate lim
x→−∞

3
√
x2 + x− 4

√
x4 + 5

x+ 1

17. ∗. Evaluate lim
x→+∞

5x2 + 10

3x3 + 2x2 + x
.

18. Evaluate lim
x→−∞

x+ 1√
x2

.

19. Evaluate lim
x→∞

x+ 1√
x2

20. ∗. Find the limit lim
x→−∞

sin

(
π

2

|x|
x

)
+

1

x
.
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21. ∗. Evaluate lim
x→−∞

3x+ 5√
x2 + 5− x

.

22. ∗. Evaluate lim
x→−∞

5x+ 7√
4x2 + 15− x

23. Evaluate lim
x→−∞

3x7 + x5 − 15

4x2 + 32x
.

24. ∗. Evaluate lim
n→∞

(√
n2 + 5n− n

)
.

25. Evaluate lim
a→0+

a2 − 1
a

a− 1
.

26. Evaluate lim
x→3

2x+ 8
1

x−3
+ 1

x2−9

.

Exercises — Stage 3

27. Give a rational function f(x) with the properties that lim
x→∞

f(x) 6=
lim

x→−∞
f(x), and both limits are (finite) real numbers.

28. Suppose the concentration of a substance in your body t hours after injection
is given by some formula c(t), and lim

t→∞
c(t) 6= 0. What kind of substance might

have been injected?

1.6q Continuity

1.6.1 tt Continuity

We have seen that computing the limits some functions — polynomials and rational
functions — is very easy because

lim
x→a

f(x) = f(a).

That is, the the limit as x approaches a is just f(a). Roughly speaking, the reason we
can compute the limit this way is that these functions do not have any abrupt jumps
near a.

Many other functions have this property, sin(x) for example. A function with this
property is called “continuous” and there is a precise mathematical definition for it. If
you do not recall interval notation, then now is a good time to take a quick look back
at Definition 0.3.5.
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Definition 1.6.1

A function f(x) is continuous at a if

lim
x→a

f(x) = f(a).

If a function is not continuous at a then it is said to be discontinuous at a.
When we write that f is continuous without specifying a point, then typically
this means that f is continuous at a for all a ∈ R.
When we write that f(x) is continuous on the open interval (a, b) then the function
is continuous at every point c satisfying a < c < b.

So if a function is continuous at x = a we immediately know that

• f(a) exists

• lim
x→a−

exists and is equal to f(a), and

• lim
x→a+

exists and is equal to f(a).

1.6.2 tt Quick Aside — One-sided Continuity

Notice in the above definition of continuity on an interval (a, b) we have carefully avoided
saying anything about whether or not the function is continuous at the endpoints of
the interval — i.e. is f(x) continuous at x = a or x = b. This is because talking of
continuity at the endpoints of an interval can be a little delicate.

In many situations we will be given a function f(x) defined on a closed interval
[a, b]. For example, we might have:

f(x) =
x+ 1

x+ 2
for x ∈ [0, 1].

For any 0 ≤ x ≤ 1 we know the value of f(x). However for x < 0 or x > 1 we know
nothing about the function — indeed it has not been defined.

So now, consider what it means for f(x) to be continuous at x = 0. We need to
have

lim
x→0

f(x) = f(0),

however this implies that the one-sided limits

lim
x→0+

f(x) = f(0) and lim
x→0−

f(x) = f(0)

Now the first of these one-sided limits involves examining the behaviour of f(x) for
x > 0. Since this involves looking at points for which f(x) is defined, this is something
we can do. On the other hand the second one-sided limit requires us to understand
the behaviour of f(x) for x < 0. This we cannot do because the function hasn’t been
defined for x < 0.

One way around this problem is to generalise the idea of continuity to one-sided
continuity, just as we generalised limits to get one-sided limits.
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Definition 1.6.2

A function f(x) is continuous from the right at a if

lim
x→a+

f(x) = f(a).

Similarly a function f(x) is continuous from the left at a if

lim
x→a−

f(x) = f(a)

Using the definition of one-sided continuity we can now define what it means for a
function to be continuous on a closed interval.

Definition 1.6.3

A function f(x) is continuous on the closed interval [a, b] when

• f(x) is continuous on (a, b),

• f(x) is continuous from the right at a, and

• f(x) is continuous from the left at b.

Note that the last two condition are equivalent to

lim
x→a+

f(x) = f(a) and lim
x→b−

f(x) = f(b).

1.6.3 tt Back to the Main Text

We already know from our work above that polynomials are continuous, and that ratio-
nal functions are continuous at all points in their domains — i.e. where their denomi-
nators are non-zero. As we did for limits, we will see that continuity interacts “nicely”
with arithmetic. This will allow us to construct complicated continuous functions from
simpler continuous building blocks (like polynomials).

But first, a few examples. . .

Example 1.6.4 Simple continuous and discontinuous functions.

Consider the functions drawn below
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Example 1.6.4

These are

f(x) =

{
x x < 1

x+ 2 x ≥ 1

g(x) =

{
1/x2 x 6= 0

0 x = 0

h(x) =

{
x3−x2
x−1

x 6= 1

0 x = 1

Determine where they are continuous and discontinuous:

• When x < 1 then f(x) is a straight line (and so a polynomial) and so it is
continuous at every point x < 1. Similarly when x > 1 the function is a straight
line and so it is continuous at every point x > 1. The only point which might be
a discontinuity is at x = 1. We see that the one sided limits are different. Hence
the limit at x = 1 does not exist and so the function is discontinuous at x = 1.

But note that that f(x) is continuous from one side — which?

• The middle case is much like the previous one. When x 6= 0 the g(x) is a rational
function and so is continuous everywhere on its domain (which is all reals except
x = 0). Thus the only point where g(x) might be discontinuous is at x = 0. We
see that neither of the one-sided limits exist at x = 0, so the limit does not exist
at x = 0. Hence the function is discontinuous at x = 0.

• We have seen the function h(x) before. By the same reasoning as above, we know
it is continuous except at x = 1 which we must check separately.

By definition of h(x), h(1) = 0. We must compare this to the limit as x→ 1. We
did this before.

x3 − x2

x− 1
=
x2(x− 1)

x− 1
= x2

So limx→1
x3−x2
x−1

= limx→1 x
2 = 1 6= h(1). Hence h is discontinuous at x = 1.
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This example illustrates different sorts of discontinuities:

• The function f(x) has a “jump discontinuity” because the function “jumps” from
one finite value on the left to another value on the right.

• The second function, g(x), has an “infinite discontinuity” since lim f(x) = +∞.

• The third function, h(x), has a “removable discontinuity” because we could make
the function continuous at that point by redefining the function at that point. i.e.
setting h(1) = 1. That is

new function h(x) =

{
x3−x2
x−1

x 6= 1

1 x = 1

Showing a function is continuous can be a pain, but just as the limit laws help us
compute complicated limits in terms of simpler limits, we can use them to show that
complicated functions are continuous by breaking them into simpler pieces.

Theorem 1.6.5 Arithmetic of continuity.

Let a, c ∈ R and let f(x) and g(x) be functions that are continuous at a. Then
the following functions are also continuous at x = a:

• f(x) + g(x) and f(x)− g(x),

• cf(x) and f(x)g(x), and

• f(x)
g(x)

provided g(a) 6= 0.

Above we stated that polynomials and rational functions are continuous (being
careful about domains of rational functions — we must avoid the denominators being
zero) without making it a formal statement. This is easily fixed. . .

Lemma 1.6.6

Let c ∈ R. The functions

f(x) = x g(x) = c

are continuous everywhere on the real line

This isn’t quite the result we wanted (that’s a couple of lines below) but it is a small
result that we can combine with the arithmetic of limits to get the result we want. Such
small helpful results are called “lemmas” and they will arise more as we go along.

Now since we can obtain any polynomial and any rational function by carefully
adding, subtracting, multiplying and dividing the functions f(x) = x and g(x) = c, the
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above lemma combines with the “arithmetic of continuity” theorem to give us the result
we want:

Theorem 1.6.7 Continuity of polynomials and rational functions.

Every polynomial is continuous everywhere. Similarly every rational function is
continuous except where its denominator is zero (i.e. on all its domain).

With some more work this result can be extended to wider families of functions:

Theorem 1.6.8

The following functions are continuous everywhere in their domains

• polynomials, rational functions

• roots and powers

• trig functions and their inverses

• exponential and the logarithm

We haven’t encountered inverse trigonometric functions, nor exponential functions
or logarithms, but we will see them in the next chapter. For the moment, just file the
information away.

Using a combination of the above results you can show that many complicated
functions are continuous except at a few points (usually where a denominator is equal
to zero).

Example 1.6.9 Continuity of sin(x)
2+cos(x)

.

Where is the function f(x) = sin(x)
2+cos(x)

continuous?
We just break things down into pieces and then put them back together keeping track
of where things might go wrong.

• The function is a ratio of two pieces — so check if the numerator is continuous,
the denominator is continuous, and if the denominator might be zero.

• The numerator is sin(x) which is “continuous on its domain” according to one
of the above theorems. Its domain is all real numbers a, so it is continuous
everywhere. No problems here.

• The denominator is the sum of 2 and cos(x). Since 2 is a constant it is continuous
everywhere. Similarly (we just checked things for the previous point) we know
that cos(x) is continuous everywhere. Hence the denominator is continuous.
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Example 1.6.9

• So we just need to check if the denominator is zero. One of the facts that we
should know b is that

−1 ≤ cos(x) ≤ 1

and so by adding 2 we get

1 ≤ 2 + cos(x) ≤ 3

Thus no matter what value of x, 2 + cos(x) ≥ 1 and so cannot be zero.

• So the numerator is continuous, the denominator is continuous and nowhere zero,
so the function is continuous everywhere.

If the function were changed to
sin(x)

x2 − 5x+ 6
much of the same reasoning can be used.

Being a little terse we could answer with:

• Numerator and denominator are continuous.

• Since x2 − 5x+ 6 = (x− 2)(x− 3) the denominator is zero when x = 2, 3.

• So the function is continuous everywhere except possibly at x = 2, 3. In order
to verify that the function really is discontinuous at those points, it suffices to
verify that the numerator is non-zero at x = 2, 3. Indeed we know that sin(x) is
zero only when x = nπ (for any integer n). Hence sin(2), sin(3) 6= 0. Thus the
numerator is non-zero, while the denominator is zero and hence x = 2, 3 really
are points of discontinuity.

Note that this example raises a subtle point about checking continuity when numerator
and denominator are simultaneously zero. There are quite a few possible outcomes in
this case and we need more sophisticated tools to adequately analyse the behaviour of
functions near such points. We will return to this question later in the text after we
have developed Taylor expansions (see Section 3.4).

a Remember that sin and cos are defined on all real numbers, so tan(x) = sin(x)/ cos(x) is continuous
everywhere except where cos(x) = 0. This happens when x = π

2 + nπ for any integer n. If you
cannot remember where tan(x) “blows up” or sin(x) = 0 or cos(x) = 0 then you should definitely
revise trigonometric functions. Come to think of it — just revise them anyway.

b If you do not know this fact then you should revise trigonometric functions. See the previous
footnote.

So we know what happens when we add subtract multiply and divide, what about
when we compose functions? Well - limits and compositions work nicely when things
are continuous.
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Theorem 1.6.10 Compositions and continuity.

If f is continuous at b and lim
x→a

g(x) = b then lim
x→a

f(g(x)) = f(b). I.e.

lim
x→a

f (g(x)) = f
(

lim
x→a

g(x)
)

Hence if g is continuous at a and f is continuous at g(a) then the composite
function (f ◦ g)(x) = f(g(x)) is continuous at a.

So when we compose two continuous functions we get a new continuous function.
We can put this to use

Example 1.6.11 Continuity of composed functions.

Where are the following functions continuous?

f(x) = sin
(
x2 + cos(x)

)
g(x) =

√
sin(x)

Our first step should be to break the functions down into pieces and study them. When
we put them back together we should be careful of dividing by zero, or falling outside
the domain.

• The function f(x) is the composition of sin(x) with x2 + cos(x).

• These pieces, sin(x), x2, cos(x) are continuous everywhere.

• So the sum x2 + cos(x) is continuous everywhere

• And hence the composition of sin(x) and x2 + cos(x) is continuous everywhere.

The second function is a little trickier.

• The function g(x) is the composition of
√
x with sin(x).

•
√
x is continuous on its domain x ≥ 0.

• sin(x) is continuous everywhere, but it is negative in many places.

• In order for g(x) to be defined and continuous we must restrict x so that sin(x) ≥
0.

• Recall the graph of sin(x):
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Example 1.6.11

Hence sin(x) ≥ 0 when x ∈ [0, π] or x ∈ [2π, 3π] or x ∈ [−2π,−π] or. . . . To be
more precise sin(x) is positive when x ∈ [2nπ, (2n+ 1)π] for any integer n.

• Hence g(x) is continuous when x ∈ [2nπ, (2n+ 1)π] for any integer n.

Continuous functions are very nice (mathematically speaking). Functions from the
“real world” tend to be continuous (though not always). The key aspect that makes
them nice is the fact that they don’t jump about.

The absence of such jumps leads to the following theorem which, while it can be
quite confusing on first glance, actually says something very natural — obvious even.
It says, roughly speaking, that, as you draw the graph y = f(x) starting at x = a and
ending at x = b, y changes continuously from y = f(a) to y = f(b), with no jumps, and
consequently y must take every value between f(a) and f(b) at least once. We’ll start
by just giving the precise statement and then we’ll explain it in detail.

Theorem 1.6.12 Intermediate value theorem (IVT).

Let a < b and let f be a function that is continuous at all points a ≤ x ≤ b. If Y
is any number between f(a) and f(b) then there exists some number c ∈ [a, b] so
that f(c) = Y .

Like the ε− δ definition of limits 1, we should break this theorem down into pieces.
Before we do that, keep the following pictures in mind.

Now the break-down

1 The interested student is invited to take a look at the optional Section 1.7
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• Let a < b and let f be a function that is continuous at all points a ≤ x ≤
b. — This is setting the scene. We have a, b with a < b (we can safely assume
these to be real numbers). Our function must be continuous at all points between
a and b.

• if Y is any number between f(a) and f(b) — Now we need another number
Y and the only restriction on it is that it lies between f(a) and f(b). That is,
if f(a) ≤ f(b) then f(a) ≤ Y ≤ f(b). Or if f(a) ≥ f(b) then f(a) ≥ Y ≥ f(b).
So notice that Y could be equal to f(a) or f(b) — if we wanted to avoid that
possibility, then we would normally explicitly say Y 6= f(a), f(b) or we would
write that Y is strictly between f(a) and f(b).

• there exists some number c ∈ [a, b] so that f(c) = Y — so if we satisfy all
of the above conditions, then there has to be some real number c lying between a
and b so that when we evaluate f(c) it is Y .

So that breaks down the proof statement by statement, but what does it actually mean?

• Draw any continuous function you like between a and b — it must be continuous.

• The function takes the value f(a) at x = a and f(b) at x = b — see the left-hand
figure above.

• Now we can pick any Y that lies between f(a) and f(b) — see the middle figure
above. The IVT 2 tells us that there must be some x-value that when plugged into
the function gives us Y . That is, there is some c between a and b so that f(c) = Y .
We can also interpret this graphically; the IVT tells us that the horizontal straight
line y = Y must intersect the graph y = f(x) at some point (c, Y ) with a ≤ c ≤ b.

• Notice that the IVT does not tell us how many such c-values there are, just that
there is at least one of them. See the right-hand figure above. For that particular
choice of Y there are three different c values so that f(c1) = f(c2) = f(c3) = Y .

This theorem says that if f(x) is a continuous function on all of the interval a ≤ x ≤ b
then as x moves from a to b, f(x) takes every value between f(a) and f(b) at least
once. To put this slightly differently, if f were to avoid a value between f(a) and f(b)
then f cannot be continuous on [a, b].

It is not hard to convince yourself that the continuity of f is crucial to the IVT.
Without it one can quickly construct examples of functions that contradict the theorem.
See the figure below for a few non-continuous examples:

2 Often with big important useful theorems like this one, writing out the full name again and again
becomes tedious, so we abbreviate it. Such abbreviations are okay provided the reader knows this
is what you are doing, so the first time you use an abbreviation you should let the reader know.
Much like we are doing here in this footnote: : “IVT” stands for “intermediate value theorem”,
which is Theorem 1.6.12.
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In the left-hand example we see that a discontinuous function can “jump” over the
Y -value we have chosen, so there is no x-value that makes f(x) = Y . The right-hand
example demonstrates why we need to be be careful with the ends of the interval. In
particular, a function must be continuous over the whole interval [a, b] including the
end-points of the interval. If we only required the function to be continuous on (a, b)
(so strictly between a and b) then the function could “jump” over the Y -value at a or b.

If you are still confused then here is a “real-world” example

Example 1.6.13 The IVT in the “real world”.

You are climbing the Grouse-grind a with a friend — call him Bob. Bob was eager
and started at 9am. Bob, while very eager, is also very clumsy; he sprained his ankle
somewhere along the path and has stopped moving at 9:21am and is just sitting b

enjoying the view. You get there late and start climbing at 10am and being quite fit
you get to the top at 11am. The IVT implies that at some time between 10am and
11am you meet up with Bob.
You can translate this situation into the form of the IVT as follows. Let t be time
and let a = 10am and b = 11am. Let g(t) be your distance along the trail. Hence c

g(a) = 0 and g(b) = 2.9km. Since you are a mortal, your position along the trail is
a continuous function — no helicopters or teleportation or. . . We have no idea where
Bob is sitting, except that he is somewhere between g(a) and g(b), call this point Y .
The IVT guarantees that there is some time c between a and b (so between 10am and
11am) with g(c) = Y (and your position will be the same as Bob’s).

a If you don’t know it then google it.
b Hopefully he remembered to carry something warm.
c It’s amazing what facts you can find on Wikipedia.

Aside from finding Bob sitting by the side of the trail, one of the most important
applications of the IVT is determining where a function is zero. For quadratics we know
(or should know) that

ax2 + bx+ c = 0 when x =
−b±

√
b2 − 4ac

2a

While the Babylonians could (mostly, but not quite) do the above, the corresponding
formula for solving a cubic is uglier and that for a quartic is uglier still. One of the most
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famous results in mathematics demonstrates that no such formula exists for quintics or
higher degree polynomials 3.

So even for polynomials we cannot, in general, write down explicit formulae for their
zeros and have to make do with numerical approximations — i.e. write down the root
as a decimal expansion to whatever precision we desire. For more complicated functions
we have no choice — there is no reason that the zeros should be expressible as nice neat
little formulas. At the same time, finding the zeros of a function:

f(x) = 0

or solving equations of the form 4

g(x) = h(x)

can be a crucial step in many mathematical proofs and applications.
For this reason there is a considerable body of mathematics which focuses just on

finding the zeros of functions. The IVT provides a very simple way to “locate” the zeros
of a function. In particular, if we know a continuous function is negative at a point
x = a and positive at another point x = b, then there must (by the IVT) be a point
x = c between a and b where f(c) = 0.

Consider the leftmost of the above figures. It depicts a continuous function that is
negative at x = a and positive at x = b. So choose Y = 0 and apply the IVT — there
must be some c with a ≤ c ≤ b so that f(c) = Y = 0. While this doesn’t tell us c
exactly, it does give us bounds on the possible positions of at least one zero — there
must be at least one c obeying a ≤ c ≤ b.

See middle figure. To get better bounds we could test a point half-way between a
and b. So set a′ = a+b

2
. In this example we see that f(a′) is negative. Applying the

IVT again tells us there is some c between a′ and b so that f(c) = 0. Again — we don’t
have c exactly, but we have halved the range of values it could take.

Look at the rightmost figure and do it again — test the point half-way between a′
and b. In this example we see that f(b′) is positive. Applying the IVT tells us that

3 The similar (but uglier) formula for solving cubics took until the 15th century and the work of
del Ferro and Cardano (and Cardano’s student Ferrari). A similar (but even uglier) formula
for quartics was also found by Ferrari. The extremely famous Abel-Ruffini Theorem (nearly by
Ruffini in the late 18th century and completely by Abel in early 19th century) demonstrates that
a similar formula for the zeros of a quintic does not exist. Note that the theorem does not say that
quintics do not have zeros; rather it says that the zeros cannot in general be expressed using a
finite combination of addition, multiplication, division, powers and roots. The interested student
should also look up Évariste Galois and his contributions to this area.

4 In fact both of these are the same because we can write f(x) = g(x)− h(x) and then the zeros of
f(x) are exactly when g(x) = h(x).
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there is some c between a′ and b′ so that f(c) = 0. This new range is a quarter of
the length of the original. If we keep doing this process the range will halve each time
until we know that the zero is inside some tiny range of possible values. This process
is called the bisection method.

Consider the following zero-finding example

Example 1.6.14 Show that f(x) = x− 1 + sin(πx/2) has a zero.

Show that the function f(x) = x− 1 + sin(πx/2) has a zero in 0 ≤ x ≤ 1.
This question has been set up nicely to lead us towards using the IVT; we are already
given a nice interval on which to look. In general we might have to test a few points
and experiment a bit with a calculator before we can start narrowing down a range.
Let us start by testing the endpoints of the interval we are given

f(0) = 0− 1 + sin(0) = −1 < 0

f(1) = 1− 1 + sin(π/2) = 1 > 0

So we know a point where f is positive and one where it is negative. So by the IVT
there is a point in between where it is zero.
BUT in order to apply the IVT we have to show that the function is continuous, and
we cannot simply write

it is continuous

We need to explain to the reader why it is continuous. That is — we have to prove it.
So to write up our answer we can put something like the following — keeping in mind
we need to tell the reader what we are doing so they can follow along easily.

• We will use the IVT to prove that there is a zero in [0, 1].

• First we must show that the function is continuous.

◦ Since x− 1 is a polynomial it is continuous everywhere.
◦ The function sin(πx/2) is a trigonometric function and is also continuous

everywhere.
◦ The sum of two continuous functions is also continuous, so f(x) is continuous

everywhere.

• Let a = 0, b = 1, then

f(0) = 0− 1 + sin(0) = −1 < 0

f(1) = 1− 1 + sin(π/2) = 1 > 0

• The function is negative at x = 0 and positive at x = 1. Since the function is
continuous we know there is a point c ∈ [0, 1] so that f(c) = 0.

Notice that though we have not used full sentences in our explanation here, we are still
using words. Your mathematics, unless it is very straight-forward computation, should
contain words as well as symbols.
The zero of this function is actually located at about x = 0.4053883559.
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The bisection method is really just the idea that we can keep repeating the above
reasoning (with a calculator handy). Each iteration will tell us the location of the zero
more precisely. The following example illustrates this.

Example 1.6.15 Using the bisection method.

Use the bisection method to find a zero of

f(x) = x− 1 + sin(πx/2)

that lies between 0 and 1.
So we start with the two points we worked out above:

• a = 0, b = 1 and

f(0) = −1

f(1) = 1

• Test the point in the middle x = 0+1
2

= 0.5

f(0.5) = 0.2071067813 > 0

• So our new interval will be [0, 0.5] since the function is negative at x = 0 and
positive at x = 0.5

Repeat

• a = 0, b = 0.5 where f(0) < 0 and f(0.5) > 0.

• Test the point in the middle x = 0+0.5
2

= 0.25

f(0.25) = −0.3673165675 < 0

• So our new interval will be [0.25, 0.5] since the function is negative at x = 0.25
and positive at x = 0.5

Repeat

• a = 0.25, b = 0.5 where f(0.25) < 0 and f(0.5) > 0.

• Test the point in the middle x = 0.25+0.5
2

= 0.375

f(0.375) = −0.0694297669 < 0

• So our new interval will be [0.375, 0.5] since the function is negative at x = 0.375
and positive at x = 0.5
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Example 1.6.15

Below is an illustration of what we have observed so far together with a plot of the
actual function.

And one final iteration:

• a = 0.375, b = 0.5 where f(0.375) < 0 and f(0.5) > 0.

• Test the point in the middle x = 0.375+0.5
2

= 0.4375

f(0.4375) = 0.0718932843 > 0

• So our new interval will be [0.375, 0.4375] since the function is negative at x =
0.375 and positive at x = 0.4375

So without much work we know the location of a zero inside a range of length 0.0625 =
2−4. Each iteration will halve the length of the range and we keep going until we reach
the precision we need, though it is much easier to program a computer to do it.
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1.6.4 tt Exercises

Exercises — Stage 1

1. Give an example of a function (you can write a formula, or sketch a graph)
that has infinitely many infinite discontinuities.

2. When I was born, I was less than one meter tall. Now, I am more than one
meter tall. What is the conclusion of the Intermediate Value Theorem about
my height?

3. Give an example (by sketch or formula) of a function f(x), defined on the
interval [0, 2], with f(0) = 0, f(2) = 2, and f(x) never equal to 1. Why
does this not contradict the Intermediate Value Theorem?

4. Is the following a valid statement?

Suppose f is a continuous function over [10, 20], f(10) = 13,
and f(20) = −13. Then f has a zero between x = 10 and
x = 20.

5. Is the following a valid statement?

Suppose f is a continuous function over [10, 20], f(10) = 13,
and f(20) = −13. Then f(15) = 0.

6. Is the following a valid statement?

Suppose f is a function over [10, 20], f(10) = 13, and f(20) =
−13, and f takes on every value between −13 and 13. Then f
is continuous.

7. Suppose f(t) is continuous at t = 5. True or false: t = 5 is in the domain of
f(t).

8. Suppose lim
t→5

f(t) = 17, and suppose f(t) is continuous at t = 5. True or false:
f(5) = 17.

9. Suppose lim
t→5

f(t) = 17. True or false: f(5) = 17.

10. Suppose f(x) and g(x) are continuous at x = 0, and let h(x) =
xf(x)

g2(x) + 1
.

What is lim
x→0+

h(x)?

Exercises — Stage 2
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11. Find a constant k so that the function

a(x) =

{
x sin

(
1
x

)
when x 6= 0

k when x = 0

is continuous at x = 0.

12. Use the Intermediate Value Theorem to show that the function f(x) = x3 +
x2 + x+ 1 takes on the value 12345 at least once in its domain.

13. ∗. Describe all points for which the function is continuous: f(x) =
1

x2 − 1
.

14. ∗. Describe all points for which this function is continuous: f(x) =
1√

x2 − 1
.

15. ∗. Describe all points for which this function is continuous:
1√

1 + cos(x)
.

16. ∗. Describe all points for which this function is continuous: f(x) =
1

sinx
.

17. ∗. Find all values of c such that the following function is continuous at x = c:

f(x) =

{
8− cx if x ≤ c

x2 if x > c

Use the definition of continuity to justify your answer.
18. ∗. Find all values of c such that the following function is continuous every-

where:

f(x) =

{
x2 + c x ≥ 0

cos cx x < 0

Use the definition of continuity to justify your answer.

19. ∗. Find all values of c such that the following function is continuous:

f(x) =

{
x2 − 4 if x < c

3x if x ≥ c .

Use the definition of continuity to justify your answer.

20. ∗. Find all values of c such that the following function is continuous:

f(x) =

{
6− cx if x ≤ 2c

x2 if x > 2c

Use the definition of continuity to justify your answer.
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Exercises — Stage 3

21. Show that there exists at least one real number x satisfying sinx = x− 1

22. ∗. Show that there exists at least one real number c such that 3c = c2.
23. ∗. Show that there exists at least one real number c such that 2 tan(c) = c+1.

24. ∗. Show that there exists at least one real number c such that
√

cos(πc) =
sin(2πc) + 1

2
.

25. ∗. Show that there exists at least one real number c such that
1

(cos πc)2
= c+

3

2
.

26. Use the intermediate value theorem to find an interval of length one containing
a root of f(x) = x7 − 15x6 + 9x2 − 18x+ 15.

27. Use the intermediate value theorem to give a decimal approximation of 3
√

7
that is correct to at least two decimal places. You may use a calculator, but
only to add, subtract, multiply, and divide.

28. Suppose f(x) and g(x) are functions that are continuous over the interval [a, b],
with f(a) ≤ g(a) and g(b) ≤ f(b). Show that there exists some c ∈ [a, b] with
f(c) = g(c).

1.7q (Optional) — Making the Informal a Little More
Formal

As we noted above, the definition of limits that we have been working with was quite
informal and not mathematically rigorous. In this (optional) section we will work to
understand the rigorous definition of limits.

Here is the formal definition — we will work through it all very slowly and carefully
afterwards, so do not panic.

Definition 1.7.1

Let a ∈ R and let f(x) be a function defined everywhere in a neighbourhood of
a, except possibly at a. We say that

the limit as x approaches a of f(x) is L

or equivalently

as x approaches a, f(x) approaches L

and write

lim
x→a

f(x) = L

103



Limits 1.7 (Optional) — Making the Informal a Little More Formal

if and only if for every ε > 0 there exists δ > 0 so that

|f(x)− L| < ε whenever 0 < |x− a| < δ

Note that an equivalent way of writing this very last statement is

if 0 < |x− a| < δ then |f(x)− L| < ε.

This is quite a lot to take in, so let us break it down into pieces.
Definition 1.7.2 The typical 3 pieces of a definition.

Usually a definition can be broken down into three pieces.

• Scene setting — define symbols and any restrictions on the objects that we
are talking about.

• Naming — state the name and any notation for the property or object that
the definition is about.

• Properties and restrictions — this is the heart of the definition where we
explain to the reader what it is that the object (in our case a function) has
to do in order to satisfy the definition.

Let us go back to the definition and look at each of these pieces in turn.
• Setting things up — The first sentence of the definition is really just setting up

the picture. It is telling us what the definition is about and sorting out a few
technical details.

◦ Let a ∈ R — This simply tells us that the symbol “a” is a real number 1.
◦ Let f(x) be a function — This is just setting the scene so that we under-

stand all of the terms and symbols.
◦ defined everywhere in a neighbourhood of a, except possibly at a —

This is just a technical requirement; we need our function to be defined in a
little region 2 around a. The function doesn’t have to be defined everywhere,
but it must be defined for all x-values a little less than a and a little more
than a. The definition does not care about what the function does outside
this little window, nor does it care what happens exactly at a.

• Names, phrases and notation — The next part of the definition is simply naming
the property we are discussing and tells us how to write it down. i.e. we are
talking about “limits” and we write them down using the symbols indicated.

1 The symbol “∈” is read as “is an element of” — it is definitely not the same as e or ε or ε. If you
do not recognise “R” or understand the difference between R and R, then please go back and read
Chapter 0 carefully.

2 The term “neighbourhood of a” means a small open interval around a— for example (a−0.01, a+
0.01). Typically we don’t really care how big this little interval is.
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• The heart of things — we explain this at length below, but for now we will give
a quick explanation. Work on these two points. They are hard.

◦ for all ε > 0 there exists δ > 0 — It is important we read this in order.
It means that we can pick any positive number ε we want and there will
always be another positive number δ that is going to make what ever follows
be true.
◦ if 0 < |x − a| < δ then |f(x) − L| < ε — From the previous point we

have our two numbers — any ε > 0 then based on that choice of ε we have
a positive number δ. The current statement says that whenever we have
chosen x so that it is very close to a, then f(x) has to be very close to L.
How close it “very close”? Well 0 < |x−a| < δ means that x has to be within
a distance δ of a (but not exactly a) and similarly |f(x)−L| < ε means that
f(x) has to be within a distance ε of L.

That is the definition broken up into pieces which hopefully now make more sense, but
what does it actually mean? Consider a function we saw earlier

f(x) =

{
2x x 6= 3

9 x = 3

and sketch it again:

We know (from our earlier work) that limx→3 f(x) = 6, so zoom in around (x, y) =
(3, 6). To make this look more like our definition, we have a = 3 and L = 6.

• Pick some small number ε > 0 and highlight the horizontal strip of all points (x, y)
for which |y−L| < ε. This means all the y-values have to satisfy L−ε < y < L+ε.

• You can see that the graph of the function passes through this strip for some
x-values close to a. What we need to be able to do is to pick a vertical strip of
x-values around a so that the function lies inside the horizontal strip.

• That is, we must find a small number δ > 0 so that for any x-value inside the
vertical strip a− δ < x < a+ δ, except exactly at x = a, the value of the function
lies inside the horizontal strip, namely L− ε < y = f(x) < L+ ε.

• We see (pictorially) that we can do this. If we were to choose a smaller value of
ε making the horizontal strip narrower, it is clear that we can choose the vertical
strip to be narrower. Indeed, it doesn’t matter how small we make the horizontal
strip, we will always be able to construct the second vertical strip.
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The above is a pictorial argument, but we can quite easily make it into a mathe-
matical one. We want to show the limit is 6. That means for any ε we need to find a δ
so that when

3− δ < x < 3 + δ with x 6= 3 we have 6− ε < f(x) < 6 + ε

Now we note that when x 6= 3, we have f(x) = 2x and so

6− ε < f(x) < 6 + ε implies that 6− ε < 2x < 6 + ε

this nearly specifies a range of x values, we just need to divide by 2

3− ε/2 < x < 3 + ε/2

Hence if we choose δ = ε/2 then we get the desired inequality

3− δ < x < 3 + δ

i.e. — no matter what ε > 0 is chosen, if we put δ = ε/2 then when 3− δ < x < 3 + δ
with x 6= 3 we will have 6− ε < f(x) < 6 + ε. This is exactly what we need to satisfy
the definition of “limit” above.

The above work gives us the argument we need, but it still needs to be written up
properly. We do this below.

Example 1.7.3 Formal limit of a simple function.

Find the limit as x→ 3 of the following function

f(x) =

{
2x x 6= 3

9 x = 3

Proof. We will show that the limit is equal to 6. Let ε > 0 and δ = ε/2. It
remains to show that |f(x)− 6| < ε whenever |x− 3| < δ.
So assume that |x− 3| < δ, and so

3− δ < x < 3 + δ multiply both sides by 2
6− 2δ < 2x < 6 + 2δ

Recall that f(x) = 2x and that since δ = ε/2

6− ε < f(x) < 6 + ε.

We can conclude that |f(x)− 6| < ε as required.

�
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Because of the ε and δ in the definition of limits, we need to have ε and δ in the
proof. While ε and δ are just symbols playing particular roles, and could be replaced
with other symbols, this style of proof is usually called ε–δ proof.

In the above example everything works, but it can be very instructive to see what
happens in an example that doesn’t work.

Example 1.7.4 Formal limit where limit does not exist.

Look again at the function

f(x) =


x x < 2

−1 x = 2

x+ 3 x > 2

and let us see why, according to the definition of the limit, that lim
x→2

f(x) 6= 2. Again,
start by sketching a picture and zooming in around (x, y) = (2, 2):

Try to proceed through the same steps as before:

• Pick some small number ε > 0 and highlight a horizontal strip that contains all
y-values with |y−L| < ε. This means all the y-values have to satisfy L− ε < y <
L+ ε.

• You can see that the graph of the function passes through this strip for some x-
values close to a. To the left of a, we can always find some x-values that make the
function sit inside the horizontal-ε-strip. However, unlike the previous example,
there is a problem to the right of a. Even for x-values just a little larger than a,
the value of f(x) lies well outside the horizontal-ε-strip.

• So given this choice of ε, we can find a δ > 0 so that for x inside the vertical strip
a− δ < x < a, the value of the function sits inside the horizontal-ε-strip.

• Unfortunately, there is no way to choose a δ > 0 so that for x inside the vertical
strip a < x < a + δ (with x 6= a) the value of the function sits inside the
horizontal-epsilon-strip.
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Example 1.7.4

• So it is impossible to choose δ so that for x inside the vertical strip a−δ < x < a+δ
the value of the function sits inside the horizontal strip L− ε < y = f(x) < L+ ε.

• Thus the limit of f(x) as x→ 2 is not 2.

Doing things formally with ε’s and δ’s is quite painful for general functions. It is far
better to make use of the arithmetic of limits (Theorem 1.4.3) and some basic building
blocks (like those in Theorem 1.4.1). Thankfully for most of the problems we deal with
in calculus (at this level at least) can be approached in exactly this way.

This does leave the problem of proving the arithmetic of limits and the limits of the
basic building blocks. The proof of the Theorem 1.4.3 is quite involved and we leave it
to the very end of this Chapter. Before we do that we will prove Theorem 1.4.1 by a
formal ε–δ proof. Then in the next section we will look at the formal definition of limits
at infinity and prove Theorem 1.5.3. The proof of the Theorem 1.5.9, the arithmetic of
infinite limits, is very similar to that of Theorem 1.4.3 and so we do not give it.

So let us now prove Theorem 1.4.1 in which we stated two simple limits:

lim
x→a

c = c and lim
x→a

x = a.

Here is the formal ε–δ proof:

Proof. Proof of Theorem 1.4.1
Since there are two limits to prove, we do each in turn. Let a, c be real numbers.

• Let ε > 0 and set f(x) = c. Choose δ = 1, then for any x satisfying
|x− a| < δ (or indeed any real number x at all) we have |f(x)− c| = 0 < ε.
Hence lim

x→a
c = c as required.

• Let ε > 0 and set f(x) = x. Choose δ = ε, then for any x satisfying
|x− a| < δ we have

a− δ < x < a+ δ but f(x) = x and δ = ε

a− ε < f(x) < a+ ε

Thus we have |f(x)− a| < ε. Hence lim
x→a

x = a as required.

This completes the proof.

�
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1.8q (Optional) — Making Infinite Limits a Little More
Formal

For those of you who made it through the formal ε− δ definition of limits we give the
formal definition of limits involving infinity:

Definition 1.8.1 Limits involving infinity — formal.

a Let f be a function defined on the whole real line. We say that

the limit as x approaches ∞ of f(x) is L

or equivalently

f(x) converges to L as x goes to ∞

and write

lim
x→∞

f(x) = L

if and only if for every ε > 0 there exists M ∈ R so that |f(x) − L| < ε
whenever x > M .

Similarly we write

lim
x→−∞

f(x) = K

if and only if for every ε > 0 there exists N ∈ R so that |f(x) − K| < ε
whenever x < N .

b Let a be a real number and f(x) be a function defined for all x 6= a. We
write

lim
x→a

f(x) =∞

if and only if for every P > 0 there exists δ > 0 so that f(x) > P whenever
0 < |x− a| < δ.

c Let f be a function defined on the whole real line. We write

lim
x→∞

f(x) =∞

if and only if for every P > 0 there existsM > 0 so that f(x) > P whenever
x > M .

Note that we can loosen the above requirements on the domain of definition of f —
for example, in part (a) all we actually require is that f(x) be defined for all x larger

109



Limits 1.9 (Optional) — Proving the Arithmetic of Limits

than some value. It would be sufficient to require “there is some x0 ∈ R so that f is
defined for all x > x0”. Also note that there are obvious variations of parts (b) and (c)
with ∞ replaced by −∞.

For completeness let’s prove Theorem 1.5.3 using this form definition. The layout
of the proof will be very similar to our proof of Theorem 1.4.1.

Proof. Proof of Theorem 1.5.3.
There are four limits to prove in total and we do each in turn. Let c ∈ R.

• Let ε > 0 and set f(x) = c. ChooseM = 0, then for any x satisfying x > M
(or indeed any real number x at all) we have |f(x) − c| = 0 < ε. Hence
lim
x→∞

c = c as required.

• The proof that lim
x→−∞

c = c is nearly identical. Again, let ε > 0 and set

f(x) = c. Choose N = 0, then for any x satisfying x < N we have |f(x)−
c| = 0 < ε. Hence lim

x→−∞
c = c as required.

• Let ε > 0 and set f(x) = x. Choose M = 1
ε
. Then when x > M we have

0 < M < x divide through by xM to get

0 <
1

x
<

1

M
= ε

Since x > 0, 1
x

= | 1
x
| = | 1

x
− 0| < ε as required.

• Again, the proof in the limit to −∞ is similar but we have to be careful of
signs. Let ε > 0 and set f(x) = x. Choose N = −1

ε
. Then when x < N we

have

0 > N > x divide through by xN to get

0 >
1

x
>

1

N
= −ε

Notice that by assumption both x,N < 0, so xN > 0. Now since x < 0,
1
x

= −| 1
x
| = | 1

x
− 0| < ε as required.

This completes the proof.

�

1.9q (Optional) — Proving the Arithmetic of Limits

Perhaps the most useful theorem of this chapter is Theorem 1.4.3 which shows how limits
interact with arithmetic. In this (optional) section we will prove both the arithmetic
of limits Theorem 1.4.3 and the Squeeze Theorem 1.4.18. Before we get to the proofs
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it is very helpful to prove three technical lemmas that we’ll need. The first is a very
general result about absolute values of numbers:

Lemma 1.9.1 The triangle inequality.

For any x, y ∈ R

|x+ y| ≤ |x|+ |y|

Proof. Notice that for any real number x, we always have −x, x ≤ |x| and
either |x| = x or |x| = −x. So now let x, y ∈ R. Then we must have either

|x+ y| = x+ y ≤ |x|+ |y|

or

|x+ y| = −x− y ≤ |x|+ |y|

In both cases we end up with |x+ y| ≤ |x|+ |y|.

�

The second lemma is more specialised. It proves that if we have a function f(x)→ F
as x → a then there must be a small window around x = a where the function f(x)
must only take values not far from F . In particular it tells us that |f(x)| cannot be
bigger than |F |+ 1 when x is very close to a.

Lemma 1.9.2

Let a ∈ R and let f be a function so that lim
x→a

f(x) = F . Then there exists a
δ > 0 so that if 0 < |x− a| < δ then we also have |f(x)| ≤ |F |+ 1.

The proof is mostly just manipulating the ε–δ definition of a limit with ε = 1.

Proof. Let ε = 1. Then since f(x) → F as x → a, there exists δ > 0 so
that when 0 < |x − a| < δ, we also have |f(x) − F | ≤ ε = 1. So now assume
0 < |x− a| < δ. Then

−ε ≤ f(x)− F ≤ ε rearrange a little
−ε+ F ≤ f(x) ≤ ε+ F

Now ε+ F ≤ ε+ |F | and −ε+ F ≥ −ε− |F |, so
−ε− |F | ≤ f(x) ≤ ε+ |F |

Hence we have |f(x)| ≤ ε+ |F | = |F |+ 1.
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�

Finally our third technical lemma gives us a bound in the other direction; it tells us
that when x is close to a, the value of |f(x)| cannot be much smaller than |F |.

Lemma 1.9.3

Let a ∈ R and F 6= 0 and let f be a function so that lim
x→a

f(x) = F . Then there

exists δ > 0 so that when 0 < |x− a| < δ, we have |f(x)| > |F |
2
.

Proof. Set ε = |F |
2
> 0. Since f(x) → F , we know there exists a δ > 0 so

that when 0 < |x−a| < δ we have |f(x)−F | < ε. So now assume 0 < |x−a| < δ

so that |f(x)− F | < ε = |F |
2
. Then

|F | = |F − f(x) + f(x)| sneaky trick
≤ |f(x)− F |+ |f(x)| but |f(x)− F | < ε

< ε+ |f(x)|

Hence |f(x)| > |F | − ε = |F |
2

as required.

�

Now we are in a position to prove Theorem 1.4.3. The proof has more steps than
the previous ε− δ proofs we have seen. This is mostly because we do not have specific
functions f(x) and g(x) and instead must play with them in the abstract — and make
good use of the formal definition of limits.

We will break the proof into three pieces. The minimum that is required is to prove
that

lim
x→a

(f(x) + g(x)) = F +G

lim
x→a

f(x) · g(x) = F ·G

lim
x→a

1

g(x)
=

1

G
if G 6= 0.

From these three we can prove that

lim
x→a

f(x) · c = F · c
lim
x→a

(f(x)− g(x)) = F −G

lim
x→a

f(x)

g(x)
=
F

G
if G 6= 0.

The first follows by setting g(x) = c and using lim f(x) · g(x). The second follows by
setting c = −1, putting h(x) = (−1) · g(x) and then applying both lim f(x) · g(x) and
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lim f(x) + g(x). The third follows by setting h(x) = 1
g(x)

and then using lim f(x) ·h(x).
Starting with addition, in order to satisfy the definition of limit, we are going to

have to show that

|(f(x) + g(x))− (F +G)| is small

when we know that |f(x) − F |, |g(x) − G| are small. To do this we use the triangle
inequality above showing that

|(f(x) + g(x))− (F +G)| = |(f(x)− F ) + (g(x)−G)| ≤ |f(x)− F |+ |g(x)−G|
This is the key technical piece of the proof. So if we want the LHS of the above to be
size ε, we need to make sure that each term on the RHS is of size ε

2
. The rest of the

proof is setting up facts based on the definition of limits and then rearranging facts to
reach the conclusion.

Proof. Proof of Theorem 1.4.3 — limit of a sum.
Let a ∈ R and assume that

lim
x→a

f(x) = F and lim
x→a

g(x) = G.

We wish to show that

lim
x→a

f(x) + g(x) = F +G.

Let ε > 0 — we have to find a δ > 0 so that when |x − a| < δ we have |(f(x) +
g(x))− (F +G)| < ε.
Let ε > 0 and set ε1 = ε2 = ε

2
. By the definition of limits, because f(x)→ F there

exists some δ1 > 0 so that whenever |x − a| < δ1, we also have |f(x) − F | < ε1.
Similarly there exists δ2 > 0 so that if |x−a| < δ2, then we must have |g(x)−G| <
ε2. So now choose δ = min{δ1, δ2} and assume |x − a| < δ. Then we must have
that |x− a| < δ1, δ2 and so we also have

|f(x)− F | < ε1 |g(x)−G| < ε2

Now consider |(f(x) + g(x))− (F +G)| and rearrange the terms:

|(f(x) + g(x))− (F +G)| = |(f(x)− F ) + (g(x)−G)|

now apply triangle inequality

≤ |f(x)− F |+ |g(x)−G| use facts from above
< ε1 + ε2

= ε.

Hence we have shown that for any ε > 0 there exists some δ > 0 so that when
|x − a| < δ we also have |(f(x) + g(x)) − (F + G)| < ε. Which is exactly the
formal definition of the limit we needed to prove.

�
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Let us do similarly for the limit of a product. Some of the details of the proof are
very similar, but there is a little technical trick in the middle to make it work. In
particular we need to show that

|f(x) · g(x)− F ·G| is small

when we know that |f(x)− F | and |g(x)−G| are both small. Notice that

f(x) · g(x)− F ·G = f(x) · g(x)− F ·G+ f(x) ·G− f(x) ·G︸ ︷︷ ︸
=0

= f(x) · g(x)− f(x) ·G+ f(x) ·G− F ·G
= f(x) · (g(x)−G) + (f(x)− F ) ·G

So if we know |f(x)−F | is small and |g(x)−G| is small then we are done — except that
we also need to know that f(x) doesn’t become really large near a — this is exactly
why we needed to prove Lemma 1.9.2.

As was the case in the previous proof, we want the LHS to be of size at most ε, so
we want, for example, the two terms on the RHS to be of size at most ε

2
. This means

• we need |G| · |f(x)− F | to be of size at most ε
2
, and

• we need |g(x)−G| to be of size at most ε
2(|F |+1)

since we know that |f(x)| ≤ |F |+1
when x is close to a.

Armed with these tricks we turn to the proofs.

Proof. Proof of Theorem 1.4.3 — limit of a product.
Let a ∈ R and assume that

lim
x→a

f(x) = F and lim
x→a

g(x) = G.

We wish to show that

lim
x→a

f(x) · g(x) = F ·G.

Let ε > 0. Set ε1 = ε
2(|G|+1)

(the extra +1 in the denominator is just there to
make sure that ε1 is well–defined even if G = 0), and ε2 = ε

2(|F |+1)
. From this we

establish the existence of δ1, δ2, δ3 which we need below.

• By assumption f(x)→ F so there exists δ1 > 0 so that whenever |x−a| < δ1,
we also have |f(x)− F | < ε1.

• Similarly because g(x)→ G, there exists δ2 > 0 so that whenever |x− a| <
δ2, we also have |g(x)−G| < ε2.

• By Lemma 1.9.2 there exists δ3 > 0 so that whenever |x− a| < δ3, we also
have |f(x)| ≤ |F |+ 1.

Let δ = min{δ1, δ2, δ3}, assume |x − a| < δ and consider |f(x) · g(x) − F · G|.
Rearrange the terms as we did above:

|f(x) · g(x)− F ·G| = |f(x) · (g(x)−G) + (f(x)− F ) ·G|
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≤ |f(x)| · |g(x)−G|+ |G| · |f(x)− F |

By our three dot-points above we know that |f(x)− F | < ε1 and |g(x)−G| < ε2
and |f(x)| ≤ |F |+ 1, so we have

|f(x) · g(x)− F ·G| < |f(x)| · ε2 + |G| · ε1

sub in ε1, ε2 and bound on f(x)

< (|F |+ 1) · ε

2(|F |+ 1)
+ |G| · ε

2(|G|+ 1)

≤ ε

2
+
ε

2
= ε.

Thus we have shown that for any ε > 0 there exists δ > 0 so that when |x−a| < δ
we also have |f(x) · g(x)− F ·G| < ε. Hence f(x) · g(x)→ F ·G.

�

Finally we can prove the limit of a reciprocal. Notice that
1

g(x)
− 1

G
=
G− g(x)

g(x) ·G
We need to show the LHS is of size at most ε when x is close enough to a, so if G−g(x)
is small we are done — except if g(x) or G are close to zero. By assumption (go back
and read Theorem 1.4.3) we have G 6= 0, and we know from Lemma 1.9.3 that |g(x)|
cannot be smaller than |G|

2
. Together these imply that the denominator on the RHS

cannot be zero and indeed must be of magnitude at least |G|
2

2
. Thus we need |G− g(x)|

to be of size at most ε · |G|2
2
.

Proof. Proof of Theorem 1.4.3 — limit of a reciprocal.
Let ε > 0 and set ε1 = ε|G|2 · 1

2
. We now use this and Lemma 1.9.3 to establish

the existence of δ1, δ2.

• Since g(x)→ G we know that there exists δ1 > 0 so that when |x− a| < δ1

we also have |g(x)−G| < ε1.

• By Lemma 1.9.3 there exists δ2 so that when |x − a| < δ2 we also have
|g(x)| > |G|

2
. Equivalently, when |x− a| < δ2 we also have

∣∣∣ G
2g(x)

∣∣∣ < 1.

Set δ = min{δ1, δ2} and assume |x− a| < δ. Then∣∣∣∣ 1

g(x)
− 1

G

∣∣∣∣ =

∣∣∣∣G− g(x)

g(x) ·G

∣∣∣∣
= |g(x)−G| · 1

|G| · |g(x)| by assumption

<
ε1

|G| · |g(x)| sub in ε1
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= ε · |G|
2|g(x)| since

∣∣∣∣ G

2g(x)

∣∣∣∣ < 1

< ε

Thus we have shown that for any ε > 0 there exists δ > 0 so that when |x−a| < δ
we also have | 1

g(x)
− 1

G
| < ε. Hence 1

g(x)
→ 1

G
.

�

We can also now prove the Squeeze / sandwich / pinch theorem.

Proof. Proof of Theorem 1.4.18 — Squeeze / sandwich / pinch.
In the squeeze theorem, we are given three functions f(x), g(x) and h(x) and are
told that

f(x) ≤ g(x) ≤ h(x) and lim
x→a

f(x) = lim
x→a

h(x) = L

and we must conclude from this that lim
x→a

g(x) = L too. That is, we are given
some fixed, but unspecified, ε > 0 and it is up to us to find a δ > 0 with the
property that |g(x)− L| < ε whenever |x − a| < δ. Now because we have been
told that f and h both converge to L, there exist δ1 > 0 and δ2 > 0 such that

• |f(x)− L| < ε, i.e. L− ε < f(x) < L+ ε, whenever |x− a| < δ1, and

• |h(x)− L| < ε, i.e. L− ε < h(x) < L+ ε, whenever |x− a| < δ2

So set δ = min{δ1, δ2} and assume |x− a| < δ. Then both L− ε < f(x) < L + ε
and L− ε < h(x) < L+ ε so that

L− ε < f(x) ≤ g(x) ≤ h(x) < L+ ε which implies that
L− ε <g(x) < L+ ε which in turn gives us

|g(x)− L| < ε

as desired.

�
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Derivatives
Chapter 2

Calculus is built on two operations — differentiation, which is used to analyse instan-
taneous rate of change, and integration, which is used to analyse areas. Understanding
differentiation and using it to compute derivatives of functions is one of the main aims
of this course.

We had a glimpse of derivatives in the previous chapter on limits — in particular
Sections 1.1 and 1.2 on tangents and velocities introduced derivatives in disguise. One
of the main reasons that we teach limits is to understand derivatives. Fortunately, as
we shall see, while one does need to understand limits in order to correctly understand
derivatives, one does not need the full machinery of limits in order to compute and work
with derivatives. The other main part of calculus, integration, we (mostly) leave until
a later course.

The derivative finds many applications in many different areas of the sciences. In-
deed the reason that calculus is taken by so many university students is so that they
may then use the ideas both in subsequent mathematics courses and in other fields.
In almost any field in which you study quantitative data you can find calculus lurking
somewhere nearby.

Its development 1 came about over a very long time, starting with the ancient
Greek geometers. Indian, Persian and Arab mathematicians made significant contri-
butions from around the 6th century. But modern calculus really starts with Newton
and Leibniz in the 17th century who developed independently based on ideas of others
including Descartes. Newton applied his work to many physical problems (including
orbits of moons and planets) but didn’t publish his work. When Leibniz subsequently
published his “calculus”, Newton accused him of plagiarism — this caused a huge rift
between British and continental-European mathematicians which wasn’t closed for an-
other century.

1 A quick google will turn up many articles on the development and history of calculus. Wikipedia
has a good one.
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2.1q Revisiting Tangent Lines

2.1.1 tt Revisiting Tangent Lines

By way of motivation for the definition of the derivative, we return to the discussion
of tangent lines that we started in the previous chapter on limits. We consider, in
Examples 2.1.2 and 2.1.5, below, the problem of finding the slope of the tangent line
to a curve at a point. But let us start by recalling, in Example 2.1.1, what is meant by
the slope of a straight line.

Example 2.1.1 What is slope.

In this example, we recall what is meant by the slope of the straight line

y = 1
2
x+ 3

2

• We claim that if, as we walk along this straight line, our x–coordinate changes by
an amount ∆x, then our y–coordinate changes by exactly ∆y = 1

2
∆x.

• For example, in the figure on the left below, we move from the point

(x0, y0) = (1 , 2 = 1
2
× 1 + 3

2
)

on the line to the point

(x1, y1) = (5 , 4 = 1
2
× 5 + 3

2
)

on the line. In this move our x–coordinate changes by

∆x = 5− 1 = 4

and our y–coordinate changes by

∆y = 4− 2 = 2

which is indeed 1
2
× 4 = 1

2
∆x, as claimed.
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Example 2.1.1

• In general, when we move from the point

(x0, y0) = (x0,
1
2
x0 + 3

2
)

on the line to the point

(x1, y1) = (x1,
1
2
x1 + 3

2
)

on the line, our x–coordinate changes by

∆x = x1 − x0

and our y–coordinate changes by

∆y = y1 − y0

=
[

1
2
x1 + 3

2

]
−
[

1
2
x0 + 3

2

]
= 1

2
(x1 − x0)

which is indeed 1
2
∆x, as claimed.

• So, for the straight line y = 1
2
x + 3

2
, the ratio ∆y

∆x
= y1−y0

x1−x0 always takes the value
1
2
, regardless of the choice of initial point (x0, y0) and final point (x1, y1). This

constant ratio is the slope of the line y = 1
2
x+ 3

2
.

Straight lines are special in that for each straight line, there is a fixed number m,
called the slope of the straight line, with the property that if you take any two different
points, (x0, y0) and (x1, y1), on the line, the ratio ∆y

∆x
= y1−y0

x1−x0 , which is called the rate
of change of y per unit rate of change 1 of x, always takes the value m. This is the
property that distinguishes lines from other curves.

Other curves do not have this property. In the next two examples we illustrate this
point with the parabola y = x2. Recall that we studied this example back in Section 1.1.
In Example 2.1.2 we find the slope of the tangent line to y = x2 at a particular point.
We generalise this in Example 2.1.5, to show that we can define “the slope of the curve
y = x2” at an arbitrary point x = x0 by considering ∆y

∆x
= y1−y0

x1−x0 with (x1, y1) very close
to (x0, y0).

Example 2.1.2 Slope of secants of y = x2.

In this example, let us fix (x0, y0) to be the point (2, 4) on the parabola y = x2. Now let
(x1, y1) = (x1, x

2
1) be some other point on the parabola; that is, a point with x1 6= x0.

1 In the “real world” the phrase “rate of change” usually refers to rate of change per unit time. In
science it used more generally.
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Derivatives 2.1 Revisiting Tangent Lines

• Draw the straight line through (x0, y0) and (x1, y1) — this is a secant line and we
saw these in Chapter 1 when we discussed tangent lines a.

• The following table gives the slope, y1−y0
x1−x0 , of the secant line through (x0, y0) =

(2, 4) and (x1, y1), for various different choices of (x1, y1 = x2
1).

x1 1 1.5 1.9 1.99 1.999 ◦ 2.001 2.01 2.1 2.5 3

y1 = x2
1 1 2.25 3.61 3.9601 3.9960 ◦ 4.0040 4.0401 4.41 6.25 9

y1−y0
x1−x0 3 3.5 3.9 3.99 3.999 ◦ 4.001 4.01 4.1 4.5 5

• So now we have a big table of numbers — what do we do with them? Well, there
are messages we can take away from this table.

◦ Different choices of x1 give different values for the slope, y1−y0
x1−x0 , of the secant

through (x0, y0) and (x1, y1). This is illustrated in Figure 2.1.3 below — the
slope of the secant through (x0, y0) and (x1, y1) is different from the slope of
the secant through (x0, y0) and (x′1, y

′
1).

Figure 2.1.3: For a curvy curve, different secants have different slopes.

If the parabola were a straight line this would not be the case — the secant
through any two different points on a line is always identical to the line itself
and so always has exactly the same slope as the line itself, as is illustrated
in Figure 2.1.4 below — the (yellow) secant through (x0, y0) and (x1, y1) lies
exactly on top of the (red) line y = 1

2
x+ 3

2
.
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Example 2.1.4

Figure 2.1.4: For a straight line, all secants have the same slope.

◦ Now look at the columns of the table closer to the middle. As x1 gets closer
and closer to x0 = 2, the slope, y1−y0

x1−x0 , of the secant through (x0, y0) and
(x1, y1) appears to get closer and closer to the value 4.

a If you do not remember this, then please revisit the first couple of sections of Chapter 1.

Example 2.1.5 More on secants of y = x2.

It is very easy to generalise what is happening in Example 2.1.2.

• Fix any point (x0, y0) on the parabola y = x2. If (x1, y1) is any other point on the
parabola y = x2, then y1 = x2

1 and the slope of the secant through (x0, y0) and
(x1, y1) is

slope =
y1 − y0

x1 − x0

=
x2

1 − x2
0

x1 − x0

since y = x2

=
(x1 − x0)(x1 + x0)

x1 − x0

remember a2 − b2 = (a− b)(a+ b)

= x1 + x0

You should check the values given in the table of Example 2.1.2 above to convince
yourself that the slope y1−y0

x1−x0 of the secant line really is x0 + x1 = 2 + x1 (since we
set x0 = 2).

• Now as we move x1 closer and closer to x0, the slope should move closer and closer
to 2x0. Indeed if we compute the limit carefully — we now have the technology
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Example 2.1.6

to do this — we see that in the limit as x1 → x0 the slope becomes 2x0. That is

lim
x1→x0

y1 − y0

x1 − x0

= lim
x1→x0

(x1 + x0) by the work we did just above

= 2x0

Taking this limit gives us our first derivative. Of course we haven’t yet given the
definition of a derivative, so we perhaps wouldn’t recognise it yet. We rectify this
in the next section.

Figure 2.1.6: Secants approaching a tangent line

• So it is reasonable to say “as x1 approaches x0, the secant through (x0, y0) and
(x1, y1) approaches the tangent line to the parabola y = x2 at (x0, y0)”. This is
what we did back in Section 1.1.

The figure above shows four different secants through (x0, y0) for the curve y = x2.
The four hollow circles are four different choices of (x1, y1). As (x1, y1) approaches
(x0, y0), the corresponding secant does indeed approach the tangent to y = x2 at
(x0, y0), which is the heavy (red) straight line in the figure.

Using limits we determined the slope of the tangent line to y = x2 at x0 to be
2x0. Often we will be a little sloppy with our language and instead say “the slope
of the parabola y = x2 at (x0, y0) is 2x0” — where we really mean the slope of
the line tangent to the parabola at x0.
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2.1.2 tt Exercises

Exercises — Stage 1

1. Shown below is the graph y = f(x). If we choose a point Q on the graph to
the left of the y-axis, is the slope of the secant line through P and Q positive
or negative? If we choose a point Q on the graph to the right of the y-axis, is
the slope of the secant line through P and Q positive or negative?

x

y

y = f(x)

P

2. Shown below is the graph y = f(x).

a If we want the slope of the secant line through P and Q to increase,
should we slide Q closer to P , or further away?

b Which is larger, the slope of the tangent line at P , or the slope of
the secant line through P and Q?

x

y

P

Q

3. Group the functions below into collections whose secant lines from x = −2 to
x = 2 all have the same slopes.
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x

y

−2 2

(a)

x

y

−2 2

(b)

x

y

−2 2

(c)

x

y

−2 2

(d)

x

y

−2 2

(e)

x

y

−2 2

(f)

Exercises — Stage 2
4. Give your best approximation of the slope of the tangent line to the graph

below at the point x = 5.

x

y

1 5

1

5. On the graph below, sketch the tangent line to y = f(x) at P . Then, find
two points Q and R on the graph so that the secant line through Q and R
has the same slope as the tangent line at P .
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x

y

y = f(x)

P

6. Mark the points where the curve shown below has a tangent line with slope
0.

x

y

y = f(x)

(Later on, we’ll learn how these points tell us a lot about the shape of a
graph.)

2.2q Definition of the Derivative

We now define the “derivative” explicitly, based on the limiting slope ideas of the pre-
vious section. Then we see how to compute some simple derivatives.

Let us now generalise what we did in the last section so as to find “the slope of the
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curve y = f(x) at (x0, y0)” for any smooth enough 1 function f(x).
As before, let (x0, y0) be any point on the curve y = f(x). So we must have

y0 = f(x0). Now let (x1, y1) be any other point on the same curve. So y1 = f(x1) and
x1 6= x0. Think of (x1, y1) as being pretty close to (x0, y0) so that the difference

∆x = x1 − x0

in x–coordinates is pretty small. In terms of this ∆x we have

x1 = x0 + ∆x and y1 = f
(
x0 + ∆x

)
We can construct a secant line through (x0, y0) and (x1, y1) just as we did for the
parabola above. It has slope

y1 − y0

x1 − x0

=
f
(
x0 + ∆x

)
− f(x0)

∆x

If f(x) is reasonably smooth 2, then as x1 approaches x0, i.e. as ∆x approaches 0, we
would expect the secant through (x0, y0) and (x1, y1) to approach the tangent line to
the curve y = f(x) at (x0, y0), just as happened in Figure 2.1.6. And more importantly,
the slope of the secant through (x0, y0) and (x1, y1) should approach the slope of the
tangent line to the curve y = f(x) at (x0, y0).

Thus we would expect 3 the slope of the tangent line to the curve y = f(x) at
(x0, y0) to be

lim
∆x→0

f
(
x0 + ∆x

)
− f(x0)

∆x

When we talk of the “slope of the curve” at a point, what we really mean is the slope
of the tangent line to the curve at that point. So “the slope of the curve y = f(x)
at (x0, y0)” is also the limit 4 expressed in the above equation. The derivative of f(x)
at x = x0 is also defined to be this limit. Which leads 5 us to the most important
definition in this text:

Definition 2.2.1 Derivative at a point.

Let a ∈ R and let f(x) be defined on an open interval a that contains a.

• The derivative of f(x) at x = a is denoted f ′(a) and is defined by

f ′(a) = lim
h→0

f
(
a+ h

)
− f(a)

h

if the limit exists.

1 The idea of “smooth enough” can be made quite precise. Indeed the word “smooth” has a very
precise meaning in mathematics, which we won’t cover here. For now think of “smooth” as meaning
roughly just “smooth”.

2 Again the term “reasonably smooth” can be made more precise.
3 Indeed, we don’t have to expect — it is!
4 This is of course under the assumption that the limit exists — we will talk more about that below.
5 We will rename “x0” to “a” and “∆x” to “h”.
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• When the above limit exists, the function f(x) is said to be differentiable
at x = a. When the limit does not exist, the function f(x) is said to be not
differentiable at x = a.

• We can equivalently define the derivative f ′(a) by the limit

f ′(a) = lim
x→a

f(x)− f(a)

x− a .

To see that these two definitions are the same, we set x = a + h and then
the limit as h goes to 0 is equivalent to the limit as x goes to a.

a Recall, from Definition 0.3.5, that the open interval (c, d) is just the set of all real numbers
obeying c < x < d.

Lets now compute the derivatives of some very simple functions. This is our first
step towards building up a toolbox for computing derivatives of complicated functions
— this process will very much parallel what we did in Chapter 1 with limits. The two
simplest functions we know are f(x) = c and g(x) = x.

Example 2.2.2 Derivative of f(x) = c.

Let a, c ∈ R be a constants. Compute the derivative of the constant function f(x) = c
at x = a.
We compute the desired derivative by just substituting the function of interest into the
formal definition of the derivative.

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
(the definition)

= lim
h→0

c− c
h

(substituted in the function)

= lim
h→0

0 (simplified things)

= 0

That was easy! What about the next most complicated function — arguably it’s
this one:

Example 2.2.3 Derivative of g(x) = x.

Let a ∈ R and compute the derivative of g(x) = x at x = a.
Again, we compute the derivative of g by just substituting the function of interest into
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Example 2.2.3

the formal definition of the derivative and then evaluating the resulting limit.

g′(a) = lim
h→0

g(a+ h)− g(a)

h
(the definition)

= lim
h→0

(a+ h)− a
h

(substituted in the function)

= lim
h→0

h

h
(simplified things)

= lim
h→0

1 (simplified a bit more)

= 1

That was a little harder than the first example, but still quite straight forward —
start with the definition and apply what we know about limits.

Thanks to these two examples, we have our first theorem about derivatives:

Theorem 2.2.4 Easiest derivatives.

Let a, c ∈ R and let f(x) = c be the constant function and g(x) = x. Then

f ′(a) = 0

and

g′(a) = 1.

To ratchet up the difficulty a little bit more, let us redo the example we have already
done a few times f(x) = x2. To make it a little more interesting let’s change the names
of the function and the variable so that it is not exactly the same as Examples 2.1.2
and 2.1.5.

Example 2.2.5 Derivative of h(t) = t2.

Compute the derivative of

h(t) = t2 at t = a

• This function isn’t quite like the ones we saw earlier — it’s a function of t rather
than x. Recall that a function is a rule which assigns to each input value an
output value. So far, we have usually called the input value x. But this “x” is
just a dummy variable representing a generic input value. There is nothing wrong
with calling a generic input value t instead. Indeed, from time to time you will see

128



Derivatives 2.2 Definition of the Derivative

Example 2.2.5

functions that are not written as formulas involving x, but instead are written as
formulas in t (for example representing time — see Section 1.2), or z (for example
representing height), or other symbols.

• So let us write the definition of the derivative

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

and then translate it to the function names and variables at hand:

h′(a) = lim
h→0

h(a+ h)− h(a)

h

• But there is a problem — “h” plays two roles here — it is both the function name
and the small quantity that is going to zero in our limit. It is extremely dangerous
to have a symbol represent two different things in a single computation. We need
to change one of them. So let’s rename the small quantity that is going to zero
in our limit from “h” to “∆t”:

h′(a) = lim
∆t→0

h(a+ ∆t)− h(a)

∆t

• Now we are ready to begin. Substituting in what the function h is,

h′(a) = lim
∆t→0

(a+ ∆t)2 − a2

∆t

= lim
∆t→0

a2 + 2a∆t+ ∆t2 − a2

∆t

(
just squared out (a+ ∆t)2

)
= lim

∆t→0

2a∆t+ ∆t2

∆t
= lim

∆t→0
(2a+ ∆t)

= 2a

• You should go back check that this is what we got in Example 2.1.5 — just some
names have been changed.

2.2.1 tt An Important Point (and Some Notation)

Notice here that the answer we get depends on our choice of a— if we want to know the
derivative at a = 3 we can just substitute a = 3 into our answer 2a to get the slope is
6. If we want to know at a = 1 (like at the end of Section 1.1) we substitute a = 1 and
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get the slope is 2. The important thing here is that we can move from the derivative
being computed at a specific point to the derivative being a function itself — input any
value of a and it returns the slope of the tangent line to the curve at the point x = a,
y = h(a). The variable a is a dummy variable. We can rename a to anything we want,
like x, for example. So we can replace every a in

h′(a) = 2a by x, giving h′(x) = 2x

where all we have done is replaced the symbol a by the symbol x.
We can do this more generally and tweak the derivative at a specific point a to

obtain the derivative as a function of x. We replace

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

with

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

which gives us the following definition

Definition 2.2.6 Derivative as a function.

Let f(x) be a function.

• The derivative of f(x) with respect to x is

f ′(x) = lim
h→0

f
(
x+ h

)
− f(x)

h

provided the limit exists.

• If the derivative f ′(x) exists for all x ∈ (a, b) we say that f is differentiable
on (a, b).

• Note that we will sometimes be a little sloppy with our discussions and
simply write “f is differentiable” to mean “f is differentiable on an interval
we are interested in” or “f is differentiable everywhere”.

Notice that we are no longer thinking of tangent lines, rather this is an operation
we can do on a function. For example:

Example 2.2.7 The derivative of f(x) = 1
x
.

Let f(x) = 1
x
and compute its derivative with respect to x — think carefully about

where the derivative exists.

• Our first step is to write down the definition of the derivative — at this stage, we
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Example 2.2.7

know of no other strategy for computing derivatives.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
(the definition)

• And now we substitute in the function and compute the limit.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
(the definition)

= lim
h→0

1

h

[
1

x+ h
− 1

x

]
(substituted in the function)

= lim
h→0

1

h

x− (x+ h)

x(x+ h)
(wrote over a common denominator)

= lim
h→0

1

h

−h
x(x+ h)

(started cleanup)

= lim
h→0

−1

x(x+ h)

= − 1

x2

• Notice that the original function f(x) = 1
x
was not defined at x = 0 and the

derivative is also not defined at x = 0. This does happen more generally — if
f(x) is not defined at a particular point x = a, then the derivative will not exist
at that point either.

So we now have two slightly different ideas of derivatives:

• The derivative f ′(a) at a specific point x = a, being the slope of the tangent line
to the curve at x = a, and

• The derivative as a function, f ′(x) as defined in Definition 2.2.6.

Of course, if we have f ′(x) then we can always recover the derivative at a specific point
by substituting x = a.

As we noted at the beginning of the chapter, the derivative was discovered indepen-
dently by Newton and Leibniz in the late 17th century. Because their discoveries were
independent, Newton and Leibniz did not have exactly the same notation. Stemming
from this, and from the many different contexts in which derivatives are used, there are
quite a few alternate notations for the derivative:

Definition 2.2.8

The following notations are all used for “the derivative of f(x) with respect to x”

f ′(x)
df

dx

d

dx
f(x) ḟ(x) Df(x) Dxf(x),
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while the following notations are all used for “the derivative of f(x) at x = a”

f ′(a)
df

dx
(a)

d

dx
f(x)

∣∣∣∣
x=a

ḟ(a) Df(a) Dxf(a).

Some things to note about these notations:

• We will generally use the first three, but you should recognise them all.
The notation f ′(a) is due to Lagrange, while the notation df

dx
(a) is due to

Leibniz. They are both very useful. Neither can be considered “better”.

• Leibniz notation writes the derivative as a “fraction” — however it is def-
initely not a fraction and should not be thought of in that way. It is just
shorthand, which is read as “the derivative of f with respect to x”.

• You read f ′(x) as “f–prime of x”, and df
dx

as “dee–f–dee–x”, and d
dx
f(x) as

“dee-by-dee–x of f ”.

• Similarly you read df
dx

(a) as “dee–f–dee–x at a”, and d
dx
f(x)|x=a as “dee-by-

dee-x of f of x at x equals a”.

• The notation ḟ is due to Newton. In physics, it is common to use ḟ(t) to
denote the derivative of f with respect to time.

2.2.2 tt Back to Computing Some Derivatives

At this point we could try to start working out how derivatives interact with arithmetic
and make an “Arithmetic of derivatives” theorem just like the one we saw for limits
(Theorem 1.4.3). We will get there shortly, but before that it is important that we be-
come more comfortable with computing derivatives using limits and then understanding
what the derivative actually means. So — more examples.

Example 2.2.9 d
dx

√
x.

Compute the derivative, f ′(a), of the function f(x) =
√
x at the point x = a for any

a > 0.

• So again we start with the definition of derivative and go from there:

f ′(a) = lim
x→a

f(x)− f(a)

x− a = lim
x→a

√
x−√a
x− a

• As x tends to a, the numerator and denominator both tend to zero. But 0
0
is not

defined. So to get a well defined limit we need to exhibit a cancellation between
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the numerator and denominator — just as we saw in Examples 1.4.12 and 1.4.17.
Now there are two equivalent ways to proceed from here, both based on a similar
“trick”.

• For the first, review Example 1.4.17, which concerned taking a limit involving
square-roots, and recall that we used “multiplication by the conjugate” there:

√
x−√a
x− a

=

√
x−√a
x− a ×

√
x+
√
a√

x+
√
a

(
multiplication by 1 =

conjugate
conjugate

)
=

(
√
x−√a)(

√
x+
√
a)

(x− a)(
√
x+
√
a)

=
x− a

(x− a)(
√
x+
√
a)

(
since (A−B)(A+B) = A2 −B2)

)
=

1√
x+
√
a

• Alternatively, we can arrive at
√
x−√a
x−a = 1√

x+
√
a
by using almost the same trick to

factor the denominator. Just setA =
√
x andB =

√
a inA2−B2 = (A−B)(A+B)

to get

x− a = (
√
x−√a)(

√
x+
√
a)

and then substitute this little fact into our expression
√
x−√a
x− a =

√
x−√a

(
√
x−√a)(

√
x+
√
a)

(now cancel common factors)

=
1

(
√
x+
√
a)

• Once we know that
√
x−√a
x−a = 1√

x+
√
a
, we can take the limit we need:

f ′(a) = lim
x→a

√
x−√a
x− a

= lim
x→a

1√
x+
√
a

=
1

2
√
a

• We should think about the domain of f ′ here — that is, for which values of a is
f ′(a) defined? The original function f(x) was defined for all x ≥ 0, however the
derivative f ′(a) = 1

2
√
a
is undefined at a = 0.

If we draw a careful picture of
√
x around x = 0 we can see why this has to be

the case. The figure below shows three different tangent lines to the graph of
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Example 2.2.9

y = f(x) =
√
x. As the point of tangency moves closer and closer to the origin,

the tangent line gets steeper and steeper. The slope of the tangent line at
(
a,
√
a
)

blows up as a→ 0.

Example 2.2.10 d
dx
{|x|}.

Compute the derivative, f ′(a), of the function f(x) = |x| at the point x = a.

• We should start this example by recalling the definition of |x| (we saw this back
in Example 1.5.6):

|x| =


−x if x < 0

0 if x = 0

x if x > 0.

It is definitely not just “chop off the minus sign”.

• This breaks our computation of the derivative into 3 cases depending on whether
x is positive, negative or zero.
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• Assume x > 0. Then

df

dx
= lim

h→0

f(x+ h)− f(x)

h

= lim
h→0

|x+ h| − |x|
h

Since x > 0 and we are interested in the behaviour of this function as h → 0 we
can assume h is much smaller than x. This means x+h > 0 and so |x+h| = x+h.

= lim
h→0

x+ h− x
h

= lim
h→0

h

h
= 1 as expected

• Assume x < 0. Then

df

dx
= lim

h→0

f(x+ h)− f(x)

h

= lim
h→0

|x+ h| − |x|
h

Since x < 0 and we are interested in the behaviour of this function as h→ 0 we can
assume h is much smaller than x. This means x+h < 0 and so |x+h| = −(x+h).

= lim
h→0

−(x+ h)− (−x)

h

= lim
h→0

−h
h

= −1

• When x = 0 we have

f ′(0) = lim
h→0

f(0 + h)− f(0)

h

= lim
h→0

|0 + h| − |0|
h

= lim
h→0

|h|
h

To proceed we need to know if h > 0 or h < 0, so we must use one-sided limits.
The limit from above is:

lim
h→0+

|h|
h

= lim
h→0+

h

h
since h > 0, |h| = h

= 1

135



Derivatives 2.2 Definition of the Derivative

Example 2.2.10

Whereas, the limit from below is:

lim
h→0−

|h|
h

= lim
h→0−

−h
h

since h < 0, |h| = −h

= −1

Since the one-sided limits differ, the limit as h→ 0 does not exist. And thus the
derivative does not exist as x = 0.

In summary:

d

dx
|x| =


−1 if x < 0

DNE if x = 0

1 if x > 0

2.2.3 tt Where is the Derivative Undefined?

According to Definition 2.2.1, the derivative f ′(a) exists precisely when the limit lim
x→a

f(x)−f(a)
x−a

exists. That limit is also the slope of the tangent line to the curve y = f(x) at x = a.
That limit does not exist when the curve y = f(x) does not have a tangent line at x = a
or when the curve does have a tangent line, but the tangent line has infinite slope. We
have already seen some examples of this.

• In Example 2.2.7, we considered the function f(x) = 1
x
. This function “blows up”

(i.e. becomes infinite) at x = 0. It does not have a tangent line at x = 0 and its
derivative does not exist at x = 0.

• In Example 2.2.10, we considered the function f(x) = |x|. This function does
not have a tangent line at x = 0, because there is a sharp corner in the graph of
y = |x| at x = 0. (Look at the graph in Example 2.2.10.) So the derivative of
f(x) = |x| does not exist at x = 0.

Here are a few more examples.
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Example 2.2.11 Derivative at a discontinuity.

Visually, the function

H(x) =

{
0 if x ≤ 0

1 if x > 0

does not have a tangent line at (0, 0). Not surprisingly, when a = 0 and h tends to 0
with h > 0,

H(a+ h)−H(a)

h
=
H(h)−H(0)

h
=

1

h

blows up. The same sort of computation shows that f ′(a) cannot possibly exist when-
ever the function f is not continuous at a. We will formalize, and prove, this statement
in Theorem 2.2.14, below.

Example 2.2.12 d
dx
x1/3.

Visually, it looks like the function f(x) = x1/3, sketched below, (this might be a good
point to recall that cube roots of negative numbers are negative — for example, since
(−1)3 = −1, the cube root of −1 is −1),

has the y–axis as its tangent line at (0, 0). So we would expect that f ′(0) does not
exist. Let’s check. With a = 0,

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
= lim

h→0

f(h)− f(0)

h
= lim

h→0

h1/3

h

= lim
h→0

1

h2/3
= DNE

as expected.

137



Derivatives 2.2 Definition of the Derivative

Example 2.2.13 d
dx

√
|x|.

We have already considered the derivative of the function
√
x in Example 2.2.9. We’ll

now look at the function f(x) =
√
|x|. Recall, from Example 2.2.10, the definition of

|x|.
When x > 0, we have |x| = x and f(x) is identical to

√
x. When x < 0, we have

|x| = −x and f(x) =
√−x. So to graph y =

√
|x| when x < 0, you just have to graph

y =
√
x for x > 0 and then send x → −x — i.e. reflect the graph in the y–axis. Here

is the graph.

The pointy thing at the origin is called a cusp. The graph of y = f(x) does not have a
tangent line at (0, 0) and, correspondingly, f ′(0) does not exist because

lim
h→0+

f(h)− f(0)

h
= lim

h→0+

√
|h|
h

= lim
h→0+

1√
h

= DNE

Theorem 2.2.14

If the function f(x) is differentiable at x = a, then f(x) is also continuous at
x = a.

Proof. The function f(x) is continuous at x = a if and only if the limit of

f(a+ h)− f(a) =
f(a+ h)− f(a)

h
h

as h→ 0 exists and is zero. But if f(x) is differentiable at x = a, then, as h→ 0,
the first factor, f(a+h)−f(a)

h
converges to f ′(a) and the second factor, h, converges

to zero. So the product provision of our arithmetic of limits Theorem 1.4.3 implies
that the product f(a+h)−f(a)

h
h converges to f ′(a) · 0 = 0 too.

�

Notice that while this theorem is useful as stated, it is (arguably) more often applied
in its contrapositive 6 form:

6 If you have forgotten what the contrapositive is, then quickly reread Footnote 1.3.5 in Section 1.3.
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Theorem 2.2.15 The contrapositive of Theorem 2.2.14.

If f(x) is not continuous at x = a then it is not differentiable at x = a.

As the above examples illustrate, this statement does not tell us what happens if f
is continuous at x = a — we have to think!

2.2.4 tt Exercises

Exercises — Stage 1

1. The function f(x) is shown. Select all options below that describe its deriva-

tive,
df

dx
:

• (a) constant

• (b) increasing

• (c) decreasing

• (d) always positive

• (e) always negative

x

y

y = f(x)

2. The function f(x) is shown. Select all options below that describe its deriva-

tive,
df

dx
:

• (a) constant

• (b) increasing
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• (c) decreasing

• (d) always positive

• (e) always negative

x

y

y = f(x)

3. The function f(x) is shown. Select all options below that describe its

derivative,
df

dx
:

• (a) constant

• (b) increasing

• (c) decreasing

• (d) always positive

• (e) always negative

x

y

y = f(x)
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4. ∗. State, in terms of a limit, what it means for f(x) = x3 to be differentiable
at x = 0.

5. For which values of x does f ′(x) not exist?

x

y

1

1

6. Suppose f(x) is a function defined at x = a with

lim
h→0−

f(a+ h)− f(a)

h
= lim

h→0+

f(a+ h)− f(a)

h
= 1.

True or false: f ′(a) = 1.

7. Suppose f(x) is a function defined at x = a with

lim
x→a−

f ′(x) = lim
x→a+

f ′(x) = 1.

True or false: f ′(a) = 1.

8. Suppose s(t) is a function, with t measured in seconds, and s measured in
metres. What are the units of s′(t)?

Exercises — Stage 2
9. Use the definition of the derivative to find the equation of the tangent line to

the curve y(x) = x3 + 5 at the point (1, 6).

10. Use the definition of the derivative to find the derivative of f(x) = 1
x
.

11. ∗. Let f(x) = x|x|. Using the definition of the derivative, show that f(x) is
differentiable at x = 0.
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12. ∗. Use the definition of the derivative to compute the derivative of the
function f(x) = 2

x+1
.

13. ∗. Use the definition of the derivative to compute the derivative of the function
f(x) = 1

x2+3
.

14. Use the definition of the derivative to find the slope of the tangent line to the
curve f(x) = x log10(2x+ 10) at the point x = 0.

15. ∗. Compute the derivative of f(x) = 1
x2

directly from the definition.

16. ∗. Find the values of the constants a and b for which

f(x) =

{
x2 x ≤ 2

ax+ b x > 2

is differentiable everywhere.
Remark: In the text, you have already learned the derivatives of x2 and
ax + b. In this question, you are only asked to find the values of a and
b—not to justify how you got them—so you don’t have to use the definition
of the derivative. However, on an exam, you might be asked to justify your
answer, in which case you would show how to differentiate the two branches
of f(x) using the definition of a derivative.

17. ∗. Use the definition of the derivative to compute f ′(x) if f(x) =
√

1 + x.
Where does f ′(x) exist?

Exercises — Stage 3
18. Use the definition of the derivative to find the velocity of an object whose

position is given by the function s(t) = t4 − t2.

19. ∗. Determine whether the derivative of following function exists at x = 0.

f(x) =

{
x cosx if x ≥ 0√
x2 + x4 if x < 0

You must justify your answer using the definition of a derivative.

20. ∗. Determine whether the derivative of the following function exists at x = 0

f(x) =

{
x cosx if x ≤ 0√

1 + x− 1 if x > 0

You must justify your answer using the definition of a derivative.
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21. ∗. Determine whether the derivative of the following function exists at x = 0

f(x) =

{
x3 − 7x2 if x ≤ 0

x3 cos
(

1
x

)
if x > 0

You must justify your answer using the definition of a derivative.
22. ∗. Determine whether the derivative of the following function exists at x = 1

f(x) =

4x2 − 8x+ 4 if x ≤ 1

(x− 1)2 sin

(
1

x− 1

)
if x > 1

You must justify your answer using the definition of a derivative.

23. . Sketch a function f(x) with f ′(0) = −1 that takes the following values:

x −1 −1
2
−1

4
−1

8
0 1

8
1
4

1
2

1

f(x) −1 −1
2
−1

4
−1

8
0 1

8
1
4

1
2

1

Remark: you can’t always guess the behaviour of a function from its points,
even if the points seem to be making a clear pattern.

24. Let p(x) = f(x)+g(x), for some functions f and g whose derivatives exist. Use
limit laws and the definition of a derivative to show that p′(x) = f ′(x) + g′(x).
Remark: this is called the sum rule, and we’ll learn more about it in
Lemma 2.4.1.

25. Let f(x) = 2x, g(x) = x, and p(x) = f(x) · g(x).

a Find f ′(x) and g′(x).

b Find p′(x).

c Is p′(x) = f ′(x) · g′(x)?

In Theorem 2.4.3, you’ll learn a rule for calculating the derivative of a product
of two functions.

26. ∗. There are two distinct straight lines that pass through the point (1,−3)
and are tangent to the curve y = x2. Find equations for these two lines.
Remark: the point (1,−3) does not lie on the curve y = x2.

27. ∗. For which values of a is the function

f(x) =

{
0 x ≤ 0

xa sin 1
x

x > 0

differentiable at 0?

143



Derivatives 2.3 Interpretations of the Derivative

2.3q Interpretations of the Derivative

In the previous sections we defined the derivative as the slope of a tangent line, using a
particular limit. This allows us to compute “the slope of a curve” 1 and provides us with
one interpretation of the derivative. However, the main importance of derivatives does
not come from this application. Instead, (arguably) it comes from the interpretation of
the derivative as the instantaneous rate of change of a quantity.

2.3.1 tt Instantaneous Rate of Change

In fact we have already (secretly) used a derivative to compute an instantaneous rate
of change in Section 1.2. For your convenience we’ll review that computation here, in
Example 2.3.1, and then generalise it.

Example 2.3.1 Velocity as a derivative.

You drop a ball from a tall building. After t seconds the ball has fallen a distance of
s(t) = 4.9t2 metres. What is the velocity of the ball one second after it is dropped?

• In the time interval from t = 1 to t = 1 + h the ball travels a distance

s(1 + h)− s(1) = 4.9(1 + h)2 − 4.9(1)2 = 4.9
[
2h+ h2

]
• So the average velocity over this time interval is

average velocity from t = 1 to t = 1 + h

=
distance travelled from t = 1 to t = 1 + h

length of time from t = 1 to t = 1 + h

=
s(1 + h)− s(1)

h

=
4.9
[
2h+ h2

]
h

= 4.9[2 + h]

• The instantaneous velocity at time t = 1 is then defined to be the limit

instantaneous velocity at time t = 1

1 Again — recall that we are being a little sloppy with this term — we really mean “The slope of
the tangent line to the curve”.
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Example 2.3.1

= lim
h→0

[
average velocity from t = 1 to t = 1 + h

]
= lim

h→0

s(1 + h)− s(1)

h
= s′(1)

= lim
h→0

4.9[2 + h]

= 9.8m/sec

• We conclude that the instantaneous velocity at time t = 1, which is the instan-
taneous rate of change of distance per unit time at time t = 1, is the derivative
s′(1) = 9.8m/sec.

Now suppose, more generally, that you are taking a walk and that as you walk, you
are continuously measuring some quantity, like temperature, and that the measurement
at time t is f(t). Then the

average rate of change of f(t) from t = a to t = a+ h

=
change in f(t) from t = a to t = a+ h

length of time from t = a to t = a+ h

=
f(a+ h)− f(a)

h

so the

instantaneous rate of change of f(t) at t = a

= lim
h→0

[
average rate of change of f(t) from t = a to t = a+ h

]
= lim

h→0

f(a+ h)− f(a)

h
= f ′(a)

In particular, if you are walking along the x–axis and your x–coordinate at time t is
x(t), then x′(a) is the instantaneous rate of change (per unit time) of your x–coordinate
at time t = a, which is your velocity at time a. If v(t) is your velocity at time t, then
v′(a) is the instantaneous rate of change of your velocity at time a. This is called your
acceleration at time a.

You might expect that if the instantaneous rate of change of a function at time c is
strictly positive, then, in some sense, the function is increasing at t = c. You would be
right. Indeed, if f ′(c) > 0, then, by definition, the limit of f(t)−f(c)

t−c as t approaches c is
strictly bigger than zero. So
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• for all t > c that are sufficiently close2 to c
f(t)− f(c)

t− c > 0 =⇒ f(t)− f(c) > 0 (since t− c > 0)

=⇒ f(t) > f(c)

• for all t < c that are sufficiently close to c
f(t)− f(c)

t− c > 0 =⇒ f(t)− f(c) < 0 (since t < c)

=⇒ f(t) < f(c)

Consequently we say that “f(t) is increasing at t = c”. If we wish to emphasise that
the inequalities above are the strict inequalities > and <, as opposed to ≥ and ≤, we
will say that “f(t) is strictly increasing at t = c”.

2.3.2 tt Slope

Suppose that y = f(x) is the equation of a curve in the xy–plane. That is, f(x) is
the y–coordinate of the point on the curve whose x–coordinate is x. Then, as we have
already seen,[
the slope of the secant through

(
a, f(a)

)
and

(
a+ h, f(a+ h)

)]
=
f(a+ h)− f(a)

h
This is shown in Figure 2.3.2 below.

Figure 2.3.2

2 This is typical mathematician speak — it allows us to be completely correct, without being terribly
precise. In this context, sufficiently close means The following need not be true for all t bigger
than c, but there must exist some b > c so that the following is true for all c < t < b. Typically
we do not know what b is. And typically it does not matter what the exact value of b is. All that
matters is that b exists and is strictly bigger than c.

146



Derivatives 2.3 Interpretations of the Derivative

In order to create the tangent line (as we have done a few times now) we squeeze
h → 0. As we do this, the secant through

(
a, f(a)

)
and

(
a + h, f(a + h)

)
approaches

3 the tangent line to y = f(x) at x = a. Since the secant becomes the tangent line in
this limit, the slope of the secant becomes the slope of the tangent and[

the slope of the tangent line to y = f(x) at x = a
]

= lim
h→0

f(a+ h)− f(a)

h
= f ′(a).

Let us go a little further and work out a general formula for the equation of the
tangent line to y = f(x) at x = a. We know that the tangent line

• has slope f ′(a) and

• passes through the point
(
a, f(a)

)
.

There are a couple of different ways to construct the equation of the tangent line
from this information. One is to observe, as in Figure 2.3.3, that if (x, y) is any other
point on the tangent line then the line segment from

(
a, f(a)

)
to (x, y) is part of the

tangent line and so also has slope f ′(a). That is,

y − f(a)

x− a =
[
the slope of the tangent line

]
= f ′(a)

Cross multiplying gives us the equation of the tangent line:

y − f(a) = f ′(a) (x− a) or y = f(a) + f ′(a) (x− a)

Figure 2.3.3: A line segment of a tangent line

A second way to derive the same equation of the same tangent line is to recall that
the general equation for a line, with finite slope, is y = mx + b, where m is the slope
and b is the y-intercept. We already know the slope — so m = f ′(a). To work out b we

3 We are of course assuming that the curve is smooth enough to have a tangent line at a.
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use the other piece of information — (a, f(a)) is on the line. So (x, y) = (a, f(a)) must
solve y = f ′(a)x+ b. That is,

f(a) = f ′(a) · a+ b and so b = f(a)− af ′(a)

Hence our equation is, once again,

y = f ′(a) · x+ (f(a)− af ′(a)) or, after rearranging a little,
y = f(a) + f ′(a) (x− a)

This is a very useful formula, so perhaps we should make it a theorem.

Theorem 2.3.4 Tangent line.

The tangent line to the curve y = f(x) at x = a is given by the equation

y = f(a) + f ′(a) (x− a)

provided the derivative f ′(a) exists.

The caveat at the end of the above theorem is necessary — there are certainly cases
in which the derivative does not exist and so we do need to be careful.

Example 2.3.5 A tangent line to the curve y =
√
x.

Find the tangent line to the curve y =
√
x at x = 4.

Rather than redoing everything from scratch, we can, and for efficiency, should, use
Theorem 2.3.4. To write this up properly, we must ensure that we tell the reader what
we are doing. So something like the following:

• By Theorem 2.3.4, the tangent line to the curve y = f(x) at x = a is given by

y = f(a) + f ′(a)(x− a)

provided f ′(a) exists.

• In Example 2.2.9, we found that, for any a > 0, the derivative of
√
x at x = a is

f ′(a) =
1

2
√
a

• In the current example, a = 4 and we have

f(a) = f(4) =
√
x
∣∣
x=4

=
√

4 = 2

and f ′(a) = f ′(4) =
1

2
√
a

∣∣∣
a=4

=
1

2
√

4
=

1

4
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Example 2.3.5

• So the equation of the tangent line to y =
√
x at x = 4 is

y = 2 +
1

4

(
x− 4

)
or y =

x

4
+ 1

We don’t have to write it up using dot-points as above; we have used them here to help
delineate each step in the process of computing the tangent line.

2.3.3 tt Exercises

Exercises — Stage 2

1. Suppose h(t) gives the height at time t of the water at a dam, where the
units of t are hours and the units of h are meters.

a What is the physical interpretation of the slope of the secant line
through the points (0, h(0)) and (24, h(24))?

b What is the physical interpretation of the slope of the tangent line
to the curve y = h(t) at the point (0, h(0))?

2. Suppose p(t) is a function that gives the profit generated by selling t widgets.
What is the practical interpretation of p′(t)?

3. T (d) gives the temperature of water at a particular location d metres below
the surface. What is the physical interpretation of T ′(d)? Would you expect
the magnitude of T ′(d) to be larger when d is near 0, or when d is very large?

4. C(w) gives the calories in w grams of a particular dish. What does C ′(w)
describe?

5. The velocity of a moving object at time t is given by v(t). What is v′(t)?

6. The function T (j) gives the temperature in degrees Celsius of a cup of
water after j joules of heat have been added. What is T ′(j)?

7. A population of bacteria, left for a fixed amount of time at temperature T ,
grows to P (T ) individuals. Interpret P ′(T ).

Exercises — Stage 3
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8. You hammer a small nail into a wooden wagon wheel. R(t) gives the number
of rotations the nail has undergone t seconds after the wagon started to roll.
Give an equation for how quickly the nail is rotating, measured in degrees per
second.

9. A population of bacteria, left for a fixed amount of time at temperature
T , grows to P (T ) individuals. There is one ideal temperature where the
bacteria population grows largest, and the closer the sample is to that tem-
perature, the larger the population is (unless the temperature is so extreme
that it causes all the bacteria to die by freezing or boiling). How will P ′(T )
tell you whether you are colder or hotter than the ideal temperature?

2.4q Arithmetic of Derivatives - a Differentiation Toolbox

2.4.1 tt Arithmetic of Derivatives - a Differentiation Toolbox

So far, we have evaluated derivatives only by applying Definition 2.2.1 to the function
at hand and then computing the required limits directly. It is quite obvious that as the
function being differentiated becomes even a little complicated, this procedure quickly
becomes extremely unwieldy. It is many orders of magnitude more efficient to have
access to

• a list of derivatives of some simple functions and

• a collection of rules for breaking down complicated derivative computations into
sequences of simple derivative computations.

This is precisely what we did to compute limits. We started with limits of simple func-
tions and then used “arithmetic of limits” to computed limits of complicated functions.

We have already started building our list of derivatives of simple functions. We have
shown, in Examples 2.2.2, 2.2.3, 2.2.5 and 2.2.9, that

d

dx
1 = 0

d

dx
x = 1

d

dx
x2 = 2x

d

dx

√
x =

1

2
√
x

We’ll expand this list later.
We now start building a collection of tools that help reduce the problem of computing

the derivative of a complicated function to that of computing the derivatives of a number
of simple functions. In this section we give three derivative “rules” as three separate
theorems. We’ll give the proofs of these theorems in the next section and examples of
how they are used in the following section.

As was the case for limits, derivatives interact very cleanly with addition, subtraction
and multiplication by a constant. The following result actually follows very directly
from the first three points of Theorem 1.4.3.
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Lemma 2.4.1 Derivative of sum and difference.

Let f(x), g(x) be differentiable functions and let c ∈ R be a constant. Then

d

dx

{
f(x) + g(x)

}
= f ′(x) + g′(x)

d

dx

{
f(x)− g(x)

}
= f ′(x)− g′(x)

d

dx

{
cf(x)

}
= cf ′(x)

That is, the derivative of the sum is the sum of the derivatives, and so forth.

Following this we can combine the three statements in this lemma into a single rule
which captures the “linearity of differentiation”.

Theorem 2.4.2 Linearity of differentiation.

Again, let f(x), g(x) be differentiable functions, let α, β ∈ R be constants and
define the “linear combination”

S(x) = αf(x) + βg(x).

Then the derivative of S(x) at x = a exists and is

dS

dx
= S ′(x) = αf ′(x) + βg′(x).

Note that we can recover the three rules in the previous lemma by setting α =
β = 1 or α = 1, β = −1 or α = c, β = 0.

Unfortunately, the derivative does not act quite as simply on products or quotients.
The rules for computing derivatives of products and quotients get their own names and
theorems:

Theorem 2.4.3 The product rule.

Let f(x), g(x) be differentiable functions, then the derivative of the product
f(x)g(x) exists and is given by

d

dx

{
f(x) g(x)

}
= f ′(x) g(x) + f(x) g′(x).

Before we proceed to the derivative of the ratio of two functions, it is worth noting a
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special case of the product rule when g(x) = f(x). In fact, since this is a useful special
case, let us call it a corollary 1:

Corollary 2.4.4 Derivative of a square.

Let f(x) be a differentiable function, then the derivative of its square is:

d

dx

{
f(x)2

}
= 2 f(x) f ′(x)

With a little work this can be generalised to other powers — but that is best done
once we understand how to compute the derivative of the composition of two functions.
That requires the chain rule (see Theorem 2.9.2 below). But before we get to that, we
need to see how to take the derivative of a quotient of two functions.

Theorem 2.4.5 The quotient rule.

Let f(x), g(x) be differentiable functions. Then the derivative of their quotient is

d

dx

{
f(x)

g(x)

}
=
f ′(x) g(x)− f(x) g′(x)

g(x)2
.

This derivative exists except at points where g(x) = 0.

There is a useful special case of this theorem which we obtain by setting f(x) = 1.
In that case, the quotient rule tells us how to compute the derivative of the reciprocal
of a function.

Corollary 2.4.6 Derivative of a reciprocal.

Let g(x) be a differentiable function. Then the derivative of the reciprocal of g
is given by

d

dx

{
1

g(x)

}
= − g

′(x)

g(x)2

and exists except at those points where g(x) = 0.

So we have covered, sums, differences, products and quotients. This allows us to
compute derivatives of many different functions — including polynomials and rational
functions. However we are still missing trigonometric functions (for example), and a

1 Recall that a corollary is an important result that follows from one or more theorems — typically
without too much extra work — as is the case here.
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rule for computing derivatives of compositions. These will follow in the near future, but
there are a couple of things to do before that — understand where the above theorems
come from, and practice using them.

2.4.2 tt Exercises

Exercises — Stage 1

1. True or false:
d

dx
{f(x) + g(x)} = f ′(x) + g′(x) when f and g are differentiable

functions.

2. True or false:
d

dx
{f(x)g(x)} = f ′(x)g′(x) when f and g are differentiable

functions.

3. True or false:
d

dx

{
f(x)

g(x)

}
=
f ′(x)

g(x)
− f(x)g′(x)

g2(x)
when f and g are differentiable

functions.
4. Let f be a differentiable function. Use at least three different rules to differ-

entiate g(x) = 3f(x), and verify that they all give the same answer.

Exercises — Stage 2

5. Differentiate f(x) = 3x2 + 4x1/2 for x > 0.

6. Use the product rule to differentiate f(x) = (2x+ 5)(8
√
x− 9x).

7. ∗. Find the equation of the tangent line to the graph of y = x3 at x =
1

2
.

8. ∗. A particle moves along the x–axis so that its position at time t is given
by x = t3 − 4t2 + 1 .

a At t = 2, what is the particle’s speed?

b At t = 2, in what direction is the particle moving?

c At t = 2, is the particle’s speed increasing or decreasing?

9. ∗. Calculate and simplify the derivative of
2x− 1

2x+ 1

10. What is the slope of the graph y =

(
3x+ 1

3x− 2

)2

when x = 1?
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11. Find the equation of the tangent line to the curve f(x) =
1√
x+ 1

at the

point
(
1, 1

2

)
.

Exercises — Stage 3

12. A town is founded in the year 2000. After t years, it has had b(t) births
and d(t) deaths. Nobody enters or leaves the town except by birth or
death (whoa). Give an expression for the rate the population of the town
is growing.

13. ∗. Find all points on the curve y = 3x2 where the tangent line passes through
(2, 9).

14. ∗. Evaluate lim
y→0

(√
100180 + y −

√
100180

y

)
by interpreting the limit as

a derivative.

15. A rectangle is growing. At time t = 0, it is a square with side length 1
metre. Its width increases at a constant rate of 2 metres per second, and
its length increases at a constant rate of 5 metres per second. How fast is
its area increasing at time t > 0?

16. Let f(x) = x2g(x) for some differentiable function g(x). What is f ′(0)?

17. Verify that differentiating f(x) =
g(x)

h(x)
using the quotient rule gives the same

answer as differentiating f(x) =
g(x)

k(x)
· k(x)

h(x)
using the product rule and the

quotient rule.

2.5q Proofs of the Arithmetic of Derivatives

The theorems of the previous section are not too difficult to prove from the definition
of the derivative (which we know) and the arithmetic of limits (which we also know).
In this section we show how to construct these rules.

Throughout this section we will use our two functions f(x) and g(x). Since the
theorems we are going to prove all express derivatives of linear combinations, products
and quotients in terms of f, g and their derivatives, it is helpful to recall the definitions
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of the derivatives of f and g:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
and g′(x) = lim

h→0

g(x+ h)− g(x)

h
.

Our proofs, roughly speaking, involve doing algebraic manipulations to uncover the
expressions that look like the above.

2.5.1 tt Proof of the Linearity of Differentiation (Theorem 2.4.2)

Recall that in Theorem 2.4.2 we defined S(x) = α f(x) + β g(x), where α, β ∈ R are
constants. We wish to compute S ′(x), so we start with the definition:

S ′(x) = lim
h→0

S(x+ h)− S(x)

h

Let us concentrate on the numerator of the expression inside the limit and then come
back to the full limit in a moment. Substitute in the definition of S(x):

S(x+ h)− S(x) =
[
αf(x+ h) + βg(x+ h)

]
−
[
αf(x) + βg(x)

]
collect terms

= α
[
f(x+ h)− f(x)] + β

[
g(x+ h)− g(x)

]
Now it is easy to see the structures we need — namely, we almost have the expressions
for the derivatives f ′(x) and g′(x). Indeed, all we need to do is divide by h and take
the limit. So let’s finish things off.

S ′(x) = lim
h→0

S(x+ h)− S(x)

h
from above

= lim
h→0

α
[
f(x+ h)− f(x)] + β

[
g(x+ h)− g(x)

]
h

= lim
h→0

[
α
f(x+ h)− f(x)

h
+ β

g(x+ h)− g(x)

h

]
limit laws

= α lim
h→0

f(x+ h)− f(x)

h
+ β lim

h→0

g(x+ h)− g(x)

h
= αf ′(x) + βg′(x)

as required.

2.5.2 tt Proof of the Product Rule (Theorem 2.4.3)

After the warm-up above, we will just jump straight in. Let P (x) = f(x) g(x), the
product of our two functions. The derivative of the product is given by

P ′(x) = lim
h→0

P (x+ h)− P (x)

h
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Again we will focus on the numerator inside the limit and massage it into the form we
need. To simplify these manipulations, define

F (h) =
f(x+ h)− f(x)

h
and G(h) =

g(x+ h)− g(x)

h
.

Then we can write

f(x+ h) = f(x) + hF (h) and g(x+ h) = g(x) + hG(h).

We can also write

f ′(x) = lim
h→0

F (h) and g′(x) = lim
h→0

G(h).

So back to that numerator:

P (x+ h)− P (x) = f(x+ h) · g(x+ h)− f(x) · g(x) substitute
= [f(x) + hF (h)] [g(x) + hG(h)]− f(x) · g(x) expand
= f(x)g(x) + f(x) · hG(h) + hF (h) · g(x) + h2F (h) ·G(h)− f(x) · g(x)

= f(x) · hG(h) + hF (h) · g(x) + h2F (h) ·G(h).

Armed with this we return to the definition of the derivative:

P ′(x) = lim
h→0

P (x+ h)− P (x)

h

= lim
h→0

f(x) · hG(h) + hF (h) · g(x) + h2F (h) ·G(h)

h

=

(
lim
h→0

f(x) · hG(h)

h

)
+

(
lim
h→0

hF (h) · g(x)

h

)
+

(
lim
h→0

h2F (h) ·G(h)

h

)
=
(

lim
h→0

f(x) ·G(h)
)

+
(

lim
h→0

F (h) · g(x)
)

+
(

lim
h→0

hF (h) ·G(h)
)

Now since f(x) and g(x) do not change as we send h to zero, we can pull them outside.
We can also write the third term as the product of 3 limits:

=
(
f(x) lim

h→0
G(h)

)
+
(
g(x) lim

h→0
F (h)

)
+
(

lim
h→0

h
)
·
(

lim
h→0

F (h)
)
·
(

lim
h→0

G(h)
)

= f(x) · g′(x) + g(x) · f ′(x) + 0 · f ′(x) · g′(x)

= f(x) · g′(x) + g(x) · f ′(x).

And so we recover the product rule.

2.5.3 tt (Optional) — Proof of the Quotient Rule (Theorem 2.4.5)

We now give the proof of the quotient rule in two steps1. We assume throughout that
g(x) 6= 0 and that f(x) and g(x) are differentiable, meaning that the limits defining
f ′(x), g′(x) exist.

1 We thank Serban Raianu for suggesting this approach.
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• In the first step, we prove the quotient rule under the assumption that f(x)/g(x)
is differentiable.

• In the second step, we prove that 1/g(x) differentiable. Once we know that 1/g(x)
is differentiable, the product rule implies that f(x)/g(x) is differentiable.

Step 1: the proof of the quotient rule assumng that f(x)
g(x)

is differentiable. Write
Q(x) = f(x)

g(x)
. Then f(x) = g(x)Q(x) so that f ′(x) = g′(x)Q(x) + g(x)Q′(x), by the

product rule, and

Q′(x) =
f ′(x)− g′(x)Q(x)

g(x)
=
f ′(x)− g′(x) f(x)

g(x)

g(x)

=
f ′(x)g(x)− f(x)g′(x)

g(x)2

Step 2: the proof that 1/g(x) is differentiable. By definition

d

dx

1

g(x)
= lim

h→0

1

h

[
1

g(x+ h)
− 1

g(x)

]
= lim

h→0

g(x)− g(x+ h)

h g(x) g(x+ h)

= − lim
h→0

1

g(x)

1

g(x+ h)

g(x+ h)− g(x)

h

= − 1

g(x)
lim
h→0

1

g(x+ h)
lim
h→0

g(x+ h)− g(x)

h

= − 1

g(x)2
g′(x)

2.6q Using the Arithmetic of Derivatives – Examples

2.6.1 tt Using the Arithmetic of Derivatives – Examples

In this section we illustrate the computation of derivatives using the arithmetic of
derivatives — Theorems 2.4.2, 2.4.3 and 2.4.5. To make it clear which rules we are
using during the examples we will note which theorem we are using:

•LIN to stand for “linearity” d
dx
{α f(x) + β g(x)} = α f ′(x) + β g′(x) Theorem 2.4.2

•PR to stand for “product rule” d
dx
{f(x) g(x)} = f ′(x) g(x) + f(x) g′(x) Theorem 2.4.3

•QR to stand for “quotient rule” d
dx

{
f(x)
g(x)

}
= f ′(x) g(x)−f(x) g′(x)

g(x)2
Theorem 2.4.5

We’ll start with a really easy example.
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Example 2.6.1 d
dx
{4x+ 7}.

d

dx
{4x+ 7} = 4 · d

dx
{x}+ 7 · d

dx
{1} LIN

= 4 · 1 + 7 · 0 = 4

where we have used LIN with f(x) = x, g(x) = 1, α = 4, β = 7.

Example 2.6.2 d
dx

{
x(4x+ 7)

}
.

Continuing on from the previous example, we can use the product rule and the previous
result to compute

d

dx

{
x(4x+ 7)

}
= x · d

dx
{4x+ 7}+ (4x+ 7)

d

dx
{x} PR

= x · 4 + (4x+ 7) · 1
= 8x+ 7

where we have used the product rule PR with f(x) = x and g(x) = 4x+ 7.

Example 2.6.3 d
dx

{
x

4x+7

}
.

In the same vein as the previous example, we can use the quotient rule to compute

d

dx

{
x

4x+ 7

}
=

(4x+ 7) · d
dx
{x} − x · d

dx
{4x+ 7}

(4x+ 7)2
QR

=
(4x+ 7) · 1− x · 4

(4x+ 7)2

=
7

(4x+ 7)2

where we have used the quotient rule QR with f(x) = x and g(x) = 4x+ 7.

Now for a messier example.

Example 2.6.4 Some examples should be messy.

Differentiate

f(x) =
x

2x+ 1
3x+1
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This problem looks nasty. But it isn’t so hard if we just build it up a bit at a time.

• First, f(x) is the ratio of

f1(x) = x and f2(x) = 2x+
1

3x+ 1

If we can find the derivatives of f1(x) and f2(x), we will be able to get the
derivative of f(x) just by applying the quotient rule. The derivative, f ′1(x) = 1,
of f1(x) is easy, so let’s work on f2(x).

• The function f2(x) is the linear combination

f2(x) = 2f3(x) + f4(x) with f3(x) = x and f4(x) =
1

3x+ 1

If we can find the derivatives of f3(x) and f4(x), we will be able to get the
derivative of f2(x) just by applying linearity (Theorem 2.4.2). The derivative,
f ′3(x) = 1, of f3(x) is easy. So let’s work of f4(x).

• The function f4(x) is the ratio

f4(x) =
1

f5(x)
with f5(x) = 3x+ 1

If we can find the derivative of f5(x), we will be able to get the derivative of
f4(x) just by applying the special case the quotient rule (Corollary 2.4.6). The
derivative of f5(x) is easy.

• So we have completed breaking down f(x) into easy pieces. It is now just a matter
of reversing the break down steps, putting everything back together, starting with
the easy pieces and working up to f(x). Here goes.

f5(x) = 3x+ 1

so
d

dx
f5(x) = 3

d

dx
x+

d

dx
1 = 3 · 1 + 0 = 3 LIN

f4(x) =
1

f5(x)

so
d

dx
f4(x) = − f ′5(x)

f5(x)2
= − 3

(3x+ 1)2
QR

f2(x) = 2f3(x) + f4(x)

so
d

dx
f2(x) = 2f ′3(x) + f ′4(x) = 2− 3

(3x+ 1)2
LIN

f(x) =
f1(x)

f2(x)

so
d

dx
f(x) =

f ′1(x)f2(x)− f1(x)f ′2(x)

f2(x)2
QR
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Example 2.6.4

=
1
[
2x+ 1

3x+1

]
− x
[
2− 3

(3x+1)2

][
2x+ 1

3x+1

]2
Oof!

• We now have an answer. But we really should clean it up, not only to make
it easier to read, but also because invariably such computations are just small
steps inside much larger computations. Any future computations involving this
expression will be a lot easier and less error prone if we clean it up now. Cancelling
the 2x and the −2x in

1
[
2x+

1

3x+1

]
− x
[
2− 3

(3x+1)2

]
= 2x+

1

3x+1
− 2x+

3x

(3x+1)2

=
1

3x+1
+

3x

(3x+1)2

and multiplying both the numerator and denominator by (3x+ 1)2 gives

f ′(x) =

1
3x+1

+ 3x
(3x+1)2[

2x+ 1
3x+1

]2 (3x+ 1)2

(3x+ 1)2

=
(3x+ 1) + 3x[

2x(3x+ 1) + 1
]2

=
6x+ 1

[6x2 + 2x+ 1]2
.

While the linearity theorem (Theorem 2.4.2) is stated for a linear combination of
two functions, it is not difficult to extend it to linear combinations of three or more
functions as the following example shows.

Example 2.6.5 Linearity of the derivative of three or more functions.

We’ll start by generalising linearity to three functions.

d

dx

{
aF (x) + bG(x) + cH(x)

}
=

d

dx

{
a · [F (x)] + 1 · [bG(x) + cH(x)]

}
= aF ′(x) +

d

dx
{bG(x) + cH(x)}

by LIN with α = a, f(x) = F (x), β = 1,
and g(x) = bG(x) + cH(x)

= aF ′(x) + bG′(x) + cH ′(x)

by LIN with α = b, f(x) = G(x), β = c,

and g(x) = H(x)
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Example 2.6.5

This gives us linearity for three terms, namely (just replacing upper case names by
lower case names)

d

dx
{af(x) + bg(x) + ch(x)} = af ′(x) + bg′(x) + ch′(x)

Just by repeating the above argument many times, we may generalise to linearity for
n terms, for any natural number n:

d

dx
{a1f1(x) + a2f2(x) + · · ·+ anfn(x)}

= a1f
′
1(x) + a2f

′
2(x) + · · ·+ anf

′
n(x)

Similarly, while the product rule is stated for the product of two functions, it is not
difficult to extend it to the product of three or more functions as the following example
shows.

Example 2.6.6 Extending the product rule to more than two factors.

Once again, we’ll start by generalising the product rule to three factors.
d

dx
{F (x)G(x)H(x)} = F ′(x)G(x)H(x) + F (x)

d

dx
{G(x)H(x)}

by PR withf(x) = F (x) and g(x) = G(x)H(x)

= F ′(x)G(x)H(x) + F (x)
{
G′(x)H(x) +G(x)H ′(x)

}
by PR withf(x) = G(x) and g(x) = H(x)

This gives us a product rule for three factors, namely (just replacing upper case names
by lower case names)

d

dx
{f(x) g(x)h(x)} = f ′(x) g(x)h(x) + f(x) g′(x)h(x) + f(x) g(x)h′(x)

Observe that when we differentiate a product of three factors, the answer is a sum of
three terms and in each term the derivative acts on exactly one of the original factors.
Just by repeating the above argument many times, we may generalise the product rule
to give the derivative of a product of n factors, for any natural number n:

d

dx
{f1(x) f2(x) · · · fn(x)} = f ′1(x) f2(x) · · · fn(x)

+f1(x) f ′2(x) · · · fn(x)

...
+f1(x) f2(x) · · · f ′n(x)

We can also write the above as
d

dx
{f1(x) f2(x) · · · fn(x)}
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Example 2.6.6

=

[
f ′1(x)

f1(x)
+
f ′2(x)

f2(x)
+ · · ·+ f ′n(x)

fn(x)

]
· f1(x) f2(x) · · · fn(x)

When we differentiate a product of n factors, the answer is a sum of n terms and in
each term the derivative acts on exactly one of the original factors. In the first term,
the derivative acts on the first of the original factors. In the second term, the derivative
acts on the second of the original factors. And so on.
If we make f1(x) = f2(x) = · · · = fn(x) = f(x) then each of the n terms on the right
hand side of the above equation is the product of f ′(x) and exactly n − 1 f(x)’s, and
so is exactly f(x)n−1 f ′(x). So we get the following useful result

d

dx
f(x)n = n · f(x)n−1 · f ′(x).

This last result is quite useful, so let us write it as a lemma for future reference.

Lemma 2.6.7

Let n be a natural number and f be a differentiable function. Then

d

dx
f(x)n = n · f(x)n−1 · f ′(x).

This immediately gives us another useful result.

Example 2.6.8 Derivative of xn.

We can now compute the derivative of xn for any natural number n. Start with
Lemma 2.6.7 and substitute f(x) = x and f ′(x) = 1:

d

dx
xn = n · xn−1 · 1 = nxn−1

Again — this is a result we will come back to quite a few times in the future, so
we should make sure we can refer to it easily. However, at present this statement only
holds when n is a positive integer. With a little more work we can extend this to
compute xq where q is any positive rational number and then any rational number at
all (positive or negative). So let us hold off for a little longer. Instead we can make it
a lemma, since it will be an ingredient in quite a few of the examples following below
and in constructing the final corollary.
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Lemma 2.6.9 Derivative of xn.

Let n be a positive integer then

d

dx
xn = nxn−1

Back to more examples.

Example 2.6.10 Derivative of a polynomial.

d

dx

{
2x3 + 4x5

}
= 2

d

dx
{x3}+ 4

d

dx
{x5}

by LIN with α = 2, f(x) = x3, β = 4 and g(x) = x5

= 2{3x2}+ 4{5x4}

by Lemma 2.6.9, once with n = 3, and once with n = 5

= 6x2 + 20x4

Example 2.6.11 Derivative of product of polynomials.

In this example we’ll compute d
dx

{
(3x + 9)(x2 + 4x3)

}
in two different ways. For the

first, we’ll start with the product rule.

d

dx

{
(3x+ 9)(x2 + 4x3)

}
=
{ d

dx
(3x+ 9)

}
(x2 + 4x3) + (3x+ 9)

d

dx
{x2 + 4x3}

=
{

3× 1 + 9× 0
}

(x2 + 4x3) + (3x+ 9) {2x+ 4(3x2)}
= 3(x2 + 4x3) + (3x+ 9) (2x+ 12x2)

= 3x2 + 12x3 + (6x2 + 18x+ 36x3 + 108x2)

= 18x+ 117x2 + 48x3

For the second, we expand the product first and then differentiate.

d

dx

{
(3x+ 9)(x2 + 4x3)

}
=

d

dx

{
9x2 + 39x3 + 12x4

}
= 9(2x) + 39(3x2) + 12(4x3)

= 18x+ 117x2 + 48x3
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Example 2.6.12 Derivative of a rational function.

d

dx

{
4x3 − 7x

4x2 + 1

}
=

(12x2 − 7)(4x2 + 1)− (4x3 − 7x)(8x)

(4x2 + 1)2

by QR with f(x) = 4x3 − 7x, f ′(x) = 12x2 − 7,

and g(x) = 4x2 + 1, g′(x) = 8x

=
(48x4 − 16x2 − 7)− (32x4 − 56x2)

(4x2 + 1)2

=
16x4 + 40x2 − 7

(4x2 + 1)2

Example 2.6.13 Derivative of a cube-root.

In this example, we’ll use a little trickery to find the derivative of 3
√
x. The trickery

consists of observing that, by the definition of the cube root,

x =
(

3
√
x
)3
.

Since both sides of the expression are the same, they must have the same derivatives:

d

dx
{x} =

d

dx

(
3
√
x
)3
.

We already know by Theorem 2.2.4 that

d

dx

{
x
}

= 1

and that, by Lemma 2.6.7 with n = 3 and f(x) = 3
√
x,

d

dx

(
3
√
x
)3

= 3
(

3
√
x
)2 · d

dx

{
3
√
x
}

= 3x2/3 · d

dx

{
3
√
x
}
.

Since we know that d
dx
{x} = d

dx
( 3
√
x)

3, we must have

1 = 3x2/3 · d

dx

{
3
√
x
}

which we can rearrange to give the result we need

d

dx

{
3
√
x
}

= 1
3
x−2/3
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Example 2.6.14 Derivative of a positive rational power of x.

In this example, we’ll use the same trickery as in Example 2.6.13 to find the derivative
xp/q for any two natural numbers p and q. By definition of the qth root,

xp =
(
xp/q

)q
.

That is, xp and
(
xp/q

)q are the same function, and so have the same derivative. So we
differentiate both of them. We already know that, by Lemma 2.6.9 with n = p,

d

dx

{
xp
}

= pxp−1

and that, by Lemma 2.6.7 with n = q and f(x) = xp/q,

d

dx

{(
xp/q

)q}
= q

(
xp/q

)q−1 d

dx

{
xp/q

}
Remember that (xa)b = x(a·b). Now these two derivatives must be the same. So

pxp−1 = q · x(pq−p)/q d

dx

{
xp/q

}
and, rearranging things,

d

dx

{
xp/q

}
=
p

q
xp−1−(pq−p)/q

=
p

q
x(pq−q−pq+p)/q

=
p

q
x
p
q
−1

So finally
d

dx

{
xp/q

}
=
p

q
x
p
q
−1

Notice that this has the same form as Lemma 2.6.9, above, except with n = p
q
allowed

to be any positive rational number, not just a positive integer.

Example 2.6.15 Derivative of x−m.

In this example we’ll use the quotient rule to find the derivative of x−m, for any natural
number m.
By the special case of the quotient rule (Corollary 2.4.6) with g(x) = xm and g′(x) =
mxm−1

d

dx

{
x−m

}
=

d

dx

{
1

xm

}
= − mx

m−1

(xm)2 = −mx−m−1
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Example 2.6.15

Again, notice that this has the same form as Lemma 2.6.9, above, except with n = −m
being a negative integer.

Example 2.6.16 Derivative of a negative rational power of x.

In this example we’ll use the quotient rule to find the derivative of x−p/q, for any pair of
natural numbers p and q. By the special case the quotient rule (Corollary 2.4.6) with
g(x) = x

p
q and g′(x) = p

q
x
p
q
−1,

d

dx

{
x−

p
q
}

=
d

dx

{
1

x
p
q

}
= −

p
q
x
p
q
−1

(x
p
q )

2 = −p
q
x−

p
q
−1

Note that we have found, in Examples 2.2.2, 2.6.14 and 2.6.16, the derivative of xa
for any rational number a, whether 0, positive, negative, integer or fractional. In all
cases, the answer is

Corollary 2.6.17 Derivative of xa.

Let a be a rational number, then

d

dx
xa = axa−1

We shall show, in Example 2.10.5, that the formula d
dx
xa = axa−1 in fact applies for

all real numbers a, not just rational numbers.
Back in Example 2.2.9 we computed the derivative of

√
x from the definition of the

derivative. The above corollary (correctly) gives

d

dx
x

1
2 =

1

2
x−

1
2

but with far less work.
Here’s an (optional) messy example.

Example 2.6.18 Optional messy example.

Find the derivative of
f(x) =

(
√
x− 1)(2− x)(1− x2)√

x(3 + 2x)

• As we seen before, the best strategy for dealing with nasty expressions is to break
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Example 2.6.18

them up into easy pieces. We can think of f(x) as the five–fold product

f(x) = f1(x) · f2(x) · f3(x) · 1

f4(x)
· 1

f5(x)

with

f1(x) =
√
x− 1 f2(x) = 2− x f3(x) = 1− x2

f4(x) =
√
x f5(x) = 3 + 2x

• By now, the derivatives of the fj’s should be easy to find:

f ′1(x) =
1

2
√
x

f ′2(x) = −1 f ′3(x) = −2x

f ′4(x) =
1

2
√
x

f ′5(x) = 2

• Now, to get the derivative f(x) we use the n–fold product rule which was de-
veloped in Example 2.6.6, together with the special case of the quotient rule
(Corollary 2.4.6).

f ′(x) = f ′1f2f3
1

f4

1

f5

+ f1f
′
2f3

1

f4

1

f5

+ f1f2f
′
3

1

f4

1

f5

− f1f2f3
f ′4
f 2

4

1

f5

− f1f2f3
1

f4

f ′5
f 2

5

=
[f ′1
f1

+
f ′2
f2

+
f ′3
f3

− f ′4
f4

− f ′5
f5

]
f1f2f3

1

f4

1

f5

=

[
1

2
√
x(
√
x− 1)

− 1

2− x −
2x

1− x2
− 1

2x
− 2

3 + 2x

]
(
√
x− 1)(2− x)(1− x2)√

x(3 + 2x)

The trick that we used in going from the first line to the second line, namely
multiplying term number j by fj(x)

fj(x)
is often useful in simplifying the derivative of

a product of many factors a.

a Also take a look at “logarithmic differentiation” in Section 2.10.
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2.6.2 tt Exercises

Exercises — Stage 1

1. Spot and correct the error(s) in the following calculation.

f(x) =
2x

x+ 1

f ′(x) =
2(x+ 1) + 2x

(x+ 1)2

=
2(x+ 1)

(x+ 1)2

=
2

x+ 1

2. True or false:
d

dx
{2x} = x2x−1.

Exercises — Stage 2

3. Differentiate f(x) = 2
3
x6 + 5x4 + 12x2 + 9 and factor the result.

4. Differentiate s(t) = 3t4 + 5t3 − 1
t
.

5. Differentiate x(y) =
(

2y + 1
y

)
· y3.

6. Differentiate T (x) =

√
x+ 1

x2 + 3
.

7. ∗. Compute the derivative of
(

7x+ 2

x2 + 3

)
.

8. What is f ′(0), when f(x) = (3x3 + 4x2 + x+ 1)(2x+ 5)?

9. Differentiate f(x) =
3x3 + 1

x2 + 5x
.

10. ∗. Compute the derivative of
(

3x2 + 5

2− x

)
11. ∗. Compute the derivative of

(
2− x2

3x2 + 5

)
.

12. ∗. Compute the derivative of
(

2x3 + 1

x+ 2

)
.
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13. ∗. For what values of x does the derivative of
√
x

1− x2
exist? Explain your

answer.

14. Differentiate f(x) = (3 5
√
x+ 15 3

√
x+ 8) (3x2 + 8x− 5).

15. Differentiate f(x) =
(x2 + 5x+ 1)(

√
x+ 3
√
x)

x
.

16. Find all x-values where f(x) =
1

1
5
x5 + x4 − 5

3
x3

has a horizontal tangent

line.

Exercises — Stage 3

17. ∗. Find an equation of a line that is tangent to both of the curves y = x2 and
y = x2 − 2x+ 2 (at different points).

18. [1998H] Find all lines that are tangent to both of the curves y = x2 and
y = −x2 + 2x− 5. Illustrate your answer with a sketch.

19. ∗. Evaluate lim
x→2

(
x2015 − 22015

x− 2

)
.

2.7q Derivatives of Exponential Functions

Now that we understand how derivatives interact with products and quotients, we are
able to compute derivatives of

• polynomials,

• rational functions, and

• powers and roots of rational functions.
Notice that all of the above come from knowing 1 the derivative of xn and applying
linearity of derivatives and the product rule.

There is still one more “rule” that we need to complete our toolbox and that is the
chain rule. However before we get there, we will add a few functions to our list of things
we can differentiate 2. The first of these is the exponential function.

Let a > 0 and set f(x) = ax — this is what is known as an exponential function.
Let’s see what happens when we try to compute the derivative of this function just

1 Differentiating powers and roots of functions is actually quite a bit easier once one knows the
chain rule — which we will discuss soon.

2 One reason we add these functions is that they interact very nicely with the derivative. Another
reason is that they turn up in many “real world” examples.

169



Derivatives 2.7 Derivatives of Exponential Functions

using the definition of the derivative.

df

dx
= lim

h→0

f(x+ h)− f(x)

h
= lim

h→0

ax+h − ax
h

= lim
h→0

ax · a
h − 1

h
= ax · lim

h→0

ah − 1

h

Unfortunately we cannot complete this computation because we cannot evaluate the
last limit directly. For the moment, let us assume this limit exists and name it

C(a) = lim
h→0

ah − 1

h

It depends only on a and is completely independent of x. Using this notation (which
we will quickly improve upon below), our desired derivative is now

d

dx
ax = C(a) · ax.

Thus the derivative of ax is ax multiplied by some constant — i.e. the function ax

is nearly unchanged by differentiating. If we can tune a so that C(a) = 1 then the
derivative would just be the original function! This turns out to be very useful.

To try finding an a that obeys C(a) = 1, let us investigate how C(a) changes with a.
Unfortunately (though this fact is not at all obvious) there is no way to write C(a) as
a finite combination of any of the functions we have examined so far 3. To get started,
we’ll try to guess C(a), for a few values of a, by plugging in some small values of h.

Example 2.7.1 Estimates of C(a).

Let a = 1 then C(1) = lim
h→0

1h − 1

h
= 0. This is not surprising since 1x = 1 is constant,

and so its derivative must be zero everywhere. Let a = 2 then C(2) = lim
h→0

2h − 1

h
.

Setting h to smaller and smaller numbers gives

h 0.1 0.01 0.001 0.0001 0.00001 0.000001 0.0000001
2h−1
h

0.7177 0.6956 0.6934 0.6932 0.6931 0.6931 0.6931

Similarly when a = 3 we get

h 0.1 0.01 0.001 0.0001 0.00001 0.000001 0.0000001
3h−1
h

1.1612 1.1047 1.0992 1.0987 1.0986 1.0986 1.0986

3 To a bit more be precise, we say that a number q is algebraic if we can write q as the zero of a
polynomial with integer coefficients. When a is any positive algebraic number other 1, C(a) is
not algebraic. A number that is not algebraic is called transcendental. The best known example
of a transcendental number is π (which follows from the Lindemann-Weierstrass Theorem — way
beyond the scope of this course).
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Example 2.7.1

and a = 10

h 0.1 0.01 0.001 0.0001 0.00001 0.000001 0.0000001
10h−1
h

2.5893 2.3293 2.3052 2.3028 2.3026 2.3026 2.3026

From this example it appears that C(a) increases as we increase a, and that C(a) = 1
for some value of a between 2 and 3.

We can learn a lot more about C(a), and, in particular, confirm the guesses that we
made in the last example, by making use of logarithms — this would be a good time
for you to review them.

2.7.1 tt Whirlwind Review of Logarithms

Before you read much further into this little review on logarithms, you should first go
back and take a look at the review of inverse functions in Section 0.6.

2.7.1.1ttt Logarithmic Functions

We are about to define the “logarithm with base q”. In principle, q is allowed to be any
strictly positive real number, except q = 1. However we shall restrict our attention to
q > 1, because, in practice, the only q’s that are ever used are e (a number that we
shall define in the next few pages), 10 and, if you are a computer scientist, 2. So, fix
any q > 1 (if you like, pretend that q = 10). The function f(x) = qx

• increases as x increases (for example if x′ > x, then 10x
′
= 10x ·10x

′−x > 10x since
10x

′−x > 1)

• obeys lim
x→−∞

qx = 0 (for example 10−1000 is really small) and

• obeys lim
x→+∞

qx = +∞ (for example 10+1000 is really big).

Consequently, for any 0 < Y <∞, the horizontal straight line y = Y crosses the graph
of y = f(x) = qx at exactly one point, as illustrated in the figure below.
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The x–coordinate of that intersection point, denoted X in the figure, is logq(Y ). So
logq(Y ) is the power to which you have to raise q to get Y . It is the inverse function
of f(x) = qx. Of course we are free to rename the dummy variables X and Y . If, for
example, we wish to graph our logarithm function, it is natural to rename Y → x and
X → y, giving

Definition 2.7.2

Let q > 1. Then the logarithm with base q is defined a by

y = logq(x)⇔ x = qy

a We can also define logarithms with base 0 < r < 1 but doing so is not necessary. To see
this, set q = 1/r > 1. Then it is reasonable to define logr(x) = − logq(x) since

rlogr(x) =

(
1

q

)logr(x)

=

(
1

q

)− logq(x)

= qlogq(x) = x

as required.

Obviously the power to which we have to raise q to get qx is x, so we have both

logq(q
x) = x qlogq(x) = x

From the exponential properties

qlogq(xy) = xy = qlogq(x)qlogq(y) = qlogq(x)+logq(y)

qlogq(x/y) = x/y = qlogq(x)/qlogq(y) = qlogq(x)−logq(y)

qlogq(x
r) = xr =

(
qlogq(x)

)r
= qrlogq(x)

we have

logq(xy) = logq(x) + logq(y)

logq(x/y) = logq(x)− logq(y)

logq(x
r) = r logq(x)
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Can we convert from logarithms in one base to logarithms in another? For example, if
our calculator computes logarithms base 10 for us (which it very likely does), can we
also use it to compute a logarithm base q? Yes, using

logq(x) =
log10 x

log10 q

How did we get this? Well, let’s start with a number x and suppose that we want to
compute

y = logq x

We can rearrange this by exponentiating both sides

qy = qlogq x = x

Now take log base 10 of both sides

log10 q
y = log10 x

But recall that logq(x
r) = r logq(x), so

y log10 q = log10 x

y =
log10 x

log10 q

2.7.2 tt Back to that Limit

Recall that we are trying to choose a so that

lim
h→0

ah − 1

h
= C(a) = 1.

We can estimate the correct value of a by using our numerical estimate of C(10) above.
The way to do this is to first rewrite C(a) in terms of logarithms.

a = 10log10 a and so ah = 10h log10 a.

Using this we rewrite C(a) as

C(a) = lim
h→0

1

h

(
10h log10 a − 1

)
Now set H = h log10(a), and notice that as h→ 0 we also have H → 0

= lim
H→0

log10 a

H

(
10H − 1

)
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= log10 a · lim
H→0

10H − 1

H
= log10 a · C(10).

Below is a sketch of C(a) against a.

Figure 2.7.3

Remember that we are trying to find an a with C(a) = 1. We can do so by
recognising that C(a) = C(10) (log10 a) has the following properties.

• When a = 1, log10(a) = log10 1 = 0 so that C(a) = C(10) log10(a) = 0. Of course,
we should have expected this, because when a = 1 we have ax = 1x = 1 which is
just the constant function and d

dx
1 = 0.

• log10 a increases as a increases, and hence C(a) = C(10) log10 a increases as a
increases.

• log10 a tends to +∞ as a→∞, and hence C(a) tends to +∞ as a→∞.
Hence the graph of C(a) passes through (1, 0), is always increasing as a increases and
goes off to +∞ as a goes off to +∞. See Figure 2.7.3. Consequently 4 there is exactly
one value of a for which C(a) = 1.

The value of a for which C(a) = 1 is given the name e. It is called Euler’s constant
5. In Example 2.7.1, we estimated C(10) ≈ 2.3026. So if we assume C(a) = 1 then the
above equation becomes

2.3026 · log10 a ≈ 1

4 We are applying the Intermediate Value Theorem here, but we have neglected to verify the hy-
pothesis that log10(a) is a continuous function. Please forgive us — we could do this if we really
had to, but it would make a big mess without adding much understanding, if we were to do so
here in the text. Better to just trust us on this.

5 Unfortunately there is another Euler’s constant, γ, which is more properly called the Eu-
ler–Mascheroni constant. Anyway like many mathematical discoveries, e was first found by
someone else — Napier used the constant e in order to compute logarithms but only implic-
itly. Bernoulli was probably the first to approximate it when examining continuous compound
interest. It first appeared explicitly in work of Leibniz, though he denoted it b. It was Euler,
though, who established the notation we now use and who showed how important the constant is
to mathematics.

174



Derivatives 2.7 Derivatives of Exponential Functions

log10 a ≈
1

2.3026
≈ 0.4343

a ≈ 100.4343 ≈ 2.7813

This gives us the estimate a ≈ 2.7813 which is not too bad. In fact 6

Equation 2.7.4 Euler’s constant.

e = 2.7182818284590452354 . . .

= 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+ · · ·

We will be able to explain this last formula once we develop Taylor polynomials
later in the course.

To summarise

Theorem 2.7.5

The constant e is the unique real number that satisfies

lim
h→0

eh − 1

h
= 1

Further,

d

dx
(ex) = ex

We plot ex in the graph below

6 Recall n factorial, written n! is the product n× (n− 1)× (n− 2)× · · · × 2× 1.
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And just a reminder of some of its 7 properties. . .

1. e0 = 1

2. ex+y = exey

3. e−x = 1
ex

4.
(
ex
)y

= exy

5. lim
x→∞

ex =∞, lim
x→−∞

ex = 0

Now consider again the problem of differentiating ax. We saw above that

d

dx
ax = C(a) · ax and C(a) = C(10) · log10 a

which gives
d

dx
ax = C(10) · log10 a · ax

We can eliminate the C(10) term with a little care. Since we know that d
dx
ex = ex, we

have C(e) = 1. This allows us to express

1 = C(e) = C(10) · log10 e and so

C(10) =
1

log10 e

Putting things back together gives

d

dx
ax =

log10 a

log10 e
· ax

= loge a · ax.

There is more than one way to get to this result. For example, let f(x) = ax, then

loge f(x) = x loge a

f(x) = ex loge a

So if we write g(x) = ex then we are really attempting to differentiate the function

df

dx
=

d

dx
g(x · loge a).

In order to compute this derivative we need to know how to differentiate

d

dx
g(qx)

where q is a constant. We’ll hold off on learning this for the moment until we have
introduced the chain rule (see Section 2.9 and in particular Corollary 2.9.9). Similarly

7 The function ex is of course the special case of the function ax with a = e. So it inherits all the
usual algebraic properties of ax.
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we’d like to know how to differentiate logarithms — again this has to wait until we
have learned the chain rule.

Notice that the derivatives

d

dx
xn = nxn−1 and

d

dx
ex = ex

are either nearly unchanged or actually unchanged by differentiating. It turns out that
some of the trigonometric functions also have this property of being “nearly unchanged”
by differentiation. That brings us to the next section.

2.7.3 tt Exercises

Exercises — Stage 1

1. Match the curves in the graph to the following functions:

(a) y =

(
1

2

)x
(b) y = 1x (c) y = 2x

(d) y = 2−x (e) y = 3x

x

y

D

CA B

2. The graph below shows an exponential function f(x) = ax and its deriva-
tive f ′(x). Choose all the options that describe the constant a.

(a) a < 0 (b) a > 0 (c) a < 1

(d) a > 1 (e) a < e (f) a > e
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x

y y = f(x)

y = f ′(x)

3. True or false:
d

dx
{ex} = xex−1

4. A population of bacteria is described by P (t) = 100e0.2t, for 0 ≤ t ≤ 10. Over
this time period, is the population increasing or decreasing?
We will learn more about the uses of exponential functions to describe real-
world phenomena in Section 3.3.

Exercises — Stage 2

5. Find the derivative of f(x) =
ex

2x
.

6. Differentiate f(x) = e2x.

7. Differentiate f(x) = ea+x, where a is a constant.

8. For which values of x is the function f(x) = xex increasing?

9. Differentiate e−x.

10. Differentiate f(x) = (ex + 1)(ex − 1).

11. A particle’s position is given by

s(t) = t2et.

When is the particle moving in the negative direction?

Exercises — Stage 3

12. Let g(x) = f(x)ex, for a differentiable function f(x). Give a simplified
formula for g′(x).
Functions of the form g(x) are relatively common. If you remember this
formula, you can save yourself some time when you need to differentiate
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them. We will explore this more in Question 2.14.2.19, Section 2.14.

13. Which of the following functions describe a straight line?

(a) y = e3 log x + 1 (b) 2y + 5 = e3+log x (c) y = e2x + 4

(d) y = elog x3e + log 2

14. ∗. Find constants a, b so that the following function is differentiable:

f(x) =

{
ax2 + b x ≤ 1

ex x > 1

2.8q Derivatives of Trigonometric Functions

We are now going to compute the derivatives of the various trigonometric functions,
sinx, cosx and so on. The computations are more involved than the others that we
have done so far and will take several steps. Fortunately, the final answers will be very
simple.

Observe that we only need to work out the derivatives of sinx and cosx, since the
other trigonometric functions are really just quotients of these two functions. Recall:

tanx =
sinx

cosx
cotx =

cosx

sinx
cscx =

1

sinx
secx =

1

cosx
.

The first steps towards computing the derivatives of sinx, cosx is to find their deriva-
tives at x = 0. The derivatives at general points x will follow quickly from these, using
trig identities. It is important to note that we must measure angles in radians 1 , rather
than degrees, in what follows. Indeed — unless explicitly stated otherwise, any number
that is put into a trigonometric function is measured in radians.

2.8.1 tt These Proofs are Optional, the Results are Not.

While we expect you to read and follow these proofs, we do not expect you to be able to
reproduce them. You will be required to know the results, in particular Theorem 2.8.5
below.

1 In science, radians is the standard unit for measuring angles. While you may be more familiar with
degrees, radians should be used in any computation involving calculus. Using degrees will cause
errors. Thankfully it is easy to translate between these two measures since 360◦ = 2π radians.
See Appendix B.2.1.
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2.8.2 tt Step 1: d
dx{sinx}

∣∣
x=0

By definition, the derivative of sinx evaluated at x = 0 is

d

dx
{sinx}

∣∣∣
x=0

= lim
h→0

sinh− sin 0

h
= lim

h→0

sinh

h

We will prove this limit by use of the squeeze theorem (Theorem 1.4.18). To get there
we will first need to do some geometry. But first we will build some intuition.

The figure below contains part of a circle of radius 1. Recall that an arc of length
h on such a circle subtends an angle of h radians at the centre of the circle. So the
darkened arc in the figure has length h and the darkened vertical line in the figure
has length sinh. We must determine what happens to the ratio of the lengths of the
darkened vertical line and darkened arc as h tends to zero.

Here is a magnified version of the part of the above figure that contains the darkened
arc and vertical line.

This particular figure has been drawn with h = .4 radians. Here are three more
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such blow ups. In each successive figure, the value of h is smaller. To make the figures
clearer, the degree of magnification was increased each time h was decreased.

As we make h smaller and smaller and look at the figure with ever increasing mag-
nification, the arc of length h and vertical line of length sinh look more and more alike.
We would guess from this that

lim
h→0

sinh

h
= 1

The following tables of values

h sinh sinh
h

0.4 .3894 .9735
0.2 .1987 .9934
0.1 .09983 .9983
0.05 .049979 .99958
0.01 .00999983 .999983
0.001 .0099999983 .9999983

h sinh sinh
h

−0.4 −.3894 .9735
−0.2 −.1987 .9934
−0.1 −.09983 .9983
−0.05 −.049979 .99958
−0.01 −.00999983 .999983
−0.001 −.0099999983 .9999983

suggests the same guess. Here is an argument that shows that the guess really is
correct.
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2.8.3 tt Proof that lim
h→0

sinh
h = 1

The circle in the figure above has radius 1. Hence

|OP | = |OR| = 1 |PS| = sinh

|OS| = cosh |QR| = tanh

Now we can use a few geometric facts about this figure to establish both an upper
bound and a lower bound on sinh

h
with both the upper and lower bounds tending to 1

as h tends to 0. So the squeeze theorem will tell us that sinh
h

also tends to 1 as h tends
to 0.

• The triangle OPR has base 1 and height sinh, and hence

area of 4OPR =
1

2
× 1× sinh =

sinh

2
.

• The triangle OQR has base 1 and height tanh, and hence

area of 4OQR =
1

2
× 1× tanh =

tanh

2
.

• The “piece of pie” OPR cut out of the circle is the fraction h
2π

of the whole circle
(since the angle at the corner of the piece of pie is h radians and the angle for the
whole circle is 2π radians). Since the circle has radius 1 we have

area of pie OPR =
h

2π
· (area of circle) =

h

2π
π · 12 =

h

2

Now the triangle OPR is contained inside the piece of pie OPR. and so the area of the
triangle is smaller than the area of the piece of pie. Similarly, the piece of pie OPR is
contained inside the triangle OQR. Thus we have

area of triangle OPR ≤ area of pie OPR ≤ area of triangle OQR
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Substituting in the areas we worked out gives

sinh

2
≤ h

2
≤ tanh

2

which cleans up to give

sinh ≤ h ≤ sinh

cosh

We rewrite these two inequalities so that sinh
h

appears in both.

• Since sinh ≤ h, we have that
sinh

h
≤ 1.

• Since h ≤ sinh

cosh
we have that cosh ≤ sinh

h
.

Thus we arrive at the “squeezable” inequality

cosh ≤ sinh

h
≤ 1

We know 2 that

lim
h→0

cosh = 1.

Since sinh
h

is sandwiched between cosh and 1, we can apply the squeeze theorem for
limits (Theorem 1.4.18) to deduce the following lemma:

Lemma 2.8.1

lim
h→0

sinh

h
= 1.

Since this argument took a bit of work, perhaps we should remind ourselves why we
needed it in the first place. We were computing

d

dx
{sinx}

∣∣∣
x=0

= lim
h→0

sinh− sin 0

h

= lim
h→0

sinh

h
(This is why!)

= 1

This concludes Step 1. We now know that d
dx

sinx
∣∣
x=0

= 1. The remaining steps
are easier.

2 Again, refresh your memory by looking up Appendix A.5.
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2.8.4 tt Step 2: d
dx{cosx}

∣∣
x=0

By definition, the derivative of cosx evaluated at x = 0 is

lim
h→0

cosh− cos 0

h
= lim

h→0

cosh− 1

h

Fortunately we don’t have to wade through geometry like we did for the previous step.
Instead we can recycle our work and massage the above limit to rewrite it in terms of
expressions involving sinh

h
. Thanks to Lemma 2.8.1 the work is then easy.

We’ll show you two ways to proceed — one uses a method similar to “multiplying
by the conjugate” that we have already used a few times (see Example 1.4.17 and 2.2.9
), while the other uses a nice trick involving the double–angle formula 3 .

2.8.4.1ttt Method 1 — Multiply by the “Conjugate”

Start by multiplying the expression inside the limit by 1, written as
cosh+ 1

cosh+ 1
:

cosh− 1

h
=

cosh− 1

h
· cosh+ 1

cosh+ 1

=
cos2 h− 1

h(1 + cosh)

(
since (a− b)(a+ b) = a2 − b2

)
= − sin2 h

h(1 + cosh)
(since sin2 h+ cos2 h = 1)

= −sinh

h
· sinh

1 + cosh

Now we can take the limit as h→ 0 via Lemma 2.8.1.

lim
h→0

cosh− 1

h
= lim

h→0

(− sinh

h
· sinh

1 + cosh

)
= − lim

h→0

(
sinh

h

)
· lim
h→0

(
sinh

1 + cosh

)
= −1 · 0

2
= 0

3 See Appendix A.14 if you have forgotten. You should also recall that sin2 θ + cos2 θ = 1. Sorry
for nagging.
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2.8.4.2ttt Method 2 — via the Double Angle Formula

The other way involves the double angle formula 4,

cos 2θ = 1− 2 sin2(θ) or cos 2θ − 1 = −2 sin2(θ)

Setting θ = h/2, we have

cosh− 1

h
=
−2
(

sin h
2

)2

h

Now this begins to look like sinh?
h

, except that inside the sin(·) we have h/2. So, setting
θ = h/2,

cosh− 1

h
= −sin2 θ

θ
= −θ · sin2 θ

θ2

= −θ · sin θ

θ
· sin θ

θ
When we take the limit as h→ 0, we are also taking the limit as θ = h/2→ 0, and so

lim
h→0

cosh− 1

h
= lim

θ→0

[
−θ · sin θ

θ
· sin θ

θ

]
= lim

θ→0
[−θ] · lim

θ→0

[
sin θ

θ

]
· lim
θ→0

[
sin θ

θ

]
= 0 · 1 · 1
= 0

where we have used the fact that lim
h→0

sinh

h
= 1 and that the limit of a product is the

product of limits (i.e. Lemma 2.8.1 and Theorem 1.4.3).
Thus we have now produced two proofs of the following lemma:

Lemma 2.8.2

lim
h→0

cosh− 1

h
= 0

Again, there has been a bit of work to get to here, so we should remind ourselves
why we needed it. We were computing

d

dx
{cosx}

∣∣∣
x=0

= lim
h→0

cosh− cos 0

h

= lim
h→0

cosh− 1

h
= 0

Armed with these results we can now build up the derivatives of sine and cosine.

4 We hope you looked this up in in Appendix A.14. Nag.
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2.8.5 tt Step 3: d
dx{sinx} and d

dx{cosx} for General x

To proceed to the general derivatives of sinx and cosx we are going to use the above
two results and a couple of trig identities. Remember the addition formulae 5

sin(a+ b) = sin(a) cos(b) + cos(a) sin(b)

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b)

To compute the derivative of sin(x) we just start from the definition of the derivative:

d

dx
sinx = lim

h→0

sin(x+ h)− sinx

h

= lim
h→0

sinx cosh+ cosx sinh− sinx

h

= lim
h→0

[
sinx

cosh− 1

h
+ cosx

sinh− 0

h

]
= sinx lim

h→0

cosh− 1

h
+ cos x lim

h→0

sinh− 0

h

= sinx

[
d

dx
cosx

]
x=0︸ ︷︷ ︸

=0

+ cosx

[
d

dx
sinx

]
x=0︸ ︷︷ ︸

=1

= cosx

The computation of the derivative of cosx is very similar.

d

dx
cosx = lim

h→0

cos(x+ h)− cosx

h

= lim
h→0

cosx cosh− sinx sinh− cosx

h

= lim
h→0

[
cosx

cosh− 1

h
− sinx

sinh− 0

h

]
= cosx lim

h→0

cosh− 1

h
− sinx lim

h→0

sinh− 0

h

= cosx

[
d

dx
cosx

]
x=0︸ ︷︷ ︸

=0

− sinx

[
d

dx
sinx

]
x=0︸ ︷︷ ︸

=1

= − sinx

We have now found the derivatives of both sinx and cosx, provided x is measured in
radians.

5 You really should. Look this up in Appendix A.8 if you have forgotten.
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Lemma 2.8.3

d

dx
sinx = cosx

d

dx
cosx = − sinx

The above formulas hold provided x is measured in radians.

These formulae are pretty easy to remember — applying d
dx

to sinx and cosx just
exchanges sinx and cosx, except for the minus sign 6 in the derivative of cosx.

Remark 2.8.4 Optional — Another derivation of d
dx

cosx = − sinx. We remark
that, once one knows that d

dx
sinx = cos x, it is easy to use it and the trig identity

cos(x) = sin
(
π
2
− x
)
to derive d

dx
cosx = − sinx. Here is howa.

d

dx
cosx = lim

h→0

cos(x+ h)− cosx

h
= lim

h→0

sin
(
π
2
− x− h)− sin

(
π
2
− x
)

h

= − lim
h′→0

sin
(
x′ + h′)− sin(x′)

h′
with x′ = π

2
− x, h′ = −h

= − d

dx′
sinx′

∣∣∣
x′=

π
2
−x

= − cos
(
π
2
− x
)

= − sinx

a We thank Serban Raianu for suggesting that we include this.

Note that if x is measured in degrees, then the formulas of Lemma 2.8.3 are wrong.
There are similar formulas, but we need the chain rule to build them — that is the
subject of the next section. But first we should find the derivatives of the other trig
functions.

2.8.6 tt Step 4: the Remaining Trigonometric Functions

It is now an easy matter to get the derivatives of the remaining trigonometric functions
using basic trig identities and the quotient rule. Remember 7 that

tanx =
sinx

cosx
cotx =

cosx

sinx
=

1

tanx

cscx =
1

sinx
secx =

1

cosx

6 There is a bad pun somewhere in here about sine errors and sign errors.
7 You really should. If you do not then take a quick look at the appropriate appendix.
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So, by the quotient rule,

d

dx
tanx =

d

dx

sinx

cosx
=

cosx︷ ︸︸ ︷(
d

dx
sinx

)
cosx− sinx

− sinx︷ ︸︸ ︷(
d

dx
cosx

)
cos2 x

= sec2 x

d

dx
cscx =

d

dx

1

sinx
= −

cosx︷ ︸︸ ︷(
d

dx
sinx

)
sin2 x

= − cscx cotx

d

dx
secx =

d

dx

1

cosx
= −

− sinx︷ ︸︸ ︷(
d

dx
cosx

)
cos2 x

= secx tanx

d

dx
cotx =

d

dx

cosx

sinx
=

− sinx︷ ︸︸ ︷(
d

dx
cosx

)
sinx− cosx

cosx︷ ︸︸ ︷(
d

dx
sinx

)
sin2 x

= − csc2 x

2.8.7 tt Summary

To summarise all this work, we can write this up as a theorem:

Theorem 2.8.5 Derivatives of trigonometric functions.

The derivatives of sinx and cosx are

d

dx
sinx = cosx

d

dx
cosx = − sinx

Consequently the derivatives of the other trigonometric functions are

d

dx
tanx = sec2 x

d

dx
cotx = − csc2 x

d

dx
cscx = − cscx cotx

d

dx
secx = secx tanx

Of these 6 derivatives you should really memorise those of sine, cosine and tan-
gent. We certainly expect you to be able to work out those of cotangent, cosecant and
secant.

2.8.8 tt Exercises

Exercises — Stage 1
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1. Graph sine and cosine on the same axes, from x = −2π to x = 2π. Mark
the points where sinx has a horizontal tangent. What do these points
correspond to, on the graph of cosine?

2. Graph sine and cosine on the same axes, from x = −2π to x = 2π. Mark
the points where sinx has a tangent line of maximum (positive) slope.
What do these points correspond to, on the graph of cosine?

Exercises — Stage 2

3. Differentiate f(x) = sinx+ cosx+ tanx.

4. For which values of x does the function f(x) = sinx+cosx have a horizontal
tangent?

5. Differentiate f(x) = sin2 x+ cos2 x.

6. Differentiate f(x) = 2 sinx cosx.

7. Differentiate f(x) = ex cotx.

8. Differentiate f(x) =
2 sinx+ 3 tanx

cosx+ tanx

9. Differentiate f(x) =
5 secx+ 1

ex
.

10. Differentiate f(x) = (ex + cotx)(5x6 − cscx).

11. Differentiate f(θ) = sin
(
π
2
− θ
)
.

12. Differentiate f(x) = sin(−x) + cos(−x).

13. Differentiate s(θ) =
cos θ + sin θ

cos θ − sin θ
.

14. ∗. Find the values of the constants a and b for which

f(x) =

{
cos(x) x ≤ 0

ax+ b x > 0

is differentiable everywhere.

15. ∗. Find the equation of the line tangent to the graph of y = cos(x) + 2x

at x =
π

2
.
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Exercises — Stage 3

16. ∗. Evaluate lim
x→2015

(
cos(x)− cos(2015)

x− 2015

)
.

17. ∗. Evaluate lim
x→π/3

(
cos(x)− 1/2

x− π/3

)
.

18. ∗. Evaluate lim
x→π

(
sin(x)

x− π

)
.

19. Show how you can use the quotient rule to find the derivative of tangent, if
you already know the derivatives of sine and cosine.

20. ∗. The derivative of the function

f(x) =

{
ax+ b for x < 0

6 cosx
2+sinx+cosx

for x ≥ 0

exists for all x. Determine the values of the constants a and b.
21. ∗. For which values of x does the derivative of f(x) = tan x exist?

22. ∗. For what values of x does the derivative of
10 sin(x)

x2 + x− 6
exist? Explain

your answer.

23. ∗. For what values of x does the derivative of
x2 + 6x+ 5

sin(x)
exist? Explain your

answer.

24. ∗. Find the equation of the line tangent to the graph of y = tan(x) at x =
π

4
.

25. ∗. Find the equation of the line tangent to the graph of y = sin(x)+cos(x)+ex

at x = 0.
26. For which values of x does the function f(x) = ex sinx have a horizontal

tangent line?
27. Let

f(x) =

{
sinx
x

, x 6= 0

1 , x = 0

Find f ′(0), or show that it does not exist.
28. ∗. Differentiate the function

h(x) = sin(|x|)

and give the domain where the derivative exists.

29. ∗. For the function

f(x) =

{
0 x ≤ 0
sin(x)√

x
x > 0
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which of the following statements is correct?

i f is undefined at x = 0.

ii f is neither continuous nor differentiable at x = 0.

iii f is continuous but not differentiable at x = 0.

iv f is differentiable but not continuous at x = 0.

v f is both continuous and differentiable at x = 0.

30. ∗. Evaluate lim
x→0

sinx27 + 2x5ex
99

sin5 x
.

2.9q One More Tool – the Chain Rule

We have built up most of the tools that we need to express derivatives of complicated
functions in terms of derivatives of simpler known functions. We started by learning
how to evaluate

• derivatives of sums, products and quotients

• derivatives of constants and monomials

These tools allow us to compute derivatives of polynomials and rational functions. In
the previous sections, we added exponential and trigonometric functions to our list.
The final tool we add is called the chain rule. It tells us how to take the derivative of a
composition of two functions. That is if we know f(x) and g(x) and their derivatives,
then the chain rule tells us the derivative of f

(
g(x)

)
.

Before we get to the statement of the rule, let us look at an example showing how
such a composition might arise (in the “real-world”).

Example 2.9.1 Walking towards a campfire.

You are out in the woods after a long day of mathematics and are walking towards
your camp fire on a beautiful still night. The heat from the fire means that the air
temperature depends on your position. Let your position at time t be x(t). The
temperature of the air at position x is f(x). What instantaneous rate of change of
temperature do you feel at time t?
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Example 2.9.1

• Because your position at time t is x = x(t), the temperature you feel at time t is
F (t) = f

(
x(t)

)
.

• The instantaneous rate of change of temperature that you feel is F ′(t). We have
a complicated function, F (t), constructed by composing two simpler functions,
x(t) and f(x).

• We wish to compute the derivative, F ′(t) = d
dt
f(x(t)), of the complicated function

F (t) in terms of the derivatives, x′(t) and f ′(x), of the two simple functions. This
is exactly what the chain rule does.

2.9.1 tt Statement of the Chain Rule

Theorem 2.9.2 The chain rule — version 1.

Let a ∈ R and let g(x) be a function that is differentiable at x = a. Now let f(u)
be a function that is differentiable at u = g(a). Then the function F (x) = f(g(x))
is differentiable at x = a and

F ′(a) = f ′
(
g(a)

)
g′(a)

Here, as was the case earlier in this chapter, we have been very careful to give the
point at which the derivative is evaluated a special name (i.e. a). But of course this
evaluation point can really be any point (where the derivative is defined). So it is very
common to just call the evaluation point “x” rather than give it a special name like “a”,
like this:
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Theorem 2.9.3 The chain rule — version 2.

Let f and g be differentiable functions then

d

dx
f
(
g(x)

)
= f ′

(
g(x)

)
· g′(x)

Notice that when we form the composition f
(
g(x)

)
there is an “outside” function

(namely f(x)) and an “inside” function (namely g(x)). The chain rule tells us that
when we differentiate a composition that we have to differentiate the outside and then
multiply by the derivative of the inside.

d

dx
f
(
g(x)

)
= f ′

(
g(x)

)︸ ︷︷ ︸
diff outside

· g′(x)︸︷︷︸
diff inside

Here is another statement of the chain rule which makes this idea more explicit.

Theorem 2.9.4 The chain rule — version 3.

Let y = f(u) and u = g(x) be differentiable functions, then

dy

dx
=

dy

du
· du

dx

This particular form is easy to remember because it looks like we can just “cancel”
the du between the two terms.

dy

dx
=

dy

��du
·�

�du

dx

Of course, du is not, by itself, a number or variable 1 that can be cancelled. But
this is still a good memory aid.

The hardest part about applying the chain rule is recognising when the function
you are trying to differentiate is really the composition of two simpler functions. This
takes a little practice. We can warm up with a couple of simple examples.

Example 2.9.5 Derivative of a power of sinx.

Let f(u) = u5 and g(x) = sin(x). Then set F (x) = f
(
g(x)

)
=
(

sin(x)
)5. To find the

derivative of F (x) we can simply apply the chain rule — the pieces of the composition
have been laid out for us. Here they are.

f(u) = u5 f ′(u) = 5u4

1 In this context du is called a differential. There are ways to understand and manipulate these in
calculus but they are beyond the scope of this course.
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Example 2.9.5

g(x) = sin(x) g′(x) = cos x

We now just put them together as the chain rule tells us

dF

dx
= f ′

(
g(x)

)
· g′(x)

= 5
(
g(x)

)4 · cos(x) since f ′(u) = 5u4

= 5
(

sin(x)
)4 · cos(x)

Notice that it is quite easy to extend this to any power. Set f(u) = un. Then follow
the same steps and we arrive at

F (x) = (sin(x))n F ′(x) = n
(

sin(x)
)n−1

cos(x)

This example shows one of the ways that the chain rule appears very frequently —
when we need to differentiate the power of some simpler function. More generally we
have the following.

Example 2.9.6 Derivative of a power of a function.

Let f(u) = un and let g(x) be any differentiable function. Set F (x) = f
(
g(x)

)
= g(x)n.

Then

dF

dx
=

d

dx

(
g(x)n

)
= ng(x)n−1 · g′(x)

This is precisely the result in Example 2.6.6 and Lemma 2.6.7.

Example 2.9.7 Derivative of cos(3x− 2).

Let f(u) = cos(u) and g(x) = 3x− 2. Find the derivative of

F (x) = f
(
g(x)

)
= cos(3x− 2).

Again we should approach this by first writing down f and g and their derivatives and
then putting everything together as the chain rule tells us.

f(u) = cos(u) f ′(u) = − sin(u)

g(x) = 3x− 2 g′(x) = 3

So the chain rule says

F ′(x) = f ′
(
g(x)

)
· g′(x)

= − sin
(
g(x)

)
· 3

= −3 sin(3x− 2)
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This example shows a second way that the chain rule appears very frequently —
when we need to differentiate some function of ax + b. More generally we have the
following.

Example 2.9.8 Derivative of f(ax+ b).

Let a, b ∈ R and let f(x) be a differentiable function. Set g(x) = ax+ b. Then

d

dx
f(ax+ b) =

d

dx
f
(
g(x)

)
= f ′

(
g(x)

)
· g′(x)

= f ′(ax+ b) · a

So the derivative of f(ax+ b) with respect to x is just af ′(ax+ b).

The above is a very useful result that follows from the chain rule, so let’s make it a
corollary to highlight it.

Corollary 2.9.9

Let a, b ∈ R and let f(x) be a differentiable function, then

d

dx
f(ax+ b) = af ′(ax+ b).

Example 2.9.10 2.9.1 continued.

Let us now go back to our motivating campfire example. There we had

f(x) = temperature at position x
x(t) = position at time t
F (t) = f(x(t)) = temperature at time t

The chain rule gave

F ′(t) = f ′
(
x(t)

)
· x′(t)

Notice that the units of measurement on both sides of the equation agree — as indeed
they must. To see this, let us assume that t is measured in seconds, that x(t) is measured
in metres and that f(x) is measured in degrees. Because of this F (x(t)) must also be
measured in degrees (since it is a temperature).
What about the derivatives? These are rates of change. So

• F ′(t) has units degrees
second

,
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• f ′(x) has units degrees
metre

, and

• x′(t) has units metre
second

.

Hence the product

f ′
(
x(t)

)
· x′(t) has units =

degrees

metre
· metre

second
=

degrees

second
.

has the same units as F ′(t). So the units on both sides of the equation agree. Checking
that the units on both sides of an equation agree is a good check of consistency, but of
course it does not prove that both sides are in fact the same.

2.9.2 tt (Optional) — Derivation of the Chain Rule

First, let’s review what our goal is. We have been given a function g(x), that is differ-
entiable at some point x = a, and another function f(u), that is differentiable at the
point u = b = g(a). We have defined the composite function F (x) = f

(
g(x)

)
and we

wish to show that

F ′(a) = f ′
(
g(a)

)
· g′(a)

Before we can compute F ′(a), we need to set up some ground work, and in particular
the definitions of our given derivatives:

f ′(b) = lim
H→0

f(b+H)− f(b)

H
and g′(a) = lim

h→0

g(a+ h)− g(a)

h
.

We are going to use similar manipulation tricks as we did back in the proofs of the
arithmetic of derivatives in Section 2.5. Unfortunately, we have already used up the
symbols “F ” and “H”, so we are going to make use the Greek letters γ, ϕ.

As was the case in our derivation of the product rule it is convenient to introduce a
couple of new functions. Set

ϕ(H) =
f(b+H)− f(b)

H

Then we have

lim
H→0

ϕ(H) = f ′(b) = f ′
(
g(a)

)
since b = g(a),

and we can also write (with a little juggling)

f(b+H) = f(b) +Hϕ(H)
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Similarly set

γ(h) =
g(a+ h)− g(a)

h

which gives us

lim
h→0

γ(h) = g′(a) and g(a+ h) = g(a) + hγ(h).

Now we can start computing

F ′(a) = lim
h→0

F (a+ h)− F (a)

h

= lim
h→0

f
(
g(a+ h)

)
− f

(
g(a)

)
h

We know that g(a) = b and g(a+ h) = g(a) + hγ(h)), so

F ′(a) = lim
h→0

f
(
g(a) + hγ(h)

)
− f

(
g(a)

)
h

= lim
h→0

f(b+ hγ(h))− f(b)

h

Now for the sneaky bit. We can turn f(b+ hγ(h)) into f(b+H) by setting

H = hγ(h)

Now notice that as h→ 0 we have

lim
h→0

H = lim
h→0

h · γ(h)

= lim
h→0

h · lim
h→0

γ(h)

= 0 · g′(a) = 0

So as h→ 0 we also have H → 0.
We now have

F ′(a) = lim
h→0

f
(
b+H

)
− f(b)

h

= lim
h→0

f
(
b+H

)
− f(b)

H︸ ︷︷ ︸
=ϕ(H)

· H
h︸︷︷︸

=γ(h)

if H = hγ(h) 6= 0

= lim
h→0

(
ϕ(H) · γ(h)

)
= lim

h→0
ϕ(H) · lim

h→0
γ(h) since H → 0 as h→ 0

= lim
H→0

ϕ(H) · lim
h→0

γ(h) = f ′(b) · g′(a)

This is exactly the RHS of the chain rule. It is possible to have H = 0 in the second
line above. But that possibility is easy to deal with:
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• If g′(a) 6= 0, then, since limh→0 γ(h) = g′(a), H = hγ(h) cannot be 0 for small
nonzero h. Technically, there is an h0 > 0 such that H = hγ(h) 6= 0 for all
0 < |h| < h0. In taking the limit h→ 0, above, we need only consider 0 < |h| < h0

and so, in this case, the above computation is completely correct.

• If g′(a) = 0, the above computation is still fine provided we exclude all h’s for
which H = hγ(h) 6= 0. When g′(a) = 0, the right hand side, f ′

(
g(a)

)
· g′(a), of

the chain rule is 0. So the above computation gives

lim
h→0
γ(h)6=0

f
(
b+H

)
− f(b)

h
= f ′

(
g(a)

)
· g′(a) = 0

On the other hand, when H = 0, we have f
(
b+H

)
− f(b) = 0. So

lim
h→0
γ(h)=0

f
(
b+H

)
− f(b)

h
= 0

too. That’s all we need.

2.9.3 tt Chain Rule Examples

We’ll now use the chain rule to compute some more derivatives.

Example 2.9.11 d
dx

(
1 + 3x

)75.

Find d
dx

(
1 + 3x

)75.
This is a concrete version of Example 2.9.8. We are to find the derivative of a function
that is built up by first computing 1 + 3x and then taking the 75th power of the result.
So we set

f(u) = u75 f ′(u) = 75u74

g(x) = 1 + 3x g′(x) = 3

F (x) = f
(
g(x)

)
= g(x)75 =

(
1 + 3x

)75

By the chain rule

F ′(x) = f ′
(
g(x)

)
g′(x) = 75 g(x)74 g′(x) = 75

(
1 + 3x

)74 · 3
= 225

(
1 + 3x

)74
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Example 2.9.12 d
dx

sin(x2).

Find d
dx

sin(x2).
In this example we are to compute the derivative of sin with a (slightly) complicated
argument. So we apply the chain rule with f being sin and g(x) being the complicated
argument. That is, we set

f(u) = sinu f ′(u) = cosu

g(x) = x2 g′(x) = 2x

F (x) = f
(
g(x)

)
= sin

(
g(x)

)
= sin(x2)

By the chain rule

F ′(x) = f ′
(
g(x)

)
g′(x) = cos

(
g(x)

)
g′(x) = cos(x2) · 2x

= 2x cos(x2)

Example 2.9.13 d
dx

3
√

sin(x2).

Find d
dx

3
√

sin(x2).
In this example we are to compute the derivative of the cube root of a (moderately)
complicated argument, namely sin(x2). So we apply the chain rule with f being “cube
root” and g(x) being the complicated argument. That is, we set

f(u) = 3
√
u = u

1
3 f ′(u) = 1

3
u−

2
3

g(x) = sin(x2) g′(x) = 2x cos(x2)

F (x) = f
(
g(x)

)
= 3
√
g(x) = 3

√
sin(x2)

In computing g′(x) here, we have already used the chain rule once (in Example 2.9.12).
By the chain rule

F ′(x) = f ′
(
g(x)

)
y′(x) = 1

3
g(x)−

2
3 · 2x cos(x2)

=
2x

3

cos(x2)

[sin(x2)]
2
3
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Example 2.9.14 Derivative of a double-composition.

Find the derivative of d
dx
f(g(h(x))).

This is very similar to the previous example. Let us set F (x) = f(g(h(x))) with
u = g(h(x)) then the chain rule tells us

dF

dx
=

df

du
· du

dx

= f ′(g(h(x))) · d

dx
g(h(x))

We now just apply the chain rule again

= f ′(g(h(x))) · g′(h(x)) · h′(x).

Indeed it is not too hard to generalise further (in the manner of Example 2.6.6 to find
the derivative of the composition of 4 or more functions (though things start to become
tedious to write down):

d

dx
f1(f2(f3(f4(x)))) = f ′1(f2(f3(f4(x)))) · d

dx
f2(f3(f4(x)))

= f ′1(f2(f3(f4(x)))) · f ′2(f3(f4(x))) · d

dx
f3(f4(x))

= f ′1(f2(f3(f4(x)))) · f ′2(f3(f4(x))) · f ′3(f4(x)) · f ′4(x)

Example 2.9.15 Finding the quotient rule from the chain rule.

We can also use the chain rule to recover Corollary 2.4.6 and from there we can use the
product rule to recover the quotient rule.
We want to differentiate F (x) = 1

g(x)
so set f(u) = 1

u
and u = g(x). Then the chain

rule tells us
d

dx

{
1

g(x)

}
=

dF

dx
=

df

du
· du

dx

=
−1

u2
· g′(x)

= − g
′(x)

g(x)2
.

Once we know this, a quick application of the product rule will give us the quotient
rule.

d

dx

{
f(x)

g(x)

}
=

d

dx

{
f(x) · 1

g(x)

}
use PR

= f ′(x) · 1

g(x)
+ f(x) · d

dx

{
1

g(x)

}
use the result from above
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Example 2.9.15

= f ′(x) · 1

g(x)
− f(x) · g

′(x)

g(x)2
place over a common denominator

=
f ′(x) · g(x)− f(x) · g′(x)

g(x)2

which is exactly the quotient rule.

Example 2.9.16 A nice messy example.

Compute the following derivative:

d

dx
cos

(
x5
√

3 + x6

(4 + x2)3

)

This time we are to compute the derivative of cos with a really complicated argument.

• So, to start, we apply the chain rule with g(x) = x5
√

3+x6

(4+x2)3
being the really compli-

cated argument and f being cos. That is, f(u) = cos(u). Since f ′(u) = − sin(u),
the chain rule gives

d

dx
cos

(
x5
√

3 + x6

(4 + x2)3

)
= − sin

(
x5
√

3 + x6

(4 + x2)3

)
d

dx

{
x5
√

3 + x6

(4 + x2)3

}

• This reduced our problem to that of computing the derivative of the really com-
plicated argument x5

√
3+x6

(4+x2)3
. We can think of the argument as being built up

out of three pieces, namely x5, multiplied by
√

3 + x6, divided by (4 + x2)
3,

or, equivalently, multiplied by (4 + x2)
−3. So we may rewrite x5

√
3+x6

(4+x2)3
as

x5
(
3 + x6

) 1
2 (4 + x2)

−3, and then apply the product rule to reduce the problem
to that of computing the derivatives of the three pieces.

• Here goes (recall Example 2.6.6):

d

dx

[
x5 (3 + x6)

1
2 (4 + x2)

−3]
=

d

dx

[
x5
]
· (3 + x6)

1
2 · (4 + x2)

−3

+ x5 · d

dx

[
(3 + x6)

1
2
]
· (4 + x2)

−3

+ x5 · (3 + x6)
1
2 · d

dx

[
(4 + x2)

−3]
This has reduced our problem to computing the derivatives of x5, which is easy,
and of (3 + x6)

1
2 and (4 + x2)

−3, both of which can be done by the chain rule.
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Example 2.9.16

Doing so,

d

dx

[
x5 (3 + x6)

1
2 (4 + x2)

−3]
=

5x4︷ ︸︸ ︷
d

dx

[
x5
]
·(3 + x6)

1
2 · (4 + x2)

−3

+ x5 ·

1
2

(3+x6)−
1
2 ·6x5︷ ︸︸ ︷

d

dx

[
(3 + x6)

1
2
]
·(4 + x2)

−3

+ x5 · (3 + x6)
1
2 ·

−3(4+x2)
−4·2x︷ ︸︸ ︷

d

dx

[
(4 + x2)

−3]
• Now we can clean things up in a sneaky way by observing

◦ differentiating x5, to get 5x4, is the same as multiplying x5 by 5
x
, and

◦ differentiating (3 + x6)
1
2 to get 1

2
(3 + x6)−

1
2 · 6x5 is the same as multiplying

(3 + x6)
1
2 by 3x5

3+x6
, and

◦ differentiating (4 + x2)
−3 to get −3(4 + x2)

−4 · 2x is the same as multiplying
(4 + x2)

−3 by − 6x
4+x2

.

Using these sneaky tricks we can write our solution quite neatly:

d

dx
cos

(
x5
√

3 + x6

(4 + x2)3

)
= − sin

(
x5
√

3 + x6

(4 + x2)3

)
x5
√

3 + x6

(4 + x2)3

{
5

x
+

3x5

3 + x6
− 6x

4 + x2

}
• This method of cleaning up the derivative of a messy product is actually something

more systematic in disguise — namely logarithmic differentiation. We will come
to this later.

2.9.4 tt Exercises

Exercises — Stage 1

1. Suppose the amount of kelp in a harbour depends on the number of urchins.
Urchins eat kelp: when there are more urchins, there is less kelp, and
when there are fewer urchins, there is more kelp. Suppose further that the
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number of urchins in the harbour depends on the number of otters, who
find urchins extremely tasty: the more otters there are, the fewer urchins
there are.
Let O, U , and K be the populations of otters, urchins, and kelp, respec-
tively.

a Is dK
dU

positive or negative?

b Is dU
dO

positive or negative?

c Is dK
dO

positive or negative?

Remark: An urchin barren is an area where unchecked sea urchin grazing
has decimated the kelp population, which in turn causes the other species
that shelter in the kelp forests to leave. Introducing otters to urchin barrens
is one intervention to increase biodiversity. A short video with a more
complex view of otters and urchins in Canadian waters is available on
YouTube: https://youtu.be/ASJ82wyHisE

2. Suppose A,B,C,D and E are functions describing an interrelated system, with
the following signs: dA

dB
> 0, dB

dC
> 0, dC

dD
< 0, and dD

dE
> 0. Is dA

dE
positive or

negative?

Exercises — Stage 2

3. Evaluate the derivative of f(x) = cos(5x+ 3).

4. Evaluate the derivative of f(x) = (x2 + 2)
5.

5. Evaluate the derivative of T (k) = (4k4 + 2k2 + 1)
17.

6. Evaluate the derivative of f(x) =

√
x2 + 1

x2 − 1
.

7. Evaluate the derivative of f(x) = ecos(x2).

8. ∗. Evaluate f ′(2) if f(x) = g
(
x/h(x)

)
, h(2) = 2, h′(2) = 3, g′(1) = 4.

9. ∗. Find the derivative of ex cos(x).
10. ∗. Evaluate f ′(x) if f(x) = ex

2+cosx.

11. ∗. Evaluate f ′(x) if f(x) =

√
x− 1

x+ 2
.
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12. ∗. Differentiate the function

f(x) =
1

x2
+
√
x2 − 1

and give the domain where the derivative exists.

13. ∗. Evaluate the derivative of f(x) =
sin 5x

1 + x2

14. Evaluate the derivative of f(x) = sec(e2x+7).

15. Find the tangent line to the curve y = (tan2 x+ 1) (cos2 x) at the point x =
π

4
.

16. The position of a particle at time t is given by s(t) = et
3−7t2+8t. For which

values of t is the velocity of the particle zero?

17. What is the slope of the tangent line to the curve y = tan
(
ex

2
)
at the point

x = 1?

18. ∗. Differentiate y = e4x tanx. You do not need to simplify your answer.

19. ∗. Evaluate the derivative of the following function at x = 1: f(x) =
x3

1 + e3x
.

20. ∗. Differentiate esin2(x).
21. ∗. Compute the derivative of y = sin (e5x)

22. ∗. Find the derivative of ecos(x2).
23. ∗. Compute the derivative of y = cos

(
x2 +

√
x2 + 1

)
24. ∗. Evaluate the derivative.

y = (1 + x2) cos2 x

25. ∗. Evaluate the derivative.
y =

e3x

1 + x2

26. ∗. Find g′(2) if g(x) = x3h(x2), where h(4) = 2 and h′(4) = −2.

27. ∗. At what points (x, y) does the curve y = xe−(x2−1)/2 have a horizontal
tangent?

28. A particle starts moving at time t = 1, and its position thereafter is given
by

s(t) = sin

(
1

t

)
.
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When is the particle moving in the negative direction?

29. Compute the derivative of f(x) =
ex

cos3(5x− 7)
.

30. ∗. Evaluate
d

dx

{
xe2x cos 4x

}
.

Exercises — Stage 3

31. A particle moves along the Cartesian plane from time t = −π/2 to time t =
π/2. The x-coordinate of the particle at time t is given by x = cos t, and the
y-coordinate is given by y = sin t, so the particle traces a curve in the plane.
When does the tangent line to that curve have slope −1?

32. ∗. Show that, for all x > 0, ex+x2 > 1 + x.

33. We know that sin(2x) = 2 sinx cosx. What other trig identity can you
derive from this, using differentiation?

34. Evaluate the derivative of f(x) = 3

√
ecscx2

√
x3 − 9 tanx

. You do not have to sim-

plify your answer.
35. Suppose a particle is moving in the Cartesian plane over time. For any real

number t ≥ 0, the coordinate of the particle at time t is given by (sin t, cos2 t).

a Sketch a graph of the curve traced by the particle in the plane by plotting
points, and describe how the particle moves along it over time.

b What is the slope of the curve traced by the particle at time t =
10π

3
?

2.10q The Natural Logarithm

The chain rule opens the way to understanding derivatives of more complicated function.
Not only compositions of known functions as we have seen the examples of the previous
section, but also functions which are defined implicitly.

Consider the logarithm base e — loge(x) is the power that e must be raised to to
give x. That is, loge(x) is defined by

eloge x = x

i.e. — it is the inverse of the exponential function with base e. Since this choice of
base works so cleanly and easily with respect to differentiation, this base turns out to
be (arguably) the most natural choice for the base of the logarithm. And as we saw in
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our whirlwind review of logarithms in Section 2.7, it is easy to use logarithms of one
base to compute logarithms with another base:

logq x =
loge x

loge q

So we are (relatively) free to choose a base which is convenient for our purposes.
The logarithm with base e, is called the “natural logarithm”. The “naturalness” of

logarithms base e is exactly that this choice of base works very nicely in calculus (and
so wider mathematics) in ways that other bases do not 1 . There are several different
“standard” notations for the logarithm base e;

loge x = log x = lnx.

We recommend that you be able to recognise all of these.
In this text we will write the natural logarithm as “ log” with no base. The reason for

this choice is that base e is the standard choice of base for logarithms in mathematics 2

The natural logarithm inherits many properties of general logarithms 3 . So, for all
x, y > 0 the following hold:

• elog x = x,

• for any real number X, log
(
eX
)

= X,

• for any a > 1, loga x = log x
log a

and log x = loga x
loga e

• log 1 = 0, log e = 1

• log(xy) = log x+ log y

• log
(
x
y

)
= log x− log y, log

(
1
y

)
= − log y

• log(xX) = X log x

• lim
x→∞

log x =∞, lim
x→0

log x = −∞

And finally we should remember that log x has domain (i.e. is defined for) x > 0 and
range (i.e. takes all values in) −∞ < x <∞.

1 The interested reader should head to Wikipedia and look up the natural logarithm.
2 In other disciplines other bases are natural; in computer science, since numbers are stored in

binary it makes sense to use the binary logarithm — i.e. base 2. While in some sciences and
finance, it makes sense to use the decimal logarithm — i.e. base 10.

3 Again take a quick look at the whirlwind review of logarithms in Section 2.7.
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To compute the derivative of log x we could attempt to start with the limit definition
of the derivative

d

dx
log x = lim

h→0

log(x+ h)− log(x)

h

= lim
h→0

log((x+ h)/x)

h
= um. . .

This doesn’t look good. But all is not lost — we have the chain rule, and we know that
the logarithm satisfies the equation:

x = elog x

Since both sides of the equation are the same function, both sides of the equation have
the same derivative. i.e. we are using 4

if f(x) = g(x) for all x, then f ′(x) = g′(x)

So now differentiate both sides:
d

dx
x =

d

dx
elog x

The left-hand side is easy, and the right-hand side we can process using the chain rule
with f(u) = eu and u = log x.

1 =
df

du
· du

dx

= eu · d

dx
log x︸ ︷︷ ︸

what we want to compute

4 Notice that just because the derivatives are the same, doesn’t mean the original functions are the
same. Both f(x) = x2 and g(x) = x2 + 3 have derivative f ′(x) = g′(x) = 2x, but f(x) 6= g(x).
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Recall that eu = elog x = x, so

1 = x · d

dx
log x︸ ︷︷ ︸

now what?

We can now just rearrange this equation to make the thing we want the subject:

d

dx
log x =

1

x

Thus we have proved:

Theorem 2.10.1

d

dx
log x =

1

x

where log x is the logarithm base e.

Example 2.10.2 The derivative of log 3x.

Let f(x) = log 3x. Find f ′(x).
There are two ways to approach this — we can simplify then differentiate, or differen-
tiate and then simplify. Neither is difficult.

• Simplify and then differentiate:

f(x) = log 3x log of a product
= log 3 + log x

f ′(x) =
d

dx
log 3 +

d

dx
log x

=
1

x
.

• Differentiation and then simplify:

f ′(x) =
d

dx
log(3x) chain rule

=
1

3x
· 3

=
1

x

208



Derivatives 2.10 The Natural Logarithm

Example 2.10.3 The derivative of log cx.

Notice that we can extend the previous example for any positive constant — not just
3. Let c > 0 be a constant, then

d

dx
log cx =

d

dx
(log c+ log x)

=
1

x

Example 2.10.4 The derivative of log |x|.

We can push this further still. Let g(x) = log |x|, then a

• If x > 0, |x| = x and so

g′(x) =
d

dx
log x =

1

x

• If x < 0 then |x| = −x. If |h| is strictly smaller than |x|, then we also have that
x+ h < 0 and |x+ h| = −(x+ h) = |x| − h. Write X = |x| and H = −h. Then,
by the definition of the derivative,

g′(x) = lim
h→0

log |x+ h| − log |x|
h

= lim
h→0

log(|x| − h)− log |x|
h

= lim
H→0

log(X +H)− logX

−H = − lim
H→0

log(X +H)− logX

H

= − d

dX
logX = − 1

X
= − 1

|x|
=

1

x

• Since log 0 is undefined, g′(0) does not exist.

Putting this together gives:

d

dx
log |x| = 1

x

a It’s probably a good moment to go back and look at Example 2.2.10.
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Example 2.10.5 The derivative of xa.

Just after Corollary 2.6.17, we said that we would, in the future, find the derivative
of xa for all real numbers. The future is here. Let x > 0 and a be any real number.
Exponentiating both sides of log

(
xa
)

= a log x gives us xa = ea log x and then

d

dx
xa =

d

dx
ea log x = ea log x d

dx
(a log x) by the chain rule

=
a

x
ea log x =

a

x
xa

= axa−1

as expected.

We can extend Theorem 2.10.1 to compute the derivative of logarithms of other
bases in a straightforward way. Since for any positive a 6= 1:

loga x =
log x

log a
=

1

log a
· log x since a is a constant

d

dx
loga x =

1

log a
· 1

x

2.10.1 tt Back to d
dxa

x

We can also now finally get around to computing the derivative of ax (which we started
to do back in Section 2.7).

f(x) = ax take log of both sides
log f(x) = x log a exponentiate both sides base e

f(x) = ex log a chain rule
f ′(x) = ex log a · log a

= ax · log a

Notice that we could have also done the following:

f(x) = ax take log of both sides
log f(x) = x log a differentiate both sides

d

dx
(log f(x)) = log a

We then process the left-hand side using the chain rule

f ′(x) · 1

f(x)
= log a
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f ′(x) = f(x) · log a = ax · log a

We will see d
dx

log f(x) more below in the subsection on “logarithmic differentiation”.
To summarise the results above:

Corollary 2.10.6

d

dx
ax = log a · ax for any a > 0

d

dx
loga x =

1

x · log a
for any a > 0, a 6= 1

where log x is the natural logarithm.

Recall that we need the caveat a 6= 1 because the logarithm base 1 is not well
defined. This is because 1x = 1 for any x. We do not need a similar caveat for the
derivative of the exponential because we know (recall Example 2.7.1)

d

dx
1x =

d

dx
1 = 0 while the above corollary tells us

= log 1 · 1x = 0 · 1 = 0.

2.10.2 tt Logarithmic Differentiation

We want to go back to some previous slightly messy examples (Examples 2.6.6 and 2.6.18)
and now show you how they can be done more easily.

Example 2.10.7 Derivative of a triple product.

Consider again the derivative of the product of 3 functions:

P (x) = F (x) ·G(x) ·H(x)

Start by taking the logarithm of both sides:

logP (x) = log (F (x) ·G(x) ·H(x))

= logF (x) + logG(x) + logH(x)

Notice that the product of functions on the right-hand side has become a sum of func-
tions. Differentiating sums is much easier than differentiating products. So when we
differentiate we have

d

dx
logP (x) =

d

dx
logF (x) +

d

dx
logG(x) +

d

dx
logH(x)
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Example 2.10.7

A quick application of the chain rule shows that d
dx

log f(x) = f ′(x)/f(x):

P ′(x)

P (x)
=
F ′(x)

F (x)
+
G′(x)

G(x)
+
H ′(x)

H(x)

Multiply through by P (x) = F (x)G(x)H(x):

P ′(x) =

(
F ′(x)

F (x)
+
G′(x)

G(x)
+
H ′(x)

H(x)

)
· F (x)G(x)H(x)

= F ′(x)G(x)H(x) + F (x)G′(x)H(x) + F (x)G(x)H ′(x)

which is what found in Example 2.6.6 by repeated application of the product rule. The
above generalises quite easily to more than 3 functions.

This same trick of “take a logarithm and then differentiate” — or logarithmic dif-
ferentiation — will work any time you have a product (or ratio) of functions.

Example 2.10.8 Derivative of a messy product.

Lets use logarithmic differentiation on the function from Example 2.6.18:

f(x) =
(
√
x− 1)(2− x)(1− x2)√

x(3 + 2x)

Beware however, that we may only take the logarithm of positive numbers, and this f(x)
is often negative. For example, if 1 < x < 2, the factor (1−x2) in the definition of f(x)
is negative while all of the other factors are positive, so that f(x) < 0. None–the–less,
we can use logarithmic differentiation to find f ′(x), by exploiting the observation that
d

dx
log |f(x)| = f ′(x)

f(x)
. (To see this, use the chain rule and Example 2.10.4.) So we take

the logarithm of |f(x)| and expand.

log |f(x)| = log
|√x− 1| |2− x| |1− x2|√

x|3 + 2x|
= log |√x−1|+ log |2−x|+ log |1−x2| − log(

√
x)︸ ︷︷ ︸

= 1
2

log x

− log |3+2x|

Now we can essentially just differentiate term-by-term:

d

dx
log |f(x)| = d

dx

(
log |√x− 1|+ log |2− x|+ log |1− x2|

− 1

2
log |x| − log |3 + 2x|

)
f ′(x)

f(x)
=

1/(2
√
x)√

x− 1
+
−1

2− x +
−2x

1− x2
− 1

2x
− 2

3 + 2x
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Example 2.10.8

f ′(x) = f(x) ·
(

1

2
√
x(
√
x−1)

− 1

2−x −
2x

1−x2
− 1

2x
− 2

3+2x

)
=

(
√
x− 1)(2− x)(1− x2)√

x(3 + 2x)
·(

1

2
√
x(
√
x− 1)

− 1

2− x −
2x

1− x2
− 1

2x
− 2

3 + 2x

)
just as we found previously.

2.10.3 tt Exercises

Reminder: in these notes, we use log x to mean loge x, which is also commonly written
elsewhere as lnx.

Exercises — Stage 1

1. The volume in decibels (dB) of a sound is given by the formula:

V (P ) = 10 log10

(
P

S

)
where P is the intensity of the sound and S is the intensity of a standard
baseline sound. (That is: S is some constant.)
How much noise will ten speakers make, if each speaker produces 3dB of noise?
What about one hundred speakers?

2. An investment of $1000 with an interest rate of 5% per year grows to

A(t) = 1000et/20

dollars after t years. When will the investment double?

3. Which of the following expressions, if any, is equivalent to log (cos2 x)?

(a) 2 log(cosx) (b) 2 log | cosx| (c) log2(cosx)

(d) log(cosx2))

Exercises — Stage 2

4. Differentiate f(x) = log(10x).
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5. Differentiate f(x) = log(x2).

6. Differentiate f(x) = log(x2 + x).

7. Differentiate f(x) = log10 x.

8. ∗. Find the derivative of y =
log x

x3
.

9. Evaluate
d

dθ
log(sec θ).

10. Differentiate the function f(x) = ecos(log x).
11. ∗. Evaluate the derivative. You do not need to simplify your answer.

y = log(x2 +
√
x4 + 1)

12. ∗. Differentiate
√
− log(cos x).

13. ∗. Calculate and simplify the derivative of log
(
x+
√
x2 + 4

)
.

14. ∗. Evaluate the derivative of g(x) = log(ex
2

+
√

1 + x4).

15. ∗. Evaluate the derivative of the following function at x = 1: g(x) =

log
(2x− 1

2x+ 1

)
.

16. Evaluate the derivative of the function f(x) = log

(√
(x2 + 5)3

x4 + 10

)
.

17. Evaluate f ′(2) if f(x) = log
(
g
(
xh(x)

))
, h(2) = 2, h′(2) = 3, g(4) = 3, g′(4) =

5.

18. ∗. Differentiate the function

g(x) = πx + xπ.

19. Differentiate f(x) = xx.

20. ∗. Find f ′(x) if f(x) = xx + log10 x.

21. Differentiate f(x) =
4

√
(x4 + 12)(x4 − x2 + 2)

x3
.
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22. Differentiate f(x) = (x+ 1)(x2 + 1)2(x3 + 1)3(x4 + 1)4(x5 + 1)5.

23. Differentiate f(x) =

(
5x2 + 10x+ 15

3x4 + 4x3 + 5

)(
1

10(x+ 1)

)
.

24. ∗. Let f(x) = (cos x)sinx, with domain 0 < x < π
2
. Find f ′(x).

25. ∗. Find the derivative of (tan(x))x, when x is in the interval (0, π/2).

26. ∗. Find f ′(x) if f(x) = (x2 + 1)(x2+1)

27. ∗. Differentiate f(x) = (x2 + 1)sin(x).

28. ∗. Let f(x) = xcos3(x), with domain (0,∞). Find f ′(x).

29. ∗. Differentiate f(x) = (3 + sin(x))x
2−3.

Exercises — Stage 3

30. Let f(x) and g(x) be differentiable functions, with f(x) > 0. Evaluate
d

dx

{
[f(x)]g(x)

}
.

31. Let f(x) be a function whose range includes only positive numbers. Show
that the curves y = f(x) and y = log(f(x)) have horizontal tangent lines
at the same values of x.

2.11q Implicit Differentiation

2.11.1 tt Implicit Differentiation

Implicit differentiation is a simple trick that is used to compute derivatives of functions
either

• when you don’t know an explicit formula for the function, but you know an
equation that the function obeys or

• even when you have an explicit, but complicated, formula for the function, and
the function obeys a simple equation.

The trick is just to differentiate both sides of the equation and then solve for the
derivative we are seeking. In fact we have already done this, without using the name
“implicit differentiation”, when we found the derivative of log x in the previous section.
There we knew that the function f(x) = log x satisfied the equation ef(x) = x for all x.
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That is, the functions ef(x) and x are in fact the same function and so have the same
derivative. So we had

d

dx
ef(x) =

d

dx
x = 1

We then used the chain rule to get d
dx
ef(x) = ef(x)f ′(x), which told us that f ′(x) obeys

the equation

ef(x)f ′(x) = 1 and we can now solve for f ′(x)

f ′(x) = e−f(x) = e− log x =
1

x
.

The typical way to get used to implicit differentiation is to play with problems
involving tangent lines to curves. So here are a few examples finding the equations of
tangent lines to curves. Recall, from Theorem 2.3.4, that, in general, the tangent line
to the curve y = f(x) at

(
x0, y0

)
is y = f(x0) + f ′(x0)(x− x0) = y0 + f ′(x0)(x− x0).

Example 2.11.1 Finding a tangent line using implicit differentiation.

Find the equation of the tangent line to y = y3 + xy + x3 at x = 1.
This is a very standard sounding example, but made a little complicated by the fact
that the curve is given by a cubic equation — which means we cannot solve directly for
y in terms of x or vice versa. So we really do need implicit differentiation.

• First notice that when x = 1 the equation, y = y3 +xy+x3, of the curve simplifies
to y = y3 + y + 1 or y3 = −1, which we can solve a : y = −1. So we know that
the curve passes through (1,−1) when x = 1.

• Now, to find the slope of the tangent line at (1,−1), pretend that our curve is
y = f(x) so that f(x) obeys

f(x) = f(x)3 + xf(x) + x3

for all x. Differentiating both sides gives

f ′(x) = 3f(x)2f ′(x) + f(x) + xf ′(x) + 3x2

• At this point we could isolate for f ′(x) and write it in terms of f(x) and x, but
since we only want answers when x = 1, let us substitute in x = 1 and f(1) = −1
(since the curve passes through (1,−1)) and clean things up before doing anything
else.

• Subbing in x = 1, f(1) = −1 gives

f ′(1) = 3f ′(1)− 1 + f ′(1) + 3 and so f ′(1) = −2

3

• The equation of the tangent line is

y = y0 + f ′(x0)(x− x0) = −1− 2

3
(x− 1) = −2

3
x− 1

3
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Example 2.11.1

We can further clean up the equation of the line to write it as 2x+ 3y = −1.

a This type of luck rarely happens in the “real world”. But it happens remarkably frequently in
textbooks, problem sets and tests.

In the previous example we replace y by f(x) in the middle of the computation. We
don’t actually have to do this. When we are writing out our solution we can remember
that y is a function of x. So we can start with

y = y3 + xy + x3

and differentiate remembering that y ≡ y(x)

y′ = 3y2y′ + xy′ + y + 3x2

And now substitute x = 1, y = −1 to get

y′(1) = 3 · y′(1) + y′(1)− 1 + 3 and so

y′(1) = −2

3

The next one is at the same time a bit easier (because it is a quadratic) and a bit
harder (because we are asked for the tangent at a general point on the curve, not a
specific one).

Example 2.11.2 Another tangent line through implicit differentiation.

Let (x0, y0) be a point on the ellipse 3x2 + 5y2 = 7. Find the equation for the tangent
lines when x = 1 and y is positive. Then find an equation for the tangent line to the
ellipse at a general point (x0, y0).
Since we are not given an specific point x0 we are going to have to be careful with the
second half of this question.

• When x = 1 the equation simplifies to

3 + 5y2 = 7

5y2 = 4

y = ± 2√
5
.

We are only interested in positive y, so our point on the curve is (1, 2/
√

5).

• Now we use implicit differentiation to find dy
dx

at this point. First we pretend that
we have solved the curve explicitly, for some interval of x’s, as y = f(x). The
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equation becomes

3x2 + 5f(x)2 = 7 now differentiate
6x+ 10f(x)f ′(x) = 0

f ′(x) = − 3x

5f(x)

• When x = 1, y = 2/
√

5 this becomes

f ′(1) = − 3

5 · 2/
√

5
= − 3

2
√

5

So the tangent line passes through (1, 2/
√

5) and has slope − 3
2
√

5
. Hence the

tangent line has equation

y = y0 + f ′(x0)(x− x0)

=
2√
5
− 3

2
√

5
(x− 1)

=
7− 3x

2
√

5
or equivalently

3x+ 2
√

5y = 7

Now we should go back and do the same but for a general point on the curve (x0, y0):

• A good first step here is to sketch the curve. Since this is an ellipse, it is pretty
straight-forward.

3x2 + 5y2 = 7

(x0, y0)

• Notice that there are two points on the ellipse — the extreme right and left points
(x0, y0) = ±

(√
7
3
, 0
)
— at which the tangent line is vertical. In those two cases,

the tangent line is just x = x0.

• Since this is a quadratic for y, we could solve it explicitly to get

y = ±
√

7− 3x2

5
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and choose the positive or negative branch as appropriate. Then we could differ-
entiate to find the slope and put things together to get the tangent line.

But even in this relatively easy case, it is computationally cleaner, and hence less
vulnerable to mechanical errors, to use implicit differentiation. So that’s what
we’ll do.

• Now we could again “pretend” that we have solved the equation for the ellipse for
y = f(x) near (x0, y0), but let’s not do that. Instead (as we did just before this
example) just remember that when we differentiate y is really a function of x. So
starting from

3x2 + 5y2 = 7 differentiating gives
6x+ 5 · 2y · y′ = 0

We can then solve this for y′:

y′ = −3x

5y

where y′ and y are both functions of x.

• Hence at the point (x0, y0) we have

y′|(x0,y0) = −3x0

5y0

This is the slope of the tangent line at (x0, y0) and so its equation is

y = y0 + y′ · (x− x0)

= y0 −
3x0

5y0

(x− x0)

We can simplify this by multiplying through by 5y0 to get

5y0y = 5y2
0 − 3x0x+ 3x2

0

We can clean this up more by moving all the terms that contain x or y to the
left-hand side and everything else to the right:

3x0x+ 5y0y = 3x2
0 + 5y2

0

But there is one more thing we can do, our original equation is 3x2 + 5y2 = 7
for all points on the curve, so we know that 3x2

0 + 5y2
0 = 7. This cleans up the

right-hand side.

3x0x+ 5y0y = 7
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Example 2.11.2

• In deriving this formula for the tangent line at (x0, y0) we have assumed that
y0 6= 0. But in fact the final answer happens to also work when y0 = 0 (which
means x0 = ±

√
7
3
), so that the tangent line is x = x0.

We can also check that our answer for general (x0, y0) reduces to our answer for x0 = 1.

• When x0 = 1 we worked out that y0 = 2/
√

5.

• Plugging this into our answer above gives

3x0x+ 5y0y = 7 sub in (x0, y0) = (1, 2/
√

5) :

3x+ 5
2√
5
y = 7 clean up a little

3x+ 2
√

5y = 7

as required.

Example 2.11.3 A more involved example.

At which points does the curve x2 − xy + y2 = 3 cross the x–axis? Are the tangent
lines to the curve at those points parallel?
This is a 2 part question — first the x-intercepts and then we need to examine tangent
lines.

• Finding where the curve crosses the x-axis is straight forward. It does so when
y = 0. This means x satisfies

x2 − x · 0 + 02 = 3 so x = ±
√

3.

So the curve crosses the x–axis at two points
(
±
√

3 , 0
)
.

• Now we need to find the tangent lines at those points. But we don’t actually need
the lines, just their slopes. Again we can pretend that near one of those points
the curve is y = f(x). Applying d

dx
to both sides of x2 − xf(x) + f(x)2 = 3 gives

2x− f(x)− xf ′(x) + 2f(x)f ′(x) = 0

etc etc.

• But let us stop “pretending”. Just make sure we remember that y is a function of
x when we differentiate:

x2 − xy + y2 = 3 start with the curve, and differentiate
2x− xy′ − y + 2yy′ = 0
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Example 2.11.3

Now substitute in the first point, x = +
√

3, y = 0:

2
√

3−
√

3y′ + 0 = 0

y′ = 2

And now do the second point x = −
√

3, y = 0:

−2
√

3 +
√

3y′ + 0 = 0

y′ = 2

Thus the slope is the same at x =
√

3 and x = −
√

3 and the tangent lines are
parallel.

Okay — let’s get away from curves and do something a little different.

Example 2.11.4 A rough game of baseball.

You are standing at the origin. At time zero a pitcher throws a ball at your head a.
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Figure 2.11.5

The position of the (centre of the) ball at time t is x(t) = d−vt, where d is the distance
from your head to the pitcher’s mound and v is the ball’s velocity. Your eye sees the
ball filling b an angle 2θ(t) with

sin
(
θ(t)

)
=

r

d− vt
where r is the radius of the baseball. The question is “How fast is θ growing at time
t?” That is, what is dθ

dt
?

• We don’t know (yet) how to solve this equation to find θ(t) explicitly. So we use
implicit differentiation.

• To do so we apply d
dt

to both sides of our equation. This gives

cos
(
θ(t)

)
· θ′(t) =

rv

(d− vt)2

• Then we solve for θ′(t):

θ′(t) =
rv

(d− vt)2 cos
(
θ(t)

)
• As is often the case, when using implicit differentiation, this answer is not very

satisfying because it contains θ(t), for which we still do not have an explicit
formula. However in this case we can get an explicit formula for cos

(
θ(t)

)
, without

having an explicit formula for θ(t), just by looking at the right–angled triangle in
Figure 2.11.5, above.

• The hypotenuse of that triangle has length d− vt. By Pythagoras, the length of
the side of the triangle adjacent of the angle θ(t) is

√
(d− vt)2 − r2. So

cos
(
θ(t)

)
=

√
(d− vt)2 − r2

d− vt
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Example 2.11.5

and

θ′(t) =
rv

(d− vt)
√

(d− vt)2 − r2

a It seems that it is not a friendly game today.
b This is the “visual angle” or “angular size”.

Okay — just one more tangent-to-the-curve example and then we’ll go on to some-
thing different.

Example 2.11.6 The astroid (no that is not a typo).

Let (x0, y0) be a point on the astroid a b

x
2
3 + y

2
3 = 1.

Find an equation for the tangent line to the astroid at (x0, y0).

• As was the case in examples above we can rewrite the equation of the astroid
near (x0, y0) in the form y = f(x), with an explicit f(x), by solving the equation
x

2
3 + y

2
3 = 1. But again, it is computationally cleaner, and hence less vulnerable

to mechanical errors, to use implicit differentiation. So that’s what we’ll do.

• First up, since (x0, y0) lies on the curve, it satisfies

x
2
3
0 + y

2
3
0 = 1.

• Now, no pretending that y = f(x), this time — just make sure we remember
when we differentiate that y changes with x.

x
2
3 + y

2
3 = 1

Start with the curve, and then differentiate

2

3
x−

1
3 +

2

3
y−

1
3y′ = 0

• Note the derivative of x
2
3 , namely 2

3
x−

1
3 , and the derivative of y

2
3 , namely 2

3
y−

1
3y′,

are defined only when x 6= 0 and y 6= 0. We are interested in the case that x = x0

and y = y0. So we better assume that x0 6= 0 and y0 6= 0. Probably something
weird happens when x0 = 0 or y0 = 0. We’ll come back to this shortly.
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• To continue on, we set x = x0, y = y0 in the equation above, and then solve for
y′:

2

3
x
− 1

3
0 +

2

3
y
− 1

3
0 y′(x) = 0 =⇒ y′(x0) = −

(
y0

x0

) 1
3

This is the slope of the tangent line and its equation is

y = y0 + f ′(x0)(x− x0) = y0 −
(
y0

x0

) 1
3

(x− x0)

Now let’s think a little bit about what the tangent line slope of − 3

√
y0
x0

tells us about
the astroid.

• First, as a preliminary observation, note that since x
2
3
0 ≥ 0 and y

2
3
0 ≥ 0 the

equation x
2
3
0 + y

2
3
0 = 1 of the astroid forces 0 ≤ x

2
3
0 , y

2
3
0 ≤ 1 and hence −1 ≤

x0, y0 ≤ 1.

• For all x0, y0 > 0 the slope − 3

√
y0
x0
< 0. So at all points on the astroid that are in

the first quadrant, the tangent line has negative slope, i.e. is “leaning backwards”.

• As x0 tends to zero, y0 tends to ±1 and the tangent line slope tends to infinity.
So at points on the astroid near (0,±1), the tangent line is almost vertical.

• As y0 tends to zero, x0 tends to ±1 and the tangent line slope tends to zero. So
at points on the astroid near (±1, 0), the tangent line is almost horizontal.

Here is a figure illustrating all this.

Sure enough, as we speculated earlier, something weird does happen to the astroid when
x0 or y0 is zero. The astroid is pointy, and does not have a tangent there.
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Example 2.11.6

a Here is where is the astroid comes from. Imagine two circles, one of radius 1/4 and one of radius
1. Paint a red dot on the smaller circle. Then imagine the smaller circle rolling around the inside
of the larger circle. The curve traced by the red dot is our astroid. Google “astroid” (be careful
about the spelling) to find animations showing this.

b The astroid was first discussed by Johann Bernoulli in 1691–92. It also appears in the work of
Leibniz.

2.11.2 tt Exercises

Exercises — Stage 1

1. If we implicitly differentiate x2 + y2 = 1, we get the equation 2x + 2yy′ = 0.
In the step where we differentiate y2 to obtain 2yy′, which rule(s) below are
we using? (a) power rule, (b) chain rule, (c) quotient rule , (d) derivatives of
exponential functions

2. Using the picture below, estimate
dy

dx
at the three points where the curve

crosses the y-axis.

x

y

1 2 3 4

1

2

3

4

−4 −3 −2 −1

−4

−3

−2

−1

Remark: for this curve, one value of x may correspond to multiple values
of y. So, we cannot express this curve as y = f(x) for any function x. This
is one typical situation where we might use implicit differentiation.
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Derivatives 2.11 Implicit Differentiation

3. Consider the unit circle, formed by all points (x, y) that satisfy x2 + y2 = 1.

x

y

a Is there a function f(x) so that y = f(x) completely describes the unit
circle? That is, so that the points (x, y) that make the equation y = f(x)
true are exactly the same points that make the equation x2+y2 = 1 true?

b Is there a function f ′(x) so that y = f ′(x) completely describes the slope
of the unit circle? That is, so that for every point (x, y) on the unit
circle, the slope of the tangent line to the circle at that point is given by
f ′(x)?

c Use implicit differentiation to find an expression for
dy

dx
. Simplify until

the expression is a function in terms of x only (not y), or explain why
this is impossible.

Exercises — Stage 2

4. ∗. Find
dy

dx
if xy + ex + ey = 1.

5. ∗. If ey = xy2 + x, compute
dy

dx
.

6. ∗. If x2 tan(πy/4) + 2x log(y) = 16, then find y′ at the points where y = 1.

7. ∗. If x3 + y4 = cos(x2 + y) compute dy
dx
.

8. ∗. If x2ey + 4x cos(y) = 5, then find y′ at the points where y = 0.

9. ∗. If x2 + y2 = sin(x+ y) compute dy
dx
.

10. ∗. If x2 cos(y) + 2xey = 8, then find y′ at the points where y = 0.
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Derivatives 2.12 Inverse Trigonometric Functions

11. At what points on the ellipse x2 + 3y2 = 1 is the tangent line parallel to
the line y = x?

12. ∗. For the curve defined by the equation √xy = x2y − 2, find the slope of the
tangent line at the point (1, 4).

13. ∗. If x2y2 + x sin(y) = 4, find
dy

dx
.

Exercises — Stage 3

14. ∗. If x2 + (y + 1)ey = 5, then find y′ at the points where y = 0.

15. For what values of x do the circle x2 +y2 = 1 and the ellipse x2 + 3y2 = 1 have
parallel tangent lines?

2.12q Inverse Trigonometric Functions

One very useful application of implicit differentiation is to find the derivatives of inverse
functions. We have already used this approach to find the derivative of the inverse of
the exponential function — the logarithm.

We are now going to consider the problem of finding the derivatives of the inverses of
trigonometric functions. Now is a very good time to go back and reread Section 0.6 on
inverse functions — especially Definition 0.6.4. Most importantly, given a function f(x),
its inverse function f−1(x) only exists, with domain D, when f(x) passes the “horizontal
line test”, which says that for each Y in D the horizontal line y = Y intersects the graph
y = f(x) exactly once. (That is, f(x) is a one-to-one function.)

Let us start by playing with the sine function and determine how to restrict the
domain of sinx so that its inverse function exists.

Example 2.12.1 The inverse of sinx.

Let y = f(x) = sin(x). We would like to find the inverse function which takes y and
returns to us a unique x-value so that sin(x) = y.
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Derivatives 2.12 Inverse Trigonometric Functions

• For each real number Y , the number of x-values that obey sin(x) = Y , is exactly
the number of times the horizontal straight line y = Y intersects the graph of
sin(x).

• When −1 ≤ Y ≤ 1, the horizontal line intersects the graph infinitely many times.
This is illustrated in the figure above by the line y = 0.3.

• On the other hand, when Y < −1 or Y > 1, the line y = Y never intersects the
graph of sin(x). This is illustrated in the figure above by the line y = −1.2.

This is exactly the horizontal line test and it shows that the sine function is not one-
to-one.
Now consider the function

y = sin(x) with domain − π

2
≤ x ≤ π

2

This function has the same formula but the domain has been restricted so that, as we’ll
now show, the horizontal line test is satisfied.

As we saw above when |Y | > 1 no x obeys sin(x) = Y and, for each −1 ≤ Y ≤ 1, the
line y = Y (illustrated in the figure above with y = 0.3) crosses the curve y = sin(x)
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Derivatives 2.12 Inverse Trigonometric Functions

Example 2.12.2

infinitely many times, so that there are infinitely many x’s that obey f(x) = sin x = Y .
However exactly one of those crossings (the dot in the figure) has −π

2
≤ x ≤ π

2
.

That is, for each −1 ≤ Y ≤ 1, there is exactly one x, call it X, that obeys both

sinX = Y and −π
2
≤ X ≤ π

2

That unique value, X, is typically denoted arcsin(Y ). That is

sin(arcsin(Y )) = Y and −π
2
≤ arcsin(Y ) ≤ π

2

Renaming Y → x, the inverse function arcsin(x) is defined for all −1 ≤ x ≤ 1 and is
determined by the equation

Equation 2.12.2

sin
(

arcsin(x)
)

= x and − π

2
≤ arcsin(x) ≤ π

2
.

Note that many texts will use sin−1(x) to denote arcsine, however we will use arcsin(x)
since we feel that it is clearer a; the reader should recognise both.

a The main reason being that people frequently confuse sin−1(x) with (sin(x))−1 = 1
sin x . We feel

that prepending the prefix “arc” less likely to lead to such confusion. The notations asin(x) and
Arcsin(x) are also used.

Example 2.12.3 More on the inverse of sinx.

Since
sin

π

2
= 1 sin

π

6
=

1

2

and −π
2
≤ π

6
, π

2
≤ π

2
, we have

arcsin 1 =
π

2
arcsin

1

2
=
π

6

Even though
sin(2π) = 0

it is not true that arcsin 0 = 2π, and it is not true that arcsin
(

sin(2π)
)

= 2π, because
2π is not between −π

2
and π

2
. More generally

arcsin
(

sin(x)
)

= the unique angle θ between − π

2
and

π

2
obeying sin θ = sinx
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Example 2.12.3

= x if and only if −π
2
≤ x ≤ π

2

So, for example, arcsin
(

sin
(

11π
16

))
cannot be 11π

16
because 11π

16
is bigger than π

2
. So how

do we find the correct answer? Start by sketching the graph of sin(x).

It looks like the graph of sinx is symmetric about x = π
2
. The mathematical way to

say that “the graph of sinx is symmetric about x = π
2
” is “sin(π

2
− θ) = sin(π

2
+ θ)” for

all θ. That is indeed true a .
Now 11π

16
= π

2
+ 3π

16
so

sin
(11π

16

)
= sin

(π
2

+
3π

16

)
= sin

(π
2
− 3π

16

)
= sin

(5π

16

)
and, since 5π

16
is indeed between −π

2
and π

2
,

arcsin
(

sin
(11π

16

))
=

5π

16

(
and not

11π

16

)
.

a Indeed both are equal to cos θ. You can see this by playing with the trig identities in Appendix A.8.

2.12.1 tt Derivatives of Inverse Trig Functions

Now that we have explored the arcsine function we are ready to find its derivative. Lets
call

arcsin(x) = θ(x),

so that the derivative we are seeking is dθ
dx
. The above equation is (after taking sine of

both sides) equivalent to

sin(θ) = x
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Derivatives 2.12 Inverse Trigonometric Functions

Now differentiate this using implicit differentiation (we just have to remember that θ
varies with x and use the chain rule carefully):

cos(θ) · dθ

dx
= 1

dθ

dx
=

1

cos(θ)
substitute θ = arcsinx

d

dx
arcsinx =

1

cos(arcsinx)

This doesn’t look too bad, but it’s not really very satisfying because the right hand side
is expressed in terms of arcsin(x) and we do not have an explicit formula for arcsin(x).

However even without an explicit formula for arcsin(x), it is a simple matter to get
an explicit formula for cos

(
arcsin(x)

)
, which is all we need. Just draw a right–angled

triangle with one angle being arcsin(x). This is done in the figure below 1.

Since sin(θ) = x (see 2.12.2), we have made the side opposite the angle θ of length
x and the hypotenuse of length 1. Then, by Pythagoras, the side adjacent to θ has
length

√
1− x2 and so

cos
(

arcsin(x)
)

= cos(θ) =
√

1− x2

which in turn gives us the answer we need:

d

dx
arcsin(x) =

1√
1− x2

The definitions for arccos, arctan and arccot are developed in the same way. Here
are the graphs that are used.

1 The figure is drawn for the case that 0 ≤ arcsin(x) ≤ π
2 . Virtually the same argument works for

the case −π2 ≤ arcsin(x) ≤ 0
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Derivatives 2.12 Inverse Trigonometric Functions

x

y

π
2

π

y = cot(x)

y = 0.8

The definitions for the remaining two inverse trigonometric functions may also be
developed in the same way23. But it’s a little easier to use

cscx =
1

sinx
secx =

1

cosx

Definition 2.12.4

arcsinx is defined for |x| ≤ 1. It is the unique number obeying

sin
(

arcsin(x)
)

= x and −π
2
≤ arcsin(x) ≤ π

2

arccosx is defined for |x| ≤ 1. It is the unique number obeying

cos
(

arccos(x)
)

= x and 0 ≤ arccos(x) ≤ π

2 In fact, there are two different widely used definitions of arcsecx. Under our definition, below,
θ = arcsecx takes values in 0 ≤ θ ≤ π. Some people, perfectly legitimately, define θ = arcsecx
to take values in the union of 0 ≤ θ < π

2 and π ≤ θ < 3π
2 . Our definition is sometimes called the

“trigonometry friendly” definition. The definition itself has the advantage of simplicity. The other
definition is sometimes called the “calculus friendly” definition. It eliminates some absolute values
and hence simplifies some computations. Similarly there are two different widely used definitions
of arccscx.

3 One could also define arccot(x) = arctan(1/x) with arccot(0) = π
2 . We have chosen not to do so,

because the definition we have chosen is both continuous and standard.
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arctanx is defined for all x ∈ R. It is the unique number obeying

tan
(

arctan(x)
)

= x and −π
2
< arctan(x) <

π

2

arccscx = arcsin 1
x
is defined for |x| ≥ 1. It is the unique number obeying

csc
(

arccsc(x)
)

= x and −π
2
≤ arccsc(x) ≤ π

2

Because csc(0) is undefined, arccsc(x) never takes the value 0.

arcsecx = arccos 1
x
is defined for |x| ≥ 1. It is the unique number obeying

sec
(

arcsec(x)
)

= x and 0 ≤ arcsec(x) ≤ π

Because sec(π/2) is undefined, arcsec(x) never takes the value π/2.

arccotx is defined for all x ∈ R. It is the unique number obeying

cot
(

arccot(x)
)

= x and 0 < arccot(x) < π

Example 2.12.5 The derivative of arccosx.

To find the derivative of arccos we can follow the same steps:

• Write arccos(x) = θ(x) so that cos θ = x and the desired derivative is dθ
dx
.

• Differentiate implicitly, remembering that θ is a function of x:

− sin θ
dθ

dx
= 1

dθ

dx
= − 1

sin θ
d

dx
arccosx = − 1

sin(arccosx)
.

• To simplify this expression, again draw the relevant triangle

from which we see

sin(arccosx) = sin θ =
√

1− x2.
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Example 2.12.5

• Thus

d

dx
arccosx = − 1√

1− x2
.

Example 2.12.6 The derivative of arctanx.

Very similar steps give the derivative of arctanx:

• Start with θ = arctanx, so tan θ = x.

• Differentiate implicitly:

sec2 θ
dθ

dx
= 1

dθ

dx
=

1

sec2 θ
= cos2 θ

d

dx
arctanx = cos2(arctanx).

• To simplify this expression, we draw the relevant triangle

from which we see

cos2(arctanx) = cos2 θ =
1

1 + x2

• Thus

d

dx
arctanx =

1

1 + x2
.

An almost identical computation gives the derivative of arccotx:

• Start with θ = arccotx, so cot θ = x.

• Differentiate implicitly:

− csc2 θ
dθ

dx
= 1
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Example 2.12.6

d

dx
arccotx =

dθ

dx
= − 1

csc2 θ
= − sin2 θ = − 1

1 + x2

from the triangle

θ

√
1 + x2

1

x

Example 2.12.7 The derivative of arccscx.

To find the derivative of arccsc we can use its definition and the chain rule.

θ = arccscx take cosecant of both sides

csc θ = x but csc θ =
1

sin θ
, so flip both sides

sin θ =
1

x
now take arcsine of both sides

θ = arcsin

(
1

x

)
Now just differentiate, carefully using the chain rule :

dθ

dx
=

d

dx
arcsin

(
1

x

)
=

1√
1− x−2

· −1

x2

To simplify further we will factor x−2 out of the square root. We need to be a little
careful doing that. Take another look at examples 1.5.6 and 1.5.7 and the discussion
between them before proceeding.

=
1√

x−2(x2 − 1)
· −1

x2

=
1

|x−1| ·
√
x2 − 1

· −1

x2
note that x2 · |x−1| = |x|.

= − 1

|x|
√
x2 − 1

In the same way we can find the derivative of the remaining inverse trig function. We
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Example 2.12.7

just use its definition, a derivative we already know and the chain rule.

d

dx
arcsec(x) =

d

dx
arccos

(1

x

)
= − 1√

1− 1
x2

·
(
− 1

x2

)
=

1

|x|
√
x2 − 1

By way of summary, we have

Theorem 2.12.8

The derivatives of the inverse trigonometric functions are

d

dx
arcsin(x) =

1√
1− x2

d

dx
arccsc(x) = − 1

|x|
√
x2 − 1

d

dx
arccos(x) = − 1√

1− x2

d

dx
arcsec(x) =

1

|x|
√
x2 − 1

d

dx
arctan(x) =

1

1 + x2

d

dx
arccot(x) = − 1

1 + x2

2.12.2 tt Exercises

Exercises — Stage 1

1. Give the domains of each of the following functions.

(a) f(x) = arcsin(cos x) (b) g(x) = arccsc(cos x)

(c) h(x) = sin(arccos x)

2. A particle starts moving at time t = 10, and it bobs up and down, so that its
height at time t ≥ 10 is given by cos t. True or false: the particle has height 1
at time t = arccos(1).

3. The curve y = f(x) is shown below, for some function f . Restrict f to
the largest possible interval containing 0 over which it is one–to–one, and
sketch the curve y = f−1(x).

236



Derivatives 2.12 Inverse Trigonometric Functions

x

y

1

4. Let a be some constant. Where does the curve y = ax+cos x have a horizontal
tangent line?

5. Define a function f(x) = arcsinx + arccscx. What is the domain of f(x)?
Where is f(x) differentiable?

Exercises — Stage 2

6. Differentiate f(x) = arcsin
(x

3

)
. What is the domain of f(x)?

7. Differentiate f(t) =
arccos t

t2 − 1
. What is the domain of f(t)?

8. Differentiate f(x) = arcsec(−x2 − 2). What is the domain of f(x)?

9. Differentiate f(x) =
1

a
arctan

(x
a

)
, where a is a nonzero constant. What is the

domain of f(x)?

10. Differentiate f(x) = x arcsinx+
√

1− x2. What is the domain of f(x)?

11. For which values of x is the tangent line to y = arctan(x2) horizontal?

12. Evaluate
d

dx
{arcsinx+ arccosx}.

13. ∗. Find the derivative of y = arcsin
(

1
x

)
.

14. ∗. Find the derivative of y = arctan
(

1
x

)
.

15. ∗. Calculate and simplify the derivative of (1 + x2) arctanx.
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16. Show that
d

dx
{sin (arctan(x))} = (x2 + 1)−3/2.

17. Show that
d

dx
{cot (arcsin(x))} =

−1

x2
√

1− x2
.

18. ∗. Determine all points on the curve y = arcsinx where the tangent line is
parallel to the line y = 2x+ 9.

19. For which values of x does the function f(x) = arctan(csc x) have a horizontal
tangent line?

Exercises — Stage 3

20. ∗. Let f(x) = x + cos x, and let g(y) = f−1(y) be the inverse function.
Determine g′(y).

21. ∗. f(x) = 2x− sin(x) is one–to–one. Find
(
f−1
)′

(π − 1).

22. ∗. f(x) = ex + x is one–to–one. Find
(
f−1
)′

(e+ 1).

23. Differentiate f(x) = [sinx+ 2]arcsecx. What is the domain of this function?

24. Suppose you can’t remember whether the derivative of arcsine is
1√

1− x2

or
1√

x2 − 1
. Describe how the domain of arcsine suggests that one of these

is wrong.

25. Evaluate lim
x→1

(
(x− 1)−1

(
arctanx− π

4

))
.

26. Suppose f(2x+ 1) =
5x− 9

3x+ 7
. Evaluate f−1(7).

27. Suppose f−1(4x− 1) =
2x+ 3

x+ 1
. Evaluate f(0).

28. Suppose a curve is defined implicitly by

arcsin(x+ 2y) = x2 + y2

Solve for y′ in terms of x and y.
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Derivatives 2.13 The Mean Value Theorem

2.13q The Mean Value Theorem

Consider the following situation. Two towns are separated by a 120km long stretch of
road. The police in town A observe a car leaving at 1pm. Their colleagues in town B
see the car arriving at 2pm. After a quick phone call between the two police stations,
the driver is issued a fine for going 120km/h at some time between 1pm and 2pm. It is
intuitively obvious 1 that, because his average velocity was 120km/h, the driver must
have been going at least 120km/h at some point. From a knowledge of the average
velocity of the car, we are able to deduce something about an instantaneous velocity 2

.
Let us turn this around a little bit. Consider the premise of a 90s action film 3 —

a bus must travel at a velocity of no less than 80km/h. Being a bus, it is unable to go
faster than, say, 120km/h. The film runs for about 2 hours, and let’s assume that there
is about thirty minutes of non-action — so the bus’ velocity is constrained between 80
and 120km/h for a total of 1.5 hours.

It is again obvious that the bus must have travelled between 80 × 1.5 = 120 and
120× 1.5 = 180km during the film. This time, from a knowledge of the instantaneous
rate of change of position — the derivative — throughout a 90 minute time interval,
we are able to say something about the net change of position during the 90 minutes.

In both of these scenarios we are making use of a piece of mathematics called the
Mean Value Theorem. It says that, under appropriate hypotheses, the average rate of
change f(b)−f(a)

b−a of a function over an interval is achieved exactly by the instantaneous
rate of change f ′(c) of the function at some 4 (unknown) point a ≤ c ≤ b. We shall get
to a precise statement in Theorem 2.13.5. We start working up to it by first considering
the special case in which f(a) = f(b).

1 Unfortunately there are many obvious things that are decidedly false — for example “There are
more rational numbers than integers.” or “Viking helmets had horns on them”.

2 Recall that speed and velocity are not the same. Velocity specifies the direction of motion as well
as the rate of change. Objects moving along a straight line have velocities that are positive or
negative numbers indicating which direction the object is moving along the line. Speed, on the
other hand, is the distance travelled per unit time and is always a non-negative number — it is
the absolute value of velocity.

3 The sequel won a Raspberry award for “Worst remake or sequel”.
4 There must be at least one such point — there could be more than one — but there cannot be

zero.
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2.13.1 tt Rolle’s Theorem

Theorem 2.13.1 Rolle’s theorem.

Let a and b be real numbers with a < b. And let f be a function so that

• f(x) is continuous on the closed interval a ≤ x ≤ b,

• f(x) is differentiable on the open interval a < x < b, and

• f(a) = f(b)

then there is a c strictly between a and b, i.e. obeying a < c < b, such that

f ′(c) = 0.

Again, like the two scenarios above, this theorem says something intuitively obvious.
Consider — if you throw a ball straight up into the air and then catch it, at some
time in between the throw and the catch it must be stationary. Translating this into
mathematical statements, let s(t) be the height of the ball above the ground in metres,
and let t be time from the moment the ball is thrown in seconds. Then we have

s(0) = 1 we release the ball at about hip-height
s(4) = 1 we catch the ball 4s later at hip-height

Then we know there is some time in between — say at t = c — when the ball is
stationary (in this case when the ball is at the top of its trajectory). I.e.

v(c) = s′(c) = 0.

Rolle’s theorem guarantees that for any differentiable function that starts and ends at
the same value, there will always be at least one point between the start and finish
where the derivative is zero.

There can, of course, also be multiple points at which the derivative is zero — but
there must always be at least one. Notice, however, the theorem 5

does not tell us the value of c, just that such a c must exist.

5 Notice this is very similar to the intermediate value theorem (see Theorem 1.6.12)

240



Derivatives 2.13 The Mean Value Theorem

Example 2.13.2 A simple application of Rolle’s theorem.

We can use Rolle’s theorem to show that the function

f(x) = sin(x)− cos(x)

has a point c between 0 and 3π
2

so that f ′(c) = 0.
To apply Rolle’s theorem we first have to show the function satisfies the conditions of
the theorem on the interval [0, 3π

2
].

• Since f is the sum of sine and cosine it is continuous on the interval and also
differentiable on the interval.

• Further, since

f(0) = sin 0− cos 0 = 0− 1 = −1

f

(
3π

2

)
= sin

3π

2
− cos

3π

2
= −1− 0 = −1

we can now apply Rolle’s theorem.

• Rolle’s theorem implies that there must be a point c ∈ (0, 3π/2) so that f ′(c) = 0.

While Rolle’s theorem doesn’t tell us the value of c, this example is sufficiently simple
that we can find it directly.

f ′(x) = cos x+ sinx

f ′(c) = cos c+ sin c = 0 rearrange
sin c = − cos c and divide by cos c

tan c = −1

Hence c = 3π
4
. We have sketched the function and the relevant points below.

A more substantial application of Rolle’s theorem (in conjunction with the inter-
mediate value theorem — Theorem 1.6.12) is to show that a function does not have
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multiple zeros in an interval:

Example 2.13.3 Showing an equation has exactly 1 solution.

Show that the equation 2x− 1 = sin(x) has exactly 1 solution.

• Start with a rough sketch of each side of the equation

This seems like it should be true.

• Notice that the problem we are trying to solve is equivalent to showing that the
function

f(x) = 2x− 1− sin(x)

has only a single zero.

• Since f(x) is the sum of a polynomial and a sine function, it is continuous and
differentiable everywhere. Thus we can apply both the IVT and Rolle’s theorem.

• Notice that f(0) = −1 and f(2) = 4 − 1 − sin(2) = 3 − sin(2) ≥ 2, since
−1 ≤ sin(2) ≤ 1. Thus by the IVT we know there is at least one number c
between 0 and 2 so that f(c) = 0.

• But our job is only half done — this shows that there is at least one zero, but it
does not tell us there is no more than one. We have more work to do, and Rolle’s
theorem is the tool we need.

• Consider what would happen if f(x) is zero in 2 places — that is, there are
numbers a, b so that f(a) = f(b) = 0.

◦ Since f(x) is differentiable everywhere and f(a) = f(b) = 0, we can apply
Rolle’s theorem.

◦ Hence we know there is a point c between a and b so that f ′(c) = 0.

◦ But let us examine f ′(x):

f ′(x) = 2− cosx

Since −1 ≤ cosx ≤ 1, we must have that f ′(x) ≥ 1.
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Example 2.13.3

◦ But this contradicts Rolle’s theorem which tells us there must be a point at
which the derivative is zero.

Thus the function cannot be zero at two different places — otherwise we’d have
a contradiction.

We can actually nail down the value of c using the bisection approach we used in
example 1.6.15. If we do this carefully we find that c ≈ 0.887862 . . .

2.13.2 tt Back to the MVT

Rolle’s theorem can be generalised in a straight-forward way; given a differentiable
function f(x) we can still say something about df

dx
, even if f(a) 6= f(b). Consider the

following sketch:

Figure 2.13.4

All we have done is tilt the picture so that f(a) < f(b). Now we can no longer
guarantee that there will be a point on the graph where the tangent line is horizontal,
but there will be a point where the tangent line is parallel to the secant joining (a, f(a))
to (b, f(b)).

To state this in terms of our first scenario back at the beginning of this section,
suppose that you are driving along the x–axis. At time t = a you are at x = f(a)
and at time t = b you are at x = f(b). For simplicity, let’s suppose that b > a and
f(b) ≥ f(a), just like in the above sketch. Then during the time interval in question
you travelled a net distance of f(b)−f(a). It took you b−a units of time to travel that
distance, so your average velocity was f(b)−f(a)

b−a . You may very well have been going
faster than f(b)−f(a)

b−a part of the time and slower than f(b)−f(a)
b−a part of the time. But it

is reasonable to guess that at some time between t = a and t = b your instantaneous
velocity was exactly f(b)−f(a)

b−a . The mean value theorem says that, under reasonable
assumptions about f , this is indeed the case.
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Theorem 2.13.5 The mean value theorem.

Let a and b be real numbers with a < b. And let f(x) be a function so that

• f(x) is continuous on the closed interval a ≤ x ≤ b, and

• f(x) is differentiable on the open interval a < x < b

then there is a c ∈ (a, b), such that

f ′(c) =
f(b)− f(a)

b− a
which we can also express as

f(b) = f(a) + f ′(c)(b− a).

Let us start to explore the mean value theorem — which is very frequently known
as the MVT. A simple example to start:

Example 2.13.6 Apply MVT to a polynomial.

Consider the polynomial f(x) = 3x2 − 4x+ 2 on [−1, 1].

• Since f is a polynomial it is continuous on the interval and also differentiable on
the interval. Hence we can apply the MVT.

• The MVT tells us that there is a point c ∈ (−1, 1) so that

f ′(c) =
f(1)− f(−1)

1− (−1)
=

1− 9

2
= −4

This example is sufficiently simple that we can find the point c and the corresponding
tangent line:

• The derivative is

f ′(x) = 6x− 4

• So we need to solve f ′(c) = −4:

6c− 4 = −4

which tells us that c = 0.

• The tangent line has slope −4 and passes through (0, f(0)) = (0, 2), and so is
given by

y = −4x+ 2
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Example 2.13.6

• The secant line joining (−1, f(−1)) = (−1, 9) to (1, f(1)) = (1, 1) is just

y = 5− 4x

• Here is a sketch of the curve and the two lines:

−1 −0.5 0.5 1

3

6

9 3x2 − 4x+ 2
5− 4x
2− 4x

Example 2.13.7 MVT, speed and distance.

We can return to our initial car-motivated examples. Say you are driving along a
straight road in a car that can go at most 80km/h. How far can you go in 2 hours? —
the answer is easy, but we can also solve this using MVT.

• Let s(t) be the position of the car in km at time t measured in hours.

• Then s(0) = 0 and s(2) = q, where q is the quantity that we need to bound.

• We are told that |s′(t)| ≤ 80, or equivalently

−80 ≤ s′(t) ≤ 80

• By the MVT there is some c between 0 and 2 so that

s′(c) =
q − 0

2
=
q

2

• Now since −80 ≤ s′(c) ≤ 80 we must have −80 ≤ q/2 ≤ 80 and hence −160 ≤
q = s(2) ≤ 160.

More generally if we have some information about the derivative, then we can use
the MVT to leverage this information to tell us something about the function.
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Example 2.13.8 Using MVT to bound a function.

Let f(x) be a differentiable function so that

f(1) = 10 and −1 ≤ f ′(x) ≤ 2 everywhere

Obtain upper and lower bounds on f(5).
Okay — what do we do?

• Since f(x) is differentiable we can use the MVT.

• Say f(5) = q, then the MVT tells us that there is some c between 1 and 5 such
that

f ′(c) =
q − 10

5− 1
=
q − 10

4

• But we know that −1 ≤ f ′(c) ≤ 2, so

−1 ≤ f ′(c) ≤ 2

−1 ≤ q − 10

4
≤ 2

−4 ≤ q − 10 ≤ 8

6 ≤ q ≤ 18

• Thus we must have 6 ≤ f(5) ≤ 18.

2.13.3 tt (Optional) — Why is the MVT True

We won’t give a real proof for this theorem, but we’ll look at a picture which shows
why it is true. Here is the picture. It contains a sketch of the graph of f(x), with x
running from a to b, as well as a line segment which is the secant of the graph from the
point

(
a , f(a)

)
to the point

(
b , f(b)

)
. The slope of the secant is exactly f(b)−f(a)

b−a .
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Remember that we are looking for a point,
(
c , f(c)

)
, on the graph of f(x) with the

property that f ′(c) = f(b)−f(a)
b−a , i.e. with the property that the slope of the tangent line

at
(
c , f(c)

)
is the same as the slope of the secant. So imagine that you start moving

the secant upward, carefully keeping the moved line segment parallel to the secant. So
the slope of the moved line segment is always exactly f(b)−f(a)

b−a . When we first start
moving the line segment it is not tangent to the curve — it crosses the curve. This
is illustrated in the figure by the second line segment from the bottom. If we move
the line segment too far it does not touch the curve at all. This is illustrated in the
figure by the top segment. But if we stop moving the line segment just before it stops
intersecting the curve at all, we get exactly the tangent line to the curve at the point
on the curve that is farthest from the secant. This tangent line has exactly the desired
slope. This is illustrated in the figure by the third line segment from the bottom.

2.13.4 tt Be Careful with Hypotheses

The mean value theorem has hypotheses — f(x) has to be continuous for a ≤ x ≤ b and
has to be differentiable for a < x < b. If either hypothesis is violated, the conclusion of
the mean value theorem can fail. That is, the curve y = f(x) need not have a tangent
line at some x = c between a and b whose slope, f ′(c), is the same as the slope, f(b)−f(a)

b−a ,
of the secant joining the points

(
a , f(a)

)
and

(
b , f(b)

)
on the curve. If f ′(x) fails to

exist for even a single value of x between a and b, all bets are off. The following two
examples illustrate this.

Example 2.13.9 MVT doesn’t work here.

For the first “bad” example, a = 0, b = 2 and
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Example 2.13.9

f(x) =

{
0 if x ≤ 1

1 if x > 1

For this example, f ′(x) = 0 at every x where it is defined. That is, at every x 6= 1. But
the slope of the secant joining

(
a , f(a)

)
= (0, 0) and

(
b , f(b)

)
= (2, 1) is 1

2
.

Example 2.13.10 MVT doesn’t work here either.

For the second “bad” example, a = −1, b = 1 and f(x) = |x|. For this function

f ′(x) =


−1 if x < 0

undefined if x = 0

1 if x > 0

For this example, f ′(x) = ±1 at every x where it is defined. That is, at every x 6= 0.
But the slope of the secant joining

(
a , f(a)

)
= (−1, 1) and

(
b , f(b)

)
= (1, 1) is 0.

Example 2.13.11 MVT does work on this one.

Here is one “good” example, where the hypotheses of the mean value theorem are
satisfied. Let f(x) = x2. Then f ′(x) = 2x. For any a < b,

f(b)− f(a)

b− a =
b2 − a2

b− a = b+ a

So f ′(c) = 2c is exactly f(b)−f(a)
b−a when c = a+b

2
, which, in this example, happens to be

exactly half way between x = a and x = b.
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Recall from Section 2.3 that if f ′(c) > 0, then f(x) is increasing at x = c. A simple
consequence of the mean value theorem is that if you know the sign of f ′(c) for all c’s
between a and b, with b > a, then f(b)− f(a) = f ′(c)(b− a) must have the same sign.

Corollary 2.13.12 Consequences of the mean value theorem.

Let A and B be real numbers with A < B. Let function f(x) be defined and
continuous on the closed interval A ≤ x ≤ B and be differentiable on the open
interval A < x < B.

a If f ′(c) = 0 for all A < c < B, then f(b) = f(a) for all A ≤ a < b ≤ B.

— That is, f(x) is constant on A ≤ x ≤ B.

b If f ′(c) ≥ 0 for all A < c < B, then f(b) ≥ f(a) for all A ≤ a ≤ b ≤ B.

— That is, f(x) is increasing on A ≤ x ≤ B.

c If f ′(c) ≤ 0 for all A < c < B, then f(b) ≤ f(a) for all A ≤ a ≤ b ≤ B.

— That is, f(x) is decreasing on A ≤ x ≤ B.

It is not hard to see why the above is true:

• Say f ′(x) = 0 at every point in the interval [A,B]. Now pick any a, b ∈ [A,B]
with a < b. Then the MVT tells us that there is c ∈ (a, b) so that

f ′(c) =
f(b)− f(a)

b− a
If f(b) 6= f(a) then we must have that f ′(c) 6= 0 — contradicting what we are
told about f ′(x). Thus we must have that f(b) = f(a).

• Similarly, say f ′(x) ≥ 0 at every point in the interval [A,B]. Now pick any
a, b ∈ [A,B] with a < b. Then the MVT tells us that there is c ∈ (a, b) so that

f ′(c) =
f(b)− f(a)

b− a
Since b > a, the denominator is positive. Now if f(b) < f(a) the numerator would
be negative, making the right-hand side negative, and contradicting what we are
told about f ′(x). Hence we must have f(b) ≥ f(a).

A nice corollary of the above corollary is the following:
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Corollary 2.13.13

If f ′(x) = g′(x) for all x in the open interval (a, b), then f − g is a constant on
(a, b). That is f(x) = g(x) + c, where c is some constant.

We can prove this by setting h(x) = f(x)−g(x). Then h′(x) = 0 and so the previous
corollary tells us that h(x) is constant.

Example 2.13.14 Summing arcsin and arccos.

Using this corollary we can prove results like the following:

arcsinx+ arccosx =
π

2
for all − 1 < x < 1

How does this work? Let f(x) = arcsin x+ arccosx. Then

f ′(x) =
1√

1− x2
+

−1√
1− x2

= 0

Thus f must be a constant. To find out which constant, we can just check its value at
a convenient point, like x = 0.

arcsin(0) + arccos(0) = π/2 + 0 = π/2

Since the function is constant, this must be the value.

2.13.5 tt Exercises

Exercises — Stage 1

1. Suppose a particular caribou has a top speed of 70 kph, and in one year
it migrates 5000 km. What do you know about the amount of time the
caribou spent travelling during its migration?

2. Suppose a migrating sandhill crane flew 240 kilometres in one day. What
does the mean value theorem tell you about its speed during that day?

3. Below is the graph of y = f(x), where x is continuous on [a, b] and differ-
entiable on (a, b). Mark on the graph the approximate location of a value
c guaranteed by the mean value theorem.
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x

y

a b

4. Give a function f(x) with the properties that:

• f(x) is differentiable on the open interval 0 < x < 10

• f(0) = 0, f(10) = 10

but for all c ∈ (0, 10), f ′(c) = 0.

5. For each of the parts below, sketch a function f(x) (different in each part)
that is continuous and differentiable over all real numbers, with f(1) =
f(2) = 0, and with the listed property, or explain why no such function
exists.

a f ′(c) = 0 for no point c ∈ (1, 2)

b f ′(c) = 0 for exactly one point c ∈ (1, 2)

c f ′(c) = 0 for exactly five points c ∈ (1, 2)

d f ′(c) = 0 for infinitely many points c ∈ (1, 2)

6. Suppose you want to show that a point exists where the function f(x) =
√
|x|

has a tangent line with slope 1
13
. Find the mistake(s) in the following work,

and give a correct proof.

The function f(x) is continuous and differentiable over all real num-
bers, so the mean value theorem applies. f(−4) = 2 and f(9) = 3,
so by the mean value theorem, there exists some c ∈ (−4, 9) such

that f ′(x) =
3− 2

9− (−4)
=

1

13
.

Exercises — Stage 2
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7. ∗. Let f(x) = x2− 2πx+ cos(x)− 1. Show that there exists a real number
c such that f ′(c) = 0.

8. ∗. Let f(x) = ex + (1− e)x2− 1. Show that there exists a real number c such
that f ′(c) = 0.

9. ∗. Let f(x) =
√

3 + sin(x) + (x − π)2. Show that there exists a real number
c such that f ′(c) = 0.

10. ∗. Let f(x) = x cos(x)−x sin(x). Show that there exists a real number c such
that f ′(c) = 0.

11. How many roots does the function f(x) = 3x− sinx have?

12. How many roots does the function f(x) =
(4x+ 1)4

16
+ x have?

13. How many roots does the function f(x) = x3 + sin (x5) have?

14. How many positive-valued solutions does the equation ex = 4 cos(2x) have?

15. ∗. Let f(x) = 3x5 − 10x3 + 15x+ a, where a is some constant.

a Prove that, regardless of the value a, f ′(x) > 0 for all x in (−1, 1).

b Prove that, regardless of the value a, f(x) = 3x5 − 10x3 + 15x + a
has at most one root in [−1, 1].

16. ∗. Find the point promised by the Mean Value Theorem for the function
ex on the interval [0, T ].

17. Use Corollary 2.13.12 and Theorem 2.12.8 to show that arcsecx = C−arccscx
for some constant C; then find C.

Exercises — Stage 3

18. ∗. Suppose f(0) = 0 and f ′(x) =
1

1 + e−f(x)
. Prove that f(100) < 100.

Remark: an equation relating a function to its own derivative is called a differ-
ential equation. We’ll see some very basic differential equations in Section 3.3.

19. Let f(x) = 2x + sin x. What is the largest interval containing x = 0 over
which f(x) is one–to–one? What are the domain and range of f−1(x)?

20. Let f(x) =
x

2
+ sinx. What is the largest interval containing x = 0 over which

f(x) is one–to–one? What are the domain and range of f−1(x), if we restrict
f to this interval?
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21. Suppose f(x) and g(x) are functions that are continuous over the interval [a, b]
and differentiable over the interval (a, b). Suppose further that f(a) < g(a)
and g(b) < f(b). Show that there exists some c ∈ [a, b] with f ′(c) > g′(c).

22. Suppose f(x) is a function that is differentiable over all real numbers, and
f ′(x) has precisely two roots. What is the maximum number of distinct
roots that f(x) may have?

23. How many roots does f(x) = sinx+ x2 + 5x+ 1 have?

2.14q Higher Order Derivatives

2.14.1 tt Higher Order Derivatives

The operation of differentiation takes as input one function, f(x), and produces as out-
put another function, f ′(x). Now f ′(x) is once again a function. So we can differentiate
it again, assuming that it is differentiable, to create a third function, called the second
derivative of f . And we can differentiate the second derivative again to create a fourth
function, called the third derivative of f . And so on.

Definition 2.14.1

• f ′′(x) and f (2)(x) and d2f
dx2

(x) all mean d
dx

(
d

dx
f(x)

)
• f ′′′(x) and f (3)(x) and d3f

dx3
(x) all mean d

dx

(
d

dx

(
d

dx
f(x)

))
• f (4)(x) and d4f

dx4
(x) both mean d

dx

(
d

dx

(
d

dx

(
d

dx
f(x)

)))
• and so on.

Here is a simple example. Then we’ll think a little about the significance of second
order derivatives. Then we’ll do a more a computationally complex example.

Example 2.14.2 Derivatives of xn.

Let n be a natural number and let f(x) = xn. Then

d

dx
xn = nxn−1

d2

dx2
xn =

d

dx

(
nxn−1

)
= n(n− 1)xn−2
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Example 2.14.2

d3

dx3
xn =

d

dx

(
n(n− 1)xn−2

)
= n(n− 1)(n− 2)xn−3

Each time we differentiate, we bring down the exponent, which is exactly one smaller
than the previous exponent brought down, and we reduce the exponent by one. By the
time we have differentiated n− 1 times, the exponent has decreased to n− (n− 1) = 1
and we have brought down the factors n(n− 1)(n− 2) · · · 2. So

dn−1

dxn−1
xn = n(n− 1)(n− 2) · · · 2x

and

dn

dxn
xn = n(n− 1)(n− 2) · · · 1

The product of the first n natural numbers, 1 · 2 · 3 · · · · · n, is called “n factorial” and
is denoted n!. So we can also write

dn

dxn
xn = n!

If m > n, then

dm

dxm
xn = 0

Example 2.14.3 Position, velocity and acceleration.

Recall that the derivative v′(a) is the (instantaneous) rate of change of the function v(t)
at t = a. Suppose that you are walking on the x–axis and that x(t) is your x–coordinate
at time t. Also suppose, for simplicity, that you are moving from left to right. Then
v(t) = x′(t) is your velocity at time t and v′(a) = x′′(a) is the rate at which your velocity
is changing at time t = a. It is called your acceleration. In particular, if x′′(a) > 0, then
your velocity is increasing, i.e. you are speeding up, at time a. If x′′(a) < 0, then your
velocity is decreasing, i.e. you are slowing down, at time a. That’s one interpretation
of the second derivative.

Example 2.14.4 2.11.1 continued.

Find y′′ if y = y3 + xy + x3.
Solution This problem concerns some function y(x) that is not given to us explicitly.
All that we are told is that y(x) satisfies

y(x) = y(x)3 + xy(x) + x3 (E1)
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for all x. We are asked to find y′′(x). We cannot solve this equation to get an explicit
formula for y(x). So we use implicit differentiation, as we did in Example 2.11.1. That
is, we apply d

dx
to both sides of (E1). This gives

y′(x) = 3y(x)2 y′(x) + y(x) + x y′(x) + 3x2 (E2)

which we can solve for y′(x), by moving all y′(x)’s to the left hand side, giving[
1− x− 3y(x)2

]
y′(x) = y(x) + 3x2

and then dividing across.

y′(x) =
y(x) + 3x2

1− x− 3y(x)2
(E3)

To get y′′(x), we have two options.
Method 1. Apply d

dx
to both sides of (E2). This gives

y′′(x) = 3y(x)2 y′′(x) + 6y(x) y′(x)2 + 2y′(x) + x y′′(x) + 6x

We can now solve for y′′(x), giving

y′′(x) =
6x+ 2y′(x) + 6y(x)y′(x)2

1− x− 3y(x)2
(E4)

Then we can substitute in (E3), giving

y′′(x) = 2
3x+ y(x)+3x2

1−x−3y(x)2
+ 3y(x)

(
y(x)+3x2

1−x−3y(x)2

)2

1− x− 3y(x)2

= 2
3x[1−x−3y(x)2]

2
+ [y(x)+3x2][1−x−3y(x)2] + 3y(x)[y(x)+3x2]

2

[1− x− 3y(x)2]3

Method 2. Alternatively, we can also differentiate (E3).

y′′(x) =
[y′(x) + 6x][1−x−3y(x)2]− [y(x) + 3x2][−1− 6y(x)y′(x)]

[1− x− 3y(x)2]2

=

[
y(x)+3x2

1−x−3y(x)2
+ 6x

]
[1− x− 3y(x)2]− [y(x) + 3x2][−1− 6y(x) y(x)+3x2

1−x−3y(x)2
]

[1− x− 3y(x)2]2

=
2[y(x) + 3x2][1−x−3y(x)2] + 6x[1−x−3y(x)2]

2
+ 6y(x)[y(x)+3x2]

2

[1− x− 3y(x)2]3

Remark 1. We have now computed y′′(x) — sort of. The answer is in terms of y(x),
which we don’t know. Since we cannot get an explicit formula for y(x), there’s not a
great deal that we can do, in general.
Remark 2. Even though we cannot solve y = y3 + xy + x3 explicitly for y(x), for
general x, it is sometimes possible to solve equations like this for some special values
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Example 2.14.4

of x. In fact, we saw in Example 2.11.1 that when x = 1, the given equation reduces
to y(1) = y(1)3 + 1 · y(1) + 13, or y(1)3 = −1, which we can solve to get y(1) = −1.
Substituting into (E2), as we did in Example 2.11.1 gives

y′(1) =
−1 + 3

1− 1− 3(−1)2
= −2

3

and substituting into (E4) gives

y′′(1) =
6 + 2

(
− 2

3

)
+ 6(−1)

(
− 2

3

)2

1− 1− 3(−1)2
=

6− 4
3
− 8

3

−3
= −2

3

(It’s a fluke that, in this example, y′(1) and y′′(1) happen to be equal.) So we now
know that, even though we can’t solve y = y3 + xy + x3 explicitly for y(x), the graph
of the solution passes through (1,−1) and has slope −2

3
(i.e. is sloping downwards by

between 30◦ and 45◦) there and, furthermore, the slope of the graph decreases as x
increases through x = 1.

Here is a sketch of the part of the graph very near (1,−1). The tangent line to the graph
at (1,−1) is also shown. Note that the tangent line is sloping down to the right, as we
expect, and that the graph lies below the tangent line near (1,−1). That’s because the
slope f ′(x) is decreasing (becoming more negative) as x passes through 1.

Warning 2.14.5

Many people will suppress the (x) in y(x) when doing computations like those in
Example 2.14.4. This gives shorter, easier to read formulae, like y′ = y+3x2

1−x−3y2
. If

you do this, you must never forget that y is a function of x and is not a constant.
If you do forget, you’ll make the very serious error of saying that dy

dx
= 0, which

is false.
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2.14.2 tt Exercises

Exercises — Stage 1

1. What is the 180th derivative of the function f(x) = ex?

2. Suppose f(x) is a differentiable function, with f ′(x) > 0 and f ′′(x) > 0 for
every x ∈ (a, b). Which of the following must be true?

i f(x) is positive over (a, b)

ii f(x) is increasing over (a, b)

iii f(x) is increasing at a constant rate over (a, b)

iv f(x) is increasing faster and faster over (a, b)

v f ′′′′(x) > 0 for some x ∈ (a, b)

3. Let f(x) = ax15 for some constant a. Which value of a results in f (15)(x) = 3?

4. Find the mistake(s) in the following work, and provide a corrected answer.

Suppose −14x2 +2xy+y2 = 1. We find
d2y

dx2
at the point (1, 3).

Differentiating implicitly:

−28x+ 2y + 2xy′ + 2yy′ = 0

Plugging in x = 1, y = 3:

−28 + 6 + 2y′ + 6y′ = 0

y′ =
11

4

Differentiating:

y′′ = 0

Exercises — Stage 2

5. Let f(x) = (log x− 1)x. Evaluate f ′′(x).

6. Evaluate
d2

dx2
{arctanx}.

7. The unit circle consists of all point x2 + y2 = 1. Give an expression for
d2y

dx2
in
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Derivatives 2.14 Higher Order Derivatives

terms of y.

8. Suppose the position of a particle at time t is given by s(t) =
et

t2 + 1
. Find

the acceleration of the particle at time t = 1.

9. Evaluate
d3

dx3
{log(5x2 − 12)}.

10. The height of a particle at time t seconds is given by h(t) = − cos t. Is the
particle speeding up or slowing down at t = 1?

11. The height of a particle at time t seconds is given by h(t) = t3−t2−5t+10.
Is the particle’s motion getting faster or slower at t = 1?

12. Suppose a curve is defined implicitly by

x2 + x+ y = sin(xy)

What is
d2y

dx2
at the point (0, 0)?

13. Which statements below are true, and which false?

a
d4

dx4
sinx = sinx

b
d4

dx4
cosx = cosx

c
d4

dx4
tanx = tanx

Exercises — Stage 3

14. A function f(x) satisfies f ′(x) < 0 and f ′′(x) > 0 over (a, b). Which of the
following curves below might represent y = f(x)?
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x

y

a b

(i)

x

y

a b

(ii)

x

y

a b

(iii)

x

y

a b

(iv)

x

y

a b

(v)

15. Let f(x) = 2x. What is f (n)(x), if n is a whole number?

16. Let f(x) = ax3 + bx2 + cx+ d, where a, b, c, and d are nonzero constants.

What is the smallest integer n so that
dnf

dxn
= 0 for all x?

17. ∗.
f(x) = ex+x2 h(x) = 1 + x+

3

2
x2

a Find the first and second derivatives of both functions

b Evaluate both functions and their first and second derivatives at 0.

c Show that for all x > 0, f(x) > h(x).

Remark: for some applications, we only need to know that a function is “big
enough.” Since f(x) is a difficult function to evaluate, it may be useful to know
that it is bigger than h(x) when x is positive.

18. ∗. The equation x3y + y3 = 10x defines y implicitly as a function of x near
the point (1, 2).

a Compute y′ at this point.

b It can be shown that y′′ is negative when x = 1. Use this fact and your
answer to 2.14.2.18.a to make a sketch showing the relationship of the
curve to its tangent line at (1, 2).
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19. Let g(x) = f(x)ex. In Question 2.7.3.12, Section 2.7, we learned that g′(x) =
[f(x) + f ′(x)]ex.

a What is g′′(x)?

b What is g′′′(x)?

c Based on your answers above, guess a formula for g(4)(x). Check it by
differentiating.

20. Suppose f(x) is a function whose first n derivatives exist over all real numbers,
and f (n)(x) has precisely m roots. What is the maximum number of roots that
f(x) may have?

21. How many roots does the function f(x) = (x+ 1) log(x+ 1) + sinx− x2 have?

22. ∗. Let f(x) = x|x|.

a Show that f(x) is differentiable at x = 0, and find f ′(0).

b Find the second derivative of f(x). Explicitly state, with justification,
the point(s) at which f ′′(x) does not exist, if any.

2.15q (Optional) — Is limx→c f ′(x) Equal to f ′(c)?

Consider the function

f(x) =

{
sinx2

x
if x 6= 0

0 if x = 0

For any x 6= 0 we can easily use our differentiation rules to find

f ′(x) =
2x2 cosx2 − sinx2

x2

But for x = 0 none of our usual differentation rules apply. So how do we find f ′(0)? One
obviously legitimate strategy is to directly apply the Definition 2.2.1 of the derivative.
As an alternative, we will now consider the question “Can one find f ′(0) by taking the
limit of f ′(x) as x tends to zero?”. There is bad news and there is good news.

• The bad news is that, even for functions f(x) that are differentiable for all x, f ′(x)
need not be continuous. That is, it is not always true that limx→0 f

′(x) = f ′(0).
We will see a function for which limx→0 f

′(x) 6= f ′(0) in Example 2.15.1, below.

• The good news is that Theorem 2.15.2, below provides conditions which are suf-
ficient to guarantee that f(x) is differentiable at x = 0 and that limx→0 f

′(x) =
f ′(0).
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Example 2.15.1

Consider the function

f(x) =

{
x2 sin 1

x
if x 6= 0

0 if x = 0

For x 6= 0 we have, by the product and chain rules,

f ′(x) = 2x sin
1

x
+ x2

(
cos

1

x

)(
− 1

x2

)
= 2x sin

1

x
− cos

1

x

As
∣∣sin 1

x

∣∣ ≤ 1, we have

lim
x→0

2x sin
1

x
= 0

On the other hand, as x tends to zero, 1
x
goes to ±∞. So

lim
x→0

cos
1

x
= DNE =⇒ lim

x→0
f ′(x) = DNE

We will now see that, despite this, f ′(0) is perfectly well defined. By definition

f ′(0) = lim
h→0

f(h)− f(0)

h

= lim
h→0

h2 sin 1
h
− 0

h

= lim
h→0

h sin
1

h

= 0 since
∣∣∣∣sin 1

h

∣∣∣∣ ≤ 1

So f ′(0) exists, but is not equal to limx→0 f
′(x), which does not exist.

Now for the good news.

Theorem 2.15.2

Let a < c < b. Assume that

• the function f(x) is continous on the interval a < x < b and

• is differentiable at every x in the intervals a < x < c and c < x < b and

• the limit limx→c f ′(x) exists.
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Then f is differentiable at x = c and

f ′(c) = lim
x→c

f ′(x)

Proof. By hypothesis, there is a number L such that

lim
x→c

f ′(x) = L

By definition

f ′(c) = lim
h→0

f(c+ h)− f(c)

h

By the Mean Value Theorem (Theorem 2.13.5 ) there is, for each h, an (unknown)
number xh between c and c+ h such that f ′(xh) = f(c+h)−f(c)

h
. So

f ′(c) = lim
h→0

f ′(xh)

As h tends to zero, c + h tends to c, and so xh is forced to tend to c, and f ′(xh)
is forced to tend to L so that

f ′(c) = lim
h→0

f ′(xh) = L

�

In the next example we evaluate f ′(0) by applying Theorem 2.15.2.

Example 2.15.3

Let

f(x) =

{
sinx2

x
if x 6= 0

0 if x = 0

We have already observed above that, for x 6= 0,

f ′(x) =
2x2 cosx2 − sinx2

x2
= 2 cos x2 − sinx2

x2

We use Theorem 2.15.2 with c = 0 to show that f(x) is differentiable at x = 0 and to
evaluate f ′(0). That theorem has two hypotheses that we have not yet verified, namely
the continuity of f(x) at x = 0, and the existence of the limit limx→0 f

′(x). We verify
them now.

• We already know, by Lemma 2.8.1, that limh→0
sinh
h

= 1. So

lim
x→0

sinx2

x2
= lim

h→0+

sinh

h
with h = x2
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Example 2.15.3

= 1

and

lim
x→0

f(x) = lim
x→0

sinx2

x
= lim

x→0
x

sinx2

x2
= lim

x→0
x lim

x→0

sinx2

x2
= 0× 1 = 0

and f(x) is continuous at x = 0.

• The limit of the derivative is

lim
x→0

f ′(x) = lim
x→0

[
2 cosx2 − sinx2

x2

]
= 2× 1− 1 = 1

So, by Theorem 2.15.2, f(x) is differentiable at x = 0 and f ′(0) = 1.
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Applicationsofderivatives
Chapter 3

In Section 2.2 we defined the derivative at x = a, f ′(a), of an abstract function f(x),
to be its instantaneous rate of change at x = a:

f ′(a) = lim
x→a

f(x)− f(a)

x− a
This abstract definition, and the whole theory that we have developed to deal with it,
turns out be extremely useful simply because “instantaneous rate of change” appears in
a huge number of settings. Here are a few examples.

• If you are moving along a line and x(t) is your position on the line at time t, then
your rate of change of position, x′(t), is your velocity. If, instead, v(t) is your
velocity at time t, then your rate of change of velocity, v′(t), is your acceleration.
We shall explore this further in Section 3.1.

• If P (t) is the size of some population (say the number of humans on the earth)
at time t, then P ′(t) is the rate at which the size of that population is changing.
It is called the net birth rate. We shall explore it further in Section 3.3.3.

• Radiocarbon dating, a procedure used to determine the age of, for example, ar-
chaeological materials, is based on an understanding of the rate at which an un-
stable isotope of carbon decays. We shall look at this procedure in Section 3.3.1

• A capacitor is an electrical component that is used to repeatedly store and release
electrical charge (say electrons) in an electronic circuit. If Q(t) is the charge on
a capacitor at time t, then Q′(t) is the instantaneous rate at which charge is
flowing into the capacitor. That’s called the current. The standard unit of charge
is the coulomb. One coulomb is the magnitude of the charge of approximately
6.241 × 1018 electrons. The standard unit for current is the amp. One amp
represents one coulomb per second.
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Applications of derivatives 3.1 Velocity and Acceleration

3.1q Velocity and Acceleration

3.1.1 tt Velocity and Acceleration

If you are moving along the x–axis and your position at time t is x(t), then your velocity
at time t is v(t) = x′(t) and your acceleration at time t is a(t) = v′(t) = x′′(t).

Example 3.1.1 Velocity as derivative of position.

Suppose that you are moving along the x–axis and that at time t your position is given
by

x(t) = t3 − 3t+ 2.

We’re going to try and get a good picture of what your motion is like. We can learn
quite a bit just by looking at the sign of the velocity v(t) = x′(t) at each time t.

• If x′(t) > 0, then at that instant x is increasing, i.e. you are moving to the right.

• If x′(t) = 0, then at that instant you are not moving at all.

• If x′(t) < 0, then at that instant x is decreasing, i.e. you are moving to the left.

From the given formula for x(t) it is straight forward to work out the velocity

v(t) = x′(t) = 3t2 − 3 = 3(t2 − 1) = 3(t+ 1)(t− 1)

This is zero only when t = −1 and when t = +1; at no other value a of t can this
polynomial be equal zero. Consequently in any time interval that does not include
either t = −1 or t = +1, v(t) takes only a single sign b . So

• For all t < −1, both (t+1) and (t−1) are negative (sub in, for example, t = −10)
so the product v(t) = x′(t) = 3(t+ 1)(t− 1) > 0.

• For all −1 < t < 1, the factor (t + 1) > 0 and the factor (t − 1) < 0 (sub in, for
example, t = 0) so the product v(t) = x′(t) = 3(t+ 1)(t− 1) < 0.

• For all t > 1, both (t+ 1) and (t− 1) are positive (sub in, for example, t = +10)
so the product v(t) = x′(t) = 3(t+ 1)(t− 1) > 0.

The figure below gives a summary of the sign information we have about t − 1, t + 1
and x′(t).
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It is now easy to put together a mental image of your trajectory.

• For t large and negative (i.e. far in the past), x(t) is large and negative and v(t)
is large and positive. For example c , when t = −106, x(t) ≈ t3 = −1018 and
v(t) ≈ 3t2 = 3 · 1012. So you are moving quickly to the right.

• For t < −1, v(t) = x′(t) > 0 so that x(t) is increasing and you are moving to the
right.

• At t = −1, v(−1) = 0 and you have come to a halt at position x(−1) = (−1)3 −
3(−1) + 2 = 4.

• For −1 < t < 1, v(t) = x′(t) < 0 so that x(t) is decreasing and you are moving to
the left.

• At t = +1, v(1) = 0 and you have again come to a halt, but now at position
x(1) = 13 − 3 + 2 = 0.

• For t > 1, v(t) = x′(t) > 0 so that x(t) is increasing and you are again moving to
the right.

• For t large and positive (i.e. in the far future), x(t) is large and positive and
v(t) is large and positive. For example d , when t = 106, x(t) ≈ t3 = 1018 and
v(t) ≈ 3t2 = 3 · 1012. So you are moving quickly to the right.

Here is a sketch of the graphs of x(t) and v(t). The heavy lines in the graphs indicate
when you are moving to the right — that is where v(t) = x′(t) is positive.

266



Applications of derivatives 3.1 Velocity and Acceleration

Example 3.1.1

And here is a schematic picture of the whole trajectory.

a This is because the equation ab = 0 is only satisfied for real numbers a and b when either a = 0
or b = 0 or both a = b = 0. Hence if a polynomial is the product of two (or more) factors, then it
is only zero when at least one of those factors is zero. There are more complicated mathematical
environments in which you have what are called “zero divisors” but they are beyond the scope of
this course.

b This is because if v(ta) < 0 and v(tb) > 0 then, by the intermediate value theorem, the continuous
function v(t) = x′(t) must take the value 0 for some t between ta and tb.

c Notice here we are using the fact that when t is very large t3 is much bigger than t2 and t1. So
we can approximate the value of the polynomial x(t) by the largest term — in this case t3. We
can do similarly with v(t) — the largest term is 3t2.

d We are making a similar rough approximation here.

Example 3.1.2 Position and velocity from acceleration.

In this example we are going to figure out how far a body falling from rest will fall in
a given time period.

• We should start by defining some variables and their units. Denote

◦ time in seconds by t,

◦ mass in kilograms by m,

◦ distance fallen (in metres) at time t by s(t), velocity (in m/sec) by v(t) = s′(t)
and acceleration (in m/sec2) by a(t) = v′(t) = s′′(t).

It makes sense to choose a coordinate system so that the body starts to fall at
t = 0.

• We will use Newton’s second law of motion

the force applied to the body at time t = m · a(t).

together with the assumption that the only force acting on the body is gravity
(in particular, no air resistance). Note that near the surface of the Earth,

the force due to gravity acting on a body of mass m = m · g.

The constant g, called the acceleration of gravity a , is about 9.8m/sec2.
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Example 3.1.2

• Since the body is falling from rest, we know that its initial velocity is zero. That
is

v(0) = 0.

Newton’s second law then implies that

m · a(t) = force due to gravity
m · v′(t) = m · g cancel the m

v′(t) = g

• In order to find the velocity, we need to find a function of t whose derivative is
constant. We are simply going to guess such a function and then we will verify
that our guess has all of the desired properties. It’s easy to guess a function whose
derivative is the constant g. Certainly gt has the correct derivative. So does

v(t) = gt+ c

for any constant c. One can then verify b that v′(t) = g. Using the fact that
v(0) = 0 we must then have c = 0 and so

v(t) = gt.

• Since velocity is the derivative of position, we know that

s′(t) = v(t) = g · t.
To find s(t) we are again going to guess and check. It’s not hard to see that we
can use

s(t) =
g

2
t2 + c

where again c is some constant. Again we can verify that this works simply by
differentiating c. Since we have defined s(t) to be the distance fallen, it follows
that s(0) = 0 which in turn tells us that c = 0. Hence

s(t) =
g

2
t2 but g = 9.8, so

= 4.9t2,

which is exactly the s(t) used way back in Section 1.2.

a It is also called the standard acceleration due to gravity or standard gravity. For those of you
who prefer imperial units (or US customary units), it is about 32 ft/sec2, 77165 cubits/minute2,
or 631353 furlongs/hour2.

b While it is clear that this satisfies the equation we want, it is less clear that it is the only function
that works. To see this, assume that there are two functions f(t) and h(t) which both satisfy
v′(t) = g. Then f ′(t) = h′(t) = g and so f ′(t)− h′(t) = 0. Equivalently d

dt (f(t)− h(t)) = 0. The
only function whose derivative is zero everywhere is the constant function (see Section 2.13 and
Theorem 2.13.12). Thus f(t) − h(t) = constant. So all the functions that satisfy v′(t) = g must
be of the form gt+ constant.

c To show that any solution of s′(t) = gv must be of this form we can use the same reasoning we
used to get v(t) = gt+ constant.
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Let’s now do a similar but more complicated example.

Example 3.1.3 Stopping distance of a braking car.

A car’s brakes can decelerate the car at 64000km/hr2. How fast can the car be driven
if it must be able to stop within a distance of 50m?
Solution Before getting started, notice that there is a small “trick” in this problem —
several quantities are stated but their units are different. The acceleration is stated in
kilometres per hour2, but the distance is stated in metres. Whenever we come across a
“real world” problem a we should be careful of the units used.

• We should first define some variables and their units. Denote

◦ time (in hours) by t,

◦ the position of the car (in kilometres) at time t by x(t), and

◦ the velocity (in kilometres per hour) by is v(t).

We can also choose a coordinate system such that x(0) = 0 and the car starts
braking at time t = 0.

• Now let us rewrite the information in the problem in terms of these variables.

◦ We are told that, at maximum braking, the acceleration v′(t) = x′′(t) of the
car is −64000.

◦ We need to determine the maximum initial velocity v(0) so that the stopping
distance is at most 50m = 0.05km (being careful with our units). Let us call
the stopping distance xstop which is really x(tstop) where tstop is the stopping
time.

• In order to determine xstop we first need to determine tstop, which we will do
by assuming maximum braking from a, yet to be determined, initial velocity of
v(0) = q m/sec.

• Assuming that the car undergoes a constant acceleration at this maximum braking
power, we have

v′(t) = −64000

This equation is very similar to the ones we had to solve in Example 3.1.2 just
above.

As we did there b , we are going to just guess v(t). First, we just guess one
function whose derivative is −64000, namely −64000t. Next we observe that,
since the derivative of a constant is zero, any function of the form

v(t) = −64000 t+ c
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with constant c, has the correct derivative. Finally, the requirement that the
initial velocity v(0) = q" forces c = q, so

v(t) = q − 64000 t

• From this we can easily determine the stopping time tstop, when the initial velocity
is q, since this is just when v(t) = 0:

0 = v(tstop) = q − 64000 · tstop and so

tstop =
q

64000
.

• Armed with the stopping time, how do we get at the stopping distance? We need
to find the formula satisfied by x(t). Again (as per Example 3.1.2) we make use
of the fact that

x′(t) = v(t) = q − 64000t.

So we need to guess a function x(t) so that x′(t) = q − 64000t. It is not hard to
see that

x(t) = qt− 32000t2 + constant

works. Since we know that x(0) = 0, this constant is just zero and

x(t) = qt− 32000t2.

• We are now ready to compute the stopping distance (in terms of the, still yet to
be determined, initial velocity q):

xstop = x(tstop) = qtstop − 32000t2stop

=
q2

64000
− 32000q2

640002

=
q2

64000

(
1− 1

2

)
=

q2

2× 64000

Notice that the stopping distance is a quadratic function of the initial velocity —
if you go twice as fast, you need four times the distance to stop.

• But we are told that the stopping distance must be less than 50m = 0.05km.
This means that

xstop =
q2

2× 64000
≤ 5

100

q2 ≤ 2× 64000× 5

100
=

64000× 10

100
= 6400

Thus we must have q ≤ 80. Hence the initial velocity can be no greater than
80km/h.
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Example 3.1.3

a Well — “realer world” would perhaps be a betterer term.
b Now is a good time to go back and have a read of that example.

3.1.2 tt Exercises

Exercises — Stage 1

1. Suppose you throw a ball straight up in the air, and its height from t = 0
to t = 4 is given by h(t) = −4.9t2 + 19.6t. True or false: at time t = 2, the
acceleration of the ball is 0.

2. Suppose an object is moving with a constant acceleration. It takes ten
seconds to accelerate from 1 m

s
to 2 m

s
. How long does it take to accelerate

from 2 m
s
to 3 m

s
? How long does it take to accelerate from 3 m

s
to 13 m

s
?

3. Let s(t) be the position of a particle at time t. True or false: if s′′(a) > 0
for some a, then the particle’s speed is increasing when t = a.

4. Let s(t) be the position of a particle at time t. True or false: if s′(a) > 0 and
s′′(a) > 0 for some a, then the particle’s speed is increasing when t = a.

Exercises — Stage 2 For this section, we will ask you a number of questions that
have to do with objects falling on Earth. Unless otherwise stated, you should assume
that an object falling through the air has an acceleration due to gravity of 9.8 meters
per second per second.

5. A flower pot rolls out of a window 10m above the ground. How fast is it falling
just as it smacks into the ground?

6. You want to know how deep a well is, so you drop a stone down and count
the seconds until you hear it hit bottom.

a If the stone took x seconds to hit bottom, how deep is the well?

b Suppose you think you dropped the stone down the well, but actually
you tossed it down, so instead of an initial velocity of 0 metres per
second, you accidentally imparted an initial speed of 1 metres per
second. What is the actual depth of the well, if the stone fell for x
seconds?
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7. You toss a key to your friend, standing two metres away. The keys initially
move towards your friend at 2 metres per second, but slow at a rate of 0.25
metres per second per second. How much time does your friend have to react
to catch the keys? That is–how long are the keys flying before they reach your
friend?

8. A car is driving at 100 kph, and it brakes with a deceleration of 50000 km
hr2

. How
long does the car take to come to a complete stop?

9. You are driving at 120 kph, and need to stop in 100 metres. How much
deceleration do your brakes need to provide? You may assume the brakes
cause a constant deceleration.

10. You are driving at 100 kph, and apply the brakes steadily, so that your car
decelerates at a constant rate and comes to a stop in exactly 7 seconds. What
was your speed one second before you stopped?

11. About 8.5 minutes after liftoff, the US space shuttle has reached orbital ve-
locity, 17 500 miles per hour. Assuming its acceleration was constant, how far
did it travel in those 8.5 minutes?
Source: https://www.nasa.gov/mission_pages/shuttle/shuttlemissions/

sts121/launch/qa-leinbach.html

12. A pitching machine has a dial to adjust the speed of the pitch. You rotate it
so that it pitches the ball straight up in the air. How fast should the ball exit
the machine, in order to stay in the air exactly 10 seconds?
You may assume that the ball exits from ground level, and is acted on only by
gravity, which causes a constant deceleration of 9.8 metres per second.

13. A peregrine falcon can dive at a speed of 325 kph. If you were to drop a stone,
how high up would you have to be so that the stone reached the same speed
in its fall?

14. You shoot a cannon ball into the air with initial velocity v0, and then
gravity brings it back down (neglecting all other forces). If the cannon ball
made it to a height of 100m, what was v0?

15. Suppose you are driving at 120 kph, and you start to brake at a deceleration of
50000 kph per hour. For three seconds you steadily increase your deceleration
to 60000 kph per hour. (That is, for three seconds, the rate of change of your
deceleration is constant.) How fast are you driving at the end of those three
seconds?

Exercises — Stage 3

16. You jump up from the side of a trampoline with an initial upward velocity
of 1 metre per second. While you are in the air, your deceleration is a
constant 9.8 metres per second per second due to gravity. Once you hit
the trampoline, as you fall your speed decreases by 4.9 metres per second
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per second. How many seconds pass between the peak of your jump and
the lowest part of your fall on the trampoline?

17. Suppose an object is moving so that its velocity doubles every second. Give
an expression for the acceleration of the object.

3.2q Related Rates

3.2.1 tt Related Rates

Consider the following problem
A spherical balloon is being inflated at a rate of 13cm3/sec. How fast is the
radius changing when the balloon has radius 15cm?

There are several pieces of information in the statement:
• The balloon is spherical

• The volume is changing at a rate of 13cm3/sec— so we need variables for volume
(in cm3) and time (in sec). Good choices are V and t.

• We are asked for the rate at which the radius is changing — so we need a variable
for radius and units. A good choice is r, measured in cm — since volume is
measured in cm3.

Since the balloon is a sphere we know 1 that

V =
4

3
πr3

1 If you don’t know the formula for the volume of a sphere, now is a good time to revise by looking
at Appendix A.11.
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Since both the volume and radius are changing with time, both V and r are implicitly
functions of time; we could really write

V (t) =
4

3
πr(t)3.

We are told the rate at which the volume is changing and we need to find the rate at
which the radius is changing. That is, from a knowledge of dV

dt
, find the related rate 2

dr
dt
.
In this case, we can just differentiate our equation by t to get

dV

dt
= 4πr2 dr

dt

This can then be rearranged to give

dr

dt
=

1

4πr2

dV

dt
.

Now we were told that dV
dt

= 13, so

dr

dt
=

13

4πr2
.

We were also told that the radius is 15cm, so at that moment in time

dr

dt
=

13

π4× 152
.

This is a very typical example of a related rate problem. This section is really just
a collection of problems, but all will follow a similar pattern.

• The statement of the problem will tell you quantities that must be related (above
it was volume, radius and, implicitly, time).

• Typically a little geometry (or some physics or. . . ) will allow you to relate these
quantities (above it was the formula that links the volume of a sphere to its
radius).

• Implicit differentiation will then allow you to link the rate of change of one quan-
tity to another.

Another balloon example

Example 3.2.1 A rising balloon.

Consider a helium balloon rising vertically from a fixed point 200m away from you. You
are trying to work out how fast it is rising. Now — computing the velocity directly is
difficult, but you can measure angles. You observe that when it is at an angle of π/4

2 Related rate problems are problems in which you are given the rate of change of one quantity and
are to determine the rate of change of another, related, quantity.
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Example 3.2.1

its angle is changing by 0.05 radians per second.

• Start by drawing a picture with the relevant variables

• So denote the angle to be θ (in radians), the height of the balloon (in m) by h
and time (in seconds) by t. Then trigonometry tells us

h = 200 · tan θ

• Differentiating allows us to relate the rates of change

dh

dt
= 200 sec2 θ · dθ

dt

• We are told that when θ = π/4 we observe dθ
dt

= 0.05, so

dh

dt
= 200 · sec2(π/4) · 0.05

= 200 · 0.05 ·
(√

2
)2

= 200 · 5

100
· 2

= 20m/s

• So the balloon is rising at a rate of 20m/s.

The following problem is perhaps the classic related rate problem.
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Example 3.2.2 A sliding ladder.

A 5m ladder is leaning against a wall. The floor is quite slippery and the base of the
ladder slides out from the wall at a rate of 1m/s. How fast is the top of the ladder
sliding down the wall when the base of the ladder is 3m from the wall?

• A good first step is to draw a picture stating all relevant quantities. This will also
help us define variables and units.

• So now define x(t) to be the distance between the bottom of the ladder and the
wall, at time t, and let y(t) be the distance between the top of the ladder and the
ground at time t. Measure time in seconds, but both distances in meters.

• We can relate the quantities using Pythagoras:

x2 + y2 = 52

• Differentiating with respect to time then gives

2x
dx

dt
+ 2y

dy

dt
= 0

• We know that dx
dt

= 1 and x = 3, so

6 · 1 + 2y
dy

dt
= 0

but we need to determine y before we can go further. Thankfully we know that
x2 + y2 = 25 and x = 3, so y2 = 25− 9 = 16 and a so y = 4.
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Example 3.2.2

• So finally putting everything together

6 · 1 + 8
dy

dt
= 0

dy

dt
= −3

4
m/s.

Thus the top of the ladder is sliding towards the floor at a rate of 3
4
m/s.

a Since the ladder isn’t buried in the ground, we can discard the solution y = −4.

The next example is complicated by the rates of change being stated not just as
“the rate of change per unit time” but instead being stated as “the percentage rate of
change per unit time”. If a quantity f is changing with rate df

dt
, then we can say that

f is changing at a rate of 100 ·
df
dt

f
percent.

Thus if, at time t, f has rate of change r%, then

100
f ′(t)

f(t)
= r =⇒ f ′(t) =

r

100
f(t)

so that if h is a very small time increment

f(t+ h)− f(t)

h
≈ r

100
f(t) =⇒ f(t+ h) ≈ f(t) +

rh

100
f(t)

That is, over a very small time interval h, f increases by the fraction rh
100

of its value at
time t.

So armed with this, let’s look at the problem.

Example 3.2.3 Percentage rate of change of R = PQ.

The quantities P, Q and R are functions of time and are related by the equation
R = PQ. Assume that P is increasing instantaneously at the rate of 8% per year
(meaning that 100P

′
P

= 8) and that Q is decreasing instantaneously at the rate of 2%

per year (meaning that 100Q
′

Q
= −2). Determine the percentage rate of change for R.

Solution This one is a little different — we are given the variables and the formula, so
no picture drawing or defining required. Though we do need to define a time variable
— let t denote time in years.

• Since R(t) = P (t) ·Q(t) we can differentiate with respect to t to get

dR

dt
= PQ′ +QP ′
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Example 3.2.3

• But we need the percentage change in R, namely

100
R′

R
= 100

PQ′ +QP ′

R

but R = PQ, so rewrite it as

= 100
PQ′ +QP ′

PQ

= 100
PQ′

PQ
+ 100

QP ′

PQ

= 100
Q′

Q
+ 100

P ′

P

so we have stated the instantaneous percentage rate of change in R as the sum of
the percentage rate of change in P and Q.

• We know the percentage rate of change of P and Q, so

100
R′

R
= −2 + 8 = 6

That is, the instantaneous percentage rate of change of R is 6% per year.

Yet another falling object example.

Example 3.2.4 The shadow of a falling ball.

A ball is dropped from a height of 49m above level ground. The height of the ball at
time t is h(t) = 49−4.9t2 m. A light, which is also 49m above the ground, is 10m to the
left of the ball’s original position. As the ball descends, the shadow of the ball caused
by the light moves across the ground. How fast is the shadow moving one second after
the ball is dropped?
Solution There is quite a bit going on in this example, so read carefully.

• First a diagram; the one below is perhaps a bit over the top.
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Example 3.2.4

• Let’s call s(t) the distance from the shadow to the point on the ground directly
underneath the ball.

• By similar triangles we see that

4.9t2

10
=

49− 4.9t2

s(t)

We can then solve for s(t) by just multiplying both sides by 10
4.9t2

s(t). This gives

s(t) = 10
49− 4.9t2

4.9t2
=

100

t2
− 10

• Differentiating with respect to t will then give us the rates,

s′(t) = −2
100

t3

• So, at t = 1, s′(1) = −200m/sec. That is, the shadow is moving to the left at
200m/sec.

A more nautical example.
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Example 3.2.5 The distance between moving boats.

Two boats spot each other in the ocean at midday — Boat A is 15km west of Boat B.
Boat A is travelling east at 3km/h and boat B is travelling north at 4km/h. At 3pm
how fast is the distance between the boats changing.

• First we draw a picture.

• Let x(t) be the distance at time t, in km, from boat A to the original position of
boat B (i.e. to the position of boat B at noon). And let y(t) be the distance at
time t, in km, of boat B from its original position. And let z(t) be the distance
between the two boats at time t.

• Additionally we are told that x′ = −3 and y′ = 4 — notice that x′ < 0 since that
distance is getting smaller with time, while y′ > 0 since that distance is increasing
with time.

• Further at 3pm boat A has travelled 9km towards the original position of boat
B, so x = 15 − 9 = 6, while boat B has travelled 12km away from its original
position, so y = 12.

• The distances x, y and z form a right-angled triangle, and Pythagoras tells us
that

z2 = x2 + y2.

At 3pm we know x = 6, y = 12 so

z2 = 36 + 144 = 180

z =
√

180 = 6
√

5.

• Differentiating then gives

2z
dz

dt
= 2x

dx

dt
+ 2y

dy

dt
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Example 3.2.5

= 12 · (−3) + 24 · (4)

= 60.

Dividing through by 2z = 12
√

5 then gives

dz

dt
=

60

12
√

5
=

5√
5

=
√

5

So the distance between the boats is increasing at
√

5km/h.

One last one before we move on to another topic.

Example 3.2.6 Fuel level in a cylindrical tank.

Consider a cylindrical fuel tank of radius r and length L (in some appropriate units)
that is lying on its side. Suppose that fuel is being pumped into the tank at a rate q.
At what rate is the fuel level rising?

Solution If the tank were vertical everything would be much easier. Unfortunately the
tank is on its side, so we are going to have to work a bit harder to establish the relation
between the depth and volume. Also notice that we have not been supplied with units
for this problem — so we do not need to state the units of our variables.

• Again — draw a picture. Here is an end view of the tank; the shaded part of the
circle is filled with fuel.

• Let us denote by V (t) the volume of fuel in the tank at time t and by h(t) the

281



Applications of derivatives 3.2 Related Rates

fuel level at time t.

• We have been told that V ′(t) = q and have been asked to determine h′(t). While
it is possible to do so by finding a formula relating V (t) and h(t), it turns out to
be quite a bit easier to first find a formula relating V and the angle θ shown in
the end view. We can then translate this back into a formula in terms of h using
the relation

h(t) = r − r cos θ(t).

Once we know θ′(t), we can easily obtain h′(t) by differentiating the above equa-
tion.

• The computation that follows below gets a little involved in places, so we will
drop the “(t)” on the variables V, h and θ. The reader must never forget that
these three quantities are really functions of time, while r and L are constants
that do not depend on time.

• The volume of fuel is L times the cross–sectional area filled by the fuel. That is,

V =L× Area of

While we do not have a canned formula for the area of a chord of a circle like
this, it is easy to express the area of the chord in terms of two areas that we can
compute.

V = L× Area of

= L×
[
Area of

- Area of
]

• The piece of pie

is the fraction 2θ
2π

of the full circle, so its area is 2θ
2π
πr2 = θr2.
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• The triangle

has height r cos θ and base 2r sin θ and hence has area 1
2
(r cos θ)(2r sin θ) =

r2 sin θ cos θ = r2

2
sin(2θ), where we have used a double-angle formula (see Ap-

pendix A.14).

• Subbing these two areas into the above expression for V gives

V = L×
[
θr2 − r2

2
sin 2θ

]
=
Lr2

2

[
2θ − sin 2θ

]
Oof!

• Now we can differentiate to find the rate of change. Recalling that V = V (t) and
θ = θ(t), while r and L are constants,

V ′ =
Lr2

2
[2θ′ − 2 cos 2θ · θ′]

= Lr2 · θ′ · [1− cos 2θ]

Solving this for θ′ and using V ′ = q gives

θ′ =
q

Lr2(1− cos 2θ)

This is the rate at which θ is changing, but we need the rate at which h is changing.
We get this from

h = r − r cos θ differentiating this gives
h′ = r sin θ · θ′

Substituting our expression for θ′ into the expression for h′ gives

h′ = r sin θ · q

Lr2(1− cos 2θ)

• We can clean this up a bit more — recall more double-angle formulas a

h′ = r sin θ · q

Lr2(1− cos 2θ)
substitute cos 2θ = 1− 2 sin2 θ

= r sin θ · q

Lr2 · 2 sin2 θ
now cancel r’s and a sin θ

=
q

2Lr sin θ
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Example 3.2.6

• But we can clean this up even more — instead of writing this rate in terms of θ
it is more natural to write it in terms of h (since the initial problem is stated in
terms of h). From the triangle

and Pythagoras we have

sin θ =

√
r2 − (r − h)2

r
=

√
2rh− h2

r

and hence

h′ =
q

2L
√

2rh− h2
.

• As a check, notice that h′ becomes undefined when h < 0 and also when h > 2r,
because then the argument of the square root in the denominator is negative.
Both make sense — the fuel level in the tank must obey 0 ≤ h ≤ 2r.

a Take another look at Appendix A.14.

3.2.2 tt Exercises

Exercises — Stage 1

1. Suppose the quantities P and Q are related by the formula P = Q3. P
and Q are changing with respect to time, t. Given this information, which
of the following are problems you could solve?

i Given
dP

dt
(0), find

dQ

dt
(0). (Remember: the notation

dP

dt
(0) means

the derivative of P with respect to t at the time t = 0.)

ii Given
dP

dt
(0) and the value of Q when t = 0, find

dQ

dt
(0).

iii Given
dQ

dt
(0), find

dP

dt
(0).
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iv Given
dQ

dt
(0) and the value of P when t = 0, find

dP

dt
(0).

Exercises — Stage 2 For problems 3.2.2.2 through 3.2.2.4, the relationship be-
tween several variables is explicitly given. Use this information to relate their rates of
change.For Questions 3.2.2.5 through 3.2.2.9, look for a way to use the Pythagorean
Theorem.For Questions 3.2.2.10 through 3.2.2.14, look for tricks from trigonometry.For
Questions 3.2.2.15 through 3.2.2.20, you’ll need to know formulas for volume or area.

2. ∗. A point is moving on the unit circle {(x, y) : x2 + y2 = 1} in the xy–
plane. At (2/

√
5, 1/
√

5), its y–coordinate is increasing at rate 3. What is
the rate of change of its x–coordinate?

3. ∗. The quantities P, Q and R are functions of time and are related by the
equation R = PQ. Assume that P is increasing instantaneously at the rate
of 8% per year and that Q is decreasing instantaneously at the rate of 2% per

year. That is,
P ′

P
= 0.08 and

Q′

Q
= −0.02. Determine the percentage rate of

change for R.
4. ∗. Three quantities, F , P and Q all depend upon time t and are related by

the equation

F =
P

Q

a Assume that at a particular moment in time P = 25 and P is increasing
at the instantaneous rate of 5 units/min. At the same moment, Q = 5
and Q is increasing at the instantaneous rate of 1 unit/min. What is the
instantaneous rate of change in F at this moment?

b Assume that at another moment in time P is increasing at the instan-
taneous rate of 10% and Q is decreasing at the instantaneous rate 5%.
What can you conclude about the rate of change of F at this moment?

5. ∗. Two particles move in the Cartesian plane. Particle A travels on the x-axis
starting at (10, 0) and moving towards the origin with a speed of 2 units per
second. Particle B travels on the y-axis starting at (0, 12) and moving towards
the origin with a speed of 3 units per second. What is the rate of change of the
distance between the two particles when particle A reaches the point (4, 0)?

6. ∗. Two particles A and B are placed on the Cartesian plane at (0, 0) and (3, 0)
respectively. At time 0, both start to move in the +y direction. Particle A
moves at 3 units per second, while B moves at 2 units per second. How fast
is the distance between the particles changing when particle A is at a distance
of 5 units from B.
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7. ∗. Ship A is 400 miles directly south of Hawaii and is sailing south at 20
miles/hour. Ship B is 300 miles directly east of Hawaii and is sailing west
at 15 miles/hour. At what rate is the distance between the ships changing?

8. ∗. Two tall sticks are vertically planted into the ground, separated by a
distance of 30 cm. We simultaneously put two snails at the base of each
stick. The two snails then begin to climb their respective sticks. The first
snail is moving with a speed of 25 cm per minute, while the second snail
is moving with a speed of 15 cm per minute. What is the rate of change
of the distance between the two snails when the first snail reaches 100 cm
above the ground?

9. ∗. A 20m long extension ladder leaning against a wall starts collapsing in on
itself at a rate of 2m/s, while the foot of the ladder remains a constant 5m
from the wall. How fast is the ladder moving down the wall after 3.5 seconds?

10. A watering trough has a cross section shaped like an isosceles trapezoid.
The trough is 2 metres long, 50 cm high, 1 metre wide at the top, and 60
cm wide at the bottom.

60 cm

1 m

50 cm

2 m

A pig is drinking water from the trough at a rate of 3 litres per minute.
When the height of the water is 25 cm, how fast is the height decreasing?

11. A tank is 5 metres long, and has a trapezoidal cross section with the dimensions
shown below.
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1.25 m

3 m3 m

1 m

5 m

A hose is filling the tank up at a rate of one litre per second. How fast is the
height of the water increasing when the water is 10 centimetres deep?

12. A rocket is blasting off, 2 kilometres away from you. You and the rocket start
at the same height. The height of the rocket in kilometres, t hours after liftoff,
is given by

h(t) = 61750t2

How fast (in radians per second) is your line of sight rotating to keep looking
at the rocket, one minute after liftoff?

13. ∗. A high speed train is traveling at 2 km/min along a straight track. The
train is moving away from a movie camera which is located 0.5 km from
the track.

a How fast is the distance between the train and the camera increasing
when they are 1.3 km apart?

b Assuming that the camera is always pointed at the train, how fast
(in radians per min) is the camera rotating when the train and the
camera are 1.3 km apart?

14. A clock has a minute hand that is 10 cm long, and an hour hand that is 5 cm
long. Let D be the distance between the tips of the two hands. How fast is D
decreasing at 4:00?

D
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15. ∗. Find the rate of change of the area of the annulus {(x, y) : r2 ≤ x2 + y2 ≤
R2}. (i.e. the points inside the circle of radius R but outside the circle of

radius r) if R = 3 cm, r = 1 cm,
dR

dt
= 2

cm

s
, and

dr

dt
= 7

cm

s
.

R

r

16. Two spheres are centred at the same point. The radius R of the bigger sphere
at time t is given by R(t) = 10 + 2t, while the radius r of the smaller sphere is
given by r(t) = 6t, t ≥ 0. How fast is the volume between the spheres (inside
the big sphere and outside the small sphere) changing when the bigger sphere
has a radius twice as large as the smaller?

17. You attach two sticks together at their ends, and stick the other ends in
the mud. One stick is 150 cm long, and the other is 200 cm.

150
cm 200 cm1.4 m

The structure starts out being 1.4 metres high at its peak, but the sticks
slide, and the height decreases at a constant rate of three centimetres per
minute. How quickly is the area of the triangle (formed by the two sticks
and the level ground) changing when the height of the structure is 120 cm?

18. The circular lid of a salt shaker has radius 8. There is a cut-out to allow the
salt to pour out of the lid, and a door that rotates around to cover the cut-out.
The door is a quarter-circle of radius 7 cm. The cut-out has the shape of a
quarter-annulus with outer radius 6 cm and inner radius 1 cm. If the uncovered
area of the cut-out is A cm2, then the salt flows out at 1

5
A cm3 per second.
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salt shaker lid
cut-out uncovered

salt shaker lid
cut-out partially covered

Recall: an annulus is the set of points inside one circle and outside another,
like a flat doughnut (see Question 3.2.2.15).

annulus quarter annulus

While pouring out salt, you spin the door around the lid at a constant rate of
π
6
radians per second, covering more and more of the cut-out. When exactly

half of the cut-out is covered, how fast is the flow of salt changing?

19. A cylindrical sewer pipe with radius 1 metre has a vertical rectangular door
that slides in front of it to block the flow of water, as shown below. If the
uncovered area of the pipe is A m2, then the flow of water through the pipe
is 1

5
A cubic metres per second.

The door slides over the pipe, moving vertically at a rate of 1 centimetre
per second. How fast is the flow of water changing when the door covers
the top 25 centimetres of the pipe?

289



Applications of derivatives 3.2 Related Rates

20. A martini glass is shaped like a cone, with top diameter 10 cm and side
length 10 cm.

10

1010

When the liquid in the glass is 7 cm high, it is evaporating at a rate of 5
mL per minute. How fast is the height of the liquid decreasing?

Exercises — Stage 3

21. A floating buoy is anchored to the bottom of a river. As the river flows,
the buoy is pulled in the direction of flow until its 2-metre rope is taut. A
sensor at the anchor reads the angle θ between the rope and the riverbed,
as shown in the diagram below. This data is used to measure the depth D
of water in the river, which depends on time.
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θ

D

a If θ =
π

4
and

dθ

dt
= 0.25

rad

hr
, how fast is the depth D of the water

changing?

b A measurement shows
dθ

dt
= 0, but

dD

dt
6= 0. Under what circum-

stances does this occur?

c A measurement shows
dθ

dt
> 0, but

dD

dt
< 0. Under what circum-

stances does this occur?

22. A point is moving in the xy-plane along the quadrilateral shown below.

x

y

1

1

a When the point is at (0,−2), it is moving to the right. An observer
stationed at the origin must turn at a rate of one radian per second to
keep looking directly at the point. How fast is the point moving?

b When the point is at (0, 2), its x-coordinate is increasing at a rate of one
unit per second. How fast it its y-coordinate changing? How fast is the
point moving?

23. You have a cylindrical water bottle 20 cm high, filled with water. Its cross
section is a circle of radius 5. You slowly smoosh the sides, so the cross section
becomes an ellipse with major axis (widest part) 2a and minor axis (skinniest
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part) 2b.

5

5

20

a
b

20

After t seconds of smooshing the bottle, a = 5 + t cm. The perimeter of the
cross section is unchanged as the bottle deforms. The perimeter of an ellipse is
actually quite difficult to calculate, but we will use an approximation derived
by Ramanujan and assume that the perimeter p of our ellipse is

p ≈ π
[
3(a+ b)−

√
(a+ 3b)(3a+ b)

]
.

The area of an ellipse is πab.

a Give an equation that relates a and b (and no other variables).

b Give an expression for the volume of the bottle as it is being smooshed,
in terms of a and b (and no other variables).

c Suppose the bottle was full when its cross section was a circle. How fast
is the water spilling out when a is twice as big as b?

24. The quantities A, B, C, and D all depend on time, and are related by the
formula

AB = log
(
C2 +D2 + 1

)
.

At time t = 10, the following values are known:

• A = 0

•
dA

dt
= 2 units per second

What is B when t = 10?
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3.3q Exponential Growth and Decay — a First Look at
Differential Equations

A differential equation is an equation for an unknown function that involves the deriva-
tive of the unknown function. For example, Newton’s law of cooling says:

The rate of change of temperature of an object is proportional to the differ-
ence in temperature between the object and its surroundings.

We can write this more mathematically using a differential equation — an equation for
the unknown function T (t) that also involves its derivative dT

dt
(t). If we denote by T (t)

the temperature of the object at time t and by A the temperature of its surroundings,
Newton’s law of cooling says that there is some constant of proportionality, K, such
that

dT

dt
(t) = K

[
T (t)− A

]
Differential equations play a central role in modelling a huge number of different

phenomena, including the motion of particles, electromagnetic radiation, financial op-
tions, ecosystem populations and nerve action potentials. Most universities offer half a
dozen different undergraduate courses on various aspects of differential equations. We
are barely going to scratch the surface of the subject. At this point we are going to
restrict ourselves to a few very simple differential equations for which we can just guess
the solution. In particular, we shall learn how to solve systems obeying Newton’s law
of cooling in Section 3.3.2, below. But first, here is another slightly simpler example.

3.3.1 tt Carbon Dating

Scientists can determine the age of objects containing organic material by a method
called carbon dating or radiocarbon dating 1. Cosmic rays hitting the atmosphere con-
vert nitrogen into a radioactive isotope of carbon, 14C, with a half–life of about 5730
years 2. Vegetation absorbs carbon dioxide from the atmosphere through photosynthe-
sis and animals acquire 14C by eating plants. When a plant or animal dies, it stops
replacing its carbon and the amount of 14C begins to decrease through radioactive de-
cay. More precisely, let Q(t) denote the amount of 14C in the plant or animal t years
after it dies. The number of radioactive decays per unit time, at time t, is proportional
to the amount of 14C present at time t, which is Q(t). Thus

1 Willard Libby, of Chicago University was awarded the Nobel Prize in Chemistry in 1960, for
developing radiocarbon dating.

2 A good question to ask yourself is “How can a scientist (who presumably doesn’t live 60 centuries)
measure this quantity?” One way exploits the little piece of calculus we are about to discuss.
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Equation 3.3.1 Radioactive decay.

dQ

dt
(t) = −kQ(t)

Here k is a constant of proportionality that is determined by the half–life. We shall
explain what half-life is and also determine the value of k in Example 3.3.3, below.
Before we do so, let’s think about the sign in equation 3.3.1.

• Recall that Q(t) denotes a quantity, namely the amount of 14C present at time
t. There cannot be a negative amount of 14C, nor can this quantity be zero
(otherwise we wouldn’t use carbon dating, so we must have Q(t) > 0.

• As the time t increases, Q(t) decreases, because 14C is being continuously con-
verted into 14N by radioactive decay 3. Thus dQ

dt
(t) < 0.

• The signs Q(t) > 0 and dQ
dt

(t) < 0 are consistent with equation 3.3.1 provided the
constant of proportionality k > 0.

• In equation 3.3.1, we chose to call the constant of proportionality “−k”. We
did so in order to make k > 0. We could just as well have chosen to call the
constant of proportionality “K”. That is, we could have replaced equation 3.3.1
by dQ

dt
(t) = KQ(t). The constant of proportionality K would have to be negative,

(and K and k would be related by K = −k).

Now, let’s guess some solutions to equation 3.3.1. We wish to guess a function Q(t)
whose derivative is just a constant times itself. Here is a short table of derivatives. It
is certainly not complete, but it contains the most important derivatives that we know.

F (t) 1 ta sin t cos t tan t et log t arcsin t arctan t
d
dt
F (t) 0 ata−1 cos t − sin t sec2 t et 1

t
1√

1−t2
1

1+t2

There is exactly one function in this table whose derivative is just a (nonzero)
constant times itself. Namely, the derivative of et is exactly et = 1× et. This is almost,
but not quite what we want. We want the derivative of Q(t) to be the constant −k
(rather than the constant 1) times Q(t). We want the derivative to “pull a constant”
out of our guess. That is exactly what happens when we differentiate eat, where a is a
constant. Differentiating gives

d

dt
eat = aeat

3 The precise transition is 14C → 14N + e− + ν̄e where e− is an electron and ν̄e is an electron
neutrino.
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i.e. “pulls the constant a out of eat”.
We have succeeded in guessing a single function, namely e−kt, that obeys equa-

tion 3.3.1. Can we guess any other solutions? Yes. If C is any constant, Ce−kt also
obeys equation 3.3.1:

d

dt
(Ce−kt) = C

d

dt
e−kt = Ce−kt(−k) = −k(Ce−kt)

You can try guessing some more solutions, but you won’t find any, because with a little
trickery we can prove that a function Q(t) obeys equation 3.3.1 if and only if Q(t) is of
the form Ce−kt, where C is some constant.

The trick 4 is to imagine that Q(t) is any (at this stage, unknown) solution to
equation 3.3.1 and to compare Q(t) and our known solution e−kt by studying the ratio
Q(t)/e−kt. We will show that Q(t) obeys equation 3.3.1 if and only if the ratio Q(t)/e−kt

is a constant, i.e. if and only if the derivative of the ratio is zero. By the product rule

d

dt

[
Q(t)/e−kt

]
=

d

dt

[
ektQ(t)

]
= kektQ(t) + ektQ′(t)

Since ekt is never 0, the right hand side is zero if and only if kQ(t) +Q′(t) = 0; that is
Q′(t) = −kQ(t). Thus

d

dt
Q(t) = −kQ(t) ⇐⇒ d

dt

[
Q(t)/e−kt

]
= 0

as required.
We have succeed in finding all functions that obey 3.3.1. That is we have found the

general solution to 3.3.1. This is worth stating as a theorem.

Theorem 3.3.2

A differentiable function Q(t) obeys the differential equation

dQ

dt
(t) = −kQ(t)

if and only if there is a constant C such that

Q(t) = Ce−kt

Before we start to apply the above theorem, we take this opportunity to remind the
reader that in this text we will use log x with no base to indicate the natural logarithm.
That is

log x = loge x = lnx

Both of the notations log(x) and ln(x) are used widely and the reader should be com-
fortable with both.

4 Notice that is very similar to what we needed in Example 3.1.2, except that here the constant is
multiplicative rather than additive. That is const× f(t) rather than const+ f(t).
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Example 3.3.3 Carbon dating and half–life.

In this example, we determine the value of the constant of proportionality k in equa-
tion 3.3.1 that corresponds to the half–life of 14C, which is 5730 years.

• Imagine that some plant or animal contains a quantity Q0 of 14C at its time of
death. Let’s choose the zero point of time t = 0 to be the instant that the plant
or animal died.

• Denote by Q(t) the amount of 14C in the plant or animal t years after it died.
Then Q(t) must obey both equation 3.3.1 and Q(0) = Q0.

• Since Q(t) must obey equation 3.3.1, Theorem 3.3.2 tells us that there must be
a constant C such that Q(t) = Ce−kt. To also have Q0 = Q(0) = Ce−k×0, the
constant C must be Q0. That is, Q(t) = Q0e

−kt for all t ≥ 0.

• By definition, the half–life of 14C is the length of time that it takes for half of the
14C to decay. That is, the half–life t1/2 is determined by

Q(t1/2) =
1

2
Q(0) =

1

2
Q0 but we know Q(t) = Q0e

−kt

Q0e
−kt1/2 =

1

2
Q0 now cancel Q0

e−kt1/2 =
1

2

Taking the logarithm of both sides gives

−kt1/2 = log
1

2
= − log 2 and so

k =
log 2

t1/2
.

We are told that, for 14C, the half–life t1/2 = 5730, so

k =
log 2

5730
= 0.000121 to 6 digits

From the work in the above example we have accumulated enough new facts to
make a corollary to Theorem 3.3.2.

Corollary 3.3.4

The function Q(t) satisfies the equation

dQ

dt
= −kQ(t)
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if and only if

Q(t) = Q(0) · e−kt.

The half-life is defined to be the time t1/2 which obeys

Q(t1/2) =
1

2
·Q(0).

The half-life is related to the constant k by

t1/2 =
log 2

k

Now here is a typical problem that is solved using Corollary 3.3.4.

Example 3.3.5 Determining the age of an artefact.

A particular piece of parchment contains about 64% as much 14C as plants do today.
Estimate the age of the parchment.
Solution Let Q(t) denote the amount of 14C in the parchment t years after it was first
created.
By equation 3.3.1 and Example 3.3.3,

dQ

dt
= −kQ(t) with k =

log 2

5730
= 0.000121.

By Corollary 3.3.4

Q(t) = Q(0) · e−kt

The time at which Q(t) reaches 0.64Q(0) is determined by

Q(t) = 0.64Q(0) but Q(t) = Q(0)e−kt

Q(0)e−kt = 0.64Q(0) cancel Q(0)

e−kt = 0.64 take logarithms
−kt = log 0.64

t =
log 0.64

−k =
log 0.64

−0.000121
= 3700 to 2significant digits.

That is, the parchment a is about 37 centuries old.

a The British Museum has an Egyptian mathematical text from the seventeenth century B.C.
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We have stated that the half-life of 14C is 5730 years. How can this be determined?
We can explain this using the following example.

Example 3.3.6 Computing a half-life.

A scientist in a B-grade science fiction film is studying a sample of the rare and fictitious
element, implausium a. With great effort he has produced a sample of pure implausium.
The next day — 17 hours later — he comes back to his lab and discovers that his sample
is now only 37% pure. What is the half-life of the element?
Solution We can again set up our problem using Corollary 3.3.4. Let Q(t) denote the
quantity of implausium at time t, measured in hours. Then we know

Q(t) = Q(0) · e−kt

We also know that

Q(17) = 0.37Q(0).

That enables us to determine k via

Q(17) = 0.37Q(0) = Q(0)e−17k divide both sides by Q(0)

0.37 = e−17k

and so

k = − log 0.37

17
= 0.05849

We can then convert this to the half life using Corollary 3.3.4:

t1/2 =
log 2

k
≈ 11.85 hours

While this example is entirely fictitious, one really can use this approach to measure
the half-life of materials.

a Implausium leads to even weaker plots than unobtainium.

3.3.2 tt Newton’s Law of Cooling

Recall Newton’s law of cooling from the start of this section:

The rate of change of temperature of an object is proportional to the differ-
ence in temperature between the object and its surroundings.
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The temperature of the surroundings is sometimes called the ambient temperature. We
then translated this statement into the following differential equation

Equation 3.3.7 Newton’s law of cooling.

dT

dt
(t) = K

[
T (t)− A

]

where T (t) is the temperature of the object at time t, A is the temperature of its
surroundings, and K is a constant of proportionality. This mathematical model of tem-
perature change works well when studying a small object in a large, fixed temperature,
environment. For example, a hot cup of coffee in a large room 5.

Before we worry about solving this equation, let’s think a little about the sign of
the constant of proportionality. At any time t, there are three possibilities.

• If T (t) > A, that is, if the body is warmer than its surroundings, we would expect
heat to flow from the body into its surroundings and so we would expect the
body to cool off so that dT

dt
(t) < 0. For this expectation to be consistent with

equation 3.3.7, we need K < 0.

• If T (t) < A, that is the body is cooler than its surroundings, we would expect
heat to flow from the surroundings into the body and so we would expect the
body to warm up so that dT

dt
(t) > 0. For this expectation to be consistent with

equation 3.3.7, we again need K < 0.

• Finally if T (t) = A, that is the body and its environment have the same temper-
ature, we would not expect any heat to flow between the two and so we would
expect that dT

dt
(t) = 0. This does not impose any condition on K.

In conclusion, we would expect K < 0. Of course, we could have chosen to call the
constant of proportionality −k, rather than K. Then the differential equation would
be dT

dt
= −k

(
T − A

)
and we would expect k > 0.

Now to find the general solution to equation 3.3.7. Since this equation is so similar in
form to equation 3.3.1, we might expect a similar solution. Start by trying T (t) = CeKt

and let’s see what goes wrong. Substitute it into the equation:

dT

dt
= K(T (t)− A)

KCeKt = KCeKT −KA
?0 = −KA? the constant A causes problems!

5 It does not work so well when the object is of a similar size to its surroundings since the temperature
of the surroundings will rise as the object cools. It also fails when there are phase transitions
involved — for example, an ice-cube melting in a warm room does not obey Newton’s law of
cooling.
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Let’s try something a little different — recall that the derivative of a constant is zero.
So we can add or subtract a constant from T (t) without changing its derivative. Set
Q(t) = T (t) +B, then

dQ

dt
(t) =

dT

dt
(t) by Newton’s law of cooling

= K(T (t)− A) = K(Q(t)−B − A)

So if we choose B = −A then we will have

dQ

dt
(t) = KQ(t)

which is exactly the same form as equation 3.3.1, but with K = −k. So by Theo-
rem 3.3.2

Q(t) = Q(0)eKt

We can translate back to T (t), since Q(t) = T (t)−A and Q(0) = T (0)−A. This gives
us the solution.

Corollary 3.3.8

A differentiable function T (t) obeys the differential equation

dT

dt
(t) = K

[
T (t)− A

]
if and only if

T (t) = [T (0)− A] eKt + A

Just before we put this into action, we remind the reader that log x = loge x = lnx.

Example 3.3.9 Warming iced tea.

The temperature of a glass of iced tea is initially 5◦. After 5 minutes, the tea has heated
to 10◦ in a room where the air temperature is 30◦.

a Determine the temperature as a function of time.

b What is the temperature after 10 minutes?

c Determine when the tea will reach a temperature of 20◦.

Solution Part (a)

• Denote by T (t) the temperature of the tea t minutes after it was removed from
the fridge, and let A = 30 be the ambient temperature.
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Example 3.3.9

• By Newton’s law of cooling,

dT

dt
= K(T − A) = K(T − 30)

for some, as yet unknown, constant of proportionality K.

• By Corollary 3.3.8,

T (t) = [T (0)− 30] eKt + 30 = 30− 25eKt

since the initial temperature T (0) = 5.

• This solution is not complete because it still contains an unknown constant,
namely K. We have not yet used the given data that T (5) = 10. We can use it
to determine K. At t = 5,

T (5) = 30− 25e5K = 10 rearrange

e5K =
20

25

5K = log
20

25
and so

K =
1

5
log

4

5
= −0.044629 to 6 digits

Part (b)

• To find the temperature at 10 minutes we can just use the solution we have
determined above.

T (10) = 30− 25e10K

= 30− 25e10× 1
5

log 4
5

= 30− 25e2 log 4
5 = 30− 25elog 16

25

= 30− 16 = 14◦

Part (c)

• We can find when the temperature is 20◦ by solving T (t) = 20:

20 = 30− 25eKt rearrange

eKt =
10

25
=

2

5

Kt = log
2

5

t =
log 2

5

K
= 20.5 minutes to 1 decimal place
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A slightly more gruesome example.

Example 3.3.10 Determining a time from temperatures.

A dead body is discovered at 3:45pm in a room where the temperature is 20◦C. At that
time the temperature of the body is 27◦C. Two hours later, at 5:45pm, the temperature
of the body is 25.3 ◦C. What was the time of death? Note that the normal (adult
human) body temperature is 37◦.
Solution We will assume a that the body’s temperature obeys Newton’s law of cooling.

• Denote by T (t) the temperature of the body at time t, with t = 0 corresponding
to 3:45pm. We wish to find the time of death — call it td.

• There is a lot of data in the statement of the problem; we are told that

◦ the ambient temperature: A = 20

◦ the temperature of the body when discovered: T (0) = 27

◦ the temperature of the body 2 hours later: T (2) = 25.3

◦ assuming the person was a healthy adult right up until he died, the temper-
ature at the time of death: T (td) = 37.

• Since we assume the temperature of the body obeys Newton’s law of cooling, we
use Corollary 3.3.8 to find,

T (t) = [T (0)− A] eKt + A = 20 + 7eKt

Two unknowns remain, K and td.

• We can find the constant K by using T (2) = 25.3:

25.3 = T (2) = 20 + 7e2K rearrange
7e2K = 5.3 rearrange a bit more

2K = log
(

5.3
7

)
K = 1

2
log
(

5.3
7

)
= −0.139 to 3 decimal places

• Since we know b that td is determined by T (td) = 37, we have

37 = T (td) = 20 + 7e−0.139td rearrange
e−0.139td = 17

7

−0.139td = log
(

17
7

)
td = − 1

0.139
log
(

17
7

)
= −6.38 to 2 decimal places

Now 6.38 hours is 6 hours and 0.38× 60 = 23 minutes. So the time of death was
6 hours and 23 minutes before 3:45pm, which is 9:22am.

a We don’t know any other method!
b Actually, we are assuming again.
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A slightly tricky example — we need to determine the ambient temperature from
three measurements at different times.

Example 3.3.11 Finding the temperature outside.

A glass of room-temperature water is carried out onto a balcony from an apartment
where the temperature is 22◦C. After one minute the water has temperature 26◦C and
after two minutes it has temperature 28◦C. What is the outdoor temperature?
Solution We will assume that the temperature of the thermometer obeys Newton’s
law of cooling.

• Let A be the outdoor temperature and T (t) be the temperature of the water t
minutes after it is taken outside.

• By Newton’s law of cooling,

T (t) = A+
(
T (0)− A

)
eKt

by Corollary 3.3.8. Notice there are 3 unknowns here — A, T (0) and K — so we
need three pieces of information to find them all.

• We are told T (0) = 22, so

T (t) = A+
(
22− A

)
eKt.

• We are also told T (1) = 26, which gives

26 = A+
(
22− A

)
eK rearrange things

eK =
26− A
22− A

• Finally, T (2) = 28, so

28 = A+
(
22− A

)
e2K rearrange

e2K =
28− A
22− A but eK =

26− A
22− A , so(

26− A
22− A

)2

=
28− A
22− A multiply through by (22− A)2

(26− A)2 = (28− A)(22− A)

We can expand out both sides and collect up terms to get

262︸︷︷︸
=676

−52A+ A2 = 28× 22︸ ︷︷ ︸
=616

−50A+ A2

60 = 2A

30 = A

So the temperature outside is 30◦.
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3.3.3 tt Population Growth

Suppose that we wish to predict the size P (t) of a population as a function of the time
t. In the most naive model of population growth, each couple produces β offspring (for
some constant β) and then dies. Thus over the course of one generation β P (t)

2
children

are produced and P (t) parents die so that the size of the population grows from P (t)
to

P (t+ tg) = P (t) + β
P (t)

2︸ ︷︷ ︸
parents+offspring

− P (t)︸︷︷︸
parents die

=
β

2
P (t)

where tg denotes the lifespan of one generation. The rate of change of the size of the
population per unit time is

P (t+ tg)− P (t)

tg
=

1

tg

[β
2
P (t)− P (t)

]
= bP (t)

where b = β−2
2tg

is the net birthrate per member of the population per unit time. If we
approximate

P (t+tg)−P (t)

tg
≈ dP

dt
(t)

we get the differential equation

Equation 3.3.12 Simple population model.

dP

dt
= bP (t)

By Corollary 3.3.4, with −k replaced by b,

P (t) = P (0) · ebt

This is called the Malthusian 6 growth model. It is, of course, very simplistic. One
of its main characteristics is that, since P (t + T ) = P (0) · eb(t+T ) = P (t) · ebT , every
time you add T to the time, the population size is multiplied by ebT . In particular,
the population size doubles every log 2

b
units of time. The Malthusian growth model

can be a reasonably good model only when the population size is very small compared
to its environment 7. A more sophisticated model of population growth, that takes
into account the “carrying capacity of the environment” is considered in the optional
subsection below.

6 This is named after Rev. Thomas Robert Malthus. He described this model in a 1798 paper called
“An essay on the principle of population”.

7 That is, the population has plenty of food and space to grow.
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Example 3.3.13 A simple prediction of future population.

In 1927 the population of the world was about 2 billion. In 1974 it was about 4 billion.
Estimate when it reached 6 billion. What will the population of the world be in 2100,
assuming the Malthusian growth model?
Solution We follow our usual pattern for dealing with such problems.

• Let P (t) be the world’s population t years after 1927. Note that 1974 corresponds
to t = 1974− 1927 = 47.

• We are assuming that P (t) obeys equation 3.3.12. So, by Corollary 3.3.4 with −k
replaced by b,

P (t) = P (0) · ebt

Notice that there are 2 unknowns here — b and P (0) — so we need two pieces of
information to find them.

• We are told P (0) = 2, so

P (t) = 2 · ebt

• We are also told P (47) = 4, which gives

4 = 2 · e47b clean up
e47b = 2 take the log and clean up

b =
log 2

47
= 0.0147 to 3 significant digits

• We now know P (t) completely, so we can easily determine the predicted popula-
tion a in 2100, i.e. at t = 2100− 1927 = 173.

P (173) = 2e173b = 2e173×0.0147 = 25.4 billion

• Finally, our crude model predicts that the population is 6 billion at the time t
that obeys

P (t) = 2ebt = 6 clean up
ebt = 3 take the log and clean up

t =
log 3

b
= 47

log 3

log 2
= 74.5

which corresponds b to the middle of 2001.

a The 2015 Revision of World Population, a publication of the United Nations, predicts that the
world’s population in 2100 will be about 11 billion. They are predicting a reduction in the world
population growth rate due to lower fertility rates, which the Malthusian growth model does not
take into account.

b The world population really reached 6 billion in about 1999.
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3.3.3.1ttt (Optional) — Logistic Population Growth

Logistic growth adds one more wrinkle to the simple population model. It assumes
that the population only has access to limited resources. As the size of the population
grows the amount of food available to each member decreases. This in turn causes the
net birth rate b to decrease. In the logistic growth model b = b0

(
1− P

K

)
, where K is

called the carrying capacity of the environment, so that

P ′(t) = b0

(
1− P (t)

K

)
P (t)

We can learn quite a bit about the behaviour of solutions to differential equations
like this, without ever finding formulae for the solutions, just by watching the sign of
P ′(t). For concreteness, we’ll look at solutions of the differential equation

dP

dt
(t) =

(
6000− 3P (t)

)
P (t)

We’ll sketch the graphs of four functions P (t) that obey this equation.

• For the first function, P (0) = 0.

• For the second function, P (0) = 1000.

• For the third function, P (0) = 2000.

• For the fourth function, P (0) = 3000.

The sketches will be based on the observation that (6000− 3P )P = 3(2000− P )P

• is zero for P = 0, 2000,

• is strictly positive for 0 < P < 2000 and

• is strictly negative for P > 2000.

Consequently

dP

dt
(t)


= 0 if P (t) = 0

> 0 if 0 < P (t) < 2000

= 0 if P (t) = 2000

< 0 if P (t) > 2000

Thus if P (t) is some function that obeys dP
dt

(t) =
(
6000−3P (t)

)
P (t), then as the graph

of P (t) passes through
(
t, P (t)

)

the graph has


slope zero, i.e. is horizontal, if P (t) = 0

positive slope, i.e. is increasing, if 0 < P (t) < 2000

slope zero, i.e. is horizontal, if P (t) = 2000

negative slope, i.e. is decreasing, if P (t) > 2000
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as illustrated in the figure

As a result,

• if P (0) = 0, the graph starts out horizontally. In other words, as t starts to
increase, P (t) remains at zero, so the slope of the graph remains at zero. The
population size remains zero for all time. As a check, observe that the function
P (t) = 0 obeys dP

dt
(t) =

(
6000− 3P (t)

)
P (t) for all t.

• Similarly, if P (0) = 2000, the graph again starts out horizontally. So P (t) remains
at 2000 and the slope remains at zero. The population size remains 2000 for all
time. Again, the function P (t) = 2000 obeys dP

dt
(t) =

(
6000− 3P (t)

)
P (t) for all

t.

• If P (0) = 1000, the graph starts out with positive slope. So P (t) increases with
t. As P (t) increases towards 2000, the slope (6000− 3P (t)

)
P (t), while remaining

positive, gets closer and closer to zero. As the graph approaches height 2000, it
becomes more and more horizontal. The graph cannot actually cross from below
2000 to above 2000, because to do so, it would have to have strictly positive slope
for some value of P above 2000, which is not allowed.

• If P (0) = 3000, the graph starts out with negative slope. So P (t) decreases with
t. As P (t) decreases towards 2000, the slope (6000−3P (t)

)
P (t), while remaining

negative, gets closer and closer to zero. As the graph approaches height 2000, it
becomes more and more horizontal. The graph cannot actually cross from above
2000 to below 2000, because to do so, it would have to have negative slope for
some value of P below 2000. which is not allowed.

These curves are sketched in the figure below. We conclude that for any initial
population size P (0), except P (0) = 0, the population size approaches 2000 as t→∞.
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3.3.4 tt Exercises

ttt Exercises for § 3.3.1

Exercises — Stage 1
1. Which of the following is a differential equation for an unknown function y of

x?

(a) y =
dy

dx
(b)

dy

dx
= 3 [y − 5] (c) y = 3

[
y − dx

dx

]
(d) ex = ey + 1 (e) y = 10ex

2. Which of the following functions Q(t) satisfy the differential equation

Q(t) = 5
dQ

dt
?

(a) Q(t) = 0 (b) Q(t) = 5et (c) Q(t) = e5t

(d) Q(t) = et/5 (e) Q(t) = et/5 + 1

3. Suppose a sample starts out with C grams of a radioactive isotope, and
the amount of the radioactive isotope left in the sample at time t is given
by

Q(t) = Ce−kt

for some positive constant k. When will Q(t) = 0?

Exercises — Stage 2

4. ∗. Consider a function of the form f(x) = Aekx where A and k are constants.
If f(0) = 5 and f(7) = π, find the constants A and k.

5. ∗. Find the function y(t) if
dy

dt
+ 3y = 0, y(1) = 2.

6. A sample of bone belongs to an animal that died 10,000 years ago. If the bone
contained 5 µg of Carbon-14 when the animal died, how much Carbon-14 do
you expect it to have now?

7. A sample containing one gram of Radium-226 was stored in a lab 100 years
ago; now the sample only contains 0.9576 grams of Radium-226. What is
the half-life of Radium-226?

8. ∗. The mass of a sample of Polonium–210, initially 6 grams, decreases at a
rate proportional to the mass. After one year, 1 gram remains. What is the
half–life (the time it takes for the sample to decay to half its original mass)?
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9. Radium-221 has a half-life of 30 seconds. How long does it take for only 0.01%
of an original sample to be left?

Exercises — Stage 3

10. Polonium-210 has a half life of 138 days. What percentage of a sample of
Polonium-210 decays in a day?

11. A sample of ore is found to contain 7.2± 0.3 µg of Uranium-232, the half-life
of which is between 68.8 and 70 years. How much Uranium-232 will remain
undecayed in the sample in 10 years?

ttt Exercises for § 3.3.2

Exercises — Stage 1

1. Which of the following functions T (t) satisfy the differential equation
dT

dt
=

5 [T − 20]?

(a) T (t) = 20 (b) T (t) = 20e5t − 20 (c) T (t) = e5t + 20

(d) T (t) = 20e5t + 20

2. At time t = 0, an object is placed in a room, of temperature A. After t seconds,
Newton’s Law of Cooling gives the temperature of the object is as

T (t) = 35eKt − 10

What is the temperature of the room? Is the room warmer or colder than the
object?

3. A warm object is placed in a cold room. The temperature of the object, over
time, approaches the temperature of the room it is in. The temperature of
the object at time t is given by

T (t) = [T (0)− A]eKt + A.

Can K be a positive number? Can K be a negative number? Can K be
zero?

4. Suppose an object obeys Newton’s Law of Cooling, and its temperature is
given by

T (t) = [T (0)− A]ekt + A

for some constant k. At what time is T (t) = A?
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Exercises — Stage 2

5. A piece of copper at room temperature (25◦) is placed in a boiling pot of water.
After 10 seconds, it has heated to 90◦. When will it be 99.9◦?

6. Today is a chilly day. We heated up a stone to 500◦ C in a bonfire, then
took it out and left it outside, where the temperature is 0◦ C. After 10
minutes outside of the bonfire, the stone had cooled to a still-untouchable
100◦ C. Now the stone is at a cozy 50◦ C. How long ago was the stone
taken out of the fire?

Exercises — Stage 3
7. ∗. Isaac Newton drinks his coffee with cream. To be exact, 9 parts coffee to 1

part cream. His landlady pours him a cup of coffee at 95◦ C into which Newton
stirs cream taken from the icebox at 5◦ C. When he drinks the mixture ten
minutes later, he notes that it has cooled to 54◦ C. Newton wonders if his coffee
would be hotter (and by how much) if he waited until just before drinking it
to add the cream. Analyze this question, assuming that:

i The temperature of the dining room is constant at 22◦ C.

ii When a volume V1 of liquid at temperature T1 is mixed with a volume

V2 at temperature T2, the temperature of the mixture is
V1T1 + V2T2

V1 + V2

.

iii Newton’s Law of Cooling: The temperature of an object cools at a rate
proportional to the difference in temperature between the object and its
surroundings.

iv The constant of proportionality is the same for the cup of coffee with
cream as for the cup of pure coffee.

8. ∗. The temperature of a glass of iced tea is initially 5◦. After 5 minutes,
the tea has heated to 10◦ in a room where the air temperature is 30◦.

a Use Newton’s law of cooling to obtain a differential equation for the
temperature T (t) at time t.

b Determine when the tea will reach a temperature of 20◦.

9. Suppose an object is changing temperature according to Newton’s Law of
Cooling, and its temperature at time t is given by

T (t) = 0.8kt + 15

Is k positive or negative?
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ttt Exercises for § 3.3.3

Exercises — Stage 1
1. Let a population at time t be given by the Malthusian model,

P (t) = P (0)ebt for some positive constant b.

Evaluate lim
t→∞

P (t). Does this model make sense for large values of t?

Exercises — Stage 2

2. In the 1950s, pure-bred wood bison were thought to be extinct. However,
a small population was found in Canada. For decades, a captive breeding
program has been working to increase their numbers, and from time to
time wood bison are released to the wild. Suppose in 2015, a released herd
numbered 121 animals, and a year later, there were 136 a. If the wood
bison adhere to the Malthusian model (a big assumption!), and if there are
no more releases of captive animals, how many animals will the herd have
in 2020?

a These numbers are loosely based on animals actually released near Shageluk, Alaska
in 2015. Watch the first batch being released here.

3. A founding colony of 1,000 bacteria is placed in a petri dish of yummy bacteria
food. After an hour, the population has doubled. Assuming the Malthusian
model, how long will it take for the colony to triple its original population?

4. A single pair of rats comes to an island after a shipwreck. They multiply
according to the Malthusian model. In 1928, there were 1,000 rats on the
island, and the next year there were 1500. When was the shipwreck?

5. A farmer wants to farm cochineals, which are insects used to make red dye.
The farmer raises a small number of cochineals as a test. In three months, a
test population of cochineals will increase from 200 individuals to 1000, given
ample space and food.
The farmer’s plan is to start with an initial population of P (0) cochineals,
and after a year have 1 000 000 + P (0) cochineals, so that one million can be
harvested, and P (0) saved to start breeding again. What initial population
P (0) does the Malthusian model suggest?

Exercises — Stage 3
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6. Let f(t) = 100ekt, for some constant k.

a If f(t) is the amount of a decaying radioactive isotope in a sample at
time t, what is the amount of the isotope in the sample when t = 0?
What is the sign of k?

b If f(t) is the number of individuals in a population that is growing
according to the Malthusian model, how many individuals are there
when t = 0? What is the sign of k?

c If f(t) is the temperature of an object at time t, given by Newton’s
Law of Cooling, what is the ambient temperature surrounding the
object? What is the sign of k?

ttt Further problems for § 3.3

1. ∗. Find f(2) if f ′(x) = πf(x) for all x, and f(0) = 2.

2. Which functions T (t) satisfy the differential equation
dT

dt
= 7T + 9?

3. ∗. It takes 8 days for 20% of a particular radioactive material to decay. How long
does it take for 100 grams of the material to decay to 40 grams?

4. A glass of boiling water is left in a room. After 15 minutes, it has cooled to 85◦
C, and after 30 minutes it is 73◦ C. What temperature is the room?

5. ∗. A 25-year-old graduate of UBC is given $50,000 which is invested at 5%
per year compounded continuously. The graduate also intends to deposit money
continuously at the rate of $2000 per year. Assuming that the interest rate
remains 5%, the amount A(t) of money at time t satisfies the equation

dA

dt
= 0.05A+ 2000

a Solve this equation and determine the amount of money in the account
when the graduate is 65.

b At age 65, the graduate will withdraw money continuously at the rate of
W dollars per year. If the money must last until the person is 85, what is
the largest possible value of W?

6. ∗. An investor puts $120,000 which into a bank account which pays 6% annual
interest, compounded continuously. She plans to withdraw money continuously
from the account at the rate of $9000 per year. If A(t) is the amount of money at
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time t, then
dA

dt
= 0.06A− 9000

a Solve this equation for A(t).

b When will the money run out?
7. ∗. A particular bacterial culture grows at a rate proportional to the number of

bacteria present. If the size of the culture triples every nine hours, how long does
it take the culture to double?

8. ∗. An object falls under gravity near the surface of the earth and its motion is
impeded by air resistance proportional to its speed. Its velocity v satisfies the
differential equation

dv

dt
= −g − kv

where g and k are positive constants.

a Find the velocity of the object as a function of time t, given that it was v0

at t = 0.

b Find lim
t→∞

v(t).

3.4q Approximating Functions Near a Specified Point —
Taylor Polynomials

Suppose that you are interested in the values of some function f(x) for x near some
fixed point a. When the function is a polynomial or a rational function we can use
some arithmetic (and maybe some hard work) to write down the answer. For example:

f(x) =
x2 − 3

x2 − 2x+ 4

f(1/5) =
1
25
− 3

1
25
− 2

5
+ 4

=
1−75

25
1−10+100

25

=
−74

91

Tedious, but we can do it. On the other hand if you are asked to compute sin(1/10)
then what can we do? We know that a calculator can work it out

sin(1/10) = 0.09983341 . . .

but how does the calculator do this? How did people compute this before calculators 1

? A hint comes from the following sketch of sin(x) for x around 0.

1 Originally the word “calculator” referred not to the software or electronic (or even mechanical)
device we think of today, but rather to a person who performed calculations.
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The above figure shows that the curves y = x and y = sinx are almost the same
when x is close to 0. Hence if we want the value of sin(1/10) we could just use this
approximation y = x to get

sin(1/10) ≈ 1/10.

Of course, in this case we simply observed that one function was a good approximation
of the other. We need to know how to find such approximations more systematically.

More precisely, say we are given a function f(x) that we wish to approximate close
to some point x = a, and we need to find another function F (x) that

• is simple and easy to compute 2

• is a good approximation to f(x) for x values close to a.

Further, we would like to understand how good our approximation actually is. Namely
we need to be able to estimate the error |f(x)− F (x)|.

There are many different ways to approximate a function and we will discuss one
family of approximations: Taylor polynomials. This is an infinite family of ever im-
proving approximations, and our starting point is the very simplest.

3.4.1 tt Zeroth Approximation — the Constant Approximation

The simplest functions are those that are constants. And our zeroth 3 approximation
will be by a constant function. That is, the approximating function will have the form
F (x) = A, for some constant A. Notice that this function is a polynomial of degree
zero.

To ensure that F (x) is a good approximation for x close to a, we choose A so that
f(x) and F (x) take exactly the same value when x = a.

F (x) = A so F (a) = A = f(a) =⇒ A = f(a)

Our first, and crudest, approximation rule is

2 It is no good approximating a function with something that is even more difficult to work with.
3 It barely counts as an approximation at all, but it will help build intuition. Because of this, and

the fact that a constant is a polynomial of degree 0, we’ll start counting our approximations from
zero rather than 1.
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Equation 3.4.1 Constant approximation.

f(x) ≈ f(a)

An important point to note is that we need to know f(a) — if we cannot compute
that easily then we are not going to be able to proceed. We will often have to choose
a (the point around which we are approximating f(x)) with some care to ensure that
we can compute f(a).

Here is a figure showing the graphs of a typical f(x) and approximating function
F (x).

At x = a, f(x) and F (x) take the same value. For x very near a, the values of f(x)
and F (x) remain close together. But the quality of the approximation deteriorates
fairly quickly as x moves away from a. Clearly we could do better with a straight line
that follows the slope of the curve. That is our next approximation.

But before then, an example:

Example 3.4.2 A (weak) approximation of e0.1.

Use the constant approximation to estimate e0.1.
Solution First set f(x) = ex.

• Now we first need to pick a point x = a to approximate the function. This point
needs to be close to 0.1 and we need to be able to evaluate f(a) easily. The
obvious choice is a = 0.

• Then our constant approximation is just

F (x) = f(0) = e0 = 1

F (0.1) = 1

Note that e0.1 = 1.105170918 . . ., so even this approximation isn’t too bad..
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3.4.2 tt First Approximation — the Linear Approximation

Our first 4 approximation improves on our zeroth approximation by allowing the ap-
proximating function to be a linear function of x rather than just a constant function.
That is, we allow F (x) to be of the form A+Bx, for some constants A and B.

To ensure that F (x) is a good approximation for x close to a, we still require that
f(x) and F (x) have the same value at x = a (that was our zeroth approximation). Our
additional requirement is that their tangent lines at x = a have the same slope — that
the derivatives of f(x) and F (x) are the same at x = a. Hence

F (x) = A+Bx =⇒ F (a) = A+Ba = f(a)

F ′(x) = B =⇒ F ′(a) = B = f ′(a)

So we must have B = f ′(a). Substituting this into A + Ba = f(a) we get A =
f(a)− af ′(a). So we can write

F (x) = A+Bx =

A︷ ︸︸ ︷
f(a)− af ′(a) +f ′(a) · x

= f(a) + f ′(a) · (x− a)

We write it in this form because we can now clearly see that our first approximation is
just an extension of our zeroth approximation. This first approximation is also often
called the linear approximation of f(x) about x = a.

Equation 3.4.3 Linear approximation.

f(x) ≈ f(a) + f ′(a)(x− a)

We should again stress that in order to form this approximation we need to know
f(a) and f ′(a) — if we cannot compute them easily then we are not going to be able
to proceed.

Recall, from Theorem 2.3.4, that y = f(a) + f ′(a)(x− a) is exactly the equation of
the tangent line to the curve y = f(x) at a. Here is a figure showing the graphs of a
typical f(x) and the approximating function F (x).

4 Recall that we started counting from zero.
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Observe that the graph of f(a) + f ′(a)(x − a) remains close to the graph of f(x)
for a much larger range of x than did the graph of our constant approximation, f(a).
One can also see that we can improve this approximation if we can use a function that
curves down rather than being perfectly straight. That is our next approximation.

But before then, back to our example:

Example 3.4.4 A better approximation of e0.1.

Use the linear approximation to estimate e0.1.
Solution First set f(x) = ex and a = 0 as before.

• To form the linear approximation we need f(a) and f ′(a):

f(x) = ex f(0) = 1

f ′(x) = ex f ′(0) = 1

• Then our linear approximation is

F (x) = f(0) + xf ′(0) = 1 + x

F (0.1) = 1.1

Recall that e0.1 = 1.105170918 . . ., so the linear approximation is almost correct to 3
digits.

It is worth doing another simple example here.

Example 3.4.5 A linear approximation of
√

4.1.

Use a linear approximation to estimate
√

4.1.
Solution First set f(x) =

√
x. Hence f ′(x) = 1

2
√
x
. Then we are trying to approximate

f(4.1). Now we need to choose a sensible a value.

• We need to choose a so that f(a) and f ′(a) are easy to compute.

◦ We could try a = 4.1 — but then we need to compute f(4.1) and f ′(4.1) —
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Example 3.4.5

which is our original problem and more!

◦ We could try a = 0 — then f(0) = 0 and f ′(0) = DNE.

◦ Setting a = 1 gives us f(1) = 1 and f ′(1) = 1
2
. This would work, but we can

get a better approximation by choosing a is closer to 4.1.

◦ Indeed we can set a to be the square of any rational number and we’ll get a
result that is easy to compute.

◦ Setting a = 4 gives f(4) = 2 and f ′(4) = 1
4
. This seems good enough.

• Substitute this into equation 3.4.3 to get

f(4.1) ≈ f(4) + f ′(4) · (4.1− 4)

= 2 +
0.1

4
= 2 + 0.025 = 2.025

Notice that the true value is
√

4.1 = 2.024845673 . . ..

3.4.3 tt Second Approximation — the Quadratic Approximation

We next develop a still better approximation by now allowing the approximating func-
tion be to a quadratic function of x. That is, we allow F (x) to be of the form
A + Bx + Cx2, for some constants A, B and C. To ensure that F (x) is a good
approximation for x close to a, we choose A, B and C so that

• f(a) = F (a) (just as in our zeroth approximation),

• f ′(a) = F ′(a) (just as in our first approximation), and

• f ′′(a) = F ′′(a) — this is a new condition.

These conditions give us the following equations

F (x) = A+Bx+ Cx2 =⇒ F (a) = A+Ba+ Ca2 = f(a)

F ′(x) = B + 2Cx =⇒ F ′(a) = B + 2Ca = f ′(a)

F ′′(x) = 2C =⇒ F ′′(a) = 2C = f ′′(a)

Solve these for C first, then B and finally A.

C =
1

2
f ′′(a) substitute

B = f ′(a)− 2Ca = f ′(a)− af ′′(a) substitute again

A = f(a)−Ba− Ca2 = f(a)− a[f ′(a)− af ′′(a)]− 1

2
f ′′(a)a2
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Then put things back together to build up F (x):

F (x) = f(a)− f ′(a)a+
1

2
f ′′(a)a2 (this line is A)

+ f ′(a)x − f ′′(a)ax (this line is Bx)

+
1

2
f ′′(a)x2 (this line is Cx2)

= f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)2

Oof! We again write it in this form because we can now clearly see that our second
approximation is just an extension of our first approximation.

Our second approximation is called the quadratic approximation:

Equation 3.4.6 Quadratic approximation.

f(x) ≈ f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)2

Here is a figure showing the graphs of a typical f(x) and approximating function
F (x).

This new approximation looks better than both the first and second.
Now there is actually an easier way to derive this approximation, which we show

you now. Let us rewrite 5

F (x) so that it is easy to evaluate it and its derivatives at x = a:

F (x) = α + β · (x− a) + γ · (x− a)2

Then

F (x) = α + β · (x− a) + γ · (x− a)2 F (a) = α = f(a)

F ′(x) = β + 2γ · (x− a) F ′(a) = β = f ′(a)

5 Any polynomial of degree two can be written in this form. For example, when a = 1, 3+2x+x2 =
6 + 4(x− 1) + (x− 1)2.
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F ′′(x) = 2γ F ′′(a) = 2γ = f ′′(a)

And from these we can clearly read off the values of α, β and γ and so recover our
function F (x). Additionally if we write things this way, then it is quite clear how to
extend this to a cubic approximation and a quartic approximation and so on.

Return to our example:

Example 3.4.7 An even better approximation of e0.1.

Use the quadratic approximation to estimate e0.1.
Solution Set f(x) = ex and a = 0 as before.

• To form the quadratic approximation we need f(a), f ′(a) and f ′′(a):

f(x) = ex f(0) = 1

f ′(x) = ex f ′(0) = 1

f ′′(x) = ex f ′′(0) = 1

• Then our quadratic approximation is

F (x) = f(0) + xf ′(0) +
1

2
x2f ′′(0) = 1 + x+

x2

2
F (0.1) = 1.105

Recall that e0.1 = 1.105170918 . . ., so the quadratic approximation is quite accurate
with very little effort.

Before we go on, let us first introduce (or revise) some notation that will make our
discussion easier.

3.4.4 tt Whirlwind Tour of Summation Notation

In the remainder of this section we will frequently need to write sums involving a large
number of terms. Writing out the summands explicitly can become quite impractical
— for example, say we need the sum of the first 11 squares:

1 + 22 + 32 + 42 + 52 + 62 + 72 + 82 + 92 + 102 + 112

This becomes tedious. Where the pattern is clear, we will often skip the middle few
terms and instead write

1 + 22 + · · ·+ 112.

A far more precise way to write this is using Σ (capital-sigma) notation. For example,
we can write the above sum as

11∑
k=1

k2
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This is read as

The sum from k equals 1 to 11 of k2.

More generally
Definition 3.4.8

Let m ≤ n be integers and let f(x) be a function defined on the integers. Then
we write

n∑
k=m

f(k)

to mean the sum of f(k) for k from m to n:

f(m) + f(m+ 1) + f(m+ 2) + · · ·+ f(n− 1) + f(n).

Similarly we write

n∑
i=m

ai

to mean

am + am+1 + am+2 + · · ·+ an−1 + an

for some set of coefficients {am, . . . , an}.

Consider the example
7∑

k=3

1

k2
=

1

32
+

1

42
+

1

52
+

1

62
+

1

72

It is important to note that the right hand side of this expression evaluates to a number
6; it does not contain “k”. The summation index k is just a “dummy” variable and it
does not have to be called k. For example

7∑
k=3

1

k2
=

7∑
i=3

1

i2
=

7∑
j=3

1

j2
=

7∑
`=3

1

`2

Also the summation index has no meaning outside the sum. For example

k

7∑
k=3

1

k2

has no mathematical meaning; It is gibberish 7 .

6 Some careful addition shows it is 46181
176400 .

7 Or possibly gobbledygook. For a discussion of statements without meaning and why one should
avoid them we recommend the book “Bendable learnings: the wisdom of modern management”
by Don Watson.
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3.4.5 tt Still Better Approximations — Taylor Polynomials

We can use the same strategy to generate still better approximations by polynomials 8

of any degree we like. As was the case with the approximations above, we determine the
coefficients of the polynomial by requiring, that at the point x = a, the approximation
and its first n derivatives agree with those of the original function.

Rather than simply moving to a cubic polynomial, let us try to write things in a
more general way. We will consider approximating the function f(x) using a polynomial,
Tn(x), of degree n — where n is a non-negative integer. As we discussed above, the
algebra is easier if we write

Tn(x) = c0 + c1(x− a) + c2(x− a)2 + · · ·+ cn(x− a)n

=
n∑
k=0

ck(x− a)k using Σ notation

The above form 9 10 makes it very easy to evaluate this polynomial and its derivatives at
x = a. Before we proceed, we remind the reader of some notation (see Notation 2.2.8):

• Let f(x) be a function and k be a positive integer. We can denote its kth derivative
with respect to x by

dkf

dxk

(
d

dx

)k
f(x) f (k)(x)

Additionally we will need
Definition 3.4.9 Factorial.

Let n be a positive integer a , then n-factorial, denoted n!, is the product

n! = n× (n− 1)× · · · × 3× 2× 1

Further, we use the convention that

0! = 1

The first few factorials are

1! = 1 2! = 2 3! = 6

8 Polynomials are generally a good choice for an approximating function since they are so easy to
work with. Depending on the situation other families of functions may be more appropriate. For
example if you are approximating a periodic function, then sums of sines and cosines might be a
better choice; this leads to Fourier series.

9 Any polynomial in x of degree n can also be expressed as a polynomial in (x − a) of the same
degree n and vice versa. So Tn(x) really still is a polynomial of degree n.

10 Furthermore when x is close to a, (x−a)k decreases very quickly as k increases, which often makes
the "high k" terms in Tn(x) very small. This can be a considerable advantage when building up

approximations by adding more and more terms. If we were to rewrite Tn(x) in the form
n∑
k=0

bkx
k

the "high k" terms would typically not be very small when x is close to a.
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4! = 24 5! = 120 6! = 720

a It is actually possible to define the factorial of positive real numbers and even negative
numbers but it requires more advanced calculus and is outside the scope of this course.
The interested reader should look up the Gamma function.

Now consider Tn(x) and its derivatives:

Tn(x) =c0 + c1(x− a)+c2(x− a)2 + c3(x− a)3 + · · ·+cn(x− a)n

T ′n(x) = c1 +2c2(x− a) + 3c3(x− a)2+ · · ·+ncn(x− a)n−1

T ′′n (x) = 2c2 + 6c3(x− a) + · · ·+n(n− 1)cn(x− a)n−2

T ′′′n (x) = 6c3 + · · ·+n(n− 1)(n− 2)cn(x− a)n−3

...

T (n)
n (x) = n! · cn

Now notice that when we substitute x = a into the above expressions only the constant
terms survive and we get

Tn(a) = c0

T ′n(a) = c1

T ′′n (a) = 2 · c2

T ′′′n (a) = 6 · c3

...

T (n)
n (a) = n! · cn

So now if we want to set the coefficients of Tn(x) so that it agrees with f(x) at x = a
then we need

Tn(a) = c0 = f(a) c0 = f(a) =
1

0!
f(a)

We also want the first n derivatives of Tn(x) to agree with the derivatives of f(x) at
x = a, so

T ′n(a) = c1 = f ′(a) c1 = f ′(a) =
1

1!
f ′(a)

T ′′n (a) = 2 · c2 = f ′′(a) c2 =
1

2
f ′′(a) =

1

2!
f ′′(a)

T ′′′n (a) = 6 · c3 = f ′′′(a) c3 =
1

6
f ′′′(a) =

1

3!
f ′′′(a)

More generally, making the kth derivatives agree at x = a requires :

T (k)
n (a) = k! · ck = f (k)(a) ck =

1

k!
f (k)(a)
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And finally the nth derivative:

T (n)
n (a) = n! · cn = f (n)(a) cn =

1

n!
f (n)(a)

Putting this all together we have

Equation 3.4.10 Taylor polynomial.

f(x) ≈ Tn(x) = f(a) + f ′(a)(x− a) +
1

2
f ′′(a) · (x− a)2 + · · ·

+
1

n!
f (n)(a) · (x− a)n

=
n∑
k=0

1

k!
f (k)(a) · (x− a)k

Let us formalise this definition.
Definition 3.4.11 Taylor polynomial.

Let a be a constant and let n be a non-negative integer. The nth degree Taylor
polynomial for f(x) about x = a is

Tn(x) =
n∑
k=0

1

k!
f (k)(a) · (x− a)k.

The special case a = 0 is called a Maclaurin a polynomial.

a The polynomials are named after Brook Taylor who devised a general method for con-
structing them in 1715. Slightly later, Colin Maclaurin made extensive use of the special
case a = 0 (with attribution of the general case to Taylor) and it is now named after him.
The special case of a = 0 was worked on previously by James Gregory and Isaac Newton,
and some specific cases were known to the 14th century Indian mathematician Madhava
of Sangamagrama.

Before we proceed with some examples, a couple of remarks are in order.

• While we can compute a Taylor polynomial about any a-value (providing the
derivatives exist), in order to be a useful approximation, we must be able to
compute f(a), f ′(a), · · · , f (n)(a) easily. This means we must choose the point a
with care. Indeed for many functions the choice a = 0 is very natural — hence
the prominence of Maclaurin polynomials.

• If we have computed the approximation Tn(x), then we can readily extend this
to the next Taylor polynomial Tn+1(x) since

Tn+1(x) = Tn(x) +
1

(n+ 1)!
f (n+1)(a) · (x− a)n+1
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This is very useful if we discover that Tn(x) is an insufficient approximation,
because then we can produce Tn+1(x) without having to start again from scratch.

3.4.6 tt Some Examples

Let us return to our running example of ex:

Example 3.4.12 Taylor approximations of ex.

The constant, linear and quadratic approximations we used above were the first few
Maclaurin polynomial approximations of ex. That is

T0(x) = 1 T1(x) = 1 + x T2(x) = 1 + x+
x2

2

Since d
dx
ex = ex, the Maclaurin polynomials are very easy to compute. Indeed this

invariance under differentiation means that

f (n)(x) = ex n = 0, 1, 2, . . . so

f (n)(0) = 1

Substituting this into equation 3.4.10 we get

Tn(x) =
n∑
k=0

1

k!
xk

Thus we can write down the seventh Maclaurin polynomial very easily:

T7(x) = 1 + x+
x2

2
+
x3

6
+
x4

24
+

x5

120
+

x6

720
+

x7

5040

The following figure contains sketches of the graphs of ex and its Taylor polynomials
Tn(x) for n = 0, 1, 2, 3, 4.
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Example 3.4.12

x

y

1 2−1

1

2

3

4

5

6

7

y = T0(x) = 1

y = T1(x) = 1 + x

y = T2(x) = 1 + x+ x2

2

y = T3(x)

y = T4(x)

y = ex

Also notice that if we use T7(1) to approximate the value of e1 we obtain:

e1 ≈ T7(1) = 1 + 1 +
1

2
+

1

6
+

1

24
+

1

120
+

1

720
+

1

5040

=
685

252
= 2.718253968 . . .

The true value of e is 2.718281828 . . ., so the approximation has an error of about
3× 10−5.
Under the assumption that the accuracy of the approximation improves with n (an
assumption we examine in Subsection 3.4.9 below) we can see that the approximation
of e above can be improved by adding more and more terms. Indeed this is how the
expression for e in equation 2.7.4 in Section 2.7 comes about.

Now that we have examined Maclaurin polynomials for ex we should take a look at
log x. Notice that we cannot compute a Maclaurin polynomial for log x since it is not
defined at x = 0.
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Example 3.4.13 Taylor approximation of log x.

Compute the 5th Taylor polynomial for log x about x = 1.
Solution We have been told a = 1 and fifth degree, so we should start by writing down
the function and its first five derivatives:

f(x) = log x f(1) = log 1 = 0

f ′(x) =
1

x
f ′(1) = 1

f ′′(x) =
−1

x2
f ′′(1) = −1

f ′′′(x) =
2

x3
f ′′′(1) = 2

f (4)(x) =
−6

x4
f (4)(1) = −6

f (5)(x) =
24

x5
f (5)(1) = 24

Substituting this into equation 3.4.10 gives

T5(x) = 0 + 1 · (x− 1) +
1

2
· (−1) · (x− 1)2 +

1

6
· 2 · (x− 1)3

+
1

24
· (−6) · (x− 1)4 +

1

120
· 24 · (x− 1)5

= (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 − 1

4
(x− 1)4 +

1

5
(x− 1)5

Again, it is not too hard to generalise the above work to find the Taylor polynomial of
degree n: With a little work one can show that

Tn(x) =
n∑
k=1

(−1)k+1

k
(x− 1)k.

For cosine:

Example 3.4.14 Maclaurin polynomial for cosx.

Find the 4th degree Maclaurin polynomial for cosx.
Solution We have a = 0 and we need to find the first 4 derivatives of cosx.

f(x) = cos x f(0) = 1

f ′(x) = − sinx f ′(0) = 0

f ′′(x) = − cosx f ′′(0) = −1

f ′′′(x) = sin x f ′′′(0) = 0

f (4)(x) = cos x f (4)(0) = 1
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Substituting this into equation 3.4.10 gives

T4(x) = 1 + 1 · (0) · x+
1

2
· (−1) · x2 +

1

6
· 0 · x3 +

1

24
· (1) · x4

= 1− x2

2
+
x4

24

Notice that since the 4th derivative of cosx is cosx again, we also have that the fifth
derivative is the same as the first derivative, and the sixth derivative is the same as the
second derivative and so on. Hence the next four derivatives are

f (4)(x) = cos x f (4)(0) = 1

f (5)(x) = − sinx f (5)(0) = 0

f (6)(x) = − cosx f (6)(0) = −1

f (7)(x) = sinx f (7)(0) = 0

f (8)(x) = cos x f (8)(0) = 1

Using this we can find the 8th degree Maclaurin polynomial:

T8(x) = 1− x2

2
+
x4

24
− x6

6!
+
x8

8!

Continuing this process gives us the 2nth Maclaurin polynomial

T2n(x) =
n∑
k=0

(−1)k

(2k)!
· x2k

Warning 3.4.15

The above formula only works when x is measured in radians, because all of our
derivative formulae for trig functions were developed under the assumption that
angles are measured in radians.

Below we plot cosx against its first few Maclaurin polynomial approximations:
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Example 3.4.15

The above work is quite easily recycled to get the Maclaurin polynomial for sine:

Example 3.4.16 Maclaurin polynomial for sinx.

Find the 5th degree Maclaurin polynomial for sinx.
Solution We could simply work as before and compute the first five derivatives of sinx.
But set g(x) = sinx and notice that g(x) = −f ′(x), where f(x) = cos x. Then we have

g(0) = −f ′(0) = 0

g′(0) = −f ′′(0) = 1

g′′(0) = −f ′′′(0) = 0

g′′′(0) = −f (4)(0) = −1

g(4)(0) = −f (5)(0) = 0

g(5)(0) = −f (6)(0) = 1

Hence the required Maclaurin polynomial is

T5(x) = x− x3

3!
+
x5

5!

Just as we extended to the 2nth Maclaurin polynomial for cosine, we can also extend
our work to compute the (2n+ 1)th Maclaurin polynomial for sine:

T2n+1(x) =
n∑
k=0

(−1)k

(2k + 1)!
· x2k+1
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Example 3.4.17

Warning 3.4.17

The above formula only works when x is measured in radians, because all of our
derivative formulae for trig functions were developed under the assumption that
angles are measured in radians.

Below we plot sinx against its first few Maclaurin polynomial approximations.

To get an idea of how good these Taylor polynomials are at approximating sin and
cos, let’s concentrate on sinx and consider x’s whose magnitude |x| ≤ 1. There are
tricks that you can employ 11 to evaluate sine and cosine at values of x outside this

11 If you are writing software to evaluate sinx, you can always use the trig identity sin(x) = sin(x−
2nπ), to easily restrict to |x| ≤ π. You can then use the trig identity sin(x) = − sin(x ± π) to
reduce to |x| ≤ π

2 . Finally you can use the trig identity sin(x) = ∓ cos(π2 ± x)) to reduce to
|x| ≤ π

4 < 1.
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range.
If |x| ≤ 1 radians 12, then the magnitudes of the successive terms in the Taylor

polynomials for sinx are bounded by

|x| ≤ 1 1
3!
|x|3 ≤ 1

6
1
5!
|x|5 ≤ 1

120
≈ 0.0083

1
7!
|x|7 ≤ 1

7!
≈ 0.0002 1

9!
|x|9 ≤ 1

9!
≈ 0.000003 1

11!
|x|11 ≤ 1

11!
≈ 0.000000025

From these inequalities, and the graphs on the previous pages, it certainly looks like,
for x not too large, even relatively low degree Taylor polynomials give very good ap-
proximations. In Section 3.4.9 we’ll see how to get rigorous error bounds on our Taylor
polynomial approximations.

3.4.7 tt Estimating Change and ∆x, ∆y Notation

Suppose that we have two variables x and y that are related by y = f(x), for some
function f . One of the most important applications of calculus is to help us understand
what happens to y when we make a small change in x.

Definition 3.4.18

Let x, y be variables related by a function f . That is y = f(x). Then we denote
a small change in the variable x by ∆x (read as “delta x”). The corresponding
small change in the variable y is denoted ∆y (read as “delta y”).

∆y = f(x+ ∆x)− f(x)

In many situations we do not need to compute ∆y exactly and are instead happy
with an approximation. Consider the following example.

Example 3.4.19 Estimate the increase in cost for a given change in production.

Let x be the number of cars manufactured per week in some factory and let y the cost
of manufacturing those x cars. Given that the factory currently produces a cars per
week, we would like to estimate the increase in cost if we make a small change in the
number of cars produced.
Solution We are told that a is the number of cars currently produced per week; the
cost of production is then f(a).

• Say the number of cars produced is changed from a to a+ ∆x (where ∆x is some
small number.

• As x undergoes this change, the costs change from y = f(a) to f(a+ ∆x). Hence

∆y = f(a+ ∆x)− f(a)

12 Recall that the derivative formulae that we used to derive the Taylor polynomials are valid only
when x is in radians. The restriction −1 ≤ x ≤ 1 radians translates to angles bounded by
180
π ≈ 57◦.
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Example 3.4.21

• We can estimate this change using a linear approximation. Substituting x =
a+ ∆x into the equation 3.4.3 yields the approximation

f(a+ ∆x) ≈ f(a) + f ′(a)(a+ ∆x− a)

and consequently the approximation

∆y = f(a+ ∆x)− f(a) ≈ f(a) + f ′(a)∆x− f(a)

simplifies to the following neat estimate of ∆y:

Equation 3.4.20 Linear approximation of ∆y.

∆y ≈ f ′(a)∆x

• In the automobile manufacturing example, when the production level is a cars
per week, increasing the production level by ∆x will cost approximately f ′(a)∆x.
The additional cost per additional car, f ′(a), is called the “marginal cost” of a
car.

• If we instead use the quadratic approximation (given by equation 3.4.6) then we
estimate

f(a+ ∆x) ≈ f(a) + f ′(a)∆x+
1

2
f ′′(a)∆x2

and so

∆y = f(a+ ∆x)− f(a) ≈ f(a) + f ′(a)∆x+
1

2
f ′′(a)∆x2 − f(a)

which simplifies to

Equation 3.4.21 Quadratic approximation of ∆y.

∆y ≈ f ′(a)∆x+
1

2
f ′′(a)∆x2
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3.4.8 tt Further Examples

In this subsection we give further examples of computation and use of Taylor approxi-
mations.

Example 3.4.22 Estimating tan 46◦.

Estimate tan 46◦, using the constant-, linear- and quadratic-approximations (equa-
tions 3.4.1, 3.4.3 and 3.4.6).
Solution Note that we need to be careful to translate angles measured in degrees to
radians.

• Set f(x) = tanx, x = 46 π
180

radians and a = 45 π
180

= π
4
radians. This is a good

choice for a because

◦ a = 45◦ is close to x = 46◦. As noted above, it is generally the case that the
closer x is to a, the better various approximations will be.

◦ We know the values of all trig functions at 45◦.

• Now we need to compute f and its first two derivatives at x = a. It is a good
time to recall the special 1 : 1 :

√
2 triangle

So

f(x) = tan x f(π/4) = 1

f ′(x) = sec2 x =
1

cos2 x
f ′(π/4) =

1

1/
√

2
2 = 2

f ′′(x) =
2 sinx

cos3 x
f ′′(π/4) =

2/
√

2

1/
√

2
3 = 4

• As x− a = 46 π
180
− 45 π

180
= π

180
radians, the three approximations are

f(x) ≈ f(a)

= 1

f(x) ≈ f(a) + f ′(a)(x− a) = 1 + 2 π
180

= 1.034907

f(x) ≈ f(a) + f ′(a)(x−a) +
1

2
f ′′(a)(x−a)2 = 1 + 2 π

180
+

1

2
4
(
π

180

)2
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Example 3.4.22

= 1.035516

For comparison purposes, tan 46◦ really is 1.035530 to 6 decimal places.

Warning 3.4.23

All of our derivative formulae for trig functions were developed under the as-
sumption that angles are measured in radians. Those derivatives appeared in the
approximation formulae that we used in Example 3.4.22, so we were obliged to
express x− a in radians.

Example 3.4.24 Error inferring a height from an angle.

Suppose that you are ten meters from a vertical pole. You were contracted to measure
the height of the pole. You can’t take it down or climb it. So you measure the angle
subtended by the top of the pole. You measure θ = 30◦, which gives

h = 10 tan 30◦ = 10√
3
≈ 5.77m

This is just standard trigonometry — if we know the angle exactly then we know the
height exactly.
However, in the “real world” angles are hard to measure with such precision. If the
contract requires you the measurement of the pole to be accurate within 10 cm, how
accurate does your measurement of the angle θ need to be?
Solution For simplicity a , we are going to assume that the pole is perfectly straight
and perfectly vertical and that your distance from the pole was exactly 10 m.

• Write θ = θ0 + ∆θ where θ is the exact angle, θ0 is the measured angle and ∆θ is
the error.

• Similarly write h = h0 + ∆h, where h is the exact height and h0 = 10√
3
is the

computed height. Their difference, ∆h, is the error.

• Then

h0 = 10 tan θ0 h0 + ∆h = 10 tan(θ0 + ∆θ)

∆h = 10 tan(θ0 + ∆θ)− 10 tan θ0

We could attempt to solve this equation for ∆θ in terms of ∆h — but it is far
simpler to approximate ∆h using the linear approximation in equation 3.4.20.

• To use equation 3.4.20, replace y with h, x with θ and a with θ0. Our function
f(θ) = 10 tan θ and θ0 = 30◦ = π/6 radians. Then

∆y ≈ f ′(a)∆x becomes ∆h ≈ f ′(θ0)∆θ
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Example 3.4.24

Since f(θ) = 10 tan θ, f ′(θ) = 10 sec2 θ and

f ′(θ0) = 10 sec2(π/6) = 10 ·
(

2√
3

)2

=
40

3

• Putting things together gives

∆h ≈ f ′(θ0)∆θ becomes ∆h ≈ 40

3
∆θ

We can then solve this equation for ∆θ in terms of ∆h:

∆θ ≈ 3

40
∆h

• We are told that we must have |∆h| < 0.1, so we must have

|∆θ| ≤ 3

400

This is measured in radians, so converting back to degrees

3

400
· 180

π
= 0.43◦

a Mathematicians love assumptions that let us tame the real world.

Definition 3.4.25

Suppose that you measure, approximately, some quantity. Suppose that the exact
value of that quantity is Q0 and that your measurement yielded Q0 + ∆Q. Then
|∆Q| is called the absolute error of the measurement and 100 |∆Q|

Q0
is called the

percentage error of the measurement. As an example, if the exact value is 4 and
the measured value is 5, then the absolute error is |5− 4| = 1 and the percentage
error is 100 |5−4|

4
= 25. That is, the error, 1, was 25% of the exact value, 4.

Example 3.4.26 Error inferring the area and volume from the radius.

Suppose that the radius of a sphere has been measured with a percentage error of at
most ε%. Find the corresponding approximate percentage errors in the surface area
and volume of the sphere.
Solution We need to be careful in this problem to convert between absolute and
percentage errors correctly.
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• Suppose that the exact radius is r0 and that the measured radius is r0 + ∆r.

• Then the absolute error in the measurement is |∆r| and, by definition, the per-
centage error is 100 |∆r|

r0
. We are told that 100 |∆r|

r0
≤ ε.

• The surface area a of a sphere of radius r is A(r) = 4πr2. The error in the surface
area computed with the measured radius is

∆A = A(r0 + ∆r)− A(r0) ≈ A′(r0)∆r

= 8πr0∆r

where we have made use of the linear approximation, equation 3.4.20.

• The corresponding percentage error is then

100
|∆A|
A(r0)

≈ 100
|A′(r0)∆r|
A(r0)

= 100
8πr0|∆r|

4πr2
0

= 2× 100
|∆r|
r0

≤ 2ε

• The volume of a sphere b of radius r is V (r) = 4
3
πr3. The error in the volume

computed with the measured radius is

∆V = V (r0 + ∆r)− V (r0) ≈ V ′(r0)∆r

= 4πr2
0∆r

where we have again made use of the linear approximation, equation 3.4.20.

• The corresponding percentage error is

100
|∆V |
V (r0)

≈ 100
|V ′(r0)∆r|
V (r0)

= 100
4πr2

0|∆r|
4πr3

0/3
= 3× 100

|∆r|
r0

≤ 3ε

We have just computed an approximation to ∆V . This problem is actually sufficiently
simple that we can compute ∆V exactly:

∆V = V (r0 + ∆r)− V (r0) = 4
3
π(r0 + ∆r)3 − 4

3
πr3

0

• Applying (a+ b)3 = a3 + 3a2b+ 3ab2 + b3 with a = r0 and b = ∆r, gives

V (r0 + ∆r)− V (r0) = 4
3
π
[
r3

0 + 3r2
0∆r + 3r0 (∆r)2 + (∆r)3

]
− 4

3
πr3

0

= 4
3
π[3r2

0∆r + 3r0 (∆r)2 + (∆r)3]

• Thus the difference between the exact error and the linear approximation to the
error is obtained by retaining only the last two terms in the square brackets. This
has magnitude

4
3
π
∣∣3r0 (∆r)2 + (∆r)3

∣∣ = 4
3
π
∣∣3r0 + ∆r

∣∣(∆r)2
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Example 3.4.26

or in percentage terms

100 · 1
4
3
πr3

0

· 4
3
π
∣∣3r0 (∆r)2 + (∆r)3

∣∣ = 100

∣∣∣∣3∆r2

r2
0

+
∆r3

r3
0

∣∣∣∣
=

(
100

3∆r

r0

)
·
(

∆r

r0

) ∣∣∣∣1 +
∆r

3r0

∣∣∣∣
≤ 3ε

( ε

100

)
·
(

1 +
ε

300

)
Since ε is small, we can assume that 1 + ε

300
≈ 1. Hence the difference between

the exact error and the linear approximation of the error is roughly a factor of
ε

100
smaller than the linear approximation 3ε.

• As an aside, notice that if we argue that ∆r is very small and so we can ignore
terms involving (∆r)2 and (∆r)3 as being really really small, then we obtain

V (r0 + ∆r)− V (r0) = 4
3
π[3r2

0∆r+3r0 (∆r)2 + (∆r)3︸ ︷︷ ︸
really really small

]

≈ 4
3
π · 3r2

0∆r = 4πr2
0∆r

which is precisely the result of our linear approximation above.

a We do not expect you to remember the surface areas of solids for this course.
b We do expect you to remember the formula for the volume of a sphere.

Example 3.4.27 Percentage error inferring a height.

To compute the height h of a lamp post, the length s of the shadow of a two meter
pole is measured. The pole is 6 m from the lamp post. If the length of the shadow was
measured to be 4 m, with an error of at most one cm, find the height of the lamp post
and estimate the percentage error in the height.
Solution We should first draw a picture a
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• By similar triangles we see that

2

s
=

h

6 + s

from which we can isolate h as a function of s:

h =
2(6 + s)

s
=

12

s
+ 2

• The length of the shadow was measured to be s0 = 4 m. The corresponding
height of the lamp post is

h0 =
12

4
+ 2 = 5m

• If the error in the measurement of the length of the shadow was ∆s, then the exact
shadow length was s = s0 +∆s and the exact lamp post height is h = f(s0 +∆s),
where f(s) = 12

s
+ 2. The error in the computed lamp post height is

∆h = h− h0 = f(s0 + ∆s)− f(s0)

• We can then make a linear approximation of this error using equation 3.4.20:

∆h ≈ f ′(s0)∆s = −12

s2
0

∆s = −12

42
∆s

• We are told that |∆s| ≤ 1
100

m. Consequently, approximately,

|∆h| ≤ 12

42

1

100
=

3

400

The percentage error is then approximately

100
|∆h|
h0

≤ 100
3

400× 5
= 0.15%
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Example 3.4.27

a We get to reuse that nice lamp post picture from Example 3.2.4.

3.4.9 tt The Error in the Taylor Polynomial Approximations

Any time you make an approximation, it is desirable to have some idea of the size of
the error you introduced. That is, we would like to know the difference R(x) between
the original function f(x) and our approximation F (x):

R(x) = f(x)− F (x).

Of course if we know R(x) exactly, then we could recover f(x) = F (x) + R(x) — so
this is an unrealistic hope. In practice we would simply like to bound R(x):

|R(x)| = |f(x)− F (x)| ≤M

where (hopefully) M is some small number. It is worth stressing that we do not need
the tightest possible value of M , we just need a relatively easily computed M that isn’t
too far off the true value of |f(x)− F (x)|.

We will now develop a formula for the error introduced by the constant approxima-
tion, equation 3.4.1 (developed back in Section 3.4.1)

f(x) ≈ f(a) = T0(x) 0th Taylor polynomial

The resulting formula can be used to get an upper bound on the size of the error |R(x)|.
The main ingredient we will need is the Mean-Value Theorem (Theorem 2.13.5) —

so we suggest you quickly revise it. Consider the following obvious statement:

f(x) = f(x) now some sneaky manipulations
= f(a) + (f(x)− f(a))

= f(a)︸︷︷︸
=T0(x)

+(f(x)− f(a)) · x− a
x− a︸ ︷︷ ︸

=1

= T0(x) +
f(x)− f(a)

x− a︸ ︷︷ ︸
looks familiar

·(x− a)

Indeed, this equation is important in the discussion that follows, so we’ll highlight it
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Equation 3.4.28 We will need it again soon.

f(x) = T0(x) +

[
f(x)− f(a)

x− a

]
(x− a)

The coefficient
f(x)− f(a)

x− a of (x − a) is the average slope of f(t) as t moves from

t = a to t = x. We can picture this as the slope of the secant joining the points (a, f(a))
and (x, f(x)) in the sketch below.

As t moves from a to x, the instantaneous slope f ′(t) keeps changing. Some-
times f ′(t) might be larger than the average slope f(x)−f(a)

x−a , and sometimes f ′(t) might
be smaller than the average slope f(x)−f(a)

x−a . However, by the Mean-Value Theorem
(Theorem 2.13.5), there must be some number c, strictly between a and x, for which

f ′(c) =
f(x)− f(a)

x− a exactly.
Substituting this into formula 3.4.28 gives

Equation 3.4.29 Towards the error.

f(x) = T0(x) + f ′(c)(x− a) for some c strictly between a and x

Notice that this expression as it stands is not quite what we want. Let us massage
this around a little more into a more useful form

Equation 3.4.30 The error in constant approximation.

f(x)− T0(x) = f ′(c) · (x− a) for some c strictly between a and x
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Notice that the MVT doesn’t tell us the value of c, however we do know that it lies
strictly between x and a. So if we can get a good bound on f ′(c) on this interval then
we can get a good bound on the error.

Example 3.4.31 Error in the approximation in 3.4.2.

Let us return to Example 3.4.2, and we’ll try to bound the error in our approximation
of e0.1.

• Recall that f(x) = ex, a = 0 and T0(x) = e0 = 1.

• Then by equation 3.4.30

e0.1 − T0(0.1) = f ′(c) · (0.1− 0) with 0 < c < 0.1

• Now f ′(c) = ec, so we need to bound ec on (0, 0.1). Since ec is an increasing
function, we know that

e0 < f ′(c) < e0.1 when 0 < c < 0.1

So one is tempted to write that

|e0.1 − T0(0.1)| = |R(x)| = |f ′(c)| · (0.1− 0)

< e0.1 · 0.1

And while this is true, it is rather circular. We have just bounded the error in
our approximation of e0.1 by 1

10
e0.1 — if we actually knew e0.1 then we wouldn’t

need to estimate it!

• While we don’t know e0.1 exactly, we do know a that 1 = e0 < e0.1 < e1 < 3. This
gives us

|R(0.1)| < 3× 0.1 = 0.3

That is — the error in our approximation of e0.1 is no greater than 0.3. Recall
that we don’t need the error exactly, we just need a good idea of how large it
actually is.

• In fact the real error here is

|e0.1 − T0(0.1)| = |e0.1 − 1| = 0.1051709 . . .

so we have over-estimated the error by a factor of 3.

But we can actually go a little further here — we can bound the error above and below.
If we do not take absolute values, then since

e0.1 − T0(0.1) = f ′(c) · 0.1 and 1 < f ′(c) < 3
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we can write

1× 0.1 ≤ (e0.1 − T0(0.1)) ≤ 3× 0.1

so

T0(0.1) + 0.1 ≤ e0.1 ≤ T0(0.1) + 0.3

1.1 ≤ e0.1 ≤ 1.3

So while the upper bound is weak, the lower bound is quite tight.

a Oops! Do we really know that e < 3? We haven’t proved it. We will do so soon.

There are formulae similar to equation 3.4.29, that can be used to bound the error
in our other approximations; all are based on generalisations of the MVT. The next
one — for linear approximations — is

f(x) = f(a) + f ′(a)(x− a)︸ ︷︷ ︸
=T1(x)

+
1

2
f ′′(c)(x− a)2 for some c strictly between a and x

which we can rewrite in terms of T1(x):

Equation 3.4.32 The error in linear approximation.

f(x)− T1(x) =
1

2
f ′′(c)(x− a)2 for some c strictly between a and x

It implies that the error that we make when we approximate f(x) by T1(x) =
f(a) + f ′(a) (x− a) is exactly 1

2
f ′′(c) (x− a)2 for some c strictly between a and x.

More generally

f(x) = f(a)+f ′(a) · (x−a)+ · · ·+ 1

n!
f (n)(a) · (x−a)n︸ ︷︷ ︸

=Tn(x)

+
1

(n+1)!
f (n+1)(c) · (x−a)n+1

for some c strictly between a and x. Again, rewriting this in terms of Tn(x) gives
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Equation 3.4.33

f(x)− Tn(x) =
1

(n+ 1)!
f (n+1)(c) · (x− a)n+1 for some c strictly between a and x

That is, the error introduced when f(x) is approximated by its Taylor polynomial
of degree n, is precisely the last term of the Taylor polynomial of degree n + 1, but
with the derivative evaluated at some point between a and x, rather than exactly at a.
These error formulae are proven in the optional Section 3.4.10 later in this chapter.

Example 3.4.34 Approximate sin 46◦ and estimate the error.

Approximate sin 46◦ using Taylor polynomials about a = 45◦, and estimate the resulting
error.
Solution

• Start by defining f(x) = sinx and

a = 45◦ = 45 π
180

radians x = 46◦ = 46 π
180

radians

x− a = π
180

radians

• The first few derivatives of f at a are

f(x) = sin x f(a) =
1√
2

f ′(x) = cos x

f ′(a) =
1√
2

f ′′(x) = − sinx

f ′′(a) = − 1√
2

f (3)(x) = − cosx f (3)(a) = − 1√
2

• The constant, linear and quadratic Taylor approximations for sin(x) about π
4
are

T0(x) = f(a) =
1√
2

T1(x) = T0(x) + f ′(a) · (x−a) =
1√
2

+
1√
2

(
x−π

4

)
T2(x) = T1(x)+

1

2
f ′′(a) · (x−a)2 =

1√
2

+
1√
2

(
x−π

4

)
− 1

2
√

2

(
x−π

4

)2
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• So the approximations for sin 46◦ are

sin 46◦ ≈ T0

(
46π

180

)
=

1√
2

= 0.70710678

sin 46◦ ≈ T1

(
46π

180

)
=

1√
2

+
1√
2

( π

180

)
= 0.71944812

sin 46◦ ≈ T2

(
46π

180

)
=

1√
2

+
1√
2

( π

180

)
− 1

2
√

2

( π

180

)2

= 0.71934042

• The errors in those approximations are (respectively)

error in 0.70710678 = f ′(c)(x− a) = cos c ·
( π

180

)
error in 0.71944812 =

1

2
f ′′(c)(x− a)2 = −1

2
· sin c ·

( π

180

)2

error in 0.71923272 =
1

3!
f (3)(c)(x− a)3 = − 1

3!
· cos c ·

( π

180

)3

In each of these three cases c must lie somewhere between 45◦ and 46◦.

• Rather than carefully estimating sin c and cos c for c in that range, we make use of
a simpler (but much easier bound). No matter what c is, we know that | sin c| ≤ 1
and | cos c| ≤ 1. Hence∣∣error in 0.70710678

∣∣ ≤ ( π

180

)
< 0.018∣∣error in 0.71944812

∣∣ ≤ 1

2

( π

180

)2

< 0.00015∣∣error in 0.71934042
∣∣ ≤ 1

3!

( π

180

)3

< 0.0000009

Example 3.4.35 Showing e < 3.

In Example 3.4.31 above we used the fact that e < 3 without actually proving it. Let’s
do so now.

• Consider the linear approximation of ex about a = 0.

T1(x) = f(0) + f ′(0) · x = 1 + x
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So at x = 1 we have

e ≈ T1(1) = 2

• The error in this approximation is

ex − T1(x) =
1

2
f ′′(c) · x2 =

ec

2
· x2

So at x = 1 we have

e− T1(1) =
ec

2

where 0 < c < 1.

• Now since ex is an increasing a function, it follows that ec < e. Hence

e− T1(1) =
ec

2
<
e

2

Moving the e
2
to the left hand side and the T1(1) to the right hand side gives

e

2
≤ T1(1) = 2

So e < 4.

• This isn’t as tight as we would like — so now do the same with the quadratic
approximation with a = 0:

ex ≈ T2(x) = 1 + x+
x2

2

So when x = 1 we have

e ≈ T2(1) = 1 + 1 +
1

2
=

5

2

• The error in this approximation is

ex − T2(x) =
1

3!
f ′′′(c) · x3 =

ec

6
· x3

So at x = 1 we have

e− T2(1) =
ec

6

where 0 < c < 1.
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• Again since ex is an increasing function we have ec < e. Hence

e− T2(1) =
ec

6
<
e

6

That is

5e

6
< T2(1) =

5

2

So e < 3 as required.

a Since the derivative of ex is ex which is positive everywhere, the function is increasing everywhere.

Example 3.4.36 More on ex.

We wrote down the general nth degree Maclaurin polynomial approximation of ex in
Example 3.4.12 above.

• Recall that

Tn(x) =
n∑
k=0

1

k!
xk

• The error in this approximation is (by equation 3.4.33)

ex − Tn(x) =
1

(n+ 1)!
ec

where c is some number between 0 and x.

• So setting x = 1 in this gives

e− Tn(1) =
1

(n+ 1)!
ec

where 0 < c < 1.

• Since ex is an increasing function we know that 1 = e0 < ec < e1 < 3, so the
above expression becomes

1

(n+ 1)!
≤ e− Tn(1) =

1

(n+ 1)!
ec ≤ 3

(n+ 1)!

• So when n = 9 we have

1

10!
≤ e−

(
1 + 1 +

1

2
+ · · ·+ 1

9!

)
≤ 3

10!
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• Now 1/10! < 3/10! < 10−6, so the approximation of e by

e ≈ 1 + 1 +
1

2
+ · · ·+ 1

9!
=

98641

36288
= 2.718281 . . .

is correct to 6 decimal places.

• More generally we know that using Tn(1) to approximate e will have an error of
at most 3

(n+1)!
— so it converges very quickly.

Example 3.4.37 Example 3.4.24 Revisited.

Recall a that in Example 3.4.24 (measuring the height of the pole), we used the linear
approximation

f(θ0 + ∆θ) ≈ f(θ0) + f ′(θ0)∆θ

with f(θ) = 10 tan θ and θ0 = 30
π

180
to get

∆h = f(θ0 + ∆θ)− f(θ0) ≈ f ′(θ0)∆θ which implies that ∆θ ≈ ∆h

f ′(θ0)

• While this procedure is fairly reliable, it did involve an approximation. So that
you could not 100% guarantee to your client’s lawyer that an accuracy of 10 cm
was achieved.

• On the other hand, if we use the exact formula 3.4.29, with the replacements
x→ θ0 + ∆θ and a→ θ0

f(θ0 + ∆θ) = f(θ0) + f ′(c)∆θ for some c between θ0 and θ0 + ∆θ

in place of the approximate formula 3.4.3, this legality is taken care of:

∆h = f(θ0+∆θ)− f(θ0) = f ′(c)∆θ for some c between θ0 and θ0 + ∆θ

We can clean this up a little more since in our example f ′(θ) = 10 sec2 θ. Thus
for some c between θ0 and θ0 + ∆θ:

|∆h| = 10 sec2(c)|∆θ|

• Of course we do not know exactly what c is. But suppose that we know that the
angle was somewhere between 25◦ and 35◦. In other words suppose that, even
though we don’t know precisely what our measurement error was, it was certainly
no more than 5◦.
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• Now on the range 25◦ < c < 35◦, sec(c) is an increasing and positive function.
Hence on this range

1.217 · · · = sec2 25◦ ≤ sec2 c ≤ sec2 35◦ = 1.490 . . . < 1.491

So

12.17 · |∆θ| ≤ |∆h| = 10 sec2(c) · |∆θ| ≤ 14.91 · |∆θ|

• Since we require |∆h| < 0.1, we need 14.91|∆θ| < 0.1, that is

|∆θ| < 0.1

14.91
= 0.0067 . . .

So we must measure angles with an accuracy of no less than 0.0067 radians —
which is

180

π
· 0.0067 = 0.38◦.

Hence a measurement error of 0.38◦ or less is acceptable.

a Now is a good time to go back and re-read it.

3.4.10 tt (Optional) — Derivation of the Error Formulae

In this section we will derive the formula for the error that we gave in equation 3.4.33
— namely

Rn(x) = f(x)− Tn(x) =
1

(n+ 1)!
f (n+1)(c) · (x− a)n+1

for some c strictly between a and x, and where Tn(x) is the nth degree Taylor polynomial
approximation of f(x) about x = a:

Tn(x) =
n∑
k=0

1

k!
f (k)(a).

Recall that we have already proved a special case of this formula for the constant
approximation using the Mean-Value Theorem (Theorem 2.13.5). To prove the general
case we need the following generalisation 13 of that theorem:

13 It is not a terribly creative name for the generalisation, but it is an accurate one.
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Theorem 3.4.38 Generalised Mean-Value Theorem.

Let the functions F (x) and G(x) both be defined and continuous on a ≤ x ≤ b
and both be differentiable on a < x < b. Furthermore, suppose that G′(x) 6= 0
for all a < x < b. Then, there is a number c obeying a < c < b such that

F (b)− F (a)

G(b)−G(a)
=
F ′(c)

G′(c)

Notice that setting G(x) = x recovers the original Mean-Value Theorem. It turns
out that this theorem is not too difficult to prove from the MVT using some sneaky
algebraic manipulations:

Proof.

• First we construct a new function h(x) as a linear combination of F (x) and
G(x) so that h(a) = h(b) = 0. Some experimentation yields

h(x) =
[
F (b)− F (a)

]
·
[
G(x)−G(a)

]
−
[
G(b)−G(a)

]
·
[
F (x)− F (a)

]
• Since h(a) = h(b) = 0, the Mean-Value theorem (actually Rolle’s theorem)

tells us that there is a number c obeying a < c < b such that h′(c) = 0:

h′(x) =
[
F (b)− F (a)

]
·G′(x)−

[
G(b)−G(a)

]
· F ′(x) so

0 =
[
F (b)− F (a)

]
·G′(c)−

[
G(b)−G(a)

]
· F ′(c)

Now move the G′(c) terms to one side and the F ′(c) terms to the other:[
F (b)− F (a)

]
·G′(c) =

[
G(b)−G(a)

]
· F ′(c).

• Since we have G′(x) 6= 0, we know that G′(c) 6= 0. Further the Mean-Value
theorem ensures a that G(a) 6= G(b). Hence we can move terms about to
get [

F (b)− F (a)
]

=
[
G(b)−G(a)

]
· F
′(c)

G′(c)

F (b)− F (a)

G(b)−G(a)
=
F ′(c)

G′(c)

as required.

�

a Otherwise if G(a) = G(b) the MVT tells us that there is some point c between a and b so
that G′(c) = 0.

349



Applications of derivatives 3.4 Taylor Polynomials

Armed with the above theorem we can now move on to the proof of the Taylor
remainder formula.

Proof of equation 3.4.33. We begin by proving the remainder formula for
n = 1. That is

f(x)− T1(x) =
1

2
f ′′(c) · (x− a)2

• Start by setting

F (x) = f(x)− T1(x) G(x) = (x− a)2

Notice that, since T1(a) = f(a) and T ′1(x) = f ′(a),

F (a) = 0 G(a) = 0

F ′(x) = f ′(x)− f ′(a) G′(x) = 2(x− a)

• Now apply the generalised MVT with b = x: there exists a point q between
a and x such that

F (x)− F (a)

G(x)−G(a)
=
F ′(q)

G′(q)

F (x)− 0

G(x)− 0
=
f ′(q)− f ′(a)

2(q − a)

2 · F (x)

G(x)
=
f ′(q)− f ′(a)

q − a

• Consider the right-hand side of the above equation and set g(x) = f ′(x).
Then we have the term g(q)−g(a)

q−a — this is exactly the form needed to apply
the MVT. So now apply the standard MVT to the right-hand side of the
above equation — there is some c between q and a so that

f ′(q)− f ′(a)

q − a =
g(q)− g(a)

q − a = g′(c) = f ′′(c)

Notice that here we have assumed that f ′′(x) exists.

• Putting this together we have that

2 · F (x)

G(x)
=
f ′(q)− f ′(a)

q − a = f ′′(c)

2
f(x)− T1(x)

(x− a)2
= f ′′(c)

f(x)− T1(x) =
1

2!
f ′′(c) · (x− a)2

as required.
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Oof! We have now proved the cases n = 1 (and we did n = 0 earlier).
To proceed — assume we have proved our result for n = 1, 2, · · · , k. We realise
that we haven’t done this yet, but bear with us. Using that assumption we will
prove the result is true for n = k + 1. Once we have done that, then

• we have proved the result is true for n = 1, and

• we have shown if the result is true for n = k then it is true for n = k + 1

Hence it must be true for all n ≥ 1. This style of proof is called mathematical
induction. You can think of the process as something like climbing a ladder:

• prove that you can get onto the ladder (the result is true for n = 1), and

• if I can stand on the current rung, then I can step up to the next rung (if
the result is true for n = k then it is also true for n = k + 1)

Hence I can climb as high as like.

• Let k > 0 and assume we have proved

f(x)− Tk(x) =
1

(k + 1)!
f (k+1)(c) · (x− a)k+1

for some c between a and x.

• Now set

F (x) = f(x)− Tk+1(x) G(x) = (x− a)k+1

and notice that, since Tk+1(a) = f(a),

F (a) = f(a)− Tk+1(a) = 0 G(a) = 0 G′(x) = (k + 1)(x− a)k

and apply the generalised MVT with b = x: hence there exists a q between
a and x so that

F (x)− F (a)

G(x)−G(a)
=
F ′(q)

G′(q)
which becomes

F (x)

(x− a)k+1
=

F ′(q)

(k + 1)(q − a)k
rearrange

F (x) =
(x− a)k+1

(k + 1)(q − a)k
· F ′(q)

• We now examine F ′(q). First carefully differentiate F (x):

F ′(x) =
d

dx

[
f(x)−

(
f(a) + f ′(a)(x− a) +

1

2
f ′′(a)(x− a)2 + · · ·
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+
1

k!
f (k)(x− a)k

)]
= f ′(x)−

(
f ′(a) +

2

2
f ′′(a)(x− a) +

3

3!
f ′′′(a)(x− a)2 + · · ·

+
k

k!
f (k)(a)(x− a)k−1

)
= f ′(x)−

(
f ′(a) + f ′′(a)(x− a) +

1

2
f ′′′(a)(x− a)2 + · · ·

+
1

(k − 1)!
f (k)(a)(x− a)k−1

)
Now notice that if we set f ′(x) = g(x) then this becomes

F ′(x) = g(x)−
(
g(a) + g′(a)(x− a) +

1

2
g′′(a)(x− a)2 + · · ·

+
1

(k − 1)!
g(k−1)(a)(x− a)k−1

)
So F ′(x) is then exactly the remainder formula but for a degree k − 1 ap-
proximation to the function g(x) = f ′(x).

• Hence the function F ′(q) is the remainder when we approximate f ′(q) with
a degree k − 1 Taylor polynomial. The remainder formula, equation 3.4.33,
then tells us that there is a number c between a and q so that

F ′(q) = g(q)−
(
g(a) + g′(a)(q − a) +

1

2
g′′(a)(q − a)2 + · · ·

+
1

(k − 1)!
g(k−1)(a)(q − a)k−1

)
=

1

k!
g(k)(c)(q − a)k =

1

k!
f (k+1)(c)(q − a)k

Notice that here we have assumed that f (k+1)(x) exists.

• Now substitute this back into our equation above

F (x) =
(x− a)k+1

(k + 1)(q − a)k
· F ′(q)

=
(x− a)k+1

(k + 1)(q − a)k
· 1

k!
f (k+1)(c)(q − a)k

=
1

(k + 1)k!
· f (k+1)(c) · (x− a)k+1(q − a)k

(q − a)k

=
1

(k + 1)!
· f (k+1)(c) · (x− a)k+1

as required.
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So we now know that

• if, for some k, the remainder formula (with n = k) is true for all k times
differentiable functions,

• then the remainder formula is true (with n = k + 1) for all k + 1 times
differentiable functions.

Repeatedly applying this for k = 1, 2, 3, 4, · · · (and recalling that we have shown
the remainder formula is true when n = 0, 1) gives equation 3.4.33 for all n =
0, 1, 2, · · ·.

�

3.4.11 tt Exercises

ttt Exercises for § 3.4.1

Exercises — Stage 1

1. The graph below shows three curves. The black curve is y = f(x), the red
curve is y = g(x) = 1 + 2 sin(1 + x), and the blue curve is y = h(x) = 0.7.
If you want to estimate f(0), what might cause you to use g(0)? What
might cause you to use h(0)?

x

y

y = f(x)
y = g(x)

y = h(x)
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Exercises — Stage 2 In this and following sections, we will ask you to approximate
the value of several constants, such as log(0.93). A valid question to consider is why
we would ask for approximations of these constants that take lots of time, and are less
accurate than what you get from a calculator.

One answer to this question is historical: people were approximating logarithms
before they had calculators, and these are some of the ways they did that. Pretend
you’re on a desert island without any of your usual devices and that you want to make
a number of quick and dirty approximate evaluations.

Another reason to make these approximations is technical: how does the calculator
get such a good approximation of log(0.93)? The techniques you will learn later on
in this chapter give very accurate formulas for approximating functions like log x and
sinx, which are sometimes used in calculators.

A third reason to make simple approximations of expressions that a calculator could
evaluate is to provide a reality check. If you have a ballpark guess for your answer, and
your calculator gives you something wildly different, you know to double-check that
you typed everything in correctly.For now, questions like Question 3.4.11.2 through
Question 3.4.11.4 are simply for you to practice the fundamental ideas we’re learning.

2. Use a constant approximation to estimate the value of log(x) when x = 0.93.
Sketch the curve y = f(x) and your constant approximation.
(Remember that in CLP-1 we use log x to mean the natural logarithm of x,
loge x.)

3. Use a constant approximation to estimate arcsin(0.1).

4. Use a constant approximation to estimate
√

3 tan(1).

Exercises — Stage 3

5. Use a constant approximation to estimate the value of 10.13. Your estima-
tion should be something you can calculate in your head.

ttt Exercises for § 3.4.2

Exercises — Stage 1

1. Suppose f(x) is a function, and we calculated its linear approximation near
x = 5 to be f(x) ≈ 3x− 9.

a What is f(5)?

b What is f ′(5)?

c What is f(0)?
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2. The curve y = f(x) is shown below. Sketch the linear approximation of
f(x) about x = 2.

x

y

y = f(x)

2

3. What is the linear approximation of the function f(x) = 2x+ 5 about x = a?

Exercises — Stage 2

4. Use a linear approximation to estimate log(x) when x = 0.93. Sketch the
curve y = f(x) and your linear approximation.
(Remember that in CLP-1 we use log x to mean the natural logarithm of
x, loge x.)

5. Use a linear approximation to estimate
√

5.

6. Use a linear approximation to estimate 5
√

30

Exercises — Stage 3

7. Use a linear approximation to estimate 10.13, then compare your estimation
with the actual value.

8. Imagine f(x) is some function, and you want to estimate f(b). To do this,
you choose a value a and take an approximation (linear or constant) of f(x)
about a. Give an example of a function f(x), and values a and b, where
the constant approximation gives a more accurate estimation of f(b) than the
linear approximation.

9. The function

L(x) =
1

4
x+

4π −
√

27

12

is the linear approximation of f(x) = arctan x about what point x = a?
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ttt Exercises for § 3.4.3

Exercises — Stage 1

1. The quadratic approximation of a function f(x) about x = 3 is

f(x) ≈ −x2 + 6x

What are the values of f(3), f ′(3), f ′′(3), and f ′′′(3)?

2. Give a quadratic approximation of f(x) = 2x+ 5 about x = a.

Exercises — Stage 2

3. Use a quadratic approximation to estimate log(0.93).
(Remember that in CLP-1 we use log x to mean the natural logarithm of
x, loge x.)

4. Use a quadratic approximation to estimate cos

(
1

15

)
.

5. Calculate the quadratic approximation of f(x) = e2x about x = 0.

6. Use a quadratic approximation to estimate 5
4
3 .

7. Evaluate the expressions below.

a
30∑
n=5

1

b
3∑

n=1

[
2(n+ 3)− n2

]

c
10∑
n=1

[
1

n
− 1

n+ 1

]

d
4∑

n=1

5 · 2n
4n+1

8. Write the following in sigma notation:

a 1 + 2 + 3 + 4 + 5

b 2 + 4 + 6 + 8
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c 3 + 5 + 7 + 9 + 11

d 9 + 16 + 25 + 36 + 49

e 9 + 4 + 16 + 5 + 25 + 6 + 36 + 7 + 49 + 8

f 8 + 15 + 24 + 35 + 48

g 3− 6 + 9− 12 + 15− 18

Exercises — Stage 3

9. Use a quadratic approximation of f(x) = 2 arcsinx about x = 0 to approx-
imate f(1). What number are you approximating?

10. Use a quadratic approximation of ex to estimate e as a decimal.

11. Group the expressions below into collections of equivalent expressions.

a
10∑
n=1

2n

b
10∑
n=1

2n

c
10∑
n=1

n2

d 2
10∑
n=1

n

e 2
11∑
n=2

(n− 1)

f
14∑
n=5

(n− 4)2

g
1

4

10∑
n=1

(
4n+1

2n

)
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ttt Exercises for § 3.4.4

Exercises — Stage 1

1. The 3rd degree Taylor polynomial for a function f(x) about x = 1 is

T3(x) = x3 − 5x2 + 9x

What is f ′′(1)?

2. The nth degree Taylor polynomial for f(x) about x = 5 is

Tn(x) =
n∑
k=0

2k + 1

3k − 9
(x− 5)k

What is f (10)(5)?

Exercises — Stage 3

3. The 4th-degree Maclaurin polynomial for f(x) is

T4(x) = x4 − x3 + x2 − x+ 1

What is the third-degree Maclaurin polynomial for f(x)?

4. The 4th degree Taylor polynomial for f(x) about x = 1 is

T4(x) = x4 + x3 − 9

What is the third degree Taylor polynomial for f(x) about x = 1?

5. For any even number n, suppose the nth degree Taylor polynomial for f(x)
about x = 5 is

n/2∑
k=0

2k + 1

3k − 9
(x− 5)2k

What is f (10)(5)?

6. The third-degree Taylor polynomial for f(x) = x3

[
2 log x− 11

3

]
about

x = a is
T3(x) = −2

3

√
e3 + 3ex− 6

√
ex2 + x3

What is a?
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ttt Exercises for § 3.4.5

Exercises — Stage 1

1. Give the 16th degree Maclaurin polynomial for f(x) = sinx+ cosx.

2. Give the 100th degree Taylor polynomial for s(t) = 4.9t2 − t + 10 about
t = 5.

3. Write the nth-degree Taylor polynomial for f(x) = 2x about x = 1 in sigma
notation.

4. Find the 6th degree Taylor polynomial of f(x) = x2 log x + 2x2 + 5 about
x = 1, remembering that log x is the natural logarithm of x, loge x.

5. Give the nth degree Maclaurin polynomial for
1

1− x in sigma notation.

Exercises — Stage 3

6. Calculate the 3rd-degree Taylor Polynomial for f(x) = xx about x = 1.

7. Use a 5th-degree Maclaurin polynomial for 6 arctanx to approximate π.
8. Write the 100th-degree Taylor polynomial for f(x) = x(log x− 1) about x = 1

in sigma notation.

9. Write the (2n)th-degree Taylor polynomial for f(x) = sinx about x =
π

4
in

sigma notation.

10. Estimate the sum below

1 +
1

2
+

1

3!
+

1

4!
+ · · ·+ 1

157!

by interpreting it as a Maclaurin polynomial.

11. Estimate the sum below

100∑
k=0

(−1)k

2k!

(
5π

4

)2k

by interpreting it as a Maclaurin polynomial.
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ttt Exercises for § 3.4.6

Exercises — Stage 1

1. In the picture below, label the following:

f(x) f (x+ ∆x) ∆x ∆y

x

y

y = f(x)

x x+ ∆x

2. At this point in the book, every homework problem takes you about 5
minutes. Use the terms you learned in this section to answer the question:
if you spend 15 minutes more, how many more homework problems will
you finish?

Exercises — Stage 2

3. Let f(x) = arctan x.

a Use a linear approximation to estimate f(5.1)− f(5).

b Use a quadratic approximation to estimate f(5.1)− f(5).

4. When diving off a cliff from x metres above the water, your speed as you hit
the water is given by

s(x) =
√

19.6x
m

sec

Your last dive was from a height of 4 metres.

a Use a linear approximation of ∆y to estimate how much faster you will
be falling when you hit the water if you jump from a height of 5 metres.

b A diver makes three jumps: the first is from x metres, the second from
x+∆x metres, and the third from x+2∆x metres, for some fixed positive
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values of x and ∆x. Which is bigger: the increase in terminal speed from
the first to the second jump, or the increase in terminal speed from the
second to the third jump?

ttt Exercises for § 3.4.7

Exercises — Stage 1

1. Let f(x) = 7x2 − 3x + 4. Suppose we measure x to be x0 = 2 but that the
real value of x is x0 + ∆x. Suppose further that the error in our measurement
is ∆x = 1. Let ∆y be the change in f(x) corresponding to a change of ∆x in
x0. That is, ∆y = f (x0 + ∆x)− f(x0).
True or false: ∆y = f ′(2)(1) = 25

2. Suppose the exact amount you are supposed to tip is $5.83, but you approxi-
mate and tip $6. What is the absolute error in your tip? What is the percent
error in your tip?

3. Suppose f(x) = 3x2 − 5. If you measure x to be 10, but its actual value is 11,
estimate the resulting error in f(x) using the linear approximation, and then
the quadratic approximation.

Exercises — Stage 2
4. A circular pen is being built on a farm. The pen must contain A0 square

metres, with an error of no more than 2%. Estimate the largest percentage
error allowable on the radius.

5. A circle with radius 3 has a sector cut out of it. It’s a smallish sector, no more
than a quarter of the circle. You want to find out the area of the sector.

dθ

a Suppose the angle of the sector is θ. What is the area of the sector?

b Unfortunately, you don’t have a protractor, only a ruler. So, you measure
the chord made by the sector (marked d in the diagram above). What is
θ in terms of d?
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c Suppose you measured d = 0.7, but actually d = 0.68. Estimate the
absolute error in your calculation of the area removed.

6. A conical tank, standing on its pointy end, has height 2 metres and radius 0.5
metres. Estimate change in volume of the water in the tank associated to a
change in the height of the water from 50 cm to 45 cm.

0.5

2

Exercises — Stage 3
7. A sample begins with precisely 1 µg of a radioactive isotope, and after 3 years

is measured to have 0.9 µg remaining. If this measurement is correct to within
0.05 µg, estimate the corresponding accuracy of the half-life calculated using
it.

ttt Exercises for § 3.4.8

Exercises — Stage 1

1. Suppose f(x) is a function that we approximated by F (x). Further,
suppose f(10) = −3, while our approximation was F (10) = 5. Let
R(x) = f(x)− F (x).

a True or false: |R(10)| ≤ 7

b True or false: |R(10)| ≤ 8

c True or false: |R(10)| ≤ 9

d True or false: |R(10)| ≤ 100

2. Let f(x) = ex, and let T3(x) be the third-degree Maclaurin polynomial for
f(x),

T3(x) = 1 + x+
1

2
x2 +

1

3!
x3

Use Equation 3.4.33 to give a reasonable bound on the error |f(2)−T3(2)|.
Then, find the error |f(2)− T3(2)| using a calculator.
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3. Let f(x) = 5x3 − 24x2 + ex − π4, and let T5(x) be the fifth-degree Taylor
polynomial for f(x) about x = 1. Give the best bound you can on the error
|f(37)− T (37)|.

4. You and your friend both want to approximate sin(33). Your friend uses the
first-degree Maclaurin polynomial for f(x) = sinx, while you use the zeroth-
degree (constant) Maclaurin polynomial for f(x) = sinx. Who has a better
approximation, you or your friend?

Exercises — Stage 2

5. Suppose a function f(x) has sixth derivative

f (6)(x) =
6!(2x− 5)

x+ 3
.

Let T5(x) be the 5th-degree Taylor polynomial for f(x) about x = 11.
Give a bound for the error |f(11.5)− T5(11.5)|.

6. Let f(x) = tanx, and let T2(x) be the second-degree Taylor polynomial for
f(x) about x = 0. Give a reasonable bound on the error |f(0.1)−T (0.1)| using
Equation 3.4.33.

7. Let f(x) = log(1 − x), and let T5(x) be the fifth-degree Maclaurin poly-
nomial for f(x). Use Equation 3.4.33 to give a bound on the error
|f
(
−1

4

)
− T5

(
−1

4

)
|.

(Remember log x = loge x, the natural logarithm of x.)

8. Let f(x) = 5
√
x, and let T3(x) be the third-degree Taylor polynomial for f(x)

about x = 32. Give a bound on the error |f(30)− T3(30)|.
9. Let

f(x) = sin

(
1

x

)
,

and let T1(x) be the first-degree Taylor polynomial for f(x) about x =
1

π
.

Give a bound on the error |f(0.01) − T1(0.01)|, using Equation 3.4.33. You
may leave your answer in terms of π.
Then, give a reasonable bound on the error |f(0.01)− T1(0.01)|.

10. Let f(x) = arcsin x, and let T2(x) be the second-degree Maclaurin polyno-
mial for f(x). Give a reasonable bound on the error

∣∣f (1
2

)
− T2

(
1
2

)∣∣ using
Equation 3.4.33. What is the exact value of the error

∣∣f (1
2

)
− T2

(
1
2

)∣∣?
Exercises — Stage 3

11. Let f(x) = log(x), and let Tn(x) be the nth-degree Taylor polynomial for f(x)
about x = 1. You use Tn(1.1) to estimate log(1.1). If your estimation needs to
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have an error of no more than 10−4, what is an acceptable value of n to use?

12. Give an estimation of 7
√

2200 using a Taylor polynomial. Your estimation
should have an error of less than 0.001.

13. Use Equation 3.4.33 to show that

4241

5040
≤ sin(1) ≤ 4243

5040

14. In this question, we use the remainder of a Maclaurin polynomial to approxi-
mate e.

a Write out the 4th degree Maclaurin polynomial T4(x) of the function ex.

b Compute T4(1).

c Use your answer from 3.4.11.14.b to conclude
326

120
< e <

325

119
.

ttt Further problems for § 3.4

Exercises — Stage 1

1. ∗. Consider a function f(x) whose third-degree Maclaurin polynomial is 4 +
3x2 + 1

2
x3. What is f ′(0)? What is f ′′(0)?

2. ∗. Consider a function h(x) whose third-degree Maclaurin polynomial is 1 +

4x− 1

3
x2 +

2

3
x3. What is h(3)(0)?

3. ∗. The third-degree Taylor polynomial of h(x) about x = 2 is 3 +
1

2
(x− 2) +

2(x− 2)3.
What is h′(2)? What is h′′(2)?

Exercises — Stage 2

4. ∗. The function f(x) has the property that f(3) = 2, f ′(3) = 4 and
f ′′(3) = −10.

a Use the linear approximation to f(x) centred at x = 3 to approximate
f(2.98).

b Use the quadratic approximation to f(x) centred at x = 3 to approx-
imate f(2.98).
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5. ∗. Use the tangent line to the graph of y = x1/3 at x = 8 to find an
approximate value for 101/3. Is the approximation too large or too small?

6. ∗. Estimate
√

2 using a linear approximation.

7. ∗. Estimate 3
√

26 using a linear approximation.

8. ∗. Estimate (10.1)5 using a linear approximation.

9. ∗. Estimate sin

(
101π

100

)
using a linear approximation. (Leave your answer in

terms of π.)

10. ∗. Use a linear approximation to estimate arctan(1.1), using arctan 1 =
π

4
.

11. ∗. Use a linear approximation to estimate (2.001)3. Write your answer in the
form n/1000 where n is an integer.

12. ∗. Using a suitable linear approximation, estimate (8.06)2/3. Give your answer
as a fraction in which both the numerator and denominator are integers.

13. ∗. Find the third–order Taylor polynomial for f(x) = (1 − 3x)−1/3 around
x = 0.

14. ∗. Consider a function f(x) which has f (3)(x) =
x

22− x2
. Show that when

we approximate f(2) using its second degree Taylor polynomial at a = 1, the
absolute value of the error is less than 1

50
= 0.02.

15. ∗. Consider a function f(x) which has f (4)(x) =
cos(x2)

3− x . Show that when

we approximate f(0.5) using its third-degree Maclaurin polynomial, the
absolute value of the error is less than 1

500
= 0.002.

16. ∗. Consider a function f(x) which has f (3)(x) =
e−x

8 + x2
. Show that when

we approximate f(1) using its second degree Maclaurin polynomial, the
absolute value of the error is less than 1/40.

17. ∗.

a By using an appropriate linear approximation for f(x) = x1/3, estimate
52/3.

b Improve your answer in 3.4.11.17.a by making a quadratic approximation.

c Obtain an error estimate for your answer in 3.4.11.17.a (not just by
comparing with your calculator’s answer for 52/3).
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Exercises — Stage 3

18. The 4th degree Maclaurin polynomial for f(x) is

T4(x) = 5x2 − 9

What is the third degree Maclaurin polynomial for f(x)?

19. ∗. The equation y4 + xy = x2 − 1 defines y implicitly as a function of x
near the point x = 2, y = 1.

a Use the tangent line approximation at the given point to estimate
the value of y when x = 2.1.

b Use the quadratic approximation at the given point to estimate the
value of y when x = 2.1.

c Make a sketch showing how the curve relates to the tangent line at
the given point.

20. ∗. The equation x4 + y + xy4 = 1 defines y implicitly as a function of x near
the point x = −1, y = 1.

a Use the tangent line approximation at the given point to estimate the
value of y when x = −0.9.

b Use the quadratic approximation at the given point to get another esti-
mate of y when x = −0.9.

c Make a sketch showing how the curve relates to the tangent line at the
given point.

21. ∗. Given that log 10 ≈ 2.30259, estimate log 10.3 using a suitable tangent
line approximation. Give an upper and lower bound for the error in your
approximation by using a suitable error estimate.

22. ∗. Consider f(x) = ee
x .

a Give the linear approximation for f near x = 0 (call this L(x)).

b Give the quadratic approximation for f near x = 0 (call this Q(x)).

c Prove that L(x) < Q(x) < f(x) for all x > 0.

d Find an interval of length at most 0.01 that is guaranteed to contain the
number e0.1.
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3.5q Optimisation

One important application of differential calculus is to find the maximum (or minimum)
value of a function. This often finds real world applications in problems such as the
following.

Example 3.5.1 Enclosing a paddock.

A farmer has 400m of fencing materials. What is the largest rectangular paddock that
can be enclosed?
Solution We will describe a general approach to these sorts of problems in Sec-
tions 3.5.2 and 3.5.3 below, but here we can take a stab at starting the problem.

• Begin by defining variables and their units (more generally we might draw a
picture too); let the dimensions of the paddock be x by y metres.

• The area enclosed is then Am2 where

A = x · y
At this stage we cannot apply the calculus we have developed since the area is a
function of two variables and we only know how to work with functions of a single
variable. We need to eliminate one variable.

• We know that the perimeter of the rectangle (and hence the dimensions x and y)
are constrained by the amount of fencing materials the farmer has to hand:

2x+ 2y ≤ 400

and so we have

y ≤ 200− x
Clearly the area of the paddock is maximised when we use all the fencing possible,
so

y = 200− x

• Now substitute this back into our expression for the area

A = x · (200− x)

Since the area cannot be negative (and our lengths x, y cannot be negative either),
we must also have

0 ≤ x ≤ 200

• Thus the question of the largest paddock enclosed becomes the problem of finding
the maximum value of

A = x · (200− x) subject to the constraint 0 ≤ x ≤ 200.
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The above example is sufficiently simple that we can likely determine the answer by
several different methods. In general, we will need more systematic methods for solving
problems of the form

Find the maximum value of y = f(x) subject to a ≤ x ≤ b

To do this we need to examine what a function looks like near its maximum and
minimum values.

3.5.1 tt Local and Global Maxima and Minima

We start by asking:

Suppose that the maximum (or minimum) value of f(x) is f(c) then what
does that tell us about c?

Notice that we have not yet made the ideas of maximum and minimum very precise.
For the moment think of maximum as “the biggest value” and minimum as “the smallest
value”.

Warning 3.5.2

It is important to distinguish between “the smallest value” and “the smallest
magnitude”. For example, because

−5 < −1

the number −5 is smaller than −1. But the magnitude of −1, which is |−1| = 1,
is smaller than the magnitude of −5, which is | − 5| = 5. Thus the smallest
number in the set {−1,−5} is −5, while the number in the set {−1,−5} that has
the smallest magnitude is −1.

Now back to thinking about what happens around a maximum. Suppose that the
maximum value of f(x) is f(c), then for all “nearby” points, the function should be
smaller.
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Consider the derivative of f ′(c):

f ′(c) = lim
h→0

f(c+ h)− f(c)

h
.

Split the above limit into the left and right limits:

• Consider points to the right of x = c, For all h > 0,

f(c+ h) ≤ f(c) which implies that
f(c+ h)− f(c) ≤ 0 which also implies
f(c+ h)− f(c)

h
≤ 0 since

negative
positive

= negative.

But now if we squeeze h→ 0 we get

lim
h→0+

f(c+ h)− f(c)

h
≤ 0

(provided the limit exists).

• Consider points to the left of x = c. For all h < 0,

f(c+ h) ≤ f(c) which implies that
f(c+ h)− f(c) ≤ 0 which also implies
f(c+ h)− f(c)

h
≥ 0 since

negative
negative

= positive.

But now if we squeeze h→ 0 we get

lim
h→0−

f(c+ h)− f(c)

h
≥ 0

(provided the limit exists).

• So if the derivative f ′(c) exists, then the above right- and left-hand limits must
agree, which forces f ′(c) = 0.

Thus we can conclude that

If the maximum value of f(x) is f(c) and f ′(c) exists, then f ′(c) = 0.

Using similar reasoning one can also see that

If the minimum value of f(x) is f(c) and f ′(c) exists, then f ′(c) = 0.

Notice two things about the above reasoning:

• Firstly, in order for the argument to work we only need that f(x) < f(c) for x
close to c — it does not matter what happens for x values far from c.
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• Secondly, in the above argument we needed to consider f(x) for x both to the left
of and to the right of c. If the function f(x) is defined on a closed interval [a, b],
then the above argument only applies when a < c < b — not when c is either of
the endpoints a and b.

Consider the function below

This function has only 1 maximum value (the middle green point in the graph)
and 1 minimum value (the rightmost blue point), however it has 4 points at which
the derivative is zero. In the small intervals around those points where the derivative
is zero, we can see that function is locally a maximum or minimum, even if it is not
the global maximum or minimum. We clearly need to be more careful distinguishing
between these cases.

Definition 3.5.3

Let I be an interval, like (a, b) or [a, b] for example, and let the function f(x) be
defined for all x ∈ I. Now let c ∈ I. Then

• we say that f(x) has a global (or absolute) minimum on the interval I at
the point x = c if f(x) ≥ f(c) for all x ∈ I.

• Similarly, we say that f(x) has a global (or absolute) maximum on I at
x = c if f(x) ≤ f(c) for all x ∈ I.

• We say that f(x) has a locala minimum on I at x = c if f(x) ≥ f(c) for all
x ∈ I that are near c. Precisely, if there is a δ > 0 such that f(x) ≥ f(c)
for all x ∈ I that are within a distance δ of c.

• Similarly, we say that f(x) has a local maximum on I at x = c if f(x) ≤ f(c)
for all x ∈ I that are near c. Precisely, if there is a δ > 0 such that
f(x) ≤ f(c) for all x ∈ I that are within a distance δ of c.

The global maxima and minima of a function are called the global extrema of the
function, while the local maxima and minima are called the local extrema.

a Beware that, while many textbooks use these definitions of local minimum and maximum,
some textbooks exclude the endpoints a, b of the interval [a, b] from their definitions. Our
definitions allow the endpoints a and b to be local minima and maxima. Note that, under
our definitions, every global minimum (maximum) is also a local minimum (maximum).
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Consider again the function we showed in the figure above

It has 3 local maxima and 3 local minima on the interval [a, b]. The global maximum
occurs at the middle green point (which is also a local maximum), and the global
minimum occurs at the rightmost blue point (which is also a local minimum).

Using the above definition we can summarise what we have learned above as the
following theorem 1:

Theorem 3.5.4

Let the function f(x) be defined on the interval I and let a, b, c be points in I
with a < c < b. If f(x) has a local maximum or local minimum at x = c and if
f ′(c) exists, then f ′(c) = 0.

• It is often (but not always) the case that, when f(x) has a local maximum at
x = c, the function f(x) increases strictly as x approaches c from the left and
decreases strictly as x leaves c to the right. That is, f ′(x) > 0 for x just to the left
of c and f ′(x) < 0 for x just to the right of c. Then, it is often the case, because
f ′(x) is decreasing as x increases through c, that f ′′(c) < 0.

• Conversely, if f ′(c) = 0 and f ′′(c) < 0, then, just to the right of c, f ′(x) must
be negative, so that f(x) is decreasing, and just to the left of c, f ′(x) must be
positive, so that f(x) is increasing. So f(x) has a local maximum at c.

• Similarly, it is often the case that, when f(x) has a local minimum at x = c,
f ′(x) < 0 for x just to the left of c and f ′(x) > 0 for x just to the right of c and
f ′′(x) > 0.

1 This is one of several important mathematical contributions made by Pierre de Fermat, a French
government lawyer and amateur mathematician, who lived in the first half of the seventeenth
century.
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• Conversely, if f ′(c) = 0 and f ′′(c) > 0, then, just to the right of c, f ′(x) must
be positive, so that f(x) is increasing, and, just to the left of c, f ′(x) must be
negative, so that f(x) is decreasing. So f(x) has a local minimum at c.

Theorem 3.5.5

Let f(x) be defined on the interval I and let a, b, c ∈ I with a < c < b.
If f ′(c) = 0 and f ′′(c) < 0, then f(x) has a local maximum at c.
If f ′(c) = 0 and f ′′(c) > 0, then f(x) has a local minimum at c.
Note the strict inequalities.

Theorem 3.5.4 says that, when f(x) has a local maximum or minimum at x = c, there
are three possibilities.

• The derivative f ′(c) = 0. This case is illustrated in the following figure.

Observe that, in this example, f ′(x) changes continuously from negative to pos-
itive at the local minimum, taking the value zero at the local minimum (the red
dot).

• The derivative f ′(c) does not exist. This case is illustrated in the following figure.

x

y

a b

y = f(x)

x

y

a b

y = f ′(x)

Observe that, in this example, f ′(x) changes discontinuously from negative to
positive at the local minimum (x = 0) and f ′(0) does not exist.

• The point c is an endpoint of the interval I. This case is also illustrated in the
above figure. The endpoints a and b are both local maxima. But f ′(a) and f ′(b)
are not zero.
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This theorem demonstrates that the points at which the derivative is zero or does not
exist are very important. It simplifies the discussion that follows if we give these points
names.

Definition 3.5.6

Let f(x) be a function that is defined on the interval a < x < b and let a < c < b.
Then

• if f ′(c) exists and is zero we call x = c a critical point of the function, and

• if f ′(c) does not exist then we call x = c a singular pointa of the function.

a For c to be a local maximum or minimum of f , the function f must obviously be defined
at c. So here we are considering only points c in the domain of f . We will later, in §3.6.2,
extend the definition of singular points of f to points that are not in the domain of f .

Warning 3.5.7

Note that some people (and texts) will combine both of these cases and call x = c
a critical point when either the derivative is zero or does not exist. The reader
should be aware of the lack of convention on this point a and should be careful to
understand whether the more inclusive definition of critical point is being used,
or if the text is using the more precise definition that distinguishes critical and
singular points.

a No pun intended.

We’ll now look at a few simple examples involving local maxima and minima, critical
points and singular points. Then we will move on to global maxima and minima.

Example 3.5.8 Local max and min of x3 − 6x.

In this example, we’ll look for local maxima and minima of the function f(x) = x3−6x
on the interval −2 ≤ x ≤ 3.

• First compute the derivative

f ′(x) = 3x2 − 6.

Since this is a polynomial it is defined everywhere on the domain and so there
will not be any singular points. So we now look for critical points.

• To do so we look for zeroes of the derivative

f ′(x) = 3x2 − 6 = 3(x2 − 2) = 3(x−
√

2)(x+
√

2).
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Example 3.5.8

This derivative takes the value 0 at two different values of x. Namely x = c− =
−
√

2 and x = c+ =
√

2. Here is a sketch of the graph of f(x).

From the figure we see that

◦ f(x) has a local minimum at the endpoint x = −2 (i.e. we have f(x) ≥ f(−2)
whenever x ≥ −2 is close to −2) and

◦ f(x) has a local minimum at x = c+ (i.e. we have f(x) ≥ f(c+) whenever x
is close to c+) and

◦ f(x) has a local maximum at x = c− (i.e. we have f(x) ≤ f(c−) whenever x
is close to c−) and

◦ f(x) has a local maximum at the endpoint x = 3 (i.e. we have f(x) ≤ f(3)
whenever x ≤ 3 is close to 3) and

◦ the global minimum of f(x), for x in the interval −2 ≤ x ≤ 3, is at x = c+

(i.e. we have f(x) ≥ f(c+) whenever −2 ≤ x ≤ 3) and

◦ the global maximum of f(x), for x in the interval −2 ≤ x ≤ 3, is at x = 3
(i.e. we have f(x) ≤ f(3) whenever −2 ≤ x ≤ 3).

• Note that we have carefully constructed this example to illustrate that the global
maximum (or minimum) of a function on an interval may or may not also be a
critical point of the function.

Example 3.5.9 Local max and min of x3.

In this example, we’ll look for local maxima and minima of the function f(x) = x3 on
the interval −1 < x < 1.
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Example 3.5.9

• First compute the derivative:

f ′(x) = 3x2.

Again, this is a polynomial and so defined on all of the domain. The function will
not have singular points, but may have critical points.

• The derivative is zero only when x = 0, so x = c = 0 is the only critical point of
the function.

• The graph of f(x) is sketched below. From that sketch we see that f(x) has
neither a local maximum nor a local minimum at x = c despite the fact that
f ′(c) = 0 — we have f(x) < f(c) = 0 for all x < c = 0 and f(x) > f(c) = 0 for
all x > c = 0.

• Note that this example has been constructed to illustrate that a critical point (or
singular point) of a function need not be a local maximum or minimum for the
function.

• Reread Theorem 3.5.4. It saysa “Let · · ·. If f(x) has a local maximum/minimum
at x = c and if f ′(c) exists, then f ′(c) = 0”. It does not say that “if f ′(c) = 0
then f has a local maximum/minimum at x = c”.

a A very common error of logic that people make is “Affirming the consequent”. When the statement
“if P then Q” is true, observing Q does not imply P. (“Affirming the consequent” eliminates “not”
from the previous sentence.) For example, “If he is Shakespeare then he is dead.” and “That man
is dead.” does not imply “He must be Shakespeare.”. Or you may have also seen someone use
this reasoning: “If a person is a genius before their time then they are misunderstood.” “I am
misunderstood.” “So I must be a genius before my time.”.
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Example 3.5.10 Local max and min of |x| and x2/3.

In this example, we’ll look for local maxima and minima of the function

f(x) = |x| =
{
x if x ≥ 0

−x if x < 0

on the interval −1 < x < 1 and we’ll also look for local maxima and minima of the
function

g(x) = x2/3

on the interval −1 < x < 1.

• Again, start by computing the derivatives (reread Example 2.2.10):

f ′(x) =


1 if x > 0

undefined if x = 0

−1 if x < 0

g′(x) =

{
2
3
x−1/3 if x 6= 0

undefined if x = 0

• These derivatives never take the value 0, so the functions f(x) and g(x) do not
have any critical points. However both derivatives do not exist at the point x = 0,
so that point is a singular point for both f(x) and g(x).

• Here is a sketch of the graph of f(x)

and a sketch of the graph of g(x).
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Example 3.5.10

x

y

1−1

y = g(x) = x2/3

From the figures we see that both f(x) and g(x) have a local (and in fact global)
minimum at x = 0 despite the fact that x = 0 is not a critical point.

• Reread Theorem 3.5.4 yet again. It says “Let · · ·. If f(x) has a local maximum
or local minimum at x = c and if f is differentiable at x = c, then f ′(c) = 0”. It
says nothing about what happens at points where the derivative does not exist.
Indeed that is why we have to consider both critical points and singular points
when we look for maxima and minima.

3.5.2 tt Finding Global Maxima and Minima

We now have a technique for finding local maxima and minima — just look at endpoints
of the interval of interest and for values of x for which either f ′(x) = 0 or f ′(x) does not
exist. What about finding global maxima and minima? We’ll start by stating explicitly
that, under appropriate hypotheses, global maxima and minima are guaranteed to exist.

Theorem 3.5.11

Let the function f(x) be defined and continuous on the closed, finite interval a

−∞ < a ≤ x ≤ b < ∞. Then f(x) attains a maximum and a minimum at least
once. That is, there exist numbers a ≤ xm, xM ≤ b such that

f(xm) ≤ f(x) ≤ f(xM) for all a ≤ x ≤ b

a The hypotheses that f(x) be continuous and that the interval be finite and closed are all
essential. We suggest that you find three functions f1(x), f2(x) and f3(x) with f1 defined
but not continuous on 0 ≤ x ≤ 1, f2 defined and continuous on −∞ < x < ∞, and f3
defined and continuous on 0 < x < 1, and with none of f1, f2 and f3 attaining either a
global maximum or a global minimum.
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So let’s again consider the question

Suppose that the maximum (or minimum) value of f(x), for a ≤ x ≤ b, is
f(c). What does that tell us about c?

If c obeys a < c < b (note the strict inequalities), then f has a local maximum (or
minimum) at x = c and Theorem 3.5.4 tells us that either f ′(c) = 0 or f ′(c) does not
exist. The only other place that a maximum or minimum can occur are at the ends of
the interval. We can summarise this as:

Theorem 3.5.12

If f(x) has a global maximum or global minimum, for a ≤ x ≤ b, at x = c then
there are 3 possibilities. Either

• f ′(c) = 0, or

• f ′(c) does not exist, or

• c = a or c = b.

That is, a global maximum or minimum must occur either at a critical point, a
singular point or at the endpoints of the interval.

This theorem provides the basis for a method to find the maximum and minimum
values of f(x) for a ≤ x ≤ b:

Corollary 3.5.13

Let f(x) be a function on the interval a ≤ x ≤ b. Then to find the global
maximum and minimum of the function:

• Make a list of all values of c, with a ≤ c ≤ b, for which

◦ f ′(c) = 0, or

◦ f ′(c) does not exist, or

◦ c = a or c = b.

That is — compute the function at all the critical points, singular points,
and endpoints.

• Evaluate f(c) for each c in that list. The largest (or smallest) of those
values is the largest (or smallest) value of f(x) for a ≤ x ≤ b.

Let’s now demonstrate how to use this strategy. The function in this first example
is not too simple — but it is a good example of a function that contains both a singular
point and a critical point.
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Example 3.5.14 Find max and min of 2x5/3 + 3x2/3.

Find the largest and smallest values of the function f(x) = 2x5/3+3x2/3 for −1 ≤ x ≤ 1.
Solution We will apply the method in Corollary 3.5.13. It is perhaps easiest to find the
values at the endpoints of the intervals and then move on to the values at any critical
or singular points.

• Before we get into things, notice that we can rewrite the function by factoring it:

f(x) = 2x5/3 + 3x2/3 = x2/3 · (2x+ 3)

• Let’s compute the function at the endpoints of the interval:

f(1) = 2 + 3 = 5

f(−1) = 2 · (−1)5/3 + 3 · (−1)2/3 = −2 + 3 = 1

• To compute the function at the critical and singular points we first need to find
the derivative:

f ′(x) = 2 · 5

3
x2/3 + 3 · 2

3
x−1/3

=
10

3
x2/3 + 2x−1/3

=
10x+ 6

3x1/3

• Notice that the numerator and denominator are defined for all x. The only place
the derivative is undefined is when the denominator is zero. Hence the only
singular point is at x = 0. The corresponding function value is

f(0) = 0

• To find the critical points we need to solve f ′(x) = 0:

0 =
10x+ 6

3x1/3

Hence we must have 10x = −6 or x = −3/5. The corresponding function value is

f(x) = x2/3 · (2x+ 3) recall this from above, then

f(−3/5) = (−3/5)2/3 ·
(

2 · −3

5
+ 3

)
=

(
9

25

)1/3

· −6 + 15

5

=

(
9

25

)1/3

· 9

5
≈ 1.28
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Example 3.5.14

Note that if we do not want to approximate the root (if, for example, we do not
have a calculator handy), then we can also write

f(−3/5) =

(
9

25

)1/3

· 9

5

=

(
9

25

)1/3

· 9

25
· 5

= 5 ·
(

9

25

)4/3

Since 0 < 9/25 < 1, we know that 0 <
(

9
25

)4/3
< 1, and hence

0 < f(−3/5) = 5 ·
(

9

25

)4/3

< 5.

• We summarise our work in this table

c −3
5

0 −1 1

type critical point singular point endpoint endpoint

f(c) 9
5

3

√
9
25
≈ 1.28 0 1 5

• The largest value of f in the table is 5 and the smallest value of f in the table is
0.

• Thus on the interval −1 ≤ x ≤ 1 the global maximum of f is 5, and is taken at
x = 1, while the global minimum value of f(x) is 0, and is taken at x = 0.

• For completeness we also sketch the graph of this function on the same interval.

Later (in Section 3.6) we will see how to construct such a sketch without using a
calculator or computer.
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3.5.3 tt Max/Min Examples

As noted at the beginning of this section, the problem of finding maxima and minima
is a very important application of differential calculus in the real world. We now turn
to a number of examples of this process. But to guide the reader we will describe a
general procedure to follow for these problems.

1 Read — read the problem carefully. Work out what information is given in the
statement of the problem and what we are being asked to compute.

2 Diagram — draw a diagram. This will typically help you to identify what you
know about the problem and what quantities you need to work out.

3 Variables — assign variables to the quantities in the problem along with their
units. It is typically a good idea to make sensible choices of variable names: A
for area, h for height, t for time etc.

4 Relations — find relations between the variables. By now you should know the
quantity we are interested in (the one we want to maximise or minimise) and we
need to establish a relation between it and the other variables.

5 Reduce — the relation down to a function of one variable. In order to apply the
calculus we know, we must have a function of a single variable. To do this we
need to use all the information we have to eliminate variables. We should also
work out the domain of the resulting function.

6 Maximise or minimise — we can now apply the methods of Corollary 3.5.13 to
find the maximum or minimum of the quantity we need (as the problem dictates).

7 Be careful — make sure your answer makes sense. Make sure quantities are
physical. For example, lengths and areas cannot be negative.

8 Answer the question — be sure your answer really answers the question asked in
the problem.

Let us start with a relatively simple problem:

Example 3.5.15 Constructing a container of maximal volume.

A closed rectangular container with a square base is to be made from two different
materials. The material for the base costs $5 per square meter, while the material for
the other five sides costs $1 per square meter. Find the dimensions of the container
which has the largest possible volume if the total cost of materials is $72.
Solution We can follow the steps we outlined above to find the solution.

• We need to determine the area of the two types of materials used and the corre-
sponding total cost.

381



Applications of derivatives 3.5 Optimisation

• Draw a picture of the box.

The more useful picture is the unfolded box on the right.

• In the picture we have already introduced two variables. The square base has
side-length b metres and it has height h metres. Let the area of the base be Ab
and the area of the other fives sides be As (both in m2), and the total cost be C
(in dollars). Finally let the volume enclosed be V m3.

• Some simple geometry tells us that

Ab = b2

As = 4bh+ b2

V = b2h

C = 5 · Ab + 1 · As = 5b2 + 4bh+ b2 = 6b2 + 4bh.

• To eliminate one of the variables we use the fact that the total cost is $72.

C = 6b2 + 4bh = 72 rearrange
4bh = 72− 6b2 isolate h

h =
72− 6b2

4b
=

3

2
· 12− b2

b

Substituting this into the volume gives

V = b2h =
3b

2
(12− b2) = 18b− 3

2
b3

Now note that since b is a length it cannot be negative, so b ≥ 0. Further since
volume cannot be negative, we must also have

12− b2 ≥ 0

and so b ≤
√

12.
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Example 3.5.15

• Now we can apply Corollary 3.5.13 on the above expression for the volume with
0 ≤ b ≤

√
12. The endpoints give:

V (0) = 0

V (
√

12) = 0

The derivative is

V ′(b) = 18− 9b2

2

Since this is a polynomial there are no singular points. However we can solve
V ′(b) = 0 to find critical points:

18− 9b2

2
= 0 divide by 9 and multiply by 2

4− b2 = 0

Hence b = ±2. Thus the only critical point in the domain is b = 2. The corre-
sponding volume is

V (2) = 18× 2− 3

2
× 23

= 36− 12 = 24.

So by Corollary 3.5.13, the maximum volume is when 24 when b = 2 and

h =
3

2
· 12− b2

b
=

3

2

12− 4

2
= 6.

• All our quantities make sense; lengths, areas and volumes are all non-negative.

• Checking the question again, we see that we are asked for the dimensions of the
container (rather than its volume) so we can answer with

The container with dimensions 2× 2× 6m will be the largest possible.

Example 3.5.16 Constructing another box.

A rectangular sheet of cardboard is 6 inches by 9 inches. Four identical squares are cut
from the corners of the cardboard, as shown in the figure below, and the remaining piece
is folded into an open rectangular box. What should the size of the cut out squares be
in order to maximize the volume of the box?
Solution This one is quite similar to the previous one, so we perhaps don’t need to go
into so much detail.
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• After reading carefully we produce the following picture:

• Let the height of the box be x inches, and the base be `× w inches. The volume
of the box is then V cubic inches.

• Some simple geometry tells us that ` = 9− 2x,w = 6− 2x and so

V = x(9− 2x)(6− 2x)cubic inches
= 54x− 30x2 + 4x3.

Notice that since all lengths must be non-negative, we must have

x, `, w ≥ 0

and so 0 ≤ x ≤ 3 (if x > 3 then w < 0).

• We can now apply Corollary 3.5.13. First the endpoints of the interval give

V (0) = 0 V (3) = 0

The derivative is

V ′(x) = 54− 60x+ 12x2

= 6(9− 10x+ 2x2)

Since this is a polynomial there are no singular points. To find critical points we
solve V ′(x) = 0 to get

x± =
10±

√
100− 4× 2× 9

4

=
10±

√
28

4
=

10± 2
√

7

4
=

5±
√

7

2

We can then use a calculator to approximate

x+ ≈ 3.82 x− ≈ 1.18.
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Example 3.5.16

So x− is inside the domain, while x+ lies outside.

Alternatively a , we can bound x± by first noting that 2 ≤
√

7 ≤ 3. From this we
know that

1 =
5− 3

2
≤ x− =

5−
√

7

2
≤ 5− 2

2
= 1.5

3.5 =
5 + 2

2
≤ x+ =

5 +
√

7

2
≤ 5 + 3

2
= 4

• Since the volume is zero when x = 0, 3, it must be the case that the volume is
maximised when x = x− = 5−

√
7

2
.

• Notice that since 0 < x− < 3 we know that the other lengths are positive, so our
answer makes sense. Further, the question only asks for the length x and not the
resulting volume so we have answered the question.

a Say if we do not have a calculator to hand, or your instructor insists that the problem be done
without one.

There is a new wrinkle in the next two examples. Each involves finding the minimum
value of a function f(x) with x running over all real numbers, rather than just over a
finite interval as in Corollary 3.5.13. Both in Example 3.5.18 and in Example 3.5.19 the
function f(x) tends to +∞ as x tends to either +∞ or −∞. So the minimum value of
f(x) will be achieved for some finite value of x, which will be a local minimum as well
as a global minimum.

Theorem 3.5.17

Let f(x) be defined and continuous for all −∞ < x < ∞. Let c be a finite real
number.

a If lim
x→+∞

f(x) = +∞ and lim
x→−∞

f(x) = +∞ and if f(x) has a global mini-
mum at x = c, then there are 2 possibilities. Either

• f ′(c) = 0, or

• f ′(c) does not exist

That is, a global minimum must occur either at a critical point or at a
singular point.

b If lim
x→+∞

f(x) = −∞ and lim
x→−∞

f(x) = −∞ and if f(x) has a global maxi-
mum at x = c, then there are 2 possibilities. Either
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• f ′(c) = 0, or

• f ′(c) does not exist

That is, a global maximum must occur either at a critical point or at a
singular point.

Example 3.5.18 How far from a point to a line.

Find the point on the line y = 6− 3x that is closest to the point (7, 5).
Solution In this problem

• A simple picture

• Some notation is already given to us. Let a point on the line have coordinates
(x, y), and we do not need units. And let ` be the distance from the point (x, y)
to the point (7, 5).

• Since the points are on the line the coordinates (x, y) must obey

y = 6− 3x

Notice that x and y have no further constraints. The distance ` is given by

`2 = (x− 7)2 + (y − 5)2
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• We can now eliminate the variable y:

`2 = (x− 7)2 + (y − 5)2

= (x− 7)2 + (6− 3x− 5)2 = (x− 7)2 + (1− 3x)2

= x2 − 14x+ 49 + 1− 6x+ 9x2 = 10x2 − 20x+ 50

= 10(x2 − 2x+ 5)

` =
√

10 ·
√
x2 − 2x+ 5

Notice that as x→ ±∞ the distance `→ +∞.

• We can now apply Theorem 3.5.17

◦ Since the distance is defined for all real x, we do not have to check the
endpoints of the domain — there are none.

◦ Form the derivative:

d`

dx
=
√

10
2x− 2

2
√
x2 − 2x+ 5

It is zero when x = 1, and undefined if x2 − 2x+ 5 < 0. However, since

x2 − 2x+ 5 = (x2 − 2x+ 1) + 4 = (x− 1)2︸ ︷︷ ︸
≥0

+4

we know that x2− 2x+ 5 ≥ 4. Thus the function has no singular points and
the only critical point occurs at x = 1. The corresponding function value is
then

`(1) =
√

10
√

1− 2 + 5 = 2
√

10.

◦ Thus the minimum value of the distance is ` = 2
√

10 and occurs at x = 1.

• This answer makes sense — the distance is not negative.

• The question asks for the point that minimises the distance, not that minimum
distance. Hence the answer is x = 1, y = 6− 3 = 3. I.e.

The point that minimises the distance is (1, 3).

Notice that we can make the analysis easier by observing that the point that minimises
the distance also minimises the squared-distance. So that instead of minimising the
function `, we can just minimise `2:

`2 = 10(x2 − 2x+ 5)

The resulting algebra is a bit easier and we don’t have to hunt for singular points.
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Example 3.5.19 How far from a point to a curve.

Find the minimum distance from (2, 0) to the curve y2 = x2 + 1.
Solution This is very much like the previous question.

• After reading the problem carefully we can draw a picture

• In this problem we do not need units and the variables x, y are supplied. We
define the distance to be ` and it is given by

`2 = (x− 2)2 + y2.

As noted in the previous problem, we will minimise the squared-distance since
that also minimises the distance.

• Since x, y satisfy y2 = x2 + 1, we can write the distance as a function of x:

`2 = (x− 2)2 + y2 = (x− 2)2 + (x2 + 1)

Notice that as x→ ±∞ the squared-distance `2 → +∞.

• Since the squared-distance is a polynomial it will not have any singular points,
only critical points. The derivative is

d

dx
`2 = 2(x− 2) + 2x = 4x− 4

so the only critical point occurs at x = 1.

• When x = 1, y = ±
√

2 and the distance is

`2 = (1− 2)2 + (1 + 1) = 3 ` =
√

3

and thus the minimum distance from the curve to (2, 0) is
√

3.
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Example 3.5.20 Constructing a trough.

A water trough is to be constructed from a metal sheet of width 45 cm by bending up
one third of the sheet on each side through an angle θ. Which θ will allow the trough
to carry the maximum amount of water?
Solution Clearly 0 ≤ θ ≤ π, so we are back in the domain a of Corollary 3.5.13.

• After reading the problem carefully we should realise that it is really asking us to
maximise the cross-sectional area. A figure really helps.

• From this we are led to define the height h cm and cross-sectional area A cm2.
Both are functions of θ.

h = 15 sin θ

while the area can be computed as the sum of the central 15× h rectangle, plus
two triangles. Each triangle has height h and base 15 cos θ. Hence

A = 15h+ 2 · 1

2
· h · 15 cos θ

= 15h (1 + cos θ)

• Since h = 15 sin θ we can rewrite the area as a function of just θ:

A(θ) = 225 sin θ (1 + cos θ)

where 0 ≤ θ ≤ π.

• Now we use Corollary 3.5.13. The ends of the interval give

A(0) = 225 sin 0(1 + cos 0) = 0

A(π) = 225 sin π(1 + cos π) = 0

The derivative is

A′(θ) = 225 cos θ · (1 + cos θ) + 225 sin θ · (− sin θ)

= 225
[
cos θ + cos2 θ − sin2 θ

]
recall sin2 θ = 1− cos2 θ

= 225
[
cos θ + 2 cos2 θ − 1

]
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This is a continuous function, so there are no singular points. However we can
still hunt for critical points by solving A′(θ) = 0. That is

2 cos2 θ + cos θ − 1 = 0 factor carefully
(2 cos θ − 1)(cos θ + 1) = 0

Hence we must have cos θ = −1 or cos θ = 1
2
. On the domain 0 ≤ θ ≤ π, this

means θ = π/3 or θ = π.

A(π) = 0

A(π/3) = 225 sin(π/3)(1 + cos(π/3))

= 225 ·
√

3

2
·
(

1 +
1

2

)
= 225 · 3

√
3

4
≈ 292.28

• Thus the cross-sectional area is maximised when θ =
π

3
.

a Again, no pun intended.

Example 3.5.21 Closest and farthest points on a curve to a given point.

Find the points on the ellipse x2

4
+ y2 = 1 that are nearest to and farthest from the

point (1, 0).
Solution While this is another distance problem, the possible values of x, y are
bounded, so we need Corollary 3.5.13 rather than Theorem 3.5.17.

• We start by drawing a picture:

• Let ` be the distance from the point (x, y) on the ellipse to the point (1, 0). As
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was the case above, we will maximise the squared-distance.

`2 = (x− 1)2 + y2.

• Since (x, y) lie on the ellipse we have

x2

4
+ y2 = 1

Note that this also shows that −2 ≤ x ≤ 2 and −1 ≤ y ≤ 1.

Isolating y2 and substituting this into our expression for `2 gives

`2 = (x− 1)2 + 1− x2/4︸ ︷︷ ︸
=y2

.

• Now we can apply Corollary 3.5.13. The endpoints of the domain give

`2(−2) = (−2− 1)2 + 1− (−2)2/4 = 32 + 1− 1 = 9

`2(2) = (2− 1)2 + 1− 22/4 = 1 + 1− 1 = 1

The derivative is

d

dx
`2 = 2(x− 1)− x/2 =

3x

2
− 2

Thus there are no singular points, but there is a critical point at x = 4/3. The
corresponding squared-distance is

`2(4/3) =

(
4

3
− 1

)2

+ 1− (4/3)2

4

= (1/3)2 + 1− (4/9) = 6/9 = 2/3.

• To summarise (and giving distances and coordinates of points):

x (x, y) `

−2 (−2, 0) 3
4
3

(
4
3
,±
√

5
3

) √
2
3

2 (2, 0) 1

The point of maximum distance is (−2, 0), and the point of minimum distance is(
4
3
,±
√

5
3

)
.
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Example 3.5.22 Largest rectangle inside a triangle.

Find the dimensions of the rectangle of largest area that can be inscribed in an equi-
lateral triangle of side a if one side of the rectangle lies on the base of the triangle.
Solution Since the rectangle must sit inside the triangle, its dimensions are bounded
and we will end up using Corollary 3.5.13.

• Carefully draw a picture:

We have drawn (on the left) the triangle in the xy-plane with its base on the
x-axis. The base has been drawn running from (−a/2, 0) to (a/2, 0) so its centre
lies at the origin. A little Pythagoras (or a little trigonometry) tells us that the
height of the triangle is√

a2 − (a/2)2 =

√
3

2
· a = a · sin π

3

Thus the vertex at the top of the triangle lies at
(

0,
√

3
2
· a
)
.

• If we construct a rectangle that does not touch the sides of the triangle, then
we can increase the dimensions of the rectangle until it touches the triangle and
so make its area larger. Thus we can assume that the two top corners of the
rectangle touch the triangle as drawn in the right-hand figure above.

• Now let the rectangle be 2x wide and y high. And let A denote its area. Clearly

A = 2xy.

where 0 ≤ x ≤ a/2 and 0 ≤ y ≤
√

3
2
a.

• Our construction means that the top-right corner of the rectangle will have coor-
dinates (x, y) and lie on the line joining the top vertex of the triangle at (0,

√
3a/2)

to the bottom-right vertex at (a/2, 0). In order to write the area as a function of
x alone, we need the equation for this line since it will tell us how to write y as a
function of x. The line has slope

slope =

√
3a/2− 0

0− a/2 = −
√

3.
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and passes through the point (0,
√

3a/2), so any point (x, y) on that line satisfies:

y = −
√

3x+

√
3

2
a.

• We can now write the area as a function of x alone

A(x) = 2x

(
−
√

3x+

√
3

2
a

)
=
√

3x(a− 2x).

with 0 ≤ x ≤ a/2.

• The ends of the domain give:

A(0) = 0 A(a/2) = 0.

The derivative is

A′(x) =
√

3 (x · (−2) + 1 · (a− 2x)) =
√

3(a− 4x).

Since this is a polynomial there are no singular points, but there is a critical point
at x = a/4. There

A(a/4) =
√

3 · a
4
· (a− a/2) =

√
3 · a

2

8
.

y = −
√

3 · (a/4) +

√
3

2
a =
√

3 · a
4
.

• Checking the question again, we see that we are asked for the dimensions rather
than the area, so the answer is 2x× y:

The largest such rectangle has dimensions a
2
×
√

3a
4
.

This next one is a good physics example. In it we will derive Snell’s Law 2 from
Fermat’s principle 3 .

2 Snell’s law is named after the Dutch astronomer Willebrord Snellius who derived it in around
1621, though it was first stated accurately in 984 by Ibn Sahl.

3 Named after Pierre de Fermat who described it in a letter in 1662. The beginnings of the idea,
however, go back as far as Hero of Alexandria in around 60CE. Hero is credited with many
inventions including the first vending machine, and a precursor of the steam engine called an
aeolipile.
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Example 3.5.23 Snell’s law.

Consider the figure below which shows the trajectory of a ray of light as it passes
through two different mediums (say air and water).

Let ca be the speed of light in air and cw be the speed of light in water. Fermat’s
principle states that a ray of light will always travel along a path that minimises the
time taken. So if a ray of light travels from P (in air) to Q (in water) then it will
“choose” the point O (on the interface) so as to minimise the total time taken. Use this
idea to show Snell’s law,

sin θi
sin θr

=
ca
cw

where θi is the angle of incidence and θr is the angle of refraction (as illustrated in the
figure above).
Solution This problem is a little more abstract than the others we have examined, but
we can still apply Theorem 3.5.17.

• We are given a figure in the statement of the problem and it contains all the
relevant points and angles. However it will simplify things if we decide on a
coordinate system. Let’s assume that the point O lies on the x-axis, at coordinates
(x, 0). The point P then lies above the axis at (XP ,+YP ), while Q lies below the
axis at (XQ,−YQ). This is drawn below.
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• The statement of Snell’s law contains terms sin θi and sin θr, so it is a good idea for
us to see how to express these in terms of the coordinates we have just introduced:

sin θi =
opposite

hypotenuse
=

(x−XP )√
(XP − x)2 + Y 2

P

sin θr =
opposite

hypotenuse
=

(XQ − x)√
(XQ − x)2 + Y 2

Q

• Let `P denote the distance PO, and `Q denote the distance OQ. Then we have

`P =
√

(XP − x)2 + Y 2
P

`Q =
√

(XQ − x)2 + Y 2
Q

If we then denote the total time taken by T , then

T =
`P
ca

+
`Q
cw

=
1

ca

√
(XP − x)2 + Y 2

P +
1

cw

√
(XQ − x)2 + Y 2

Q

which is written as a function of x since all the other terms are constants.

• Notice that as x→ +∞ or x→ −∞ the total time T →∞ and so we can apply
Theorem 3.5.17. The derivative is

dT

dx
=

1

ca

−2(XP − x)

2
√

(XP − x)2 + Y 2
P

+
1

cw

−2(XQ − x)

2
√

(XQ − x)2 + Y 2
Q

Notice that the terms inside the square-roots cannot be zero or negative since
they are both sums of squares and YP , YQ > 0. So there are no singular points,
but there is a critical point when T ′(x) = 0, namely when

0 =
1

ca

XP − x√
(XP − x)2 + Y 2

P

+
1

cw

XQ − x√
(XQ − x)2 + Y 2

Q

=
− sin θi
ca

+
sin θr
cw

Rearrange this to get

sin θi
ca

=
sin θr
cw

move sines to one side

sin θi
sin θr

=
ca
cw

which is exactly Snell’s law.
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Example 3.5.24 Finding the best viewing angle.

The Statue of Liberty has height 46m and stands on a 47m tall pedestal. How far from
the statue should an observer stand to maximize the angle subtended by the statue at
the observer’s eye, which is 1.5m above the base of the pedestal?
Solution Obviously if we stand too close then all the observer sees is the pedestal, while
if they stand too far then everything is tiny. The best spot for taking a photograph is
somewhere in between.

• Draw a careful picture a

and we can put in the relevant lengths and angles.

• The height of the statue is h = 46m, and the height of the pedestal (above the
eye) is p = 47− 1.5 = 45.5m. The horizontal distance from the statue to the eye
is x. There are two relevant angles. First θ is the angle subtended by the statue,
while ϕ is the angle subtended by the portion of the pedestal above the eye.

• Some trigonometry gives us

tanϕ =
p

x

tan(ϕ+ θ) =
p+ h

x

Thus

ϕ = arctan
p

x

ϕ+ θ = arctan
p+ h

x
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and so

θ = arctan
p+ h

x
− arctan

p

x
.

• If we allow the viewer to stand at any point in front of the statue, then 0 ≤ x <∞.
Further observe that as x→∞ or x→ 0 the angle θ → 0, since

lim
x→∞

arctan
p+ h

x
= lim

x→∞
arctan

p

x
= 0

and
lim
x→0+

arctan
p+ h

x
= lim

x→0+
arctan

p

x
=
π

2

Clearly the largest value of θ will be strictly positive and so has to be taken for
some 0 < x <∞. (Note the strict inequalities.) This x will be a local maximum
as well as a global maximum. As θ is not singular at any 0 < x < ∞, we need
only search for critical points.

A careful application of the chain rule shows that the derivative is

dθ

dx
=

1

1 + (p+h
x

)2
·
(−(p+ h)

x2

)
− 1

1 + ( p
x
)2
·
(−p
x2

)
=

−(p+ h)

x2 + (p+ h)2
+

p

x2 + p2

So a critical point occurs when

(p+ h)

x2 + (p+ h)2
=

p

x2 + p2
cross multiply

(p+ h)(x2 + p2) = p(x2 + (p+ h)2) collect x terms
x2(p+ h− p) = p(p+ h)2 − p2(p+ h) clean up

hx2 = p(p+ h)(p+ h− p) = ph(p+ h)

cancel common factors
x2 = p(p+ h)

x = ±
√
p(p+ h) ≈ ±64.9m

• Thus the best place to stand approximately 64.9m in front or behind the statue.
At that point θ ≈ 0.348 radians or 19.9◦.

a And make some healthy use of public domain clip art.
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Example 3.5.25 Moving objects around corners.

Find the length of the longest rod that can be carried horizontally (no tilting allowed)
from a corridor 3m wide into a corridor 2m wide. The two corridors are perpendicular
to each other.
Solution

• Suppose that we are carrying the rod around the corner, then if the rod is as long
as possible it must touch the corner and the outside walls of both corridors. A
picture of this is show below.

You can see that this gives rise to two similar triangles, one inside each corridor.
Also the maximum length of the rod changes with the angle it makes with the
walls of the corridor.

• Suppose that the angle between the rod and the inner wall of the 3m corridor is
θ, as illustrated in the figure above. At the same time it will make an angle of
π
2
− θ with the outer wall of the 2m corridor. Denote by `1(θ) the length of the

part of the rod forming the hypotenuse of the upper triangle in the figure above.
Similarly, denote by `2(θ) the length of the part of the rod forming the hypotenuse
of the lower triangle in the figure above. Then

`1(θ) =
3

sin θ
`2(θ) =

2

cos θ

and the total length is

`(θ) = `1(θ) + `2(θ) =
3

sin θ
+

2

cos θ

where 0 ≤ θ ≤ π
2
.

• The length of the longest rod we can move through the corridor in this way is
the minimum of `(θ). Notice that `(θ) is not defined at θ = 0, π

2
. Indeed we find

that as θ → 0+ or θ → π
2
−, the length ` → +∞. (You should be able to picture

what happens to our rod in those two limits). Clearly the minimum allowed `(θ)
is going to be finite and will be achieved for some 0 < θ < π

2
(note the strict
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inequalities) and so will be a local minimum as well as a global minimum. So we
only need to find zeroes of `′(θ).
Differentiating ` gives

d`

dθ
= −3 cos θ

sin2 θ
+

2 sin θ

cos2 θ
=
−3 cos3 θ + 2 sin3 θ

sin2 θ cos2 θ
.

This does not exist at θ = 0, π
2
(which we have already analysed) but does exist at

every 0 < θ < π
2
and is equal to zero when the numerator is zero. Namely when

2 sin3 θ = 3 cos3 θ divide by cos3 θ

2 tan3 θ = 3

tan θ =
3

√
3

2

• From this we can recover sinθ and cosθ, without having to compute θ itself. We
can, for example, construct a right-angle triangle with adjacent length 3

√
2 and

opposite length 3
√

3 (so that tan θ = 3
√

3/2):

It has hypotenuse
√

32/3 + 22/3, and so

sin θ =
31/3

√
32/3 + 22/3

cos θ =
21/3

√
32/3 + 22/3

Alternatively could use the identities:

1 + tan2 θ = sec2 θ 1 + cot2 θ = csc2 θ

to obtain expressions for 1/ cos θ and 1/ sin θ.

• Using the above expressions for sin θ, cos θ we find the minimum of ` (which is the
longest rod that we can move):

` =
3

sin θ
+

2

cos θ
=

3
3√3√

2
2
3 +3

2
3

+
2
3√2√

2
2
3 +3

2
3

=

√
2

2
3 + 3

2
3

[
3

2
3 + 2

2
3

]
=
[
2

2
3 + 3

2
3

] 3
2 ≈ 7.02m
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3.5.4 tt Exercises

ttt Exercises for § 3.5.1

Exercises — Stage 1

1. Identify every critical point and every singular point of f(x) shown on the
graph below. Which correspond to local extrema?

x

y

y = f(x)

2. Identify every critical point and every singular point of f(x) on the graph
below. Which correspond to local extrema? Which correspond to global
extrema over the interval shown?

x

y

y = f(x)

3. Draw a graph y = f(x) where f(2) is a local maximum, but it is not a global
maximum.
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Exercises — Stage 2

4. Suppose f(x) =
x− 1

x2 + 3
.

a Find all critical points.

b Find all singular points.

c What are the possible points where local extrema of f(x) may exist?

Exercises — Stage 3

5. Below are a number of curves, all of which have a singular point at x = 2.
For each, label whether x = 2 is a local maximum, a local minimum, or
neither.

x

y

2
x

y

2
x

y

2
x

y

2

6. Draw a graph y = f(x) where f(2) is a local maximum, but x = 2 is not a
critical point or an endpoint.

7.
f(x) =

√
|(x− 5)(x+ 7)|

Find all critical points and all singular points of f(x). You do not have to
specify whether a point is critical or singular.

8. Suppose f(x) is the constant function f(x) = 4. What are the critical points
and singular points of f(x)? What are its local and global maxima and min-
ima?

ttt Exercises for § 3.5.2

Exercises — Stage 1

1. Sketch a function f(x) such that:

• f(x) is defined over all real numbers

• f(x) has a global max but no global min.
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2. Sketch a function f(x) such that:

• f(x) is defined over all real numbers

• f(x) is always positive

• f(x) has no global max and no global min.

3. Sketch a function f(x) such that:

• f(x) is defined over all real numbers

• f(x) has a global minimum at x = 5

• f(x) has a global minimum at x = −5, too.

Exercises — Stage 2

4. f(x) = x2 + 6x− 10. Find all global extrema on the interval [−5, 5]

5. f(x) =
2

3
x3−2x2−30x+7. Find all global extrema on the interval [−4, 0].

ttt Exercises for § 3.5.3

Exercises — Stage 1 For Questions 3.5.4.1 through 3.5.4.3, the quantity to optimize
is already given to you as a function of a single variable.For Questions 3.5.4.4 and
3.5.4.5, you can decide whether a critical point is a local extremum by considering the
derivative of the function.For Questions 3.5.4.6 through 3.5.4.13, you will have to find
an expression for the quantity you want to optimize as a function of a single variable.

1. ∗. Find the global maximum and the global minimum for f(x) = x5 − 5x+ 2
on the interval [−2, 0].

2. ∗. Find the global maximum and the global minimum for f(x) = x5− 5x− 10
on the interval [0, 2].

3. ∗. Find the global maximum and the global minimum for f(x) = 2x3−6x2−2
on the interval [1, 4].

4. ∗. Consider the function h(x) = x3 − 12x + 4. What are the coordinates
of the local maximum of h(x)? What are the coordinates of the local
minimum of h(x)?

5. ∗. Consider the function h(x) = 2x3 − 24x + 1. What are the coordinates of
the local maximum of h(x)? What are the coordinates of the local minimum
of h(x)?
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6. ∗. You are in a dune buggy at a point P in the desert, 12 km due south
of the nearest point A on a straight east-west road. You want to get to
a town B on the road 18 km east of A. If your dune buggy can travel at
an average speed of 15 km/hr through the desert and 30 km/hr along the
road, towards what point Q on the road should you head to minimize your
travel time from P to B?

A Q B

P

12 km

7. ∗. A closed three dimensional box is to be constructed in such a way that its
volume is 4500 cm3. It is also specified that the length of the base is 3 times
the width of the base. Find the dimensions of the box that satisfies these
conditions and has the minimum possible surface area. Justify your answer.

8. ∗. A closed rectangular container with a square base is to be made from
two different materials. The material for the base costs $5 per square
metre, while the material for the other five sides costs $1 per square metre.
Find the dimensions of the container which has the largest possible volume
if the total cost of materials is $72.

9. ∗. Find a point X on the positive x–axis and a point Y on the positive y–axis
such that (taking O = (0, 0))

i The triangle XOY contains the first quadrant portion of the unit circle
x2 + y2 = 1 and

ii the area of the triangle XOY is as small as possible.

A complete and careful mathematical justification of property 3.5.4.9.i is re-
quired.

10. ∗. A rectangle is inscribed in a semicircle of radius R so that one side
of the rectangle lies along a diameter of the semicircle. Find the largest
possible perimeter of such a rectangle, if it exists, or explain why it does
not. Do the same for the smallest possible perimeter.
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11. ∗. Find the maximal possible volume of a cylinder with surface area A. a

a Food is often packaged in cylinders, and companies wouldn’t want to waste the
metal they are made out of. So, you might expect the dimensions you find in this
problem to describe a tin of, say, cat food. Read here about why this isn’t the case.

12. ∗. What is the largest possible area of a window, with perimeter P , in
the shape of a rectangle with a semicircle on top (so the diameter of the
semicircle equals the width of the rectangle)?

13. ∗. Consider an open-top rectangular baking pan with base dimensions x cen-
timetres by y centimetres and height z centimetres that is made from A square
centimetres of tin plate. Suppose y = px for some fixed constant p.

a Find the dimensions of the baking pan with the maximum capacity (i.e.,
maximum volume). Prove that your answer yields the baking pan with
maximum capacity. Your answer will depend on the value of p.

b Find the value of the constant p that yields the baking pan with maxi-
mum capacity and give the dimensions of the resulting baking pan. Prove
that your answer yields the baking pan with maximum capacity.

Exercises — Stage 3

14. ∗. Let f(x) = xx for x > 0.

a Find f ′(x).

b At what value of x does the curve y = f(x) have a horizontal tangent
line?

c Does the function f have a local maximum, a local minimum, or
neither of these at the point x found in part 3.5.4.14.b?
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Applications of derivatives 3.6 Sketching Graphs

15. ∗. A length of wire is cut into two pieces, one of which is bent to form a
circle, the other to form a square. How should the wire be cut if the area
enclosed by the two curves is maximized? How should the wire be cut if
the area enclosed by the two curves is minimized? Justify your answers.

3.6q Sketching Graphs

One of the most obvious applications of derivatives is to help us understand the shape
of the graph of a function. In this section we will use our accumulated knowledge of
derivatives to identify the most important qualitative features of graphs y = f(x). The
goal of this section is to highlight features of the graph y = f(x) that are easily

• determined from f(x) itself, and

• deduced from f ′(x), and

• read from f ′′(x).

We will then use the ideas to sketch several examples.

3.6.1 tt Domain, Intercepts and Asymptotes

Given a function f(x), there are several important features that we can determine from
that expression before examining its derivatives.

• The domain of the function — take note of values where f does not exist. If the
function is rational, look for where the denominator is zero. Similarly be careful
to look for roots of negative numbers or other possible sources of discontinuities.

• Intercepts — examine where the function crosses the x-axis and the y-axis by
solving f(x) = 0 and computing f(0).

• Vertical asymptotes — look for values of x at which f(x) blows up. If f(x)
approaches either +∞ or −∞ as x approaches a (or possibly as x approaches a
from one side) then x = a is a vertical asymptote to y = f(x). When f(x) is a
rational function (written so that common factors are cancelled), then y = f(x)
has vertical asymptotes at the zeroes of the denominator.

• Horizontal asymptotes — examine the limits of f(x) as x→ +∞ and x→ −∞.
Often f(x) will tend to +∞ or to −∞ or to a finite limit L. If, for example,
lim

x→+∞
f(x) = L, then y = L is a horizontal asymptote to y = f(x) as x→∞.
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Example 3.6.1 Domain, intercepts and asymptotes of x+1
(x+3)(x−2)

.

Consider the function

f(x) =
x+ 1

(x+ 3)(x− 2)

• We see that it is defined on all real numbers except x = −3,+2.

• Since f(0) = −1/6 and f(x) = 0 only when x = −1, the graph has y-intercept
(0,−1/6) and x-intercept (−1, 0).

• Since the function is rational and its denominator is zero at x = −3,+2 it will
have vertical asymptotes at x = −3,+2. To determine the shape around those
asymptotes we need to examine the limits

lim
x→−3

f(x) lim
x→2

f(x)

Notice that when x is close to −3, the factors (x+1) and (x−2) are both negative,
so the sign of f(x) = x+1

x−2
· 1
x+3

is the same as the sign of x+ 3. Hence

lim
x→−3+

f(x) = +∞ lim
x→−3−

f(x) = −∞

A similar analysis when x is near 2 gives

lim
x→2+

f(x) = +∞ lim
x→2−

f(x) = −∞

• Finally since the numerator has degree 1 and the denominator has degree 2, we
see that as x→ ±∞, f(x)→ 0. So y = 0 is a horizontal asymptote.

• Since we know the behaviour around the asymptotes and we know the locations
of the intercepts (as shown in the left graph below), we can then join up the pieces
and smooth them out to get the a good sketch of this function (below right).
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3.6.2 tt First Derivative — Increasing or Decreasing

Now we move on to the first derivative, f ′(x). This is a good time to revisit the
mean-value theorem (Theorem 2.13.5) and some of its consequences (Corollary 2.13.12).
There we considered any function f(x) that is continuous on an interval A ≤ x ≤ B
and differentiable on A < x < B. Then

• if f ′(x) > 0 for all A < x < B, then f(x) is increasing on (A,B)

— that is, for all A < a < b < B, f(a) < f(b).

• if f ′(x) < 0 for all A < x < B, then f(x) is decreasing on (A,B)

— that is, for all A < a < b < B, f(a) > f(b).

Thus the sign of the derivative indicates to us whether the function is increasing or
decreasing. Further, as we discussed in Section 3.5.1, we should also examine points at
which the derivative is zero — critical points — and points where the derivative does
not exist. These points may indicate a local maximum or minimum.

We will now consider a function f(x) that is defined on an interval I, except possibly
at finitely many points of I. If f or its derivative f ′ is not defined at a point a of I,
then we call a a singular point1 of f .

After studying the function f(x) as described above, we should compute its deriva-
tive f ′(x).

• Critical points — determine where f ′(x) = 0. At a critical point, f has a hori-
zontal tangent.

• Singular points — determine where f ′(x) is not defined. If f ′(x) approaches ±∞
as x approaches a singular point a, then f has a vertical tangent there when f
approaches a finite value as x approaches a (or possibly approaches a from one
side) and a vertical asymptote when f(x) approaches ±∞ as x approaches a (or
possibly approaches a from one side).

• Increasing and decreasing — where is the derivative positive and where is it
negative. Notice that in order for the derivative to change sign, it must either
pass through zero (a critical point) or have a singular point. Thus neighbouring
regions of increase and decrease will be separated by critical and singular points.

Example 3.6.2 A simple polynomial.

Consider the function

f(x) = x4 − 6x3

1 This is the extension of the definition of “singular point” mentioned in the footnote in Definition
3.5.6.
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• Before we move on to derivatives, let us first examine the function itself as we did
above.

◦ As f(x) is a polynomial its domain is all real numbers.

◦ Its y-intercept is at (0, 0). We find its x-intercepts by factoring

f(x) = x4 − 6x3 = x3(x− 6)

So it crosses the x-axis at x = 0, 6.

◦ Again, since the function is a polynomial it does not have any vertical asymp-
totes. And since

lim
x→±∞

f(x) = lim
x→±∞

x4(1− 6/x) = +∞

it does not have horizontal asymptotes — it blows up to +∞ as x goes to
±∞.

◦ We can also determine where the function is positive or negative since we
know it is continuous everywhere and zero at x = 0, 6. Thus we must examine
the intervals

(−∞, 0) (0, 6) (6,∞)

When x < 0, x3 < 0 and x − 6 < 0 so f(x) = x3(x − 6) =
(negative)(negative) > 0. Similarly when x > 6, x3 > 0, x − 6 > 0 we
must have f(x) > 0. Finally when 0 < x < 6, x3 > 0 but x − 6 < 0 so
f(x) < 0. Thus

interval (−∞, 0) 0 (0, 6) 6 (6,∞)

f(x) positive 0 negative 0 positive

◦ Based on this information we can already construct a rough sketch.
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• Now we compute its derivative

f ′(x) = 4x3 − 18x2 = 2x2(2x− 9)

• Since the function is a polynomial, it does not have any singular points, but it
does have two critical points at x = 0, 9/2. These two critical points split the real
line into 3 open intervals

(−∞, 0) (0, 9/2) (9/2,∞)

We need to determine the sign of the derivative in each intervals.

◦ When x < 0, x2 > 0 but (2x − 9) < 0, so f ′(x) < 0 and the function is
decreasing.

◦ When 0 < x < 9/2, x2 > 0 but (2x− 9) < 0, so f ′(x) < 0 and the function
is still decreasing.

◦ When x > 9/2, x2 > 0 and (2x − 9) > 0, so f ′(x) > 0 and the function is
increasing.

We can then summarise this in the following table

interval (−∞, 0) 0 (0, 9/2) 9/2 (9/2,∞)

f ′(x) negative 0 negative 0 positive

decreasing horizontal
tangent

decreasing minimum increasing

Since the derivative changes sign from negative to positive at the critical point
x = 9/2, this point is a minimum. Its y-value is

y = f(9/2) =
93

23

(
9

2
− 6

)
=

36

23
·
(−3

2

)
= −37

24

On the other hand, at x = 0 the derivative does not change sign; while this point
has a horizontal tangent line it is not a minimum or maximum.

• Putting this information together we arrive at a quite reasonable sketch.
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Example 3.6.2

To improve upon this further we will examine the second derivative.

3.6.3 tt Second Derivative — Concavity

The second derivative f ′′(x) tells us the rate at which the derivative changes. Perhaps
the easiest way to understand how to interpret the sign of the second derivative is to
think about what it implies about the slope of the tangent line to the graph of the
function. Consider the following sketches of y = 1 + x2 and y = −1− x2.

• In the case of y = f(x) = 1+x2 , f ′′(x) = 2 > 0. Notice that this means the slope,
f ′(x), of the line tangent to the graph at x increases as x increases. Looking at
the figure on the left above, we see that the graph always lies above the tangent
lines.

• For y = f(x) = −1−x2 , f ′′(x) = −2 < 0. The slope, f ′(x), of the line tangent to
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the graph at x decreases as x increases. Looking at the figure on the right above,
we see that the graph always lies below the tangent lines.

Similarly consider the following sketches of y = x−1/2 and y =
√

4− x:

Both of their derivatives, −1
2
x−3/2 and −1

2
(4 − x)−1/2, are negative, so they are

decreasing functions. Examining second derivatives shows some differences.

• For the first function, y′′(x) = 3
4
x−5/2 > 0, so the slopes of tangent lines are

increasing with x and the graph lies above its tangent lines.

• However, the second function has y′′(x) = −1
4
(4− x)−3/2 < 0 so the slopes of the

tangent lines are decreasing with x and the graph lies below its tangent lines.

More generally

Definition 3.6.3

Let f(x) be a continuous function on the interval [a, b] and suppose its first and
second derivatives exist on that interval.

• If f ′′(x) > 0 for all a < x < b, then the graph of f lies above its tangent
lines for a < x < b and it is said to be concave up.

• If f ′′(x) < 0 for all a < x < b, then the graph of f lies below its tangent
lines for a < x < b and it is said to be concave down.
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• If f ′′(c) = 0 for some a < c < b, and the concavity of f changes across
x = c, then we call (c, f(c)) an inflection point.

Note that one might also see the terms

• “convex” or “convex up” used in place of “concave up”, and

• “concave” or “convex down” used to mean “concave down”.

To avoid confusion we recommend the reader stick with the terms “concave up” and
“concave down”.

Let’s now continue Example 3.6.2 by discussing the concavity of the curve.

Example 3.6.4 Continuation of 3.6.2.

Consider again the function

f(x) = x4 − 6x3

• Its first derivative is f ′(x) = 4x3 − 18x2, so

f ′′(x) = 12x2 − 36x = 12x(x− 3)

• Thus the second derivative is zero (and potentially changes sign) at x = 0, 3. Thus
we should consider the sign of the second derivative on the following intervals

(−∞, 0) (0, 3) (3,∞)

A little algebra gives us
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Example 3.6.4

interval (−∞, 0) 0 (0, 3) 3 (3,∞)

f ′′(x) positive 0 negative 0 positive
concavity up inflection down inflection up

Since the concavity changes at both x = 0 and x = 3, the following are inflection
points

(0, 0) (3, 34 − 6× 33) = (3,−34)

• Putting this together with the information we obtained earlier gives us the fol-
lowing sketch

Example 3.6.5 Optional — y = x1/3 and y = x2/3.

In our Definition 3.6.3, concerning concavity and inflection points, we considered only
functions having first and second derivatives on the entire interval of interest. In this
example, we will consider the functions

f(x) = x1/3 g(x) = x2/3

We shall see that x = 0 is a singular point for both of those functions. There is
no universal agreement as to precisely when a singular point should also be called an
inflection point. We choose to extend our definition of inflection point in Definition 3.6.3
as follows. If

• the function f(x) is defined and continuous on an interval a < x < b and if
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• the first and second derivatives f ′(x) and f ′′(x) exist on a < x < b except possibly
at the single point a < c < b and if

• f is concave up on one side of c and is concave down on the other side of c

then we say that
(
c , f(c)

)
is an inflection point of y = f(x). Now let’s check out

y = f(x) and y = g(x) from this point of view.

1 Features of y = f(x) and y = g(x) that are read off of f(x) and g(x):

• Since f(0) = 01/3 = 0 and g(0) = 02/3 = 0, the origin (0, 0) lies on both
y = f(x) and y = g(x).

• For example, 13 = 1 and (−1)3 = −1 so that the cube root of 1 is 11/3 = 1
and the cube root of −1 is (−1)1/3 = −1. In general,

x1/3


< 0 if x < 0

= 0 if x = 0

> 0 if x > 0

Consequently the graph y = f(x) = x1/3 lies below the x-axis when x < 0
and lies above the x-axis when x > 0. On the other hand, the graph y =

g(x) = x2/3 =
[
x1/3

]2 lies on or above the x-axis for all x.

• As x→ +∞, both y = f(x) = x1/3 and y = g(x) = x2/3 tend to +∞.

• As x → −∞, y = f(x) = x1/3 tends to −∞ and y = g(x) = x2/3 tends to
+∞.

2 Features of y = f(x) and y = g(x) that are read off of f ′(x) and g′(x):

f ′(x) =

{
1
3
x−2/3 if x 6= 0

undefined if x = 0

}
=⇒ f ′(x) > 0 for all x 6= 0

g′(x) =

{
2
3
x−1/3 if x 6= 0

undefined if x = 0

}
=⇒ g′(x)

{
< 0 if x < 0

> 0 if x > 0

So the graph y = f(x) is increasing on both sides of the singular point x = 0,
while the graph y = g(x) is decreasing to the left of x = 0 and is increasing to the
right of x = 0. As x→ 0, f ′(x) and g′(x) become infinite. That is, the slopes of
the tangent lines at

(
x, f(x)

)
and

(
x, g(x)

)
become infinite and the tangent lines

become vertical.

3 Features of y = f(x) and y = g(x) that are read off of f ′′(x) and g′′(x):

f ′′(x) =

{
−2

9
x−5/3 = −2

9

[
x−1/3]

5 if x 6= 0

undefined if x = 0

}
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=⇒ f ′′(x)

{
> 0 if x < 0

< 0 if x > 0

g′′(x) =

{
−2

9
x−4/3 = −2

9

[
x−1/3]

4 if x 6= 0

undefined if x = 0

}
=⇒ g′′(x) < 0 for all x 6= 0

So the graph y = g(x) is concave down on both sides of the singular point x = 0,
while the graph y = f(x) is concave up to the left of x = 0 and is concave down
to the right of x = 0.

By way of summary, we have, for f(x),

(−∞, 0) 0 (0,∞)

f(x) negative 0 positive
f ′(x) positive undefined positive

increasing increasing
f ′′(x) positive undefined negative

concave up inflection concave down

and for g(x),

(−∞, 0) 0 (0,∞)

g(x) positive 0 positive
g′(x) negative undefined positive

decreasing increasing
g′′(x) negative undefined negative

concave down inflection concave down

Since the concavity changes at x = 0 for y = f(x), but not for y = g(x), (0, 0) is an
inflection point for y = f(x), but not for y = g(x). We have the following sketch for
y = f(x) = x1/3

415



Applications of derivatives 3.6 Sketching Graphs

Example 3.6.5

(0, 0)

inflection point

x

y

y = f(x) = x1/3

f ′>0, f increasing

f ′′<0, f concave down

f ′>0, f increasing

f ′′>0, f concave up

and the following sketch for y = g(x) = x2/3.

(0, 0) x

y

y = g(x) = x2/3

g′>0, g increasing

g′′<0, g concave down

g′<0, g decreasing

g′′<0, g concave down

Note that the curve y = f(x) = x1/3 looks perfectly smooth, even though f ′(x) → ∞
as x → 0. There is no kink or discontinuity at (0, 0). The singularity at x = 0 has
caused the y-axis to be a vertical tangent to the curve, but has not prevented the curve
from looking smooth.

3.6.4 tt Symmetries

Before we proceed to some examples, we should examine some simple symmetries pos-
sessed by some functions. We’ll look at three symmetries — evenness, oddness and
periodicity. If a function possesses one of these symmetries then it can be exploited to
reduce the amount of work required to sketch the graph of the function.

Let us start with even and odd functions.
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Definition 3.6.6

A function f(x) is said to be even if f(−x) = f(x) for all x.

Definition 3.6.7

A function f(x) is said to be odd if f(−x) = −f(x) for all x.

Example 3.6.8 An even function and an odd funtion.

Let f(x) = x2 and g(x) = x3. Then

f(−x) = (−x)2 = x2 = f(x)

g(−x) = (−x)3 = −x3 = −g(x)

Hence f(x) is even and g(x) is odd.
Notice any polynomial involving only even powers of x will be even

f(x) = 7x6 + 2x4 − 3x2 + 5 remember that 5 = 5x0

f(−x) = 7(−x)6 + 2(−x)4 − 3(−x)2 + 5

= 7x6 + 2x4 − 3x2 + 5 = f(x)

Similarly any polynomial involving only odd powers of x will be odd

g(x) = 2x5 − 8x3 − 3x

g(−x) = 2(−x)5 − 8(−x)3 − 3(−x)

= −2x5 + 8x3 + 3x = −g(x)

Not all even and odd functions are polynomials. For example

|x| cosx and (ex + e−x)

are all even, while

sinx tanx and (ex − e−x)

are all odd. Indeed, given any function f(x), the function

g(x) = f(x) + f(−x) will be even, and
h(x) = f(x)− f(−x) will be odd.

Now let us see how we can make use of these symmetries to make graph sketching
easier. Let f(x) be an even function. Then

the point (x0, y0) lies on the graph of y = f(x)
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if and only if y0 = f(x0) = f(−x0) which is the case if and only if

the point (−x0, y0) lies on the graph of y = f(x).

Notice that the points (x0, y0) and (−x0, y0) are just reflections of each other across
the y-axis. Consequently, to draw the graph y = f(x), it suffices to draw the part of
the graph with x ≥ 0 and then reflect it in the y–axis. Here is an example. The part
with x ≥ 0 is on the left and the full graph is on the right.

Very similarly, when f(x) is an odd function then

(x0, y0) lies on the graph of y = f(x)

if and only if

(−x0,−y0) lies on the graph of y = f(x)
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Now the symmetry is a little harder to interpret pictorially. To get from (x0, y0)
to (−x0,−y0) one can first reflect (x0, y0) in the y–axis to get to (−x0, y0) and then
reflect the result in the x–axis to get to (−x0,−y0). Consequently, to draw the graph
y = f(x), it suffices to draw the part of the graph with x ≥ 0 and then reflect it first
in the y–axis and then in the x–axis. Here is an example. First, here is the part of the
graph with x ≥ 0.

Next, as an intermediate step (usually done in our heads rather than on paper), we
add in the reflection in the y–axis.

Finally to get the full graph, we reflect the dashed line in the x–axis

and then remove the dashed line.
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Let’s do a more substantial example of an even function

Example 3.6.9 An even rational function.

Consider the function

g(x) =
x2 − 9

x2 + 3

• The function is even since

g(−x) =
(−x)2 − 9

(−x)2 + 3
=
x2 − 9

x2 + 3
= g(x)

Thus it suffices to study the function for x ≥ 0 because we can then use the even
symmetry to understand what happens for x < 0.

• The function is defined on all real numbers since its denominator x2 + 3 is never
zero. Hence it has no vertical asymptotes.

• The y-intercept is g(0) = −9
3

= −3. And x-intercepts are given by the solution
of x2 − 9 = 0, namely x = ±3. Note that we only need to establish x = 3 as an
intercept. Then since g is even, we know that x = −3 is also an intercept.

• To find the horizontal asymptotes we compute the limit as x→ +∞

lim
x→∞

g(x) = lim
x→∞

x2 − 9

x2 + 3

= lim
x→∞

x2(1− 9/x2)

x2(1 + 3/x2)

= lim
x→∞

1− 9/x2

1 + 3/x2
= 1

Thus y = 1 is a horizontal asymptote. Indeed, this is also the asymptote as
x→ −∞ since by the even symmetry

lim
x→−∞

g(x) = lim
x→∞

g(−x) = lim
x→∞

g(x).
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• We can already produce a quite reasonable sketch just by putting in the horizontal
asymptote and the intercepts and drawing a smooth curve between them.

Note that we have drawn the function as never crossing the asymptote y = 1,
however we have not yet proved that. We could by trying to solve g(x) = 1.

x2 − 9

x2 + 3
= 1

x2 − 9 = x2 + 3

−9 = 3 so no solutions.

Alternatively we could analyse the first derivative to see how the function ap-
proaches the asymptote.

• Now we turn to the first derivative:

g′(x) =
(x2 + 3)(2x)− (x2 − 9)(2x)

(x2 + 3)2

=
24x

(x2 + 3)2

There are no singular points since the denominator is nowhere zero. The only
critical point is at x = 0. Thus we must find the sign of g′(x) on the intervals

(−∞, 0) (0,∞)

• When x > 0, 24x > 0 and (x2 +3) > 0, so g′(x) > 0 and the function is increasing.
By even symmetry we know that when x < 0 the function must be decreasing.
Hence the critical point x = 0 is a local minimum of the function.

• Notice that since the function is increasing for x > 0 and the function must
approach the horizontal asymptote y = 1 from below. Thus the sketch above is
quite accurate.
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Example 3.6.9

• Now consider the second derivative:

g′′(x) =
d

dx

24x

(x2 + 3)2

=
(x2 + 3)2 · 24− 24x · 2(x2 + 3) · 2x

(x2 + 3)4

cancel a factor of (x2 + 3)

=
(x2 + 3) · 24− 96x2

(x2 + 3)3

=
72(1− x2)

(x2 + 3)3

• It is clear that g′′(x) = 0 when x = ±1. Note that, again, we can infer the zero at
x = −1 from the zero at x = 1 by the even symmetry. Thus we need to examine
the sign of g′′(x) the intervals

(−∞,−1) (−1, 1) (1,∞)

• When |x| < 1 we have (1− x2) > 0 so that g′′(x) > 0 and the function is concave
up. When |x| > 1 we have (1 − x2) < 0 so that g′′(x) < 0 and the function is
concave down. Thus the points x = ±1 are inflection points. Their coordinates
are (±1, g(±1)) = (±1,−2).

• Putting this together gives the following sketch:

Another symmetry we should consider is periodicity.
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Definition 3.6.10

A function f(x) is said to be periodic, with period P > 0, if f(x+P ) = f(x) for
all x.

Note that if f(x+ P ) = f(x) for all x, then replacing x by x+ P , we have

f(x+ 2P ) = f(x+ P + P ) = f(x+ P ) = f(x).

More generally f(x+kP ) = f(x) for all integers k. Thus if f has period P , then it also
has period nP for all natural numbers n. The smallest period is called the fundamental
period.

Example 3.6.11 sinx is periodic.

The classic example of a periodic function is f(x) = sinx, which has period 2π since
f(x+ 2π) = sin(x+ 2π) = sinx = f(x).

If f(x) has period P then

(x0, y0) lies on the graph of y = f(x)

if and only if y0 = f(x0) = f(x0 + P ) which is the case if and only if

(x0 + P, y0) lies on the graph of y = f(x)

and, more generally,

(x0, y0) lies on the graph of y = f(x)

if and only if

(x0 + nP, y0) lies on the graph of y = f(x)

for all integers n.
Note that the point (x0 +P, y0) can be obtained by translating (x0, y0) horizontally

by P . Similarly the point (x0 + nP, y0) can be found by repeatedly translating (x0, y0)
horizontally by P .

Consequently, to draw the graph y = f(x), it suffices to draw one period of the
graph, say the part with 0 ≤ x ≤ P , and then translate it repeatedly. Here is an
example. Here is a sketch of one period
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and here is the full sketch.

3.6.5 tt A Checklist for Sketching

Above we have described how we can use our accumulated knowledge of derivatives to
quickly identify the most important qualitative features of graphs y = f(x). Here we
give the reader a quick checklist of things to examine in order to produce an accurate
sketch based on properties that are easily read off from f(x), f ′(x) and f ′′(x).

3.6.5.1ttt A Sketching Checklist

1 Features of y = f(x) that are read off of f(x):

• First check where f(x) is defined. Then
• y = f(x) is plotted only for x’s in the domain of f(x), i.e. where f(x) is

defined.
• y = f(x) has vertical asymptotes at the points where f(x) blows up to ±∞.
• Next determine whether the function is even, odd, or periodic.
• y = f(x) is first plotted for x ≥ 0 if the function is even or odd. The rest of
the sketch is then created by reflections.

• y = f(x) is first plotted for a single period if the function is periodic. The
rest of the sketch is then created by translations.

• Next compute f(0), limx→∞ f(x) and limx→−∞ f(x) and look for solutions
to f(x) = 0 that you can easily find. Then
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• y = f(x) has y–intercept
(
0, f(0)

)
.

• y = f(x) has x–intercept (a, 0) whenever f(a) = 0

• y = f(x) has horizontal asymptote y = Y if limx→∞ f(x) = L or limx→−∞ f(x) =
L.

2 Features of y = f(x) that are read off of f ′(x):

• Compute f ′(x) and determine its critical points and singular points, then
• y = f(x) has a horizontal tangent at the points where f ′(x) = 0.
• y = f(x) is increasing at points where f ′(x) > 0.
• y = f(x) is decreasing at points where f ′(x) < 0.
• y = f(x) has vertical tangents or vertical asymptotes at the points where
f ′(x) = ±∞.

3 Features of y = f(x) that are read off of f ′′(x):

• Compute f ′′(x) and determine where f ′′(x) = 0 or does not exist, then
• y = f(x) is concave up at points where f ′′(x) > 0.
• y = f(x) is concave down at points where f ′′(x) < 0.
• y = f(x) may or may not have inflection points where f ′′(x) = 0.

3.6.6 tt Sketching Examples

Example 3.6.12 Sketch f(x) = x3 − 3x+ 1.

1 Reading from f(x):

• The function is a polynomial so it is defined everywhere.

• Since f(−x) = −x3 + 3x + 1 6= ±f(x), it is not even or odd. Nor is it
periodic.

• The y-intercept is y = 1. The x-intercepts are not easily computed since it
is a cubic polynomial that does not factor nicely a . So for this example we
don’t worry about finding them.

• Since it is a polynomial it has no vertical asymptotes.

• For very large x, both positive and negative, the x3 term in f(x) dominates
the other two terms so that

f(x)→
{

+∞ as x→ +∞
−∞ as x→ −∞

and there are no horizontal asymptotes.
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2 We now compute the derivative:

f ′(x) = 3x2 − 3 = 3(x2 − 1) = 3(x+ 1)(x− 1)

• The critical points (where f ′(x) = 0) are at x = ±1. Further since the deriva-
tive is a polynomial it is defined everywhere and there are no singular points.
The critical points split the real line into the intervals (−∞,−1), (−1, 1) and
(1,∞).

• When x < −1, both factors (x+ 1), (x− 1) < 0 so f ′(x) > 0.

• Similarly when x > 1, both factors (x+ 1), (x− 1) > 0 so f ′(x) > 0.

• When −1 < x < 1, (x− 1) < 0 but (x+ 1) > 0 so f ′(x) < 0.

• Summarising all this

(−∞,−1) -1 (-1,1) 1 (1,∞)

f ′(x) positive 0 negative 0 positive
increasing maximum decreasing minimum increasing

So (−1, f(−1)) = (−1, 3) is a local maximum and (1, f(1)) = (1,−1) is a
local minimum.

3 Compute the second derivative:

f ′′(x) = 6x

• The second derivative is zero when x = 0, and the problem is quite easy to
analyse. Clearly, f ′′(x) < 0 when x < 0 and f ′′(x) > 0 when x > 0.

• Thus f is concave down for x < 0, concave up for x > 0 and has an inflection
point at x = 0.

Putting this all together gives:
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Example 3.6.12

a With the aid of a computer we can find the x-intercepts numerically: x ≈
−1.879385242, 0.3472963553, and 1.532088886. If you are interested in more details check out
Appendix C.

Example 3.6.13 Sketch f(x) = x4 − 4x3.

1 Reading from f(x):

• The function is a polynomial so it is defined everywhere.

• Since f(−x) = x4 + 4x3 6= ±f(x), it is not even or odd. Nor is it periodic.

• The y-intercept is y = f(0) = 0, while the x-intercepts are given by the
solution of

f(x) = x4 − 4x3 = 0

x3(x− 4) = 0

Hence the x-intercepts are 0, 4.

• Since f is a polynomial it does not have any vertical asymptotes.

• For very large x, both positive and negative, the x4 term in f(x) dominates
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the other term so that

f(x)→
{

+∞ as x→ +∞
+∞ as x→ −∞

and the function has no horizontal asymptotes.

2 Now compute the derivative f ′(x):

f ′(x) = 4x3 − 12x2 = 4(x− 3)x2

• The critical points are at x = 0, 3. Since the function is a polynomial there
are no singular points. The critical points split the real line into the intervals
(−∞, 0), (0, 3) and (3,∞).

• When x < 0, x2 > 0 and x− 3 < 0, so f ′(x) < 0.

• When 0 < x < 3, x2 > 0 and x− 3 < 0, so f ′(x) < 0.

• When 3 < x, x2 > 0 and x− 3 > 0, so f ′(x) > 0.

• Summarising all this

(−∞, 0) 0 (0,3) 3 (3,∞)

f ′(x) negative 0 negative 0 positive

decreasing horizontal
tangent

decreasing minimum increasing

So the point (3, f(3)) = (3,−27) is a local minimum. The point (0, f(0)) =
(0, 0) is neither a minimum nor a maximum, even though f ′(0) = 0.

3 Now examine f ′′(x):

f ′′(x) = 12x2 − 24x = 12x(x− 2)

• So f ′′(x) = 0 when x = 0, 2. This splits the real line into the intervals
(−∞, 0), (0, 2) and (2,∞).

• When x < 0, x− 2 < 0 and so f ′′(x) > 0.

• When 0 < x < 2, x > 0 and x− 2 < 0 and so f ′′(x) < 0.

• When 2 < x, x > 0 and x− 2 > 0 and so f ′′(x) > 0.

• Thus the function is convex up for x < 0, then convex down for 0 < x <
2, and finally convex up again for x > 2. Hence (0, f(0)) = (0, 0) and
(2, f(2)) = (2,−16) are inflection points.

Putting all this information together gives us the following sketch.
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Example 3.6.13

Example 3.6.14 f(x) = x3 − 6x2 + 9x− 54.

1 Reading from f(x):

• The function is a polynomial so it is defined everywhere.

• Since f(−x) = −x3 − 6x2 − 9x− 54 6= ±f(x), it is not even or odd. Nor is
it periodic.

• The y-intercept is y = f(0) = −54, while the x-intercepts are given by the
solution of

f(x) = x3 − 6x2 + 9x− 54 = 0

x2(x− 6) + 9(x− 6) = 0

(x2 + 9)(x− 6) = 0

Hence the only x-intercept is 6.

• Since f is a polynomial it does not have any vertical asymptotes.

• For very large x, both positive and negative, the x3 term in f(x) dominates
the other term so that

f(x)→
{

+∞ as x→ +∞
−∞ as x→ −∞

and the function has no horizontal asymptotes.
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2 Now compute the derivative f ′(x):

f ′(x) = 3x2 − 12x+ 9

= 3(x2 − 4x+ 3) = 3(x− 3)(x− 1)

• The critical points are at x = 1, 3. Since the function is a polynomial there
are no singular points. The critical points split the real line into the intervals
(−∞, 1), (1, 3) and (3,∞).

• When x < 1, (x− 1) < 0 and (x− 3) < 0, so f ′(x) > 0.

• When 1 < x < 3, (x− 1) > 0 and (x− 3) < 0, so f ′(x) < 0.

• When 3 < x, (x− 1) > 0 and (x− 3) > 0, so f ′(x) > 0.

• Summarising all this

(−∞, 1) 1 (1,3) 3 (3,∞)

f ′(x) positive 0 negative 0 positive
increasing maximum decreasing minimum increasing

So the point (1, f(1)) = (1,−50) is a local maximum. The point (3, f(3)) =
(3,−54) is a local minimum.

3 Now examine f ′′(x):

f ′′(x) = 6x− 12

• So f ′′(x) = 0 when x = 2. This splits the real line into the intervals (−∞, 2)
and (2,∞).

• When x < 2, f ′′(x) < 0.

• When x > 2, f ′′(x) > 0.

• Thus the function is convex down for x < 2, then convex up for x > 2. Hence
(2, f(2)) = (2,−52) is an inflection point.

Putting all this information together gives us the following sketch.
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Example 3.6.14

and if we zoom in around the interesting points (minimum, maximum and inflection
point), we have

An example of sketching a simple rational function.

Example 3.6.15 f(x) =
x

x2 − 4
.

1 Reading from f(x):

• The function is rational so it is defined except where its denominator is zero
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— namely at x = ±2.

• Since f(−x) =
−x

x2 − 4
= −f(x), it is odd. Indeed this means that we only

need to examine what happens to the function for x ≥ 0 and we can then
infer what happens for x ≤ 0 using f(−x) = −f(x). In practice we will
sketch the graph for x ≥ 0 and then infer the rest from this symmetry.

• The y-intercept is y = f(0) = 0, while the x-intercepts are given by the
solution of f(x) = 0. So the only x-intercept is 0.

• Since f is rational, it may have vertical asymptotes where its denominator
is zero — at x = ±2. Since the function is odd, we only have to analyse
the asymptote at x = 2 and we can then infer what happens at x = −2 by
symmetry.

lim
x→2+

f(x) = lim
x→2+

x

(x− 2)(x+ 2)
= +∞

lim
x→2−

f(x) = lim
x→2−

x

(x− 2)(x+ 2)
= −∞

• We now check for horizontal asymptotes:

lim
x→+∞

f(x) = lim
x→+∞

x

x2 − 4

= lim
x→+∞

1

x− 4/x
= 0

2 Now compute the derivative f ′(x):

f ′(x) =
(x2 − 4) · 1− x · 2x

(x2 − 4)2

=
−(x2 + 4)

(x2 − 4)2

• Hence there are no critical points. There are singular points where the
denominator is zero, namely x = ±2. Before we proceed, notice that the
numerator is always negative and the denominator is always positive. Hence
f ′(x) < 0 except at x = ±2 where it is undefined.

• The function is decreasing except at x = ±2.

• We already know that at x = 2 we have a vertical asymptote and that
f ′(x) < 0 for all x. So

lim
x→2

f ′(x) = −∞

• Summarising all this
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[0,2) 2 (2,∞)

f ′(x) negative DNE negative

decreasing vertical
asymptote

decreasing

Remember — we will draw the graph for x ≥ 0 and then use the odd
symmetry to infer the graph for x < 0.

3 Now examine f ′′(x):

f ′′(x) = −(x2 − 4)2 · (2x)− (x2 + 4) · 2 · 2x · (x2 − 4)

(x2 − 4)4

= −(x2 − 4) · (2x)− (x2 + 4) · 4x
(x2 − 4)3

= −2x3 − 8x− 4x3 − 16x

(x2 − 4)3

=
2x(x2 + 12)

(x2 − 4)3

• So f ′′(x) = 0 when x = 0 and does not exist when x = ±2. This splits the
real line into the intervals (−∞,−2), (−2, 0), (0, 2) and (2,∞). However we
only need to consider x ≥ 0 (because of the odd symmetry).

• When 0 < x < 2, x > 0, (x2 + 12) > 0 and (x2 − 4) < 0 so f ′′(x) < 0.

• When x > 2, x > 0, (x2 + 12) > 0 and (x2 − 4) > 0 so f ′′(x) > 0.

Putting all this information together gives the following sketch for x ≥ 0:

We can then draw in the graph for x < 0 using f(−x) = −f(x):
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Example 3.6.15

Notice that this means that the concavity changes at x = 0, so the point (0, f(0)) =
(0, 0) is a point of inflection (as indicated).

This final example is more substantial since the function has singular points (points
where the derivative is undefined). The analysis is more involved.

Example 3.6.16 f(x) = 3

√
x2

(x−6)2
.

1 Reading from f(x):

• First notice that we can rewrite

f(x) = 3

√
x2

(x− 6)2
= 3

√
x2

x2 · (1− 6/x)2
= 3

√
1

(1− 6/x)2

• The function is the cube root of a rational function. The rational function
is defined except at x = 6, so the domain of f is all reals except x = 6.

• Clearly the function is not periodic, and examining

f(−x) = 3

√
1

(1− 6/(−x))2

= 3

√
1

(1 + 6/x)2
6= ±f(x)

shows the function is neither even nor odd.
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• To compute horizontal asymptotes we examine the limit of the portion of
the function inside the cube-root

lim
x→±∞

1

(1− 6
x
)2

= 1

This means we have

lim
x→±∞

f(x) = 1

That is, the line y = 1 will be a horizontal asymptote to the graph y = f(x)
both for x→ +∞ and for x→ −∞.

• Our function f(x)→ +∞ as x→ 6, because of the (1− 6/x)2 in its denom-
inator. So y = f(x) has x = 6 as a vertical asymptote.

2 Now compute f ′(x). Since we rewrote

f(x) = 3

√
1

(1− 6/x)2
=

(
1− 6

x

)− 2
3

we can use the chain rule

f ′(x) = −2

3

(
1− 6

x

)− 5
3 6

x2

= −4

(
x− 6

x

)− 5
3 1

x2

= −4

(
1

x− 6

) 5
3 1

x
1
3

• Notice that the derivative is nowhere equal to zero, so the function has no
critical points. However there are two places the derivative is undefined. The
terms (

1

x− 6

) 5
3 1

x
1
3

are undefined at x = 6, 0 respectively. Hence x = 0, 6 are singular points.
These split the real line into the intervals (−∞, 0), (0, 6) and (6,∞).

• When x < 0, (x − 6) < 0, we have that (x − 6)−
5
3 < 0 and x−

1
3 < 0 and so

f ′(x) = −4 · (negative) · (negative) < 0.

• When 0 < x < 6, (x− 6) < 0, we have that (x− 6)−
5
3 < 0 and x−

1
3 > 0 and

so f ′(x) > 0.

• When x > 6, (x − 6) > 0, we have that (x − 6)−
5
3 > 0 and x−

1
3 > 0 and so

f ′(x) < 0.
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• We should also examine the behaviour of the derivative as x→ 0 and x→ 6.

lim
x→0−

f ′(x) = −4

(
lim
x→0−

(x− 6)−
5
3

)(
lim
x→0−

x−
1
3

)
= −∞

lim
x→0+

f ′(x) = −4

(
lim
x→0+

(x− 6)−
5
3

)(
lim
x→0+

x−
1
3

)
= +∞

lim
x→6−

f ′(x) = −4

(
lim
x→6−

(x− 6)−
5
3

)(
lim
x→6−

x−
1
3

)
= +∞

lim
x→6+

f ′(x) = −4

(
lim
x→6+

(x− 6)−
5
3

)(
lim
x→6+

x−
1
3

)
= −∞

We already know that x = 6 is a vertical asymptote of the function, so it
is not surprising that the lines tangent to the graph become vertical as we
approach 6. The behavior around x = 0 is less standard, since the lines
tangent to the graph become vertical, but x = 0 is not a vertical asymptote
of the function. Indeed the function takes a finite value y = f(0) = 0.

• Summarising all this

(−∞, 0) 0 (0,6) 6 (6,∞)

f ′(x) negative DNE positive DNE negative

decreasing vertical
tangents

increasing vertical
asymptote

decreasing

3 Now look at f ′′(x):

f ′′(x) = −4
d

dx

[(
1

x− 6

) 5
3 1

x
1
3

]

= −4

[
−5

3

(
1

x− 6

) 8
3 1

x
1
3

− 1

3

(
1

x− 6

) 5
3 1

x
4
3

]

=
4

3

(
1

x− 6

) 8
3 1

x
4
3

[5x+ (x− 6)]

= 8

(
1

x− 6

) 8
3 1

x
4
3

[x− 1]

Oof!

• Both of the factors
(

1
x−6

) 8
3

=
(

1
3√x−6

)8

and 1

x
4
3

=
(

1
3√x

)4

are even powers
and so are positive (though possibly infinite). So the sign of f ′′(x) is the
same as the sign of the factor x− 1. Thus
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(−∞, 1) 1 (1,∞)

f ′′(x) negative 0 positive

concave down inflection
point

concave up

Here is a sketch of the graph y = f(x).

It is hard to see the inflection point at x = 1, y = f(1) = 1
3√25

in the above sketch. So
here is a blow up of the part of the sketch around x = 1.

And if we zoom in even more we have
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Example 3.6.16

3.6.7 tt Exercises

ttt Exercises for § 3.6.1

Exercises — Stage 1

1. Suppose f(x) is a function given by

f(x) =
g(x)

x2 − 9

where g(x) is also a function. True or false: f(x) has a vertical asymptote
at x = −3.

Exercises — Stage 2

2. Match the functions f(x), g(x), h(x), and k(x) to the curves y = A(x)
through y = D(x).

f(x) =
√
x2 + 1 g(x) =

√
x2 − 1

h(x) =
√
x2 + 4 k(x) =

√
x2 − 4
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x

y

y = A(x)

1−1 2−2

1

2

x

y

y = B(x)

1−1 2−2

1

2

x

y

y = C(x)

1−1 2−2

1

2

x

y

y = D(x)

1−1 2−2

1

2

3. Below is the graph of

y = f(x) =

√
log2(x+ p)

a What is p?

b What is b (marked on the graph)?

c What is the x-intercept of f(x)?

Remember log(x+ p) is the natural logarithm of x+ p, loge(x+ p).

x

y

b

1

2

3

−6 −5 −4 −3 −2 −1 1 2−8
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4. Find all asymptotes of f(x) =
x(2x+ 1)(x− 7)

3x3 − 81
.

5. Find all asymptotes of f(x) = 103x−7.

ttt Exercises for § 3.6.2

Exercises — Stage 1

1. Match each function graphed below to its derivative from the list. (For
example, which function on the list corresponds to A′(x)?)
The y-axes have been scaled to make the curve’s behaviour clear, so the
vertical scales differ from graph to graph.
l(x) = (x− 2)4

m(x) = (x− 2)4(x+ 2)
n(x) = (x− 2)2(x+ 2)2

o(x) = (x− 2)(x+ 2)3

p(x) = (x+ 2)4

x

y

y = A(x)

2−2
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x

y
y = B(x)

2−2

x

y

y = C(x)

2−2

x

y

y = D(x)

2−2
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x

y

y = E(x)

2−2

Exercises — Stage 2

2. ∗. Find the largest open interval on which f(x) =
ex

x+ 3
is increasing.

3. ∗. Find the largest open interval on which f(x) =

√
x− 1

2x+ 4
is increasing.

4. ∗. Find the largest open interval on which f(x) = 2 arctan(x)− log(1+x2)
is increasing.

ttt Exercises for § 3.6.3

Exercises — Stage 1

1. On the graph below, mark the intervals where f ′′(x) > 0 (i.e. f(x) is
concave up) and where f ′′(x) < 0 (i.e. f(x) is concave down).
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x

y

2. Sketch a curve that is:

• concave up when |x| > 5,

• concave down when |x| < 5,

• increasing when x < 0, and

• decreasing when x > 0.

3. Suppose f(x) is a function whose second derivative exists and is continuous
for all real numbers.
True or false: if f ′′(3) = 0, then x = 3 is an inflection point of f(x).
Remark: compare to Question 3.6.7.7

Exercises — Stage 2

4. ∗. Find all inflection points for the graph of f(x) = 3x5 − 5x4 + 13x.

Exercises — Stage 3 Questions 3.6.7.5 through 3.6.7.7 ask you to show that cer-
tain things are true. Give a clear explanation using concepts and theorems from this
textbook.

5. ∗. Let
f(x) =

x5

20
+

5x3

6
− 10x2 + 500x+ 1000

Show that f(x) has exactly one inflection point.
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6. ∗. Let f(x) be a function whose first two derivatives exist everywhere, and
f ′′(x) > 0 for all x.

a Show that f(x) has at most one critical point and that any critical
point is an absolute minimum for f(x).

b Show that the maximum value of f(x) on any finite interval occurs
at one of the endpoints of the interval.

7. Suppose f(x) is a function whose second derivative exists and is continuous for
all real numbers, and x = 3 is an inflection point of f(x). Use the Intermediate
Value Theorem to show that f ′′(3) = 0.
Remark: compare to Question 3.6.7.3.

ttt Exercises for § 3.6.4

Exercises — Stage 1

1. What symmetries (even, odd, periodic) does the function graphed below
have?

x

y

y = f(x)

2. What symmetries (even, odd, periodic) does the function graphed below have?
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x

y

y = f(x)

3. Suppose f(x) is an even function defined for all real numbers. Below is the
curve y = f(x) when x > 0. Complete the sketch of the curve.

x

y

4. Suppose f(x) is an odd function defined for all real numbers. Below is the
curve y = f(x) when x > 0. Complete the sketch of the curve.
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x

y

Exercises — Stage 2 In Questions 3.6.7.7 through 3.6.7.10, find the symmetries of
a function from its equation.

5.

f(x) =
x4 − x6

ex2

Show that f(x) is even.

6.
f(x) = sin(x) + cos

(x
2

)
Show that f(x) is periodic.

7.
f(x) = x4 + 5x2 + cos

(
x3
)

What symmetries (even, odd, periodic) does f(x) have?

8.
f(x) = x5 + 5x4

What symmetries (even, odd, periodic) does f(x) have?
9.

f(x) = tan (πx)

What is the period of f(x)?

Exercises — Stage 3
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10.
f(x) = tan (3x) + sin (4x)

What is the period of f(x)?

ttt Exercises for § 3.6.6

Exercises — Stage 1 In Questions 3.6.7.2 through 3.6.7.4, you will sketch the graphs
of rational functions.In Questions 3.6.7.6 and 3.6.7.7, you will sketch the graphs of
functions with an exponential component. In the next section, you will learn how to find
their horizontal asymptotes, but for now these are given to you.In Questions 3.6.7.8 and
3.6.7.9, you will sketch the graphs of functions that have a trigonometric component.

1. ∗. Let f(x) = x
√

3− x.

a Find the domain of f(x).

b Determine the x-coordinates of the local maxima and minima (if any)
and intervals where f(x) is increasing or decreasing.

c Determine intervals where f(x) is concave upwards or downwards,
and the x coordinates of inflection points (if any). You may use,
without verifying it, the formula f ′′(x) = (3x− 12)(3− x)−3/2/4.

d There is a point at which the tangent line to the curve y = f(x) is
vertical. Find this point.

e Sketch the graph y = f(x), showing the features given in items (a)
to (d) above and giving the (x, y) coordinates for all points occurring
above.

2. ∗. Sketch the graph of

f(x) =
x3 − 2

x4
.

Indicate the critical points, local and absolute maxima and minima, vertical
and horizontal asymptotes, inflection points and regions where the curve is
concave upward or downward.

3. ∗. The first and second derivatives of the function f(x) =
x4

1 + x3
are:

f ′(x) =
4x3 + x6

(1 + x3)2
and f ′′(x) =

12x2 − 6x5

(1 + x3)3

Graph f(x). Include local and absolute maxima and minima, regions where
f(x) is increasing or decreasing, regions where the curve is concave upward or
downward, and any asymptotes.
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4. ∗. The first and second derivatives of the function f(x) =
x3

1− x2
are:

f ′(x) =
3x2 − x4

(1− x2)2
and f ′′(x) =

6x+ 2x3

(1− x2)3

Graph f(x). Include local and absolute maxima and minima, regions where
the curve is concave upward or downward, and any asymptotes.

5. ∗. The function f(x) is defined by

f(x) =

{
ex x < 0
x2+3

3(x+1)
x ≥ 0

a Explain why f(x) is continuous everywhere.

b Determine all of the following if they are present:

i x–coordinates of local maxima and minima, intervals where f(x)
is increasing or decreasing;

ii intervals where f(x) is concave upwards or downwards;

iii equations of any horizontal or vertical asymptotes.

c Sketch the graph of y = f(x), giving the (x, y) coordinates for all
points of interest above.

6. ∗. The function f(x) and its derivative are given below:

f(x) = (1 + 2x)e−x
2

and f ′(x) = 2(1− x− 2x2)e−x
2

Sketch the graph of f(x). Indicate the critical points, local and/or absolute
maxima and minima, and asymptotes. Without actually calculating the in-
flection points, indicate on the graph their approximate location.
Note: lim

x→±∞
f(x) = 0.

7. ∗. Consider the function f(x) = xe−x
2/2.

Note: lim
x→±∞

f(x) = 0.

a Find all inflection points and intervals of increase, decrease, convexity
up, and convexity down. You may use without proof the formula
f ′′(x) = (x3 − 3x)e−x

2/2.

b Find local and global minima and maxima.
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c Use all the above to draw a graph for f . Indicate all special points
on the graph.

8. Use the techniques from this section to sketch the graph of f(x) = x+ 2 sinx.
9. ∗.

f(x) = 4 sinx− 2 cos 2x

Graph the equation y = f(x), including all important features. (In particular,
find all local maxima and minima and all inflection points.) Additionally, find
the maximum and minimum values of f(x) on the interval [0, π].

10. Sketch the curve y = 3

√
x+ 1

x2
.

You may use the facts y′(x) =
−(x+ 2)

3x5/3(x+ 1)2/3
and y′′(x) =

4x2 + 16x+ 10

9x8/3(x+ 1)5/3
.

Exercises — Stage 3

11. ∗. A function f(x) defined on the whole real number line satisfies the following
conditions

f(0) = 0 f(2) = 2 lim
x→+∞

f(x) = 0 f ′(x) = K(2x− x2)e−x

for some positive constant K. (Read carefully: you are given the derivative of
f(x), not f(x) itself.)

a Determine the intervals on which f is increasing and decreasing and the
location of any local maximum and minimum values of f .

b Determine the intervals on which f is concave up or down and the x–
coordinates of any inflection points of f .

c Determine lim
x→−∞

f(x).

d Sketch the graph of y = f(x), showing any asymptotes and the informa-
tion determined in parts 3.6.7.11.a and 3.6.7.11.b.

12. ∗. Let f(x) = e−x , x ≥ 0.

a Sketch the graph of the equation y = f(x). Indicate any local extrema
and inflection points.

b Sketch the graph of the inverse function y = g(x) = f−1(x).

c Find the domain and range of the inverse function g(x) = f−1(x).

d Evaluate g′(1
2
).
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13. ∗.

a Sketch the graph of y = f(x) = x5 − x, indicating asymptotes, local
maxima and minima, inflection points, and where the graph is concave
up/concave down.

b Consider the function f(x) = x5 − x + k, where k is a constant, −∞ <
k < ∞. How many roots does the function have? (Your answer might
depend on the value of k.)

14. ∗. The hyperbolic trigonometric functions sinh(x) and cosh(x) are defined by

sinh(x) =
ex − e−x

2
cosh(x) =

ex + e−x

2

They have many properties that are similar to corresponding properties of
sin(x) and cos(x). In particular, it is easy to see that

d

dx
sinh(x) = cosh(x)

d

dx
cosh(x) = sinh(x) cosh2(x)− sinh2(x) = 1

You may use these properties in your solution to this question.

a Sketch the graphs of sinh(x) and cosh(x).

b Define inverse hyperbolic trigonometric functions sinh−1(x) and
cosh−1(x), carefully specifing their domains of definition. Sketch the
graphs of sinh−1(x) and cosh−1(x).

c Find d
dx

{
cosh−1(x)

}
.

3.7q L’Hôpital’s Rule, Indeterminate Forms

3.7.1 tt L’Hôpital’s Rule and Indeterminate Forms

Let us return to limits (Chapter 1) and see how we can use derivatives to simplify
certain families of limits called indeterminate forms. We know, from Theorem 1.4.3 on
the arithmetic of limits, that if

lim
x→a

f(x) = F lim
x→a

g(x) = G

and G 6= 0, then

lim
x→a

f(x)

g(x)
=
F

G
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The requirement that G 6= 0 is critical — we explored this in Example 1.4.7. Please
reread that example.

Of course 1 it is not surprising that if F 6= 0 and G = 0, then

lim
x→a

f(x)

g(x)
= DNE

and if F = 0 but G 6= 0 then

lim
x→a

f(x)

g(x)
= 0

However when both F,G = 0 then, as we saw in Example 1.4.7, almost anything can
happen

f(x) = x g(x) = x2 lim
x→0

x

x2
= lim

x→0

1

x
= DNE

f(x) = x2 g(x) = x lim
x→0

x2

x
= lim

x→0
x = 0

f(x) = x g(x) = x lim
x→0

x

x
= lim

x→0
1 = 1

f(x) = 7x2 g(x) = 3x2 lim
x→0

7x2

3x2
= lim

x→0

7

3
=

7

3

Indeed after exploring Example 1.4.12 and 1.4.14 we gave ourselves the rule of thumb
that if we found 0/0, then there must be something that cancels.

Because the limit that results from these 0/0 situations is not immediately obvious,
but also leads to some interesting mathematics, we should give it a name.

Definition 3.7.1 First indeterminate forms.

Let a ∈ R and let f(x) and g(x) be functions. If

lim
x→a

f(x) = 0 and lim
x→a

g(x) = 0

then the limit

lim
x→a

f(x)

g(x)

is called a 0
0
indeterminate form.

There are quite a number of mathematical tools for evaluating such indeterminate
forms — Taylor series for example. A simpler method, which works in quite a few cases,
is L’Hôpital’s rule 2 .

1 Now it is not so surprising, but perhaps back when we started limits, this was not so obvious.
2 Named for the 17th century mathematician, Guillaume de l’Hôpital, who published the first

textbook on differential calculus. The eponymous rule appears in that text, but is believed to
have been developed by Johann Bernoulli. The book was the source of some controversy since it
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Theorem 3.7.2 L’Hôpital’s Rule.

Let a ∈ R and assume that

lim
x→a

f(x) = lim
x→a

g(x) = 0

Then

a if f ′(a) and g′(a) exist and g′(a) 6= 0, then

lim
x→a

f(x)

g(x)
=
f ′(a)

g′(a)
,

b while, if f ′(x) and g′(x) exist, with g′(x) nonzero, on an open interval that
contains a, except possibly at a itself, and if the limit

lim
x→a

f ′(x)

g′(x)
exists or is +∞ or is −∞

then

lim
x→a

f(x)

g(x)
= lim

x→a
f ′(x)

g′(x)

Proof. We only give the proof for part (a). The proof of part (b) is not very
difficult, but uses the Generalised Mean–Value Theorem (Theorem 3.4.38), which
is optional and most readers have not seen it.

• First note that we must have f(a) = g(a) = 0. To see this note that since
derivative f ′(a) exists, we know that the limit

lim
x→a

f(x)− f(a)

x− a exists

Since we know that the denominator goes to zero, we must also have that
the numerator goes to zero (otherwise the limit would be undefined). Hence
we must have

lim
x→a

(f(x)− f(a)) =
(

lim
x→a

f(x)
)
− f(a) = 0

contained many results by Bernoulli, which l’Hôpital acknowledged in the preface, but Bernoulli
felt that l’Hôpital got undue credit.

Note that around that time l’Hôpital’s name was commonly spelled l’Hospital, but the spelling
of silent s in French was changed subsequently; many texts spell his name l’Hospital. If you find
yourself in Paris, you can hunt along Boulevard de l’Hôpital for older street signs carved into the
sides of buildings which spell it “l’Hospital” — though arguably there are better things to do there.
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We are told that lim
x→a

f(x) = 0 so we must have f(a) = 0. Similarly we know
that g(a) = 0.

• Now consider the indeterminate form

lim
x→a

f(x)

g(x)
= lim

x→a
f(x)− 0

g(x)− 0
use 0 = f(a) = g(a)

= lim
x→a

f(x)− f(a)

g(x)− g(a)
multiply by 1 =

(x− a)−1

(x− a)−1

= lim
x→a

f(x)− f(a)

g(x)− g(a)
· (x− a)−1

(x− a)−1
rearrange

= lim
x→a


f(x)− f(a)

x− a
g(x)− g(a)

x− a

 use arithmetic of limits

=
lim
x→a

f(x)− f(a)

x− a
lim
x→a

g(x)− g(a)

x− a

=
f ′(a)

g′(a)

We can justify this step and apply Theorem 1.4.3, since the limits in the
numerator and denominator exist, because they are just f ′(a) and g′(a).

�

3.7.1.1ttt Optional — Proof of Part (b) of l’Hôpital’s Rule

To prove part (b) we must work around the possibility that f ′(a) and g′(a) do not
exist or that f ′(x) and g′(x) are not continuous at x = a. To do this, we make
use of the Generalised Mean-Value Theorem (Theorem 3.4.38) that was used to prove
Equation 3.4.33. We recommend you review the GMVT before proceeding.

For simplicity we consider the limit

lim
x→a+

f(x)

g(x)

By assumption, we know that

lim
x→a+

f(x) = lim
x→a+

g(x) = 0

For simplicity, we also assume that f(a) = g(a) = 0. This allows us to write

f(x)

g(x)
=
f(x)− f(a)

g(x)− g(a)
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which is the right form for an application of the GMVT.
By assumption f ′(x) and g′(x) exist, with g′(x) nonzero, in some open interval

around a, except possibly at a itself. So we know that they exist, with g′(x) 6= 0, in
some interval (a, b] with b > a. Then the GMVT (Theorem 3.4.38) tells us that for
x ∈ (a, b]

f(x)

g(x)
=
f(x)− f(a)

g(x)− g(a)
=
f ′(c)

g′(c)

where c ∈ (a, x). As we take the limit as x→ a, we also have that c→ a, and so

lim
x→a+

f(x)

g(x)
= lim

x→a+
f ′(c)

g′(c)
= lim

c→a+
f ′(c)

g′(c)

as required.

3.7.2 tt Standard Examples

Here are some simple examples using L’Hôpital’s rule.

Example 3.7.3 Find lim
x→0

sinx

x
.

Consider the limit

lim
x→0

sinx

x

• Notice that

lim
x→0

sinx = 0

lim
x→0

x = 0

so this is a 0
0
indeterminate form, and suggests we try l’Hôpital’s rule.

• To apply the rule we must first check the limits of the derivatives.

f(x) = sinx f ′(x) = cos x and f ′(0) = 1

g(x) = x g′(x) = 1 and g′(0) = 1

• So by l’Hôpital’s rule

lim
x→0

sinx

x
=
f ′(0)

g′(0)
=

1

1
= 1.
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Example 3.7.4 Compute lim
x→0

sin(x)

sin(2x)
.

Consider the limit

lim
x→0

sin(x)

sin(2x)

• First check

lim
x→0

sin 2x = 0

lim
x→0

sinx = 0

so we again have a 0
0
indeterminate form.

• Set f(x) = sin x and g(x) = sin 2x, then

f ′(x) = cos x f ′(0) = 1

g′(x) = 2 cos 2x g′(0) = 2

• And by l’Hôpital’s rule

lim
x→0

sinx

sin 2x
=
f ′(0)

g′(0)
=

1

2
.

Example 3.7.5 lim
x→0

qx − 1

x
.

Let q > 1 and compute the limit

lim
x→0

qx − 1

x

This limit arose in our discussion of exponential functions in Section 2.7.

• First check

lim
x→0

(qx − 1) = 1− 1 = 0

lim
x→0

x = 0

so we have a 0
0
indeterminate form.

• Set f(x) = qx − 1 and g(x) = x, then (maybe after a quick review of Section 2.7)

f ′(x) =
d

dx
(qx − 1) = qx · log q f ′(0) = log q
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Example 3.7.5

g′(x) = 1 g′(0) = 1

• And by l’Hôpital’s rule a

lim
h→0

qh − 1

h
= log q.

a While it might not be immediately obvious, this example relies on circular reasoning. In order to
apply l’Hôpital’s rule, we need to compute the derivative of qx. However in order to compute that
limit (see Section 2.7) we needed to evaluate this limit.

A more obvious example of this sort of circular reasoning can be seen if we use l’Hôpital’s rule to
compute the derivative of f(x) = xn at x = a using the limit

f ′(a) = lim
x→a

xn − an
x− a = lim

x→a

nxn−1 − 0

1− 0
= nan−1.

We have used the result d
dxx

n = nxn−1 to prove itself!

In this example, we shall apply L’Hôpital’s rule twice before getting the answer.

Example 3.7.6 Double L’Hôpital.

Compute the limit

lim
x→0

sin(x2)

1− cosx

• Again we should check

lim
x→0

sin(x2) = sin 0 = 0

lim
x→0

(1− cosx) = 1− cos 0 = 0

and we have a 0
0
indeterminate form.

• Let f(x) = sin(x2) and g(x) = 1− cosx then

f ′(x) = 2x cos(x2) f ′(0) = 0

g′(x) = sinx g′(0) = 0

So if we try to apply l’Hôpital’s rule naively we will get

lim
x→0

sin(x2)

1− cosx
=
f ′(0)

g′(0)
=

0

0
.

which is another 0
0
indeterminate form.
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Example 3.7.6

• It appears that we are stuck until we remember that l’Hôpital’s rule (as stated in
Theorem 3.7.2) has a part (b) — now is a good time to reread it.

• It says that

lim
x→0

f(x)

g(x)
= lim

x→0

f ′(x)

g′(x)

provided this second limit exists. In our case this requires us to compute

lim
x→0

2x cos(x2)

sin(x)

which we can do using l’Hôpital’s rule again. Now

h(x) = 2x cos(x2) h′(x) = 2 cos(x2)− 4x2 sin(x2) h′(0) = 2

`(x) = sin(x) `′(x) = cos(x) `′(0) = 1

By l’Hôpital’s rule

lim
x→0

2x cos(x2)

sin(x)
=
h′(0)

`′(0)
= 2

• Thus our original limit is

lim
x→0

sin(x2)

1− cosx
= lim

x→0

2x cos(x2)

sin(x)
= 2.

• We can succinctly summarise the two applications of L’Hôpital’s rule in this ex-
ample by

lim
x→0

sin(x2)

1− cosx︸ ︷︷ ︸
num→0
den→0

= lim
x→0

2x cos(x2)

sinx︸ ︷︷ ︸
num→0
den→0

= lim
x→0

2 cos(x2)− 4x2 sin(x2)

cosx︸ ︷︷ ︸
num→2
den→1

= 2

Here “num” and “den” are used as abbreviations of “numerator” and “denominator”
respectively."

One must be careful to ensure that the hypotheses of l’Hôpital’s rule are satisfied
before applying it. The following “warnings” show the sorts of things that can go wrong.
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Warning 3.7.7 Denominator limit nonzero.

If

lim
x→a

f(x) = 0 but lim
x→a

g(x) 6= 0

then

lim
x→a

f(x)

g(x)
need not be the same as

f ′(a)

g′(a)
or lim

x→a
f ′(x)

g′(x)
.

Here is an example. Take

a = 0 f(x) = 3x g(x) = 4 + 5x

Then

lim
x→0

f(x)

g(x)
= lim

x→0

3x

4 + 5x
=

3× 0

4 + 5× 0
= 0

lim
x→0

f ′(x)

g′(x)
=
f ′(0)

g′(0)
=

3

5

Warning 3.7.8 Numerator limit nonzero.

If

lim
x→a

g(x) = 0 but lim
x→a

f(x) 6= 0

then

lim
x→a

f(x)

g(x)
need not be the same as lim

x→a
f ′(x)

g′(x)
.

Here is an example. Take

a = 0 f(x) = 4 + 5x g(x) = 3x

Then

lim
x→0

f(x)

g(x)
= lim

x→0

4 + 5x

3x
= DNE

lim
x→0

f ′(x)

g′(x)
= lim

x→0

5

3
=

5

3
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This next one is more subtle; the limits of the original numerator and denominator
functions both go to zero, but the limit of the ratio their derivatives does not exist.

Warning 3.7.9 Limit of ratio of derivatives DNE.

If

lim
x→a

f(x) = 0 and lim
x→a

g(x) = 0

but

lim
x→a

f ′(x)

g′(x)
does not exist

then it is still possible that

lim
x→a

f(x)

g(x)
exists.

Here is an example. Take

a = 0 f(x) = x2 sin
1

x
g(x) = x

Then (with an application of the squeeze theorem)

lim
x→0

f(x) = 0 and lim
x→0

g(x) = 0.

If we attempt to apply l’Hôptial’s rule then we have g′(x) = 1 and

f ′(x) = 2x sin
1

x
− cos

1

x

and we then try to compute the limit

lim
x→0

f ′(x)

g′(x)
= lim

x→0

(
2x sin

1

x
− cos

1

x

)
However, this limit does not exist. The first term converges to 0 (by the squeeze
theorem), but the second term cos(1/x) just oscillates wildly between ±1. All we
can conclude from this is

Since the limit of the ratio of derivatives does not exist, we cannot
apply l’Hôpital’s rule.

Instead we should go back to the original limit and apply the squeeze theorem:

lim
x→0

f(x)

g(x)
= lim

x→0

x2 sin 1
x

x
= lim

x→0
x sin

1

x
= 0,

since |x sin(1/x)| < |x| and |x| → 0 as x→ 0.
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It is also easy to construct an example in which the limits of numerator and denomi-
nator are both zero, but the limit of the ratio and the limit of the ratio of the derivatives
do not exist. A slight change of the previous example shows that it is possible that

lim
x→a

f(x) = 0 and lim
x→a

g(x) = 0

but neither of the limits

lim
x→a

f(x)

g(x)
or lim

x→a
f ′(x)

g′(x)

exist. Take

a = 0 f(x) = x sin
1

x
g(x) = x

Then (with a quick application of the squeeze theorem)

lim
x→0

f(x) = 0 and lim
x→0

g(x) = 0.

However,

lim
x→0

f(x)

g(x)
= lim

x→0

x sin 1
x

x
= lim

x→0
sin

1

x

does not exist. And similarly

lim
x→0

f ′(x)

g′(x)
= lim

x→0

sin 1
x
− 1

x
cos 1

x

x2

does not exist.

3.7.3 tt Variations

Theorem 3.7.2 is the basic form of L’Hôpital’s rule, but there are also many variations.
Here are a bunch of them.

3.7.3.1ttt Limits at ±∞

L’Hôpital’s rule also applies when the limit of x→ a is replaced by lim
x→a+

or by lim
x→a−

or
by lim

x→+∞
or by lim

x→−∞
.

We can justify adapting the rule to the limits to ±∞ via the following reasoning

lim
x→∞

f(x)

g(x)
= lim

y→0+

f(1/y)

g(1/y)
substitute x = 1/y

= lim
y→0+

− 1
y2
f ′(1/y)

− 1
y2
g′(1/y)

,
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where we have used l’Hôpital’s rule (assuming this limit exists) and the fact that
d
dy
f(1/y) = − 1

y2
f ′(1/y) (and similarly for g). Cleaning this up and substituting y = 1/x

gives the required result:

lim
x→∞

f(x)

g(x)
= lim

y→0+

f ′(1/y)

g′(1/y)
= lim

x→∞
f ′(x)

g′(x)
.

Example 3.7.10 L’Hôpital at infinity.

Consider the limit

lim
x→∞

arctanx− π
2

1
x

Both numerator and denominator go to 0 as x→∞, so this is an 0
0
indeterminate form.

We find

lim
x→+∞

arctanx− π
2

1
x︸ ︷︷ ︸

num→0
den→0

= lim
x→+∞

1
1+x2

− 1
x2

= − lim
x→+∞

1

1 + 1
x2︸ ︷︷ ︸

num→1
den→1

= −1

We have applied L’Hôpital’s rule with

f(x) = arctan x− π

2
g(x) =

1

x

f ′(x) =
1

1 + x2
g′(x) = − 1

x2

3.7.3.2ttt ∞
∞ indeterminate form

L’Hôpital’s rule also applies when lim
x→a

f(x) = 0, lim
x→a

g(x) = 0 is replaced by lim
x→a

f(x) =

±∞, lim
x→a

g(x) = ±∞.

Example 3.7.11 Compute lim
x→∞

log x

x
.

Consider the limit

lim
x→∞

log x

x
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Example 3.7.11

The numerator and denominator both blow up towards infinity so this is an ∞∞ indeter-
minate form. An application of l’Hôpital’s rule gives

lim
x→∞

log x

x︸ ︷︷ ︸
num→∞
den→∞

= lim
x→∞

1/x

1

= lim
x→∞

1

x
= 0

Example 3.7.12 Find lim
x→∞

5x2 + 3x− 3

x2 + 1
.

Consider the limit

lim
x→∞

5x2 + 3x− 3

x2 + 1

Then by two applications of l’Hôpital’s rule we get

lim
x→∞

5x2 + 3x− 3

x2 + 1︸ ︷︷ ︸
num→∞
den→∞

= lim
x→∞

10x+ 3

2x︸ ︷︷ ︸
num→∞
den→∞

= lim
x→∞

10

2
= 5.

Example 3.7.13 A messier double l’Hôpital.

Compute the limit

lim
x→0+

log x

tan
(
π
2
− x
)

We can compute this using l’Hôpital’s rule twice:

lim
x→0+

log x

tan
(
π
2
− x
)︸ ︷︷ ︸

num→−∞
den→+∞

= lim
x→0+

1
x

− sec2(π
2
− x)

= − lim
x→0+

cos2(π
2
− x)

x︸ ︷︷ ︸
num→0
den→0

= − lim
x→0+

2 cos(π
2
− x) sin(π

2
− x)

1︸ ︷︷ ︸
num→0
den→1

= 0

The first application of L’Hôpital’s was with

f(x) = log x g(x) = tan
(π

2
− x
)
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Example 3.7.13

f ′(x) =
1

x
g′(x) = − sec2

(π
2
− x
)

and the second time with

f(x) = cos2
(π

2
− x
)

g(x) = x

f ′(x) = 2 cos
(π

2
− x
)[
− sin

(π
2
− x
)]

(−1) g′(x) = 1

Sometimes things don’t quite work out as we would like and l’Hôpital’s rule can get
stuck in a loop. Remember to think about the problem before you apply any rule.

Example 3.7.14 Stuck in a loop.

Consider the limit

lim
x→∞

ex + e−x

ex − e−x

Clearly both numerator and denominator go to∞, so we have a ∞∞ indeterminate form.
Naively applying l’Hôpital’s rule gives

lim
x→∞

ex + e−x

ex − e−x = lim
x→∞

ex − e−x
ex + e−x

which is again a ∞∞ indeterminate form. So apply l’Hôpital’s rule again:

lim
x→∞

ex − e−x
ex + e−x

= lim
x→∞

ex + e−x

ex − e−x

which is right back where we started!
The correct approach to such a limit is to apply the methods we learned in Chapter 1
and rewrite

ex + e−x

ex − e−x =
ex(1 + e−2x)

ex(1− e−2x)
=

1 + e−2x

1− e−2x

and then take the limit.
A similar sort of l’Hôpital-rule-loop will occur if you naively apply l’Hôpital’s rule to
the limit

lim
x→∞

√
4x2 + 1

5x− 1

which appeared in Example 1.5.6.
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3.7.3.3ttt Optional — Proof of l’Hôpital’s Rule for ∞∞

We can justify this generalisation of l’Hôpital’s rule with some careful manipulations.
Since the derivatives f ′, g′ exist in some interval around a, we know that f, g are con-
tinuous in some interval around a; let x, t be points inside that interval. Now rewrite
3

f(x)

g(x)
=
f(x)

g(x)
+

(
f(t)

g(x)
− f(t)

g(x)

)
︸ ︷︷ ︸

=0

+

(
f(x)− f(t)

g(x)− g(t)
− f(x)− f(t)

g(x)− g(t)

)
︸ ︷︷ ︸

=0

=
f(x)− f(t)

g(x)− g(t)︸ ︷︷ ︸
ready for GMVT

+
f(t)

g(x)
+

(
f(x)

g(x)
− f(t)

g(x)
− f(x)− f(t)

g(x)− g(t)

)
︸ ︷︷ ︸

we can clean it up

=
f(x)− f(t)

g(x)− g(t)
+
f(t)

g(x)
+

(
f(x)− f(t)

g(x)
− f(x)− f(t)

g(x)− g(t)

)
=
f(x)− f(t)

g(x)− g(t)
+
f(t)

g(x)
+

(
1

g(x)
− 1

g(x)− g(t)

)
· (f(x)− f(t))

=
f(x)− f(t)

g(x)− g(t)
+
f(t)

g(x)
+

(
g(x)− g(t)− g(x)

g(x)(g(x)− g(t))

)
· (f(x)− f(t))

=
f(x)− f(t)

g(x)− g(t)︸ ︷︷ ︸
ready for GMVT

+
f(t)

g(x)
− g(t)

g(x)
· f(x)− f(t)

g(x)− g(t)︸ ︷︷ ︸
ready for GMVT

Oof! Now the generalised mean-value theorem (Theorem 3.4.38) tells us there is a c
between x and t so that

f(x)− f(t)

g(x)− g(t)
=
f ′(c)

g′(c)

Now substitute this into the large expression we derived above:

f(x)

g(x)
=
f ′(c)

g′(c)
+

1

g(x)

(
f(t)− f ′(c)

g′(c)
· g(t)

)
At first glance this does not appear so useful, however if we fix t and take the limit as
x→ a, then it becomes

lim
x→a

f(x)

g(x)
= lim

x→a
f ′(c)

g′(c)
+ lim

x→a
1

g(x)

(
f(t)− f ′(c)

g′(c)
· g(t)

)
Since g(x)→∞ as x→ a, this last term goes to zero

= lim
x→a

f ′(c)

g′(c)
+ 0

3 This is quite a clever argument, but it is not immediately obvious why one rewrites things this
way. After the fact it becomes clear that it is done to massage the expression into the form where
we can apply the generalised mean-value theorem (Theorem 3.4.38).
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Now take the limit as t→ a. The left-hand side is unchanged since it is independent of
t. The right-hand side, however, does change; the number c is trapped between x and
t. Since we have already taken the limit x → a, so when we take the limit t → a, we
are effectively taking the limit c→ a. Hence

lim
x→a

f(x)

g(x)
= lim

c→a
f ′(c)

g′(c)

which is the desired result.

3.7.3.4ttt 0 · ∞ indeterminate form

When lim
x→a

f(x) = 0 and lim
x→a

g(x) = ∞. We can use a little algebra to manipulate this

into either a 0
0
or ∞∞ form:

lim
x→a

f(x)

1/g(x)
lim
x→a

g(x)

1/f(x)

Example 3.7.15 lim
x→0+

x · log x.

Consider the limit

lim
x→0+

x · log x

Here the function f(x) = x goes to zero, while g(x) = log x goes to −∞. If we rewrite
this as the fraction

x · log x =
log x

1/x

then the 0 · ∞ form has become an ∞∞ form.
The result is then

lim
x→0+

x︸︷︷︸
→0

log x︸︷︷︸
→−∞

= lim
x→0+

log x
1
x︸ ︷︷ ︸

num→−∞
den→∞

= lim
x→0+

1
x

− 1
x2

= − lim
x→0+

x = 0

Example 3.7.16 Computing lim
x→+∞

xne−x.

In this example we’ll evaluate lim
x→+∞

xne−x, for all natural numbers n. We’ll start with
n = 1 and n = 2 and then, using what we have learned from those cases, move on to
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Example 3.7.16

general n.

lim
x→+∞

x︸︷︷︸
→∞

e−x︸︷︷︸
→0

= lim
x→+∞

x

ex︸︷︷︸
num→+∞
den→+∞

= lim
x→+∞

1

ex︸︷︷︸
num→1

den→+∞

= lim
x→+∞

e−x = 0

Applying l’Hôpital twice,

lim
x→+∞

x2︸︷︷︸
→∞

e−x︸︷︷︸
→0

= lim
x→+∞

x2

ex︸︷︷︸
num→+∞
den→+∞

= lim
x→+∞

2x

ex︸︷︷︸
num→∞
den→+∞

= lim
x→+∞

2

ex︸︷︷︸
num→2

den→+∞

= lim
x→+∞

2e−x

= 0

Indeed, for any natural number n, applying l’Hôpital n times gives

lim
x→+∞

xn︸︷︷︸
→∞

e−x︸︷︷︸
→0

= lim
x→+∞

xn

ex︸︷︷︸
num→+∞
den→+∞

= lim
x→+∞

nxn−1

ex︸ ︷︷ ︸
num→∞
den→+∞

= lim
x→+∞

n(n− 1)xn−2

ex︸ ︷︷ ︸
num→∞
den→+∞

= · · · = lim
x→+∞

n!

ex︸︷︷︸
num→n!
den→+∞

= 0

3.7.3.5ttt ∞−∞ indeterminate form

When lim
x→a

f(x) =∞ and lim
x→a

g(x) =∞. We rewrite the difference as a fraction using a
common denominator

f(x)− g(x) =
h(x)

`(x)

which is then a 0
0
or ∞∞ form.
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Example 3.7.17 Compute lim
x→π

2
−

(secx− tanx).

Consider the limit

lim
x→π

2
−

(secx− tanx)

Since the limit of both secx and tanx is +∞ as x→ π
2
−, this is an∞−∞ indeterminate

form. However we can rewrite this as

secx− tanx =
1

cosx
− sinx

cosx
=

1− sinx

cosx

which is then a 0
0
indeterminate form. This then gives

lim
x→π

2
−

(
secx︸︷︷︸
→+∞

− tanx︸ ︷︷ ︸
→+∞

)
= lim

x→π
2
−

1− sinx

cosx︸ ︷︷ ︸
num→0
den→0

= lim
x→π

2
−

− cosx

− sinx︸ ︷︷ ︸
num→0
den→−1

= 0

In the last example, Example 3.7.17, we converted an ∞−∞ indeterminate form
into a 0

0
indeterminate form by exploiting the fact that the two terms, secx and tanx,

in the∞−∞ indeterminate form shared a common denominator, namely cosx. In the
“real world” that will, of course, almost never happen. However as the next couple of
examples show, you can often massage these expressions into suitable forms.

Here is another, much more complicated, example, where it doesn’t happen.

Example 3.7.18 A complicated ∞−∞ example.

In this example, we evaluate the ∞−∞ indeterminate form

lim
x→0

( 1

x︸︷︷︸
→±∞

− 1

log(1 + x)︸ ︷︷ ︸
→±∞

)

We convert it into a 0
0
indeterminate form simply by putting the two fractions, 1

x
and

1
log(1+x)

over a common denominator.

lim
x→0

( 1

x︸︷︷︸
→±∞

− 1

log(1 + x)︸ ︷︷ ︸
→±∞

)
= lim

x→0

log(1 + x)− x
x log(1 + x)︸ ︷︷ ︸

num→0
den→0

(E1)

Now we apply L’Hôpital’s rule, and simplify

lim
x→0

log(1 + x)− x
x log(1 + x)︸ ︷︷ ︸

num→0
den→0

= lim
x→0

1
1+x
− 1

log(1 + x) + x
1+x
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Example 3.7.18

= lim
x→0

1− (1 + x)

(1 + x) log(1 + x) + x

= − lim
x→0

x

(1 + x) log(1 + x) + x︸ ︷︷ ︸
num→0

den→1×0+0=0

(E2)

Then we apply L’Hôpital’s rule a second time

− lim
x→0

x

(1 + x) log(1 + x) + x︸ ︷︷ ︸
num→0

den→1×0+0=0

= − lim
x→0

1

log(1 + x) + 1+x
1+x

+ 1︸ ︷︷ ︸
num→1

den→0+1+1=2

= −1

2
(E3)

Combining (E1), (E2) and (E3) gives our final answer

lim
x→0

(1

x
− 1

log(1 + x)

)
= −1

2

The following example can be done by l’Hôpital’s rule, but it is actually far simpler
to multiply by the conjugate and take the limit using the tools of Chapter 1.

Example 3.7.19 Compute lim
x→∞

√
x2 + 4x−

√
x2 − 3x.

Consider the limit

lim
x→∞

√
x2 + 4x−

√
x2 − 3x

Neither term is a fraction, but we can write
√
x2 + 4x−

√
x2 − 3x = x

√
1 + 4/x− x

√
1− 3/x assuming x > 0

= x
(√

1 + 4/x−
√

1− 3/x
)

=

√
1 + 4/x−

√
1− 3/x

1/x

which is now a 0
0
form with f(x) =

√
1 + 4/x−

√
1− 3/x and g(x) = 1/x. Then

f ′(x) =
−4/x2

2
√

1 + 4/x
− 3/x2

2
√

1− 3/x
g′(x) = − 1

x2

Hence
f ′(x)

g′(x)
=

4

2
√

1 + 4/x
+

3√
1− 3/x
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Example 3.7.19

And so in the limit as x→∞

lim
x→∞

f ′(x)

g′(x)
=

4

2
+

3

2
=

7

2

and so our original limit is also 7/2.
By comparison, if we multiply by the conjugate we have

√
x2+4x−

√
x2−3x =

(√
x2+4x−

√
x2−3x

)
·
√
x2+4x+

√
x2−3x√

x2+4x+
√
x2−3x

=
x2 + 4x− (x2 − 3x)√
x2 + 4x+

√
x2 − 3x

=
7x√

x2 + 4x+
√
x2 − 3x

=
7√

1 + 4/x+
√

1− 3/x
assuming x > 0

Now taking the limit as x→∞ gives 7/2 as required. Just because we know l’Hôpital’s
rule, it does not mean we should use it everywhere it might be applied.

3.7.3.6ttt 1∞ indeterminate form

We can use l’Hôpital’s rule on limits of the form

lim
x→a

f(x)g(x) with

lim
x→a

f(x) = 1 and lim
x→a

g(x) =∞

by considering the logarithm of the limit 4 :

log
(

lim
x→a

f(x)g(x)
)

= lim
x→a

log
(
f(x)g(x)

)
= lim

x→a
log (f(x)) · g(x)

which is now an 0 · ∞ form. This can be further transformed into a 0
0
or ∞∞ form:

log
(

lim
x→a

f(x)g(x)
)

= lim
x→a

log (f(x)) · g(x)

= lim
x→a

log (f(x))

1/g(x)
.

4 We are using the fact that the logarithm is a continuous function and Theorem 1.6.10.
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Example 3.7.20 Find lim
x→0

(1 + x)
a
x .

The following limit appears quite naturally when considering systems which display
exponential growth or decay.

lim
x→0

(1 + x)
a
x with the constant a 6= 0

Since (1 + x)→ 1 and a/x→∞ this is an 1∞ indeterminate form.
By considering its logarithm we have

log
(

lim
x→0

(1 + x)
a
x

)
= lim

x→0
log
(
(1 + x)

a
x

)
= lim

x→0

a

x
log(1 + x)

= lim
x→0

a log(1 + x)

x

which is now a 0
0
form. Applying l’Hôpital’s rule gives

lim
x→0

a log(1 + x)

x︸ ︷︷ ︸
num→0
den→0

= lim
x→0

a
1+x

1︸︷︷︸
num→a
den→1

= a

Since (1 + x)a/x = exp
[
log
(

(1 + x)a/x
)]

and the exponential function is continuous,
our original limit is ea.

Here is a more complicated example of a 1∞ indeterminate form.

Example 3.7.21 A more complicated example.

In the limit

lim
x→0

(sinx

x

) 1
x2

the base, sinx
x

, converges to 1 (see Example 3.7.3) and the exponent, 1
x2
, goes to ∞.

But if we take logarithms then

log
(sinx

x

) 1
x2

=
log sinx

x

x2

then, in the limit x→ 0, we have a 0
0
indeterminate form. One application of l’Hôpital’s

rule gives

lim
x→0

log sinx
x

x2︸ ︷︷ ︸
num→0
den→0

= lim
x→0

x
sinx

x cosx−sinx
x2

2x
= lim

x→0

x cosx−sinx
x sinx

2x
= lim

x→0

x cosx− sinx

2x2 sinx
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Example 3.7.21

which is another 0
0
form. Applying l’Hôpital’s rule again gives:

lim
x→0

x cosx− sinx

2x2 sinx︸ ︷︷ ︸
num→0
den→0

= lim
x→0

cosx− x sinx− cosx

4x sinx+ 2x2 cosx

= − lim
x→0

x sinx

4x sinx+ 2x2 cosx
= − lim

x→0

sinx

4 sinx+ 2x cosx

which is yet another 0
0
form. Once more with l’Hôpital’s rule:

− lim
x→0

sinx

4 sinx+ 2x cosx︸ ︷︷ ︸
num→0
den→0

= − lim
x→0

cosx

4 cosx+ 2 cosx− 2x sinx︸ ︷︷ ︸
num→1
den→6

= −1

6

Oof! We have just shown that the logarithm of our original limit is −1
6
. Hence the

original limit itself is e−1/6.
This was quite a complicated example. However it does illustrate the importance of
cleaning up your algebraic expressions. This will both reduce the amount of work you
have to do and will also reduce the number of errors you make.

3.7.3.7ttt 00indeterminate form

Like the 1∞ form, this can be treated by considering its logarithm.

Example 3.7.22 Compute lim
x→0+

xx.

For example, in the limit

lim
x→0+

xx

both the base, x, and the exponent, also x, go to zero. But if we consider the logarithm
then we have

log xx = x log x

which is a 0 · ∞ indeterminate form, which we already know how to treat. In fact, we
already found, in Example 3.7.15, that

lim
x→0+

x log x = 0
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Example 3.7.22

Since the exponential is a continuous function

lim
x→0+

xx = lim
x→0+

exp
(
x log x

)
= exp

(
lim
x→0+

x log x
)

= e0 = 1

3.7.3.8ttt ∞0 indeterminate form

Again, we can treat this form by considering its logarithm.

Example 3.7.23 Find lim
x→+∞

x
1
x .

For example, in the limit

lim
x→+∞

x
1
x

the base, x, goes to infinity and the exponent, 1
x
, goes to zero. But if we take logarithms

log x
1
x =

log x

x

which is an ∞∞ form, which we know how to treat.

lim
x→+∞

log x

x︸ ︷︷ ︸
num→∞
den→∞

= lim
x→+∞

1
x

1︸︷︷︸
num→0
den→1

= 0

Since the exponential is a continuous function

lim
x→+∞

x
1
x = lim

x→+∞
exp

( log x

x

)
= exp

(
lim
x→∞

log x

x

)
= e0 = 1

3.7.4 tt Exercises

Exercises — Stage 1 In Questions 3.7.4.1 to 3.7.4.3, you are asked to give pairs of
functions that combine to make indeterminate forms. Remember that an indeterminate
form is indeterminate precisely because its limit can take on a number of values.

1. Give two functions f(x) and g(x) with the following properties:
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i lim
x→∞

f(x) =∞

ii lim
x→∞

g(x) =∞

iii lim
x→∞

f(x)

g(x)
= 2.5

2. Give two functions f(x) and g(x) with the following properties:

i lim
x→∞

f(x) =∞

ii lim
x→∞

g(x) =∞

iii lim
x→∞

f(x)

g(x)
= 0

3. Give two functions f(x) and g(x) with the following properties:

i lim
x→∞

f(x) = 1

ii lim
x→∞

g(x) =∞

iii lim
x→∞

[f(x)]g(x) = 5

Exercises — Stage 2

4. ∗. Evaluate lim
x→1

x3 − ex−1

sin(πx)
.

5. ∗. Evaluate lim
x→0+

log x

x
. (Remember: in these notes, log means logarithm base

e.)

6. ∗. Evaluate lim
x→∞

(log x)2e−x.

7. ∗. Evaluate lim
x→∞

x2e−x.

8. ∗. Evaluate lim
x→0

x− x cosx

x− sinx
.

9. Evaluate lim
x→0

√
x6 + 4x4

x2 cosx
.

10. ∗. Evaluate lim
x→∞

(log x)2

x
.
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11. ∗. Evaluate lim
x→0

1− cosx

sin2 x
.

12. Evaluate lim
x→0

x

secx
.

13. Evaluate lim
x→0

cscx · tanx · (x2 + 5)

ex
.

14. Evaluate lim
x→∞

√
2x2 + 1−

√
x2 + x.

15. ∗. Evaluate lim
x→0

sin(x3 + 3x2)

sin2 x
.

16. ∗. Evaluate lim
x→1

log(x3)

x2 − 1
.

17. ∗. Evaluate lim
x→0

e−1/x2

x4
.

18. ∗. Evaluate lim
x→0

xex

tan(3x)
.

19. Evaluate lim
x→0

x2
√

sin2 x.

20. Evaluate lim
x→0

x2
√

cosx.

21. Evaluate lim
x→0+

ex log x.

22. Evaluate lim
x→0

[
− log(x2)

]x.
23. ∗. Find c so that lim

x→0

1 + cx− cosx

ex2 − 1
exists.

24. ∗. Evaluate lim
x→0

ek sin(x2) − (1 + 2x2)

x4
, where k is a constant.

Exercises — Stage 3
25. Suppose an algorithm, given an input with with n variables, will terminate in

at most S(n) = 5n4 − 13n3 − 4n + log(n) steps. A researcher writes that the
algorithm will terminate in roughly at most A(n) = 5n4 steps. Show that the
percentage error involved in using A(n) instead of S(n) tends to zero as n gets
very large. What happens to the absolute error?
Remark: this is a very common kind of approximation. When people deal with
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functions that give very large numbers, often they don’t care about the exact
large number–they only want a ballpark. So, a complicated function might be
replaced by an easier function that doesn’t give a large relative error. If you
would like to know more about the ways people describe functions that give
very large numbers, you can read about “Big O Notation” in Section 3.6.3 of
the CLP2 textbook.
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Towards IntegralCalculus
Chapter 4

We have now come to the final topic of the course — antiderivatives. This is only a
short section since it is really just to give a taste of the next calculus subject: integral
calculus.

4.1q Introduction to Antiderivatives

4.1.1 tt Introduction to Antiderivatives

So far in the course we have learned how to determine the rate of change (i.e. the
derivative) of a given function. That is

given a function f(x) find
df

dx
.

Along the way we developed an understanding of limits, which allowed us to define
instantaneous rates of change — the derivative. We then went on to develop a number
of applications of derivatives to modelling and approximation. In this last section we
want to just introduce the idea of antiderivatives. That is

given a derivative
df

dx
find the original function f(x).

For example — say we know that

df

dx
= x2

and we want to find f(x). From our previous experience differentiating we know that
derivatives of polynomials are again polynomials. So we guess that our unknown func-
tion f(x) is a polynomial. Further we know that when we differentiate xn we get nxn−1
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— multiply by the exponent and reduce the exponent by 1. So to end up with a deriva-
tive of x2 we need to have differentiated an x3. But d

dx
x3 = 3x2, so we need to divide

both sides by 3 to get the answer we want. That is

d

dx

(
1

3
x3

)
= x2

However we know that the derivative of a constant is zero, so we also have

d

dx

(
1

3
x3 + 1

)
= x2

and

d

dx

(
1

3
x3 − π

)
= x2

At this point it will really help the discussion to give a name to what we are doing.

Definition 4.1.1

A function F (x) that satisfies

d

dx
F (x) = f(x)

is called an antiderivative of f(x).

Notice the use of the indefinite article there — an antiderivative. This is precisely
because we can always add or subtract a constant to an antiderivative and when we
differentiate we’ll get the same answer. We can write this as a lemma, but it is actually
just Corollary 2.13.13 (from back in the section on the mean-value theorem) in disguise.

Lemma 4.1.2

Let F (x) be an antiderivative of f(x), then for any constant c, the function
F (x) + c is also an antiderivative of f(x).

Because of this lemma we typically write antiderivatives with “+c” tacked on the
end. That is, if we know that F ′(x) = f(x), then we would state that the antiderivative
of f(x) is

F (x) + c

where this “+c” is there to remind us that we can always add or subtract some constant
and it will still be an antiderivative of f(x). Hence the antiderivative of x2 is

1

3
x3 + c
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Similarly, the antiderivative of x4 is

1

5
x5 + c

and for
√
x = x1/2 it is

2

3
x3/2 + c

This last one is tricky (at first glance) — but we can always check our answer by
differentiating.

d

dx

(
2

3
x3/2 + c

)
=

2

3
· 3

2
x1/2 + 0 X

Now in order to determine the value of c we need more information. For example,
we might be asked

Given that g′(t) = t2 and g(3) = 7 find g(t).

We are given the derivative and one piece of additional information and from these two
facts we need to find the original function. From our work above we know that

g(t) =
1

3
t3 + c

and we can find c from the other piece of information

7 = g(3) =
1

3
· 27 + c = 9 + c

Hence c = −2 and so

g(t) =
1

3
t3 − 2

We can then very easily check our answer by recomputing g(3) and g′(t). This is a good
habit to get into.

Finding antiderivatives of polynomials is generally not too hard. We just need to
use the rule

if f(x) = xn then F (x) =
1

n+ 1
xn+1 + c.

Of course this breaks down when n = −1. In order to find an antiderivative for f(x) = 1
x

we need to remember that d
dx

log x = 1
x
, and more generally that d

dx
log |x| = 1

x
. See

Example 2.10.4. So

if f(x) =
1

x
then F (x) = log |x|+ c
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Example 4.1.3 Antiderivative of 3x5 − 7x2 + 2x+ 3 + x−1 − x−2.

Let f(x) = 3x5 − 7x2 + 2x+ 3 + x−1 − x−2. Then the antiderivative of f(x) is

F (x) =
3

6
x6 − 7

3
x3 +

2

2
x2 + 3x+ log |x| − 1

−1
x−1 + c clean it up

=
1

2
x6 − 7

3
x3 + x2 + 3x+ log |x|+ x−1 + c

Now to check we should differentiate and hopefully we get back to where we started

F ′(x) =
6

2
x5 − 7

3
· 3x2 + 2x+ 3 +

1

x
− x−2

= 3x5 − 7x2 + 2x+ 3 +
1

x
− x−2 X

In your next calculus course you will develop a lot of machinery to help you find
antiderivatives. At this stage about all that we can do is continue the sort of thing we
have done. Think about the derivatives we know and work backwards. So, for example,
we can take a list of derivatives

F (x) 1 xn sinx cosx tanx ex ln |x| arcsinx arctanx

f(x) = d
dx
F (x) 0 nxn−1 cosx − sinx sec2 x ex 1

x
1√

1−x2
1

1+x2

and flip it upside down to give the tables of antiderivatives.

f(x) = d
dx
F (x) 0 nxn−1 cosx − sinx sec2 x ex 1

x

F (x) c xn + c sinx+ c cosx+ c tanx+ c ex + c ln |x|+ c

f(x) = d
dx
F (x) 1√

1−x2
1

1+x2

F (x) arcsinx+ c arctanx+ c

Here c is just a constant — any constant. But we can do a little more; clean up
xn by dividing by n and then replacing n by n + 1. Similarly we can tweak sinx by
multiplying by −1:

f(x) = d
dx
F (x) 0 xn cosx sinx sec2 x ex 1

x

F (x) c 1
n+1

xn+1 + c sinx+ c − cosx+ c tanx+ c ex + c ln |x|+ c

f(x) = d
dx
F (x) 1√

1−x2
1

1+x2

F (x) arcsinx+ c arctanx+ c

Here are a couple more examples.
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Example 4.1.4 Antiderivatives of sinx, cos 2x and 1
1+4x2

.

Consider the functions

f(x) = sinx+ cos 2x g(x) =
1

1 + 4x2

Find their antiderivatives.
Solution The first one we can almost just look up our table. Let F be the antiderivative
of f , then

F (x) = − cosx+ sin 2x+ c is not quite right.

When we differentiate to check things, we get a factor of two coming from the chain
rule. Hence to compensate for that we multiply sin 2x by 1

2
:

F (x) = − cosx+
1

2
sin 2x+ c

Differentiating this shows that we have the right answer.
Similarly, if we use G to denote the antiderivative of g, then it appears that G is nearly
arctanx. To get this extra factor of 4 we need to substitute x 7→ 2x. So we try

G(x) = arctan(2x) + c which is nearly correct.

Differentiating this gives us

G′(x) =
2

1 + (2x)2
= 2g(x)

Hence we should multiply by 1
2
. This gives us

G(x) =
1

2
arctan(2x) + c.

We can then check that this is, in fact, correct just by differentiating.

Now let’s do a more substantial example.

Example 4.1.5 Position as antiderivative of velocity.

Suppose that we are driving to class. We start at x = 0 at time t = 0. Our velocity is
v(t) = 50 sin(t). The class is at x = 25. When do we get there?
Solution Let’s denote by x(t) our position at time t. We are told that

• x(0) = 0

• x′(t) = 50 sin t
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Example 4.1.5

We have to determine x(t) and then find the time T that obeys x(T ) = 25. Now armed
with our table above we know that the antiderivative of sin t is just − cos t. We can
check this:

d

dt
(− cos t) = sin t

We can then get the factor of 50 by multiplying both sides of the above equation by 50:

d

dt
(−50 cos t) = 50 sin t

And of course, this is just an antiderivative of 50 sin t; to write down the general
antiderivative we just add a constant c:

d

dt
(−50 cos t+ c) = 50 sin t

Since v(t) = d
dt
x(t), this antiderivative is x(t):

x(t) = −50 cos t+ c

To determine c we make use of the other piece of information we are given, namely

x(0) = 0.

Substituting this in gives us

x(0) = −50 cos 0 + c = −50 + c

Hence we must have c = 50 and so

x(t) = −50 cos t+ 50 = 50(1− cos t).

Now that we have our position as a function of time, we can determine how long it
takes us to arrive there. That is, we can find the time T so that x(T ) = 25.

25 = x(T ) = 50(1− cosT ) so
1

2
= 1− cosT

−1

2
= − cosT

1

2
= cosT.

Recalling our special triangles, we see that T = π
3
.

The example below shows how antiderivatives arise naturally when studying differ-
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ential equations.

Example 4.1.6 Theorem 3.3.2 revisited..

Back in Section 3.3 we encountered a simple differential equation, namely equation 3.3.1.
We were able to solve this equation by guessing the answer and then checking it carefully.
We can derive the solution more systematically by using antiderivatives.
Recall equation 3.3.1:

dQ

dt
= −kQ

where Q(t) is the amount of radioactive material at time t and we assume Q(t) > 0.
Take this equation and divide both sides by Q(t) to get

1

Q(t)

dQ

dt
= −k

At this point we should a think that the left-hand side is familiar. Now is a good
moment to look back at logarithmic differentiation in Section 2.10.
The left-hand side is just the derivative of logQ(t):

d

dt
(logQ(t)) =

1

Q(t)

dQ

dt

= −k

So to solve this equation, we are really being asked to find all functions logQ(t) having
derivative −k. That is, we need to find all antiderivatives of −k. Of course that is just
−kt+ c. Hence we must have

logQ(t) = −kt+ c

and then taking the exponential of both sides gives

Q(t) = e−kt+c = ec · e−kt = Ce−kt

where C = ec. This is precisely Theorem 3.3.2.

a Well — perhaps it is better to say “notice that”. Let’s not make this a moral point.

The above is a small example of the interplay between antiderivatives and differential
equations.

Here is another example of how we might use antidifferentiation to compute areas
or volumes.
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Example 4.1.7 Volume of a cone.

We know (especially if one has revised the material in the appendix and Appendix B.5.2
in particular) that the volume of a right-circular cone is

V =
π

3
r2h

where h is the height of the cone and r is the radius of its base. Now, the derivation of
this formula given in Appendix B.5.2 is not too simple. We present an alternate proof
here that uses antiderivatives.

Consider cutting off a portion of the cone so that its new height is x (rather than h).
Call the volume of the resulting smaller cone V (x). We are going to determine V (x)
for all x ≥ 0, including x = h, by first evaluating V ′(x) and V (0) (which is obviously
0).
Call the radius of the base of the new smaller cone y (rather than r). By similar
triangles we know that

r

h
=
y

x
.

Now keep x and y fixed and consider cutting off a little more of the cone so its height
is X. When we do so, the radius of the base changes from y to Y and again by similar
triangles we know that

Y

X
=
y

x
=
r

h

The change in volume is then

V (x)− V (X)

Of course if we knew the formula for the volume of a cone, then we could compute the
above exactly. However, even without knowing the volume of a cone, it is easy to derive
upper and lower bounds on this quantity. The piece removed has bottom radius y and
top radius Y . Hence its volume is bounded above and below by the cylinders of height
x−X and with radius y and Y respectively. Hence

πY 2(x−X) ≤ V (x)− V (X) ≤ πy2(x−X)
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Example 4.1.7

since the volume of a cylinder is just the area of its base times its height. Now massage
this expression a little

πY 2 ≤ V (x)− V (X)

x−X ≤ πy2

The middle term now looks like a derivative; all we need to do is take the limit as
X → x:

lim
X→x

πY 2 ≤ lim
X→x

V (x)− V (X)

x−X ≤ lim
X→x

πy2

The rightmost term is independent of X and so is just πy2. In the leftmost term, as
X → x, we must have that Y → y. Hence the leftmost term is just πy2. Then by the
squeeze theorem (Theorem 1.4.18) we know that

dV

dx
= lim

X→x

V (x)− V (X)

x−X = πy2.

But we know that

y =
r

h
· x

so

dV

dx
= π

( r
h

)2

x2

Now we can antidifferentiate to get back to V :

V (x) =
π

3

( r
h

)2

x3 + c

To determine c notice that when x = 0 the volume of the cone is just zero and so c = 0.
Thus

V (x) =
π

3

( r
h

)2

x3

and so when x = h we are left with

V (h) =
π

3

( r
h

)2

h3 =
π

3
r2h

as required.
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4.1.2 tt Exercises

Exercises — Stage 1

1. Let f(x) be a function with derivative f ′(x). What is the most general an-
tiderivative of f ′(x)?

2. On the graph below, the black curve is y = f(x). Which of the coloured
curves is an antiderivative of f(x)?

x

y

f(x)

C(x)

A(x)

B(x)

Exercises — Stage 2 In Questions 4.1.2.3 through 4.1.2.12, you are asked to find the
antiderivative of a function. Phrased like this, we mean the most general antiderivative.
These will all include some added constant. The table after Example 4.1.3 might be of
help.In Questions 4.1.2.13 through 4.1.2.16, you are asked to find a specific antideriva-
tive of a function. In this case, you should be able to solve for the entire function–no
unknown constants floating about.In Questions 4.1.2.17 through 4.1.2.19, we will ex-
plore some simple situations where antiderivatives might arise.

3. Find the antiderivative of f(x) = 3x2 + 5x4 + 10x− 9.

4. Find the antiderivative of f(x) =
3

5
x7 − 18x4 + x.

5. Find the antiderivative of f(x) = 4 3
√
x− 9

2x2.7
.
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6. Find the antiderivative of f(x) =
1

7
√
x
.

7. Find the antiderivative of f(x) = e5x+11.

8. Find the antiderivative of f(x) = 3 sin(5x) + 7 cos(13x).

9. Find the antiderivative of f(x) = sec2(x+ 1).

10. Find the antiderivative of f(x) =
1

x+ 2
.

11. Find the antiderivative of f(x) =
7√

3− 3x2
.

12. Find the antiderivative of f(x) =
1

1 + 25x2

13. Find the function f(x) with f ′(x) = 3x2 − 9x+ 4 and f(1) = 10.

14. Find the function f(x) with f ′(x) = cos(2x) and f(π) = π.

15. Find the function f(x) with f ′(x) =
1

x
and f(−1) = 0.

16. Find the function f(x) with f ′(x) =
1√

1− x2
+ 1 and f(1) = −π

2
.

17. Suppose a population of bacteria at time t (measured in hours) is growing
at a rate of 100e2t individuals per hour. Starting at time t = 0, how long
will it take the initial colony to increase by 300 individuals?

18. Your bank account at time t (measured in years) is growing at a rate of

1500e
t

50

dollars per year. How much money is in your account at time t?
19. At time t during a particular day, 0 ≤ t ≤ 24, your house consumes energy at

a rate of
0.5 sin

( π
24
t
)

+ 0.25

kW. (Your consumption was smallest in the middle of the night, and peaked
at noon.) How much energy did your house consume in that day?

Exercises — Stage 3 For Questions 4.1.2.21 through 4.1.2.26, you are again asked
to find the antiderivatives of certain functions. In general, finding antiderivatives can
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be extremely difficult–indeed, it will form the main topic of next semester’s calculus
course. However, you can work out the antiderivatives of the functions below using
what you’ve learned so far about derivatives.

20. ∗. Let f(x) = 2 sin−1√x and g(x) = sin−1(2x − 1). Find the derivative of
f(x)− g(x) and simplify your answer. What does the answer imply about the
relation between f(x) and g(x)?

21. Find the antiderivative of f(x) = 2 cos(2x) cos(3x)− 3 sin(2x) sin(3x).

22. Find the antiderivative of f(x) =
(x2 + 1)ex − ex(2x)

(x2 + 1)2
.

23. Find the antiderivative of f(x) = 3x2ex
3 .

24. Find the antiderivative of f(x) = 5x sin(x2).

25. Find the antiderivative of f(x) = elog x.

26. Find the antiderivative of f(x) =
7√

3− x2
.

27. Imagine forming a solid by revolving the parabola y = x2+1 around the x-axis,
as in the picture below.

y = x2 + 1

y

x

Use the method of Example 4.1.7 to find the volume of such an object if the
segment of the parabola that we rotate runs from x = −H to x = H.
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Appendix A

This chapter is really split into two parts.

• Sections A.1 to A.13 we expect you to understand and know.

• The very last section, Section A.14, contains results that we don’t expect you
to memorise, but that we think you should be able to quickly derive from other
results you know.

A.1q Similar Triangles

Two triangles T1, T2 are similar when

• (AAA — angle angle angle) The angles of T1 are the same as the angles of T2.

• (SSS — side side side) The ratios of the side lengths are the same. That is

A

a
=
B

b
=
C

c
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• (SAS — side angle side) Two sides have lengths in the same ratio and the angle
between them is the same. For example

A

a
=
C

c
and angle β is same

A.2q Pythagoras

For a right-angled triangle the length of the hypotenuse is related to the lengths of the
other two sides by

(adjacent)2 + (opposite)2 = (hypotenuse)2

A.3q Trigonometry — Definitions
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High School Material A.5 Trigonometry — Graphs

sin θ =
opposite

hypotenuse
csc θ =

1

sin θ

cos θ =
adjacent

hypotenuse
sec θ =

1

cos θ

tan θ =
opposite
adjacent

cot θ =
1

tan θ

A.4q Radians, Arcs and Sectors

For a circle of radius r and angle of θ radians:

• Arc length L(θ) = rθ.

• Area of sector A(θ) = θ
2
r2.

A.5q Trigonometry — Graphs

sin θ cos θ tan θ

−π −π
2

π
2

π 3π
2

2π

−1

1

−π −π
2

π
2

π 3π
2

2π

−1

1

−π −π
2

π
2

π 3π
2

2π
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A.6q Trigonometry — Special Triangles

From the above pair of special triangles we have

sin
π

4
=

1√
2

sin
π

6
=

1

2
sin

π

3
=

√
3

2

cos
π

4
=

1√
2

cos
π

6
=

√
3

2
cos

π

3
=

1

2

tan
π

4
= 1 tan

π

6
=

1√
3

tan
π

3
=
√

3

A.7q Trigonometry — Simple Identities

• Periodicity

sin(θ + 2π) = sin(θ) cos(θ + 2π) = cos(θ)

• Reflection

sin(−θ) = − sin(θ) cos(−θ) = cos(θ)

• Reflection around π/4

sin
(
π
2
− θ
)

= cos θ cos
(
π
2
− θ
)

= sin θ

• Reflection around π/2

sin (π − θ) = sin θ cos (π − θ) = − cos θ

• Rotation by π

sin (θ + π) = − sin θ cos (θ + π) = − cos θ

• Pythagoras

sin2 θ + cos2 θ = 1

491



High School Material A.9 Inverse Trig Functions

A.8q Trigonometry — Add and Subtract Angles

• Sine

sin(α± β) = sin(α) cos(β)± cos(α) sin(β)

• Cosine

cos(α± β) = cos(α) cos(β)∓ sin(α) sin(β)

A.9q Inverse Trigonometric Functions

Some of you may not have studied inverse trigonometric functions in highschool, how-
ever we still expect you to know them by the end of the course.

arcsinx arccosx arctanx
Domain: −1 ≤ x ≤ 1 Domain: −1 ≤ x ≤ 1 Domain: all real numbers
Range: −π

2
≤ arcsinx ≤ π

2
Range: 0 ≤ arccosx ≤ π Range: −π

2
< arctanx < π

2

−1 1

−π
2

π
2

−1 1

π
2

π

−π
2

π
2

Since these functions are inverses of each other we have

arcsin(sin θ) = θ −π
2
≤ θ ≤ π

2
arccos(cos θ) = θ 0 ≤ θ ≤ π

arctan(tan θ) = θ −π
2
≤ θ ≤ π

2

and also

sin(arcsinx) = x −1 ≤ x ≤ 1

cos(arccosx) = x −1 ≤ x ≤ 1

tan(arctanx) = x any real x
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High School Material A.10 Areas

arccscx arcsecx arccotx
Domain: |x| ≥ 1 Domain: |x| ≥ 1 Domain: all real numbers
Range: −π

2
≤ arccscx ≤ π

2
Range: 0 ≤ arcsecx ≤ π Range: 0 < arccotx < π

arccscx 6= 0 arcsecx 6= π

2

−1 1

−π
2

π
2

−1 1

π
2

π

π
2

π

Again

arccsc(csc θ) = θ −π
2
≤ θ ≤ π

2
, θ 6= 0

arcsec(sec θ) = θ 0 ≤ θ ≤ π, θ 6= π

2
arccot(cot θ) = θ 0 < θ < π

and

csc(arccscx) = x |x| ≥ 1

sec(arcsecx) = x |x| ≥ 1

cot(arccotx) = x any real x

A.10q Areas

• Area of a rectangle

A = bh

493



High School Material A.11 Volumes

• Area of a triangle

A =
1

2
bh =

1

2
ab sin θ

• Area of a circle

A = πr2

• Area of an ellipse

A = πab

A.11q Volumes

• Volume of a rectangular prism

V = lwh

• Volume of a cylinder

V = πr2h

• Volume of a cone

V =
1

3
πr2h

• Volume of a sphere

V =
4

3
πr3
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High School Material A.13 Logarithms

A.12q Powers

In the following, x and y are arbitrary real numbers, and q is an arbitrary constant that
is strictly bigger than zero.

• q0 = 1

• qx+y = qxqy, qx−y = qx

qy

• q−x = 1
qx

•
(
qx
)y

= qxy

• lim
x→∞

qx =∞, lim
x→−∞

qx = 0 if q > 1

• lim
x→∞

qx = 0, lim
x→−∞

qx =∞ if 0 < q < 1

• The graph of 2x is given below. The graph of qx, for any q > 1, is similar.

A.13q Logarithms

In the following, x and y are arbitrary real numbers that are strictly bigger than 0, and
p and q are arbitrary constants that are strictly bigger than one.

• qlogq x = x, logq
(
qx
)

= x

• logq x =
logp x

logp q

• logq 1 = 0, logq q = 1

• logq(xy) = logq x+ logq y

• logq
(
x
y

)
= logq x− logq y
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High School Material A.14 You Should be Able to Derive

• logq
(

1
y

)
= − logq y,

• logq(x
y) = y logq x

• lim
x→∞

logq x =∞, lim
x→0+

logq x = −∞

• The graph of log10 x is given below. The graph of logq x, for any q > 1, is similar.

A.14q Highschool Material You Should be Able to Derive

• Graphs of csc θ, sec θ and cot θ:

csc θ sec θ cot θ

−π −π
2

π
2

π 3π
2

2π−1

1

−π −π
2

π
2

π 3π
2

2π−1

1

−π −π
2

π
2

π 3π
2

2π

• More Pythagoras

sin2 θ + cos2 θ = 1
divide by cos2 θ7−−−−−−−−−→ tan2 θ + 1 = sec2 θ

sin2 θ + cos2 θ = 1
divide by sin2 θ7−−−−−−−−−→ 1 + cot2 θ = csc2 θ

• Sine — double angle (set β = α in sine angle addition formula)

sin(2α) = 2 sin(α) cos(α)
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• Cosine — double angle (set β = α in cosine angle addition formula)

cos(2α) = cos2(α)− sin2(α)

= 2 cos2(α)− 1 (use sin2(α) = 1− cos2(α))
= 1− 2 sin2(α) (use cos2(α) = 1− sin2(α))

• Composition of trigonometric and inverse trigonometric functions:

cos(arcsinx) =
√

1− x2 sec(arctanx) =
√

1 + x2

and similar expressions.
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Appendix B

B.1q Theorems about Triangles

B.1.1 tt Thales’ Theorem

We want to get at right-angled triangles. A classic construction for this is to draw a
triangle inside a circle, so that all three corners lie on the circle and the longest side
forms the diameter of the circle. See the figure below in which we have scaled the circle
to have radius 1 and the triangle has longest side 2.

Thales theorem states that the angle at C is always a right-angle. The proof is quite
straight-forward and relies on two facts:

• the angles of a triangle add to π, and

• the angles at the base of an isosceles triangle are equal.
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So we split the triangle ABC by drawing a line from the centre of the circle to C. This
creates two isosceles triangles OAC and OBC. Since they are isosceles, the angles at
their bases α and β must be equal (as shown). Adding the angles of the original triangle
now gives

π = α + (α + β) + β = 2(α + β)

So the angle at C = π − (α + β) = π/2.

B.1.2 tt Pythagoras

Since trigonometry, at its core, is the study of lengths and angles in right-angled tri-
angles, we must include a result you all know well, but likely do not know how to
prove.

The lengths of the sides of any right-angled triangle are related by the famous result
due to Pythagoras

c2 = a2 + b2.

There are many ways to prove this, but we can do so quite simply by studying the
following diagram:

We start with a right-angled triangle with sides labeled a, b and c. Then we construct
a square of side-length a+b and draw inside it 4 copies of the triangle arranged as shown
in the centre of the above figure. The area in white is then a2 + b2. Now move the
triangles around to create the arrangement shown on the right of the above figure. The
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Origin of Trig, Area and Volume Formulas B.2 Trigonometry

area in white is bounded by a square of side-length c and so its area is c2. The area of
the outer square didn’t change when the triangles were moved, nor did the area of the
triangles, so the white area cannot have changed either. This proves a2 + b2 = c2.

B.2q Trigonometry

B.2.1 tt Angles — Radians vs Degrees

For mathematics, and especially in calculus, it is much better to measure angles in
units called radians rather than degrees. By definition, an arc of length θ on a circle of
radius one subtends an angle of θ radians at the centre of the circle.

The circle on the left has radius 1, and the arc swept out by an angle of θ radians
has length θ. Because a circle of radius one has circumference 2π we have

2π radians = 360◦ π radians = 180◦
π

2
radians = 90◦

π

3
radians = 60◦

π

4
radians = 45◦

π

6
radians = 30◦

More generally, consider a circle of radius r. Let L(θ) denote the length of the arc
swept out by an angle of θ radians and let A(θ) denote the area of the sector (or wedge)
swept out by the same angle. Since the angle sweeps out the fraction θ

2π
of a whole

circle, we have

L(θ) = 2πr · θ
2π

= θr and

A(θ) = πr2 · θ
2π

=
θ

2
r2
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B.2.2 tt Trig Function Definitions

The trigonometric functions are defined as ratios of the lengths of the sides of a right-
angle triangle as shown in the left of the diagram below . These ratios depend only on
the angle θ.

The trigonometric functions sine, cosine and tangent are defined as ratios of the
lengths of the sides

sin θ =
opposite

hypotenuse
cos θ =

adjacent
hypotenuse

tan θ =
opposite
adjacent

=
sin θ

cos θ
.

These are frequently abbreviated as

sin θ =
o
h

cos θ =
a
h

tan θ =
o
a

which gives rise to the mnemonic

SOH CAH TOA

If we scale the triangle so that they hypotenuse has length 1 then we obtain the diagram
on the right. In that case, sin θ is the height of the triangle, cos θ the length of its base
and tan θ is the length of the line tangent to the circle of radius 1 as shown.

Since the angle 2π sweeps out a full circle, the angles θ and θ + 2π are really the
same.

501



Origin of Trig, Area and Volume Formulas B.2 Trigonometry

Hence all the trigonometric functions are periodic with period 2π. That is

sin(θ + 2π) = sin(θ) cos(θ + 2π) = cos(θ) tan(θ + 2π) = tan(θ)

The plots of these functions are shown below

sin θ cos θ tan θ

−π −π
2

π
2

π 3π
2

2π

−1

1

−π −π
2

π
2

π 3π
2

2π

−1

1

−π −π
2

π
2

π 3π
2

2π

The reciprocals (cosecant, secant and cotangent) of these functions also play impor-
tant roles in trigonometry and calculus:

csc θ =
1

sin θ
=

h
o

sec θ =
1

cos θ
=

h
a

cot θ =
1

tan θ
=

cos θ

sin θ
=

a
o

The plots of these functions are shown below

csc θ sec θ cot θ

−π −π
2

π
2

π 3π
2

2π−1

1

−π −π
2

π
2

π 3π
2

2π−1

1

−π −π
2

π
2

π 3π
2

2π
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These reciprocal functions also have geometric interpretations:

Since these are all right-angled triangles we can use Pythagoras to obtain the fol-
lowing identities:

sin2 θ + cos2 θ = 1 tan2 θ + 1 = sec2 θ 1 + cot2 θ = csc2 θ

Of these it is only necessary to remember the first

sin2 θ + cos2 θ = 1

The second can then be obtained by dividing this by cos2 θ and the third by dividing
by sin2 θ.

B.2.3 tt Important Triangles

Computing sine and cosine is non-trivial for general angles — we need Taylor series (or
similar tools) to do this. However there are some special angles (usually small integer
fractions of π) for which we can use a little geometry to help. Consider the following
two triangles.

The first results from cutting a square along its diagonal, while the second is obtained
by cutting an equilateral triangle from one corner to the middle of the opposite side.
These, together with the angles 0, π

2
and π give the following table of values
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θ sin θ cos θ tan θ csc θ sec θ cot θ

0 rad 0 1 0 DNE 1 DNE
π
2
rad 1 0 DNE 1 DNE 0

π rad 0 -1 0 DNE -1 DNE
π
4
rad 1√

2
1√
2

1
√

2
√

2 1
π
6
rad 1

2

√
3

2
1√
3

2 2√
3

√
3

π
3
rad

√
3

2
1
2

√
3 2√

3
2 1√

3

B.2.4 tt Some More Simple Identities

Consider the figure below

The pair triangles on the left shows that there is a simple relationship between
trigonometric functions evaluated at θ and at −θ:

sin(−θ) = − sin(θ) cos(−θ) = cos(θ)

That is — sine is an odd function, while cosine is even. Since the other trigonometric
functions can be expressed in terms of sine and cosine we obtain

tan(−θ) = − tan(θ) csc(−θ) = − csc(θ) sec(−θ) = sec(θ) cot(−θ) = − cot(θ)

Now consider the triangle on the right — if we consider the angle π
2
−θ the side-lengths of

the triangle remain unchanged, but the roles of “opposite” and “adjacent” are swapped.
Hence we have

sin
(
π
2
− θ
)

= cos θ cos
(
π
2
− θ
)

= sin θ

Again these imply that

tan
(
π
2
− θ
)

= cot θ csc
(
π
2
− θ
)

= sec θ sec
(
π
2
− θ
)

= csc θ cot
(
π
2
− θ
)

= tan θ

We can go further. Consider the following diagram:
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This implies that

sin(π − θ) = sin(θ) cos(π − θ) = − cos(θ)

sin(π + θ) = − sin(θ) cos(π + θ) = − cos(θ)

From which we can get the rules for the other four trigonometric functions.

B.2.5 tt Identities — Adding Angles

We wish to explain the origins of the identity

sin(α + β) = sin(α) cos(β) + cos(α) sin(β).

A very geometric demonstration uses the figure below and an observation about areas.

• The left-most figure shows two right-angled triangles with angles α and β and
both with hypotenuse length 1.

• The next figure simply rearranges the triangles — translating and rotating the
lower triangle so that it lies adjacent to the top of the upper triangle.

• Now scale the lower triangle by a factor of q so that edges opposite the angles α
and β are flush. This means that q cos β = cosα. ie

q =
cosα

cos β
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Now compute the areas of these (blue and red) triangles

Ared =
1

2
q2 sin β cos β

Ablue =
1

2
sinα cosα

So twice the total area is

2Atotal = sinα cosα + q2 sin β cos β

• But we can also compute the total area using the rightmost triangle:

2Atotal = q sin(α + β)

Since the total area must be the same no matter how we compute it we have

q sin(α + β) = sinα cosα + q2 sin β cos β

sin(α + β) =
1

q
sinα cosα + q sin β cos β

=
cos β

cosα
sinα cosα +

cosα

cos β
sin β cos β

= sinα cos β + cosα sin β

as required.
We can obtain the angle addition formula for cosine by substituting α 7→ π/2 − α

and β 7→ −β into our sine formula:

sin(α + β) = sin(α) cos(β) + cos(α) sin(β) becomes
sin(π/2− α− β)︸ ︷︷ ︸

cos(α+β)

= sin(π/2− α)︸ ︷︷ ︸
cos(α)

cos(−β) + cos(π/2− α)︸ ︷︷ ︸
sin(α)

sin(−β)

cos(α + β) = cos(α) cos(β)− sin(α) sin(β)

where we have used sin(π/2− θ) = cos(θ) and cos(π/2− θ) = sin(θ).
It is then a small step to the formulas for the difference of angles. From the relation

sin(α + β) = sin(α) cos(β) + cos(α) sin(β)

we can substitute β 7→ −β and so obtain

sin(α− β) = sin(α) cos(−β) + cos(α) sin(−β)

= sin(α) cos(β)− cos(α) sin(β)

The formula for cosine can be obtained in a similar manner. To summarise

sin(α± β) = sin(α) cos(β)± cos(α) sin(β)

cos(α± β) = cos(α) cos(β)∓ sin(α) sin(β)
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The formulas for tangent are a bit more work, but

tan(α + β) =
sin(α + β)

cos(α + β)

=
sin(α) cos(β) + cos(α) sin(β)

cos(α) cos(β)− sin(α) sin(β)

=
sin(α) cos(β) + cos(α) sin(β)

cos(α) cos(β)− sin(α) sin(β)
· sec(α) sec(β)

sec(α) sec(β)

=
sin(α) sec(α) + sin(β) sec(β)

1− sin(α) sec(α) sin(β) sec(β)

=
tan(α) + tan(β)

1− tan(α) tan(β)

and similarly we get

tan(α− β) =
tan(α)− tan(β)

1 + tan(α) tan(β)

B.2.6 tt Identities — Double-angle Formulas

If we set β = α in the angle-addition formulas we get

sin(2α) = 2 sin(α) cos(α)

cos(2α) = cos2(α)− sin2(α)

= 2 cos2(α)− 1 since sin2 θ = 1− cos2 θ

= 1− 2 sin2(α) since cos2 θ = 1− sin2 θ

tan(2α) =
2 tan(α)

1− tan2(α)

=
2

cot(α)− tan(α)
divide top and bottom by tan(α)

B.2.7 tt Identities — Extras

B.2.7.1ttt Sums to Products

Consider the identities

sin(α + β) = sin(α) cos(β) + cos(α) sin(β) sin(α− β) = sin(α) cos(β)− cos(α) sin(β)

If we add them together some terms on the right-hand side cancel:

sin(α + β) + sin(α− β) = 2 sin(α) cos(β).
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If we now set u = α + β and v = α− β (i.e. α = u+v
2
, β = u−v

2
) then

sin(u) + sin(v) = 2 sin

(
u+ v

2

)
cos

(
u− v

2

)
This transforms a sum into a product. Similarly:

sin(u)− sin(v) = 2 sin

(
u− v

2

)
cos

(
u+ v

2

)
cos(u) + cos(v) = 2 cos

(
u+ v

2

)
cos

(
u− v

2

)
cos(u)− cos(v) = −2 sin

(
u+ v

2

)
sin

(
u− v

2

)

B.2.7.2ttt Products to sums

Again consider the identities

sin(α + β) = sin(α) cos(β) + cos(α) sin(β) sin(α− β) = sin(α) cos(β)− cos(α) sin(β)

and add them together:

sin(α + β) + sin(α− β) = 2 sin(α) cos(β).

Then rearrange:

sin(α) cos(β) =
sin(α + β) + sin(α− β)

2
In a similar way, start with the identities

cos(α + β) = cos(α) cos(β)− sin(α) sin(β) cos(α− β) = cos(α) cos(β) + sin(α) sin(β)

If we add these together we get

2 cos(α) cos(β) = cos(α + β) + cos(α− β)

while taking their difference gives

2 sin(α) sin(β) = cos(α− β)− cos(α + β)

Hence

sin(α) sin(β) =
cos(α− β)− cos(α + β)

2

cos(α) cos(β) =
cos(α− β) + cos(α + β)

2

B.3q Inverse Trigonometric Functions

In order to construct inverse trigonometric functions we first have to restrict their
domains so as to make them one-to-one (or injective). We do this as shown below
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sin θ cos θ tan θ
Domain: −π

2
≤ θ ≤ π

2
Domain: 0 ≤ θ ≤ π Domain: −π

2
< θ < π

2

Range: −1 ≤ sin θ ≤ 1 Range: −1 ≤ cos θ ≤ 1 Range: all real numbers

−π
2

π
2

−1

1

π
2

π

−1

1

−π −π
2

arcsinx arccosx arctanx
Domain: −1 ≤ x ≤ 1 Domain: −1 ≤ x ≤ 1 Domain: all real numbers
Range: −π

2
≤ arcsinx ≤ π

2
Range: 0 ≤ arccosx ≤ π Range: −π

2
< arctanx < π

2

−1 1

−π
2

π
2

−1 1

π
2

π

−π
2

π
2

Since these functions are inverses of each other we have

arcsin(sin θ) = θ −π
2
≤ θ ≤ π

2
arccos(cos θ) = θ 0 ≤ θ ≤ π

arctan(tan θ) = θ −π
2
≤ θ ≤ π

2
and also

sin(arcsinx) = x −1 ≤ x ≤ 1

cos(arccosx) = x −1 ≤ x ≤ 1

tan(arctanx) = x any real x

We can read other combinations of trig functions and their inverses, like, for example,
cos(arcsinx), off of triangles like
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We have chosen the hypotenuse and opposite sides of the triangle to be of length 1
and x, respectively, so that sin(θ) = x. That is, θ = arcsinx. We can then read off of
the triangle that

cos(arcsinx) = cos(θ) =
√

1− x2

We can reach the same conclusion using trig identities, as follows.

• Write arcsinx = θ. We know that sin(θ) = x and we wish to compute cos(θ). So
we just need to express cos(θ) in terms of sin(θ).

• To do this we make use of one of the Pythagorean identities

sin2 θ + cos2 θ = 1

cos θ = ±
√

1− sin2 θ

• Thus

cos(arcsinx) = cos θ = ±
√

1− sin2 θ

• To determine which branch we should use we need to consider the domain and
range of arcsinx:

Domain: − 1 ≤ x ≤ 1 Range: − π

2
≤ arcsinx ≤ π

2

Thus we are applying cosine to an angle that always lies between −π
2
and π

2
.

Cosine is non-negative on this range. Hence we should take the positive branch
and

cos(arcsinx) =
√

1− sin2 θ =
√

1− sin2(arcsinx)

=
√

1− x2

In a very similar way we can simplify tan(arccosx).

• Write arccosx = θ, and then

tan(arccosx) = tan θ =
sin θ

cos θ

• Now the denominator is easy since cos θ = cos arccosx = x.

• The numerator is almost the same as the previous computation.

sin θ = ±
√

1− cos2 θ

= ±
√

1− x2
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• To determine which branch we again consider domains and and ranges:

Domain: − 1 ≤ x ≤ 1 Range: 0 ≤ arccosx ≤ π

Thus we are applying sine to an angle that always lies between 0 and π. Sine is
non-negative on this range and so we take the positive branch.

• Putting everything back together gives

tan(arccosx) =

√
1− x2

x

Completing the 9 possibilities gives:

sin(arcsinx) = x sin(arccosx) =
√

1− x2 sin(arctanx) =
x√

1 + x2

cos(arcsinx) =
√

1− x2 cos(arccosx) = x cos(arctanx) =
1√

1 + x2

tan(arcsinx) =
x√

1− x2
tan(arccosx) =

√
1− x2

x
tan(arctanx) = x

B.4q Cosine and Sine Laws

B.4.1 tt Cosine Law or Law of Cosines

The cosine law says that, if a triangle has sides of length a, b and c and the angle
opposite the side of length c is γ, then

c2 = a2 + b2 − 2ab cos γ

Observe that, when γ = π
2
, this reduces to, (surpise!) Pythagoras’ theorem c2 = a2 +b2.

Let’s derive the cosine law.

Consider the triangle on the left. Now draw a perpendicular line from the side of
length c to the opposite corner as shown. This demonstrates that

c = a cos β + b cosα
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Multiply this by c to get an expression for c2:

c2 = ac cos β + bc cosα

Doing similarly for the other corners gives

a2 = ac cos β + ab cos γ

b2 = bc cosα + ab cos γ

Now combining these:

a2 + b2 − c2 = (bc− bc) cosα + (ac− ac) cos β + 2ab cos γ

= 2ab cos γ

as required.

B.4.2 tt Sine Law or Law of Sines

The sine law says that, if a triangle has sides of length a, b and c and the angles opposite
those sides are α, β and γ, then

a

sinα
=

b

sin β
=

c

sin γ
.

This rule is best understood by computing the area of the triangle using the formula
A = 1

2
ab sin θ of Appendix A.10. Doing this three ways gives

2A = bc sinα

2A = ac sin β

2A = ab sin γ

Dividing these expressions by abc gives

2A

abc
=

sinα

a
=

sin β

b
=

sin γ

c

as required.
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B.5q Circles, cones and spheres

B.5.1 ttWhere Does the Formula for the Area of a Circle Come From?

Typically when we come across π for the first time it is as the ratio of the circumference
of a circle to its diameter

π =
C

d
=
C

2r

Indeed this is typically the first definition we see of π. It is easy to build an intuition
that the area of the circle should be propotional to the square of its radius. For example
we can draw the largest possible square inside the circle (an inscribed square) and the
smallest possible square outside the circle (a circumscribed square):

The smaller square has side-length
√

2r and the longer has side-length 2r. Hence

2r2 ≤ A ≤ 4r2 or 2 ≤ A

r2
≤ 4

That is, the area of the circle is between 2 and 4 times the square of the radius. What
is perhaps less obvious (if we had not been told this in school) is that the constant of
propotionality for area is also π:

π =
A

r2
.

We will show this using Archimedes’ proof. He makes use of these inscribed and
circumscribed polygons to make better and better approximations of the circle. The
steps of the proof are somewhat involved and the starting point is to rewrite the area
of a circle as

A =
1

2
Cr

where C is (still) the circumference of the circle. This suggests that this area is the
same as that of a triangle of height r and base length C

T =
1

2
Cr
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Archimedes’ proof then demonstrates that indeed this triangle and the circle have
the same area. It relies on a “proof by contradiction” — showing that T < A and T > A
cannot be true and so the only possibility is that A = T .

We will first show that T < A cannot happen. Construct an n-sided “inscribed”
polygon as shown below:

Let pn be the inscribed polygon as shown.

We need 4 steps.

• The area of pn is smaller than that of the circle — this follows since we can
construct pn by cutting slices from the circle.

• Let En be the difference between the area of the circle and pn: En = A − A(pn)
(see the left of the previous figure). By the previous point we know En > 0. Now
as we increase the number of sides, this difference becomes smaller. To be more
precise

E2n ≤
1

2
En.

The error En is made up of n “lobes”. In the centre-left of the previous figure
we draw one such lobe and surround it by a rectangle of dimensions a × 2b —
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we could determine these more precisely using a little trigonometry, but it is not
necessary.
This diagram shows the lobe is smaller than the rectangle of base 2b and height
a Since there are n copies of the lobe, we have

En ≤ n× 2ab rewrite as
En
2
≤ nab

Now draw in the polygon p2n and consider the associated “error” E2n. If we focus
on the two lobes shown then we see that the area of these two new lobes is equal
to that of the old lobe (shown in centre-left) minus the area of the triangle with
base 2b and height a (drawn in purple). Since there are n copies of this picture
we have

E2n = En − nab now use that nab ≥ En/2

≤ En −
En
2

=
En
2

• The area of pn is smaller than T . To see this decompose pn into n isosceles
triangles. Each of these has base shorter than C/n; the straight line is shorter
than the corresponding arc — though strictly speaking we should prove this. The
height of each triangle is shorter than r. Thus

A(pn) = n× 1

2
(base)× (height)

≤ n× Cr

2n
= T

• If we assume that T < A, then A − T = d where d is some positive number.
However we know from point 2 that we can make n large enough so that En < d
(each time we double n we halve the error). But now we have a contradiction to
step 3, since we have just shown that

En = A− A(pn) < A− T which implies that
A(pn) > T.

Thus we cannot have T < A.
If we now assume that T > A we will get a similar contradiction by a similar

construction. Now we use regular n-sided circumscribed polygons, Pn.
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The proof can be broken into 4 similar steps.

1. The area of Pn is greater than that of the circle — this follows since we can
construct the circle by trimming the polygon Pn.

2. Let En be the difference between the area of the polygon and the circle: En =
A(Pn) − A (see the left of the previous figure). By the previous point we know
En > 0. Now as we increase the number of sides, this difference becomes smaller.
To be more precise we will show

E2n ≤
1

2
En.

The error En is made up of n “lobes”. In the centre-left of the previous figure we
draw one such lobe. Let Ln denote the area of one of these lobes, so En = nLn.
In the centre of the previous figure we have labelled this lobe carefully and also
shown how it changes when we create the polygon P2n. In particular, the original
lobe is bounded by the straight lines ~ad, ~af and the arc f̂ bd. We create P2n from
Pn by cutting away the corner triangle 4aec. Accordingly the lines ~ec and ~ba are
orthogonal and the segments |bc| = |cd|.
By the construction of P2n from Pn, we have

2L2n = Ln − A(4aec) or equivalently L2n =
1

2
Ln − A(4abc)

And additionally

L2n ≤ A(4bcd)

Now consider the triangle 4abd (centre-right of the previous figure) and the two
triangles within it 4abc and 4bcd. We know that ~ab and ~cb form a right-angle.
Consequently ~ac is the hypotenuse of a right-angled triangle, so |ac| > |bc| = |cd|.
So now, the triangles 4abc and 4bcd have the same heights, but the base of ~ac
is longer than ~cd. Hence the area of 4abc is strictly larger than that of 4bcd.
Thus we have

L2n ≤ A(4bcd) < A(4abc)
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But now we can write

L2n =
1

2
Ln − A(4abc) < 1

2
Ln − L2n rearrange

2L2n <
1

2
Ln there are n such lobes, so

2nL2n <
n

2
Ln since En = nLn, we have

E2n <
1

2
En which is what we wanted to show.

3. The area of Pn is greater than T . To see this decompose Pn into n isosceles
triangles. The height of each triangle is r, while the base of each is longer than
C/n (this is a subtle point and its proof is equivalent to showing that tan θ > θ).
Thus

A(Pn) = n× 1

2
(base)× (height)

≥ n× Cr

2n
= T

4. If we assume that T > A, then T − A = d where d is some positive number.
However we know from point 2 that we can make n large enough so that En < d
(each time we double n we halve the error). But now we have a contradiction
since we have just shown that

En = A(Pn)− A < T − A which implies that
A(pn) > T.

Thus we cannot have T > A. The only possibility that remains is that T = A.

B.5.2 tt Where Do These Volume Formulas Come From?

We can establish the volumes of cones and spheres from the formula for the volume of
a cylinder and a little work with limits and some careful summations. We first need a
few facts.

• Every square number can be written as a sum of consecutive odd numbers. More
precisely

n2 = 1 + 3 + · · ·+ (2n− 1)

• The sum of the first n positive integers is 1
2
n(n+ 1). That is

1 + 2 + 3 + · · ·+ n =
1

2
n(n+ 1)
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• The sum of the squares of the first n positive integers is 1
6
n(n+ 1)(2n+ 1).

12 + 22 + 32 + · · ·+ n2 =
1

6
n(n+ 1)(2n+ 1)

We will not give completely rigorous proofs of the above identities (since we are not
going to assume that the reader knows mathematical induction), rather we will explain
them using pictorial arguments. The first two of these we can explain by some quite
simple pictures:

We see that we can decompose any square of unit-squares into a sequence of strips,
each of which consists of an odd number of unit-squares. This is really just from the
fact that

n2 − (n− 1)2 = 2n− 1

Similarly, we can represent the sum of the first n integers as a triangle of unit squares
as shown. If we make a second copy of that triangle and arrange it as shown, it gives
a rectangle of dimensions n by n+ 1. Hence the rectangle, being exactly twice the size
of the original triangle, contains n(n+ 1) unit squares.

The explanation of the last formula takes a little more work and a carefully con-
structed picture:

Let us break these pictures down step by step
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• Leftmost represents the sum of the squares of the first n integers.

• Centre — We recall from above that each square number can be written as a sum
of consecutive odd numbers, which have been represented as coloured bands of
unit-squares.

• Make three copies of the sum and arrange them carefully as shown. The first and
third copies are obvious, but the central copy is rearranged considerably; all bands
of the same colour have the same length and have been arranged into rectangles
as shown.

Putting everything from the three copies together creates a rectangle of dimen-
sions (2n+ 1)× (1 + 2 + 3 + · · ·+ n).

We know (from above) that 1 + 2 + 3 + · · ·+ n = 1
2
n(n+ 1) and so

(12 + 22 + · · ·+ n2) =
1

3
× 1

2
n(n+ 1)(2n+ 1)

as required.
Now we can start to look at volumes. Let us start with the volume of a cone;

consider the figure below. We bound the volume of the cone above and below by stacks
of cylinders. The cross-sections of the cylinders and cone are also shown.

To obtain the bounds we will construct two stacks of n cylinders, C1, C2, . . . , Cn.
Each cylinder has height h/n and radius that varies with height. In particular, we
define cylinder Ck to have height h/n and radius k × r/n. This radius was determined
using similar triangles so that cylinder Cn has radius r. Now cylinder Ck has volume

Vk = π × radius2 × height = π

(
kr

n

)2

· h
n

=
πr2h

n3
k2
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We obtain an upper bound by stacking cylinders C1, C2, . . . , Cn as shown. This
object has volume

V = V1 + V2 + · · ·+ Vn

=
πr2h

n3

(
12 + 22 + 32 + · · ·+ n2

)
=
πr2h

n3
· n(n+ 1)(2n+ 1)

6

A similar lower bound is obtained by stacking cylinders C1, . . . , Cn−1 which gives a
volume of

V = V1 + V2 + · · ·+ Vn−1

=
πr2h

n3

(
12 + 22 + 32 + · · ·+ (n− 1)2

)
=
πr2h

n3
· (n− 1)(n)(2n− 1)

6

Thus the true volume of the cylinder is bounded between

πr2h

n3
· (n− 1)(n)(2n− 1)

6
≤ correct volume ≤ πr2h

n3
· n(n+ 1)(2n+ 1)

6

We can now take the limit as the number of cylinders, n, goes to infinity. The upper
bound becomes

lim
n→∞

πr2h

n3

n(n+ 1)(2n+ 1)

6
=
πr2h

6
lim
n→∞

n(n+ 1)(2n+ 1)

n3

=
πr2h

6
lim
n→∞

(1 + 1/n)(2 + 1/n)

1

=
πr2h

6
× 2

=
πr2h

3

The other limit is identical, so by the squeeze theorem we have

Volume of cone =
1

3
πr2h

Now the sphere — though we will do the analysis for a hemisphere of radius R.
Again we bound the volume above and below by stacks of cylinders. The cross-sections
of the cylinders and cone are also shown.
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To obtain the bounds we will construct two stacks of n cylinders, C1, C2, . . . , Cn.
Each cylinder has height R/n and radius that varies with its position in the stack. To
describe the position, define

yk = k × R

n

That is, yk, is k steps of distance R
n
from the top of the hemisphere. Then we set the

kth cylinder, Ck to have height R/n and radius rk given by

r2
k = R2 − (R− yk)2 = R2 −R2(1− k/n)2

= R2(2k/n− k2/n2)

as shown in the top-right and bottom-left illustrations. The volume of Ck is then

Vk = π × radius2 × height = π ×R2
(
2k/n− k2/n2

)
× R

n

= πR3 ·
(

2k

n2
− k2

n3

)
We obtain an upper bound by stacking cylinders C1, C2, . . . , Cn as shown. This

object has volume

V = V1 + V2 + · · ·+ Vn

= πR3 ·
(

2

n2
(1 + 2 + 3 + · · ·+ n)− 1

n3

(
12 + 22 + 32 + · · ·+ n2

))
Now recall from above that

1 + 2 + 3 + · · ·+ n =
1

2
n(n+ 1) 12 + 22 + 32 + · · ·+ n2 =

1

6
n(n+ 1)(2n+ 1)

so

V = πR3 ·
(
n(n+ 1)

n2
− n(n+ 1)(2n+ 1)

6n3

)
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Again, a lower bound is obtained by stacking cylinders C1, . . . , Cn−1 and a similar
analysis gives

V = πR3 ·
(
n(n− 1)

(n− 1)2
− n(n− 1)(2n− 1)

6(n− 1)3

)
Thus the true volume of the hemisphere is bounded between

πR3 ·
(
n(n+ 1)

n2
− n(n+ 1)(2n+ 1)

6n3

)
≤ correct volume ≤ πR3 ·

(
n(n+ 1)

n2
− n(n+ 1)(2n+ 1)

6n3

)
We can now take the limit as the number of cylinders, n, goes to infinity. The upper
bound becomes

lim
n→∞

πR3 ·
(
n(n+ 1)

n2
− n(n+ 1)(2n+ 1)

6n3

)
= πR3

(
lim
n→∞

n(n+ 1)

n2
− n(n+ 1)(2n+ 1)

6n3

)
= πR3

(
1− 2

6

)
=

2

3
πR3.

The other limit is identical, so by the squeeze theorem we have

Volume of hemisphere =
2

3
πR3 and so

Volume of sphere =
4

3
πR3
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Appendix C

To this point you have found solutions to equations almost exclusively by algebraic
manipulation. This is possible only for the artificially simple equations of problem sets
and tests. In the “real world” it is very common to encounter equations that cannot be
solved by algebraic manipulation. For example, you found, by completing a square, that
the solutions to the quadratic equation ax2 + bx+ c = 0 are x =

(
− b±

√
b2 − 4ac

)
/2a.

But it is known that there simply does not exist a corresponding formula for the roots of
a general polynomial of degree five or more. Fortunately, encountering such an equation
is not the end of the world, because usually one does not need to know the solutions
exactly. One only needs to know them to within some specified degree of accuracy.
For example, one rarely needs to know π to more than a few decimal places. There
is a whole subject, called numerical analysis, that concerns using algorithms to solve
equations (and perform other tasks) approximately, to any desired degree of accuracy.

We have already had, in Examples 1.6.14 and 1.6.15, and the lead up to them,
a really quick introduction to the bisection method, which is a crude, but effective,
algorithm for finding approximate solutions to equations of the form f(x) = 0. We shall
shortly use a little calculus to derive a very efficient algorithm for finding approximate
solutions to such equations. But first here is a simple example which provides a review
of some of the basic ideas of root finding and the bisection method.

Example C.0.1 Bisection method.

Suppose that we are given some function f(x) and we have to find solutions to the
equation f(x) = 0. To be concrete, suppose that f(x) = 8x3 + 12x2 + 6x− 15. How do
we go about solving f(x) = 0? To get a rough idea of the lay of the land, sketch the
graph of f(x). First observe that

• when x is very large and negative, f(x) is very large and negative

• when x is very large and positive, f(x) is very large and positive

• when x = 0, f(x) = f(0) = −15 < 0
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Example C.0.1

• when x = 1, f(x) = f(1) = 11 > 0

• f ′(x) = 24x2 + 24x + 6 = 24
(
x2 + x + 1

4

)
= 24

(
x + 1

2

)2 ≥ 0 for all x. So f(x)
increases monotonically with x. The graph has a tangent of slope 0 at x = −1

2

and tangents of strictly positive slope everywhere else.

This tells us that the graph of f(x) looks like

x

y

1

y = f(x)

Since f(x) strictly increasesa as x increases, f(x) can take the value zero for at most
one value of x.

• Since f(0) < 0 and f(1) > 0 and f is continuous, f(x) must pass through 0 as x
travels from x = 0 to x = 1, by Theorem 1.6.12 (the intermediate value theorem).
So f(x) takes the value zero for some x between 0 and 1. We will often write this
as “the root is x = 0.5± 0.5” to indicate the uncertainty.

• To get closer to the root, we evaluate f(x) halfway between 0 and 1.

f
(

1
2

)
= 8
(

1
2

)3
+ 12

(
1
2

)2
+ 6
(

1
2

)
− 15 = −8

Since f
(

1
2

)
< 0 and f(1) > 0 and f is continuous, f(x) must take the value zero

for some x between 1
2
and 1. The root is 0.75± 0.25.

• To get still closer to the root, we evaluate f(x) halfway between 1
2
and 1.

f
(

3
4

)
= 8
(

3
4

)3
+ 12

(
3
4

)2
+ 6
(

3
4

)
− 15 = −3

8

Since f
(

3
4

)
< 0 and f(1) > 0 and f is continuous, f(x) must take the value zero

for some x between 3
4
and 1. The root is 0.875± 0.125.

• And so on.

a By “f(x) is strictly increasing” we mean that f(a) < f(b) whenever a < b. As f ′(x) > 0 for all
x 6= − 1

2 , f(x) is strictly increasing even as x passes through − 1
2 . For example, for any x > − 1

2 ,
the mean value theorem (Theorem 2.13.5) tells us that there is a c strictly between − 1

2 and x such
that f(x)− f

(
− 1

2

)
= f ′(c)

(
x+ 1

2

)
> 0.
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The root finding strategy used in Example C.0.1 is called the bisection method. The
bisection method will home in on a root of the function f(x) whenever

• f(x) is continuous (f(x) need not have a derivative) and

• you can find two numbers a1 < b1 with f(a1) and f(b1) being of opposite sign.

Denote by I1 the interval [a1, b1] =
{
x
∣∣ a1 ≤ x ≤ b1

}
. Once you have found the interval

I1, the bisection method generates a sequence I1, I2, I3, · · · of intervals by the following
rule.

Equation C.0.2 (bisection method).

Denote by cn = an+bn
2

the midpoint of the interval In = [an, bn]. If f(cn) has the
same sign as f(an), then

In+1 = [an+1, bn+1] with an+1 = cn, bn+1 = bn

and if f(cn) and f(an) have opposite signs, then

In+1 = [an+1, bn+1] with an+1 = an, bn+1 = cn

This rule was chosen so that f(an) and f(bn) have opposite sign for every n. Since
f(x) is continuous, f(x) has a zero in each interval In. Thus each step reduces the error
bars by a factor of 2. That isn’t too bad, but we can come up with something that is
much more efficient. We just need a little calculus.

C.1q Newton’s Method

Newton’s method1, also known as the Newton-Raphson method, is another technique
for generating numerical approximate solutions to equations of the form f(x) = 0. For
example, one can easily get a good approximation to

√
2 by applying Newton’s method

to the equation x2 − 2 = 0. This will be done in Example C.1.2, below.
Here is the derivation of Newton’s method. We start by simply making a guess for

the solution. For example, we could base the guess on a sketch of the graph of f(x).
Call the initial guess x1. Next recall, from Theorem 2.3.4, that the tangent line to
y = f(x) at x = x1 is y = F (x), where

F (x) = f(x1) + f ′(x1) (x− x1)

1 The algorithm that we are about to describe grew out of a method that Newton wrote about in
1669. But the modern method incorporates substantial changes introduced by Raphson in 1690
and Simpson in 1740.
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Usually F (x) is a pretty good approximation to f(x) for x near x1. So, instead of trying
to solve f(x) = 0, we solve the linear equation F (x) = 0 and call the solution x2.

0 = F (x) = f(x1) + f ′(x1) (x− x1) ⇐⇒ x− x1 = − f(x1)

f ′(x1)

⇐⇒ x = x2 = x1 −
f(x1)

f ′(x1)

Note that if f(x) were a linear function, then F (x) would be exactly f(x) and x2 would
solve f(x) = 0 exactly.

x

y

x1 x2

y = F (x)

y = f(x)

(x1, f(x1))

Now we repeat, but starting with the (second) guess x2 rather than x1. This gives
the (third) guess x3 = x2− f(x2)

f ′(x2)
. And so on. By way of summary, Newton’s method is

1 Make a preliminary guess x1.

2 Define x2 = x1 − f(x1)
f ′(x1)

.

3 Iterate. That is, for each natural number n, once you have computed xn, define

Equation C.1.1 (Newton’s method).

xn+1 = xn −
f(xn)

f ′(xn)

Example C.1.2 (Approximating
√

2).

In this example we compute, approximately, the square root of two. We will of course
pretend that we do not already know that

√
2 = 1.41421 · · ·. So we cannot find it by

solving, approximately, the equation f(x) = x −
√

2 = 0. Instead we apply Newton’s
method to the equation

f(x) = x2 − 2 = 0

Since f ′(x) = 2x, Newton’s method says that we should generate approximate solutions
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Example C.1.2

by iteratively applying

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

x2
n − 2

2xn
=
xn
2

+
1

xn

We need a starting point. Since 12 = 1 < 2 and 22 = 4 > 2, the square root of two must
be between 1 and 2, so let’s start Newton’s method with the initial guess x1 = 1.5.
Here goesa:

x1 = 1.5

x2 =
1

2
x1 +

1

x1

=
1

2
(1.5) +

1

1.5

= 1.416666667

x3 =
1

2
x2 +

1

x2

=
1

2
(1.416666667) +

1

1.416666667

= 1.414215686

x4 =
1

2
x3 +

1

x3

=
1

2
(1.414215686) +

1

1.414215686

= 1.414213562

x5 =
1

2
x4 +

1

x4

=
1

2
(1.414213562) +

1

1.414213562

= 1.414213562

It looks like the xn’s, rounded to nine decimal places, have stabilized to 1.414213562. So
it is reasonable to guess that

√
2, rounded to nine decimal places, is exactly 1.414213562.

Recalling that all numbers 1.4142135615 ≤ y < 1.4142135625 round to 1.414213562,
we can check our guess by evaluating f(1.4142135615) and f(1.4142135625). Since
f(1.4142135615) = −2.5× 10−9 < 0 and f(1.4142135625) = 3.6× 10−10 > 0 the square
root of two must indeed be between 1.4142135615 and 1.4142135625.

a The following computations have been carried out in double precision, which is computer speak for
about 15 significant digits. We are displaying each xn rounded to 10 significant digits (9 decimal
places). So each displayed xn has not been impacted by roundoff error, and still contains more
decimal places than are usually needed.

Example C.1.3 (Approximating π).

In this example we compute, approximately, π by applying Newton’s method to the
equation

f(x) = sin x = 0

starting with x1 = 3. Since f ′(x) = cosx, Newton’s method says that we should
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generate approximate solutions by iteratively applying

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

sinxn
cosxn

= xn − tanxn

Here goes

x1 = 3

x2 = x1 − tanx1 = 3− tan 3

= 3.142546543

x3 = 3.142546543− tan 3.142546543

= 3.141592653

x4 = 3.141592653− tan 3.141592653

= 3.141592654

x5 = 3.141592654− tan 3.141592654

= 3.141592654

Since f(3.1415926535) = 9.0 × 10−11 > 0 and f(3.1415926545) = −9.1 × 10−11 < 0, π
must be between 3.1415926535 and 3.1415926545. Of course to compute π in this way,
we (or at least our computers) have to be able to evaluate tanx for various values of x.
Taylor expansions can help us do that. See Example 3.4.22.

Example C.1.4 wild instability.

This example illustrates how Newton’s method can go badly wrong if your initial guess
is not good enough. We’ll try to solve the equation

f(x) = arctan x = 0

starting with x1 = 1.5. (Of course the solution to f(x) = 0 is just x = 0; we chose
x1 = 1.5 for demonstration purposes.) Since the derivative f ′(x) = 1

1+x2
, Newton’s

method gives

xn+1 = xn −
f(xn)

f ′(xn)
= xn − (1 + x2

n) arctanxn

Soa

x1 = 1.5

x2 = 1.5− (1 + 1.52) arctan 1.5 = −1.69

x3 = −1.69− (1 + 1.692) arctan(−1.69) = 2.32

x4 = 2.32− (1 + 2.322) arctan(2.32) = −5.11

x5 = −5.11− (1 + 5.112) arctan(−5.11) = 32.3
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x6 = 32.3− (1 + 32.32) arctan(32.3) = −1575

x7 = 3, 894, 976

Looks pretty bad! Our xn’s are not settling down at all!
The figure below shows what went wrong. In this figure, y = F1(x) is the tangent line
to y = arctanx at x = x1. Under Newton’s method, this tangent line crosses the x-axis
at x = x2. Then y = F2(x) is the tangent to y = arctanx at x = x2. Under Newton’s
method, this tangent line crosses the x-axis at x = x3. And so on.
The problem arose because the xn’s were far enough from the solution, x = 0, that the
tangent line approximations, while good approximations to f(x) for x ≈ xn, were very
poor approximations to f(x) for x ≈ 0. In particular, y = F1(x) (i.e. the tangent line
at x = x1) was a bad enough approximation to y = arctanx for x ≈ 0 that x = x2 (i.e.
the value of x where y = F1(x) crosses the x-axis) is farther from the solution x = 0
than our original guess x = x1.

x

y

y = f(x) = tan−1 x

x1

y = F1(x)

(x1,f(x1))

x2

y = F2(x)

(x2,f(x2))

x3

y = F3(x)

x4

y = F4(x)

(x4,f(x4))

If we had started with x1 = 0.5 instead of x1 = 1.5, Newton’s method would have
succeeded very nicely:

x1 = 0.5 x2 = −0.0796 x3 = 0.000335 x4 = −2.51× 10−11

a Once again, the following computations have been carried out in double precision. This time, it
is clear that the xn’s are growing madly as n increases. So there is not much point to displaying
many decimal places and we have not done so.
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Example C.1.5 interest rate.

A car dealer sells a new car for $23,520. He also offers to finance the same car for
payments of $420 per month for five years. What interest rate is this dealer charging?
Solution. By way of preparation, we’ll start with a simpler problem. Suppose that you
will have to make a single $420 payment n months in the future. The simpler problem
is to determine how much money you have to deposit now in an account that pays an
interest rate of 100r% per month, compounded monthlya, in order to be able to make
the $420 payment in n months.
Let’s denote by P the initial deposit. Because the interest rate is 100r% per month,
compounded monthly,

• the first month’s interest is P×r. So at the end of month #1, the account balance
is P + P r = P (1 + r).

• The second month’s interest is [P (1 + r)] × r. So at the end of month #2, the
account balance is P (1 + r) + P (1 + r) r = P (1 + r)2.

• And so on.

• So at the end of n months, the account balance is P (1 + r)n.

In order for the balance at the end of n months, P (1 + r)n, to be $420, the initial
deposit has to be P = 420(1 + r)−n. That is what is meant by the statement “The
present valueb of a $420 payment made n months in the future, when the interest rate
is 100r% per month, compounded monthly, is 420(1 + r)−n.”
Now back to the original problem. We will be making 60 monthly payments of $420.
The present value of all 60 payments isc

420(1 + r)−1 + 420(1 + r)−2 + · · ·+ 420(1 + r)−60

= 420
(1 + r)−1 − (1 + r)−61

1− (1 + r)−1

= 420
1− (1 + r)−60

(1 + r)− 1

= 420
1− (1 + r)−60

r

The interest rate 100r% being charged by the car dealer is such that the present value
of 60 monthly payments of $420 is $23520. That is, the monthly interest rate being
charged by the car dealer is the solution of

23520 = 420
1− (1 + r)−60

r
or 56 =

1− (1 + r)−60

r
or 56r = 1− (1 + r)−60

or 56r(1 + r)60 = (1 + r)60 − 1

or (1− 56r)(1 + r)60 = 1

530



Root Finding C.2 The Error Behaviour of Newton’s Method

Example C.1.5

Set f(r) = (1− 56r)(1 + r)60 − 1. Then

f ′(r) = −56(1 + r)60 + 60(1− 56r)(1 + r)59

or
f ′(r) =

[
− 56(1 + r) + 60(1− 56r)

]
(1 + r)59 = (4− 3416r)(1 + r)59

Apply Newton’s method with an initial guess of r1 = .002. (That’s 0.2% per month or
2.4% per year.) Then

r2 = r1 −
(1− 56r1)(1 + r1)60 − 1

(4− 3416r1)(1 + r1)59
= 0.002344

r3 = r2 −
(1− 56r2)(1 + r2)60 − 1

(4− 3416r2)(1 + r2)59
= 0.002292

r4 = r3 −
(1− 56r3)(1 + r3)60 − 1

(4− 3416r3)(1 + r3)59
= 0.002290

r5 = r4 −
(1− 56r4)(1 + r4)60 − 1

(4− 3416r4)(1 + r4)59
= 0.002290

So the interest rate is 0.229% per month or 2.75% per year.

a “Compounded monthly”, means that, each month, interest is paid on the accumulated interest
that was paid in all previous months.

b Inflation means that prices of goods (typically) increase with time, and hence $100 now is worth
more than $100 in 10 years time. The term “present value” is widely used in economics and finance
to mean “the current amount of money that will have a specified value at a specified time in the
future”. It takes inflation into account. If the money is invested, it takes into account the rate of
return of the investment. We recommend that the interested reader do some search-engining to
find out more.

c Don’t worry if you don’t know how to evaluate such sums. They are called geometric sums, and
will be covered in the CLP-2 text. (See (1.1.3) in the CLP-2 text. In any event, you can check
that this is correct, by multiplying the whole equation by 1 − (1 + r)−1. When you simplify the
left hand side, you should get the right hand side.

C.2q The Error Behaviour of Newton’s Method

Newton’s method usually works spectacularly well, provided your initial guess is rea-
sonably close to a solution of f(x) = 0. A good way to select this initial guess is
to sketch the graph of y = f(x). We now explain why “Newton’s method usually
works spectacularly well, provided your initial guess is reasonably close to a solution of
f(x) = 0”.

Let r be any solution of f(x) = 0. Then f(r) = 0. Suppose that we have already
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computed xn. The error in xn is
∣∣xn − r∣∣. We now derive a formula that relates the

error after the next step,
∣∣xn+1 − r

∣∣, to ∣∣xn − r∣∣. We have seen in (3.4.32) that

f(x) = f(xn) + f ′(xn)(x− xn) +
1

2
f ′′(c)(x− xn)2

for some c between xn and x. In particular, choosing x = r,

0 = f(r) = f(xn) + f ′(xn)(r − xn) +
1

2
f ′′(c)(r − xn)2 (E1)

Recall that xn+1 is the solution of 0 = f(xn) + f ′(xn)(x− xn). So

0 = f(xn) + f ′(xn)(xn+1 − xn) (E2)

We need to get an expression for xn+1 − r. Subtracting (E2) from (E1) gives

0 = f ′(xn)(r − xn+1) +
1

2
f ′′(c)(r − xn)2 =⇒ xn+1 − r =

f ′′(c)

2f ′(xn)
(xn − r)2

=⇒
∣∣xn+1 − r

∣∣ =
|f ′′(c)|

2|f ′(xn)| |xn − r|
2

If the guess xn is close to r, then c, which must be between xn and r, is also close to r
and we will have f ′′(c) ≈ f ′′(r) and f ′(xn) ≈ f ′(r) and∣∣xn+1 − r

∣∣ ≈ |f ′′(r)|
2|f ′(r)| |xn − r|

2 (E3)

Even when xn is not close to r, if we know that there are two numbers L,M > 0 such
that f obeys:

(H1)
∣∣f ′(xn)

∣∣ ≥ L

(H2)
∣∣f ′′(c)∣∣ ≤M

(we’ll see examples of this below) then we will have∣∣xn+1 − r
∣∣ ≤ M

2L
|xn − r|2 (E4)

Let’s denote by ε1 the error, |x1− r|, of our initial guess. In fact, let’s denote by εn the
error, |xn − r|, in xn. Then (E4) says

εn+1 ≤
M

2L
ε2
n

In particular

ε2 ≤
M

2L
ε2

1

ε3 ≤
M

2L
ε2

2 ≤
M

2L

(
M

2L
ε2

1

)2

=

(
M

2L

)3

ε4
1
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ε4 ≤
M

2L
ε2

3 ≤
M

2L

[(
M

2L

)3

ε4
1

]2

=

(
M

2L

)7

ε8
1

ε5 ≤
M

2L
ε2

4 ≤
M

2L

[(
M

2L

)7

ε8
1

]2

=

(
M

2L

)15

ε16
1

By now we can see a pattern forming, that is easily verified by induction1.

εn ≤
(
M

2L

)2n−1−1

ε2n−1

1 =
2L

M

(
M

2L
ε1

)2n−1

(E5)

As long as M
2L
ε1 < 1 (which gives us a quantitative idea as to how good our first guess

has to be in order for Newton’s method to work), this goes to zero extremely quickly
as n increases. For example, suppose that M

2L
ε1 ≤ 1

2
. Then

εn ≤
2L

M

(
1

2

)2n−1

≤ 2L

M
·



0.25 if n = 2

0.0625 if n = 3

0.0039 = 3.9× 10−3 if n = 4

0.000015 = 1.5× 10−5 if n = 5

0.00000000023 = 2.3× 10−10 if n = 6

0.000000000000000000054 = 5.4× 10−20 if n = 7

Each time you increase n by one, the number of zeroes after the decimal place roughly
doubles. You can see why from (E5). Since(

M

2L
ε1

)2(n+1)−1

=

(
M

2L
ε1

)2n−1×2

=

[(
M

2L
ε1

)2n−1
]2

we have, very roughly speaking, εn+1 ≈ ε2
n. This quadratic behaviour is the reason that

Newton’s method is so useful.

Example C.2.1 (Example C.1.2, continued).

Let’s consider, as we did in Example C.1.2, f(x) = x2 − 2, starting with x1 = 3
2
. Then

f ′(x) = 2x f ′′(x) = 2

Recalling, from (H1) and (H2), that L is a lower bound on |f ′| and M is an upper
bound on |f ′′|, we may certainly take M = 2 and if, for example, xn ≥ 1 for all n (as
happened in Example C.1.2), we may take L = 2 too. While we do not know what r
is, we do know that 1 ≤ r ≤ 2 (since f(1) = 11 − 2 < 0 and f(2) = 22 − 2 > 0). As we

1 Mathematical induction is a technique for proving a sequence S1, S2, S3, · · · of statements. That
technique consists of first proving that S1 is true, and then proving that, for any natural number
n, if Sn is true then Sn+1 is true.
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took x1 = 3
2
, we have ε1 = |x1 − r| ≤ 1

2
, so that M

2L
ε1 ≤ 1

4
and

εn+1 ≤
2L

M

(
M

2L
ε1

)2n−1

≤ 2

(
1

4

)2n−1

(E6)

This tends to zero very quickly as n increases. Furthermore this is an upper bound
on the error and not the actual error. In fact (E6) is a very crude upper bound. For
example, setting n = 3 gives the bound

ε4 ≤ 2

(
1

4

)22

= 7× 10−3

and we saw in Example C.1.2 that the actual error in x4 was smaller than 5× 10−10.

Example C.2.2 (Example C.1.3, continued).

Let’s consider, as we did in Example C.1.3, f(x) = sinx, starting with x1 = 3. Then

f ′(x) = cos x f ′′(x) = − sinx

As |−sinx| ≤ 1, we may certainly takeM = 1. In Example C.1.3, all xn’s were between
3 and 3.2. Since (to three decimal places)

sin(3) = 0.141 > 0 sin(3.2) = −0.058 < 0

the IVT (intermediate value theorem) tells us that 3 < r < 3.2 and ε1 = |x1− r| < 0.2.
So r and all xn’s and hence all c’s lie in the interval (3, 3.2). Since

−0.9990 = cos(3) < cos c < cos(3.2) = −0.9983

we necessarily have
∣∣f ′(c)∣∣ =

∣∣ cos c
∣∣ ≥ 0.9 and we may take L = 0.9. So

εn+1 ≤
2L

M

(
M

2L
ε1

)2n−1

≤ 2× 0.9

1

(
1

2× 0.9
0.2

)2n−1

≤ 2

(
1

9

)2n−1

This tends to zero very quickly as n increases.

We have now seen two procedures for finding roots of a function f(x) — the bisection
method (which does not use the derivative of f(x), but which is not very efficient) and
Newton’s method (which does use the derivative of f(x), and which is very efficient). In
fact, there is a whole constellation of other methods2 and the interested reader should
search engine their way to, for example, Wikipedia’s article on root finding algorithms.

2 What does it say about mathematicians that they have developed so many ways of finding zero?
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Here, we will just mention two other methods, one being a variant of the bisection
method and the other being a variant of Newton’s method.

C.3q The false position (regula falsi) method

Let f(x) be a continuous function and let a1 < b1 with f(a1) and f(b1) being of opposite
sign.

As we have seen, the bisection method generates a sequence of intervals In = [an, bn],
n = 1, 2, 3, · · · with, for each n, f(an) and f(bn) having opposite sign (so that, by
continuity, f has a root in In). Once we have In, we choose In+1 based on the sign of
f at the midpoint, an+bn

2
, of In. Since we always test the midpoint, the possible error

decreases by a factor of 2 each step.
The false position method tries to make the whole procedure more efficient by testing

the sign of f at a point that is closer to the end of In where the magnitude of f is smaller.
To be precise, we approximate y = f(x) by the equation of the straight line through(
an, f(an)

)
and

(
bn, f(bn)

)
.

xan bncn

y = f(x)

y = F (x)

(an, f(an))

(bn, f(bn))

The equation of that straight line is

y = F (x) = f(an) +
f(bn)− f(an)

bn − an
(x− an)

Then the false position method tests the sign of f(x) at the value of x where F (x) = 0.

F (x) = f(an) +
f(bn)− f(an)

bn − an
(x− an) = 0

⇐⇒ x = an −
bn − an

f(bn)− f(an)
f(an) =

anf(bn)− bnf(an)

f(bn)− f(an)
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So once we have the interval In, the false position method generates the interval In+1

by the following rule.1

Equation C.3.1 false position method.

Set cn = anf(bn)−bnf(an)
f(bn)−f(an)

. If f(cn) has the same sign as f(an), then

In+1 = [an+1, bn+1] with an+1 = cn, bn+1 = bn

and if f(cn) and f(an) have opposite signs, then

In+1 = [an+1, bn+1] with an+1 = an, bn+1 = cn

C.4q The secant method

Let f(x) be a continuous function. The secant method is a variant of Newton’s method
that avoids the use of the derivative of f(x) — which can be very helpful when dealing
with the derivative is not easy. It avoids the use of the derivative by approximating
f ′(x) by f(x+h)−f(x)

h
for some h. That is, it approximates the tangent line to f at x by

a secant line for f that passes through x. To limit the number of evaluations of f(x)
required, it uses x = xn−1 and x+ h = xn. Here is how it works.

Suppose that we have already found xn. Then we denote by y = F (x) the equation
of the (secant) line that passes through

(
xn−1, f(xn−1)

)
and

(
xn, f(xn)

)
and we choose

xn+1 to be the value of x where F (x) = 0.

xxn−1 xn xn+1

y = f(x)

y = F (x)

(xn−1, f(xn−1))

(xn, f(xn))

The equation of the secant line is

y = F (x) = f(xn−1) +
f(xn)− f(xn−1)

xn − xn−1

(x− xn−1)

1 The convergence behaviour of the false position method is relatively complicated. So we do not
discuss it here. As always, we invite the interested reader to visit their favourite search engine.
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so that xn+1 is determined by

0 = F (xn+1) = f(xn−1) +
f(xn)− f(xn−1)

xn − xn−1

(xn+1 − xn−1)

⇐⇒ xn+1 = xn−1 −
xn − xn−1

f(xn)− f(xn−1)
f(xn−1)

or, simplifying,

Equation C.4.1 secant method.

xn+1 =
xn−1f(xn)− xnf(xn−1)

f(xn)− f(xn−1)

Of course, to get started with n = 1, we need two initial guesses, x0 and x1, for the
root.

Example C.4.2 Approximating
√

2, again.

In this example we compute, approximately, the square root of two by applying the
secant method to the equation

f(x) = x2 − 2 = 0

and we’ll compare the secant method results with the corresponding Newton’s method
results. (See Example C.1.2.)
Since f ′(x) = 2x, (C.1.1) says that, under Newton’s method, we should iteratively
apply

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

x2
n − 2

2xn
=
xn
2

+
1

xn

while (C.4.1) says that, under the secant method, we should iteratively apply (after a
little simplifying algebra)

xn+1 =
xn−1f(xn)− xnf(xn−1)

f(xn)− f(xn−1)
=
xn−1[x2

n − 2]− xn[x2
n−1 − 2]

x2
n − x2

n−1

=
xn−1xn[xn − xn−1] + 2[xn − xn−1]

x2
n − x2

n−1

=
xn−1xn + 2

xn−1 + xn

Here are the results, starting Newton’s method with x1 = 4 and starting the secant
method with x0 = 4, x1 = 3. (So we are giving the secant method a bit of a head start.)

secant method Newton’s method
x0 4
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x1 3 4

x2 2 2.25

x3 1.6 1.57

x4 1.444 1.422

x5 1.4161 1.414234

x6 1.414233 1.414213562525

x7 1.414213575 1.414213562373095

For comparison purposes, the square root of 2, to 15 decimal places, is
1.414213562373095. So the secant method x7 is accurate to 7 decimal places and the
Newton’s method x7 is accurate to at least 15 decimal places.

The advantage that the secant method has over Newton’s method is that it does
not use the derivative of f . This can be a substantial advantage, for example when
evaluation of the derivative is computationally difficult or expensive. On the other
hand, the above example suggests that the secant method is not as fast as Newton’s
method. The following subsection shows that this is indeed the case.

C.5q The Error Behaviour of the Secant Method

Let f(x) have two continuous derivatives, and let r be any solution of f(x) = 0. We
will now get a pretty good handle on the error behaviour of the secant method near r.

Denote by ε̃n = xn − r the (signed) error in xn and by εn = |xn − r| the (absolute)
error in xn. Then, xn = r + ε̃n, and, by (C.4.1),

ε̃n+1 =
xn−1f(xn)− xnf(xn−1)

f(xn)− f(xn−1)
− r

=
[r + ε̃n−1]f(xn)− [r + ε̃n]f(xn−1)

f(xn)− f(xn−1)
− r

=
ε̃n−1f(xn)− ε̃nf(xn−1)

f(xn)− f(xn−1)

By the Taylor expansion (3.4.32) and the mean value theorem (Theorem 2.13.5),

f(xn) = f(r) + f ′(r)ε̃n +
1

2
f ′′(c1)ε̃2

n

= f ′(r)ε̃n +
1

2
f ′′(c1)ε̃2

n

f(xn)− f(xn−1) = f ′(c2)[xn − xn−1]

= f ′(c2)[ε̃n − ε̃n−1]
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for some c1 between r and xn and some c2 between xn−1 and xn. So, for xn−1 and xn
near r, c1 and c2 also have to be near r and

f(xn) ≈ f ′(r)ε̃n +
1

2
f ′′(r)ε̃2

n

f(xn−1) ≈ f ′(r)ε̃n−1 +
1

2
f ′′(r)ε̃2

n−1

f(xn)− f(xn−1) ≈ f ′(r)[ε̃n − ε̃n−1]

and

ε̃n+1 =
ε̃n−1f(xn)− ε̃nf(xn−1)

f(xn)− f(xn−1)

≈ ε̃n−1[f ′(r)ε̃n + 1
2
f ′′(r)ε̃2

n]− ε̃n[f ′(r)ε̃n−1 + 1
2
f ′′(r)ε̃2

n−1]

f ′(r)[ε̃n − ε̃n−1]

=
1
2
ε̃n−1ε̃nf

′′(r)[ε̃n − ε̃n−1]

f ′(r)[ε̃n − ε̃n−1]

=
f ′′(r)

2f ′(r)
ε̃n−1ε̃n

Taking absolute values, we have

εn+1 ≈ Kεn−1εn with K =

∣∣∣∣ f ′′(r)2f ′(r)

∣∣∣∣ (E7)

We have seen that Newton’s method obeys a similar formula — (E3) says that, when
xn is near r, Newton’s method obeys εn+1 ≈ Kε2

n, also with K =
∣∣∣ f ′′(r)2f ′(r)

∣∣∣. As we shall
now see, the change from ε2

n, in εn+1 ≈ Kε2
n, to εn−1εn, in εn+1 ≈ Kεn−1εn, does have

a substantial impact on the behaviour of εn for large n.
To see the large n behaviour, we now iterate (E7). The formulae will look simpler

if we multiply (E7) by K and write δn = Kεn. Then (E7) becomes δn+1 ≈ δn−1δn (and
we have eliminated K). The first iterations are

δ2 ≈ δ0δ1

δ3 ≈ δ1δ2 ≈ δ0δ
2
1

δ4 ≈ δ2δ3 ≈ δ2
0δ

3
1

δ5 ≈ δ3δ4 ≈ δ3
0δ

5
1

δ6 ≈ δ4δ5 ≈ δ5
0δ

8
1

δ7 ≈ δ5δ6 ≈ δ8
0δ

13
1

Notice that every δn is of the form δαn0 δβn1 . Substituting δn = δαn0 δβn1 into δn+1 ≈ δn−1δn
gives

δ
αn+1

0 δ
βn+1

1 ≈ δ
αn−1

0 δ
βn−1

1 δαn0 δβn1

and we have
αn+1 = αn−1 + αn βn+1 = βn−1 + βn (E8)
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The recursion rule in (E8) is famous1. The Fibonacci2 sequence (which is 0, 1, 1, 2,
3, 5, 8, 13, · · ·), is defined by

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2 for n > 1

So, for n ≥ 2, αn = Fn−1 and βn = Fn and

δn ≈ δαn0 δβn1 = δ
Fn−1

0 δFn1

One of the known properties of the Fibonacci sequence is that, for large n,

Fn ≈
ϕn√

5
where ϕ =

1 +
√

5

2
≈ 1.61803

This ϕ is the golden ratio3. So, for large n,

Kεn = δn ≈ δ
Fn−1

0 δFn1 ≈ δ
ϕn−1
√
5

0 δ
ϕn√

5

1 = δ
1√
5ϕ
×ϕn

0 δ
1√
5
×ϕn

1

= dϕ
n

where d = δ
1√
5ϕ

0 δ
1√
5

1

≈ d1.6n

Assuming that 0 < δ0 = Kε0 < 1 and 0 < δ1 = Kε1 < 1, we will have 0 < d < 1.
By way of contrast, for Newton’s method, for large n,

Kεn ≈ d2n where d = (Kε1)1/2

As 2n grows quite a bit more quickly than 1.6n (for example, when n=5, 2n = 32
and 1.6n = 10.5, and when n = 10, 2n = 1024 and 1.6n = 110) Newton’s method
homes in on the root quite a bit faster than the secant method, assuming that you start
reasonably close to the root.

1 Plug “Fibonacci sequence in nature” into your search engine of choice.
2 Fibonacci (1170-1250) was an Italian mathematician who was also known as Leonardo of Pisa,

Leonardo Bonacci and Leonardo Biglio Pisano.
3 Also worth a quick trip to your search engine.
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HintsforExercises
Appendix D

1 · Limits
1.1 · Drawing Tangents and a First Limit
1.1.2 · Exercises

Exercises — Stage 1
1.1.2.2. Hint. The tangent line to a curve at point P passes through P .

1.1.2.3. Hint. Try drawing tangent lines to the following curves, at the given
points P :

x

y y = f(x)

P

x

y
y = f(x)

P

x

y

y = f(x)

P

1.2 · Another Limit and Computing Velocity
1.2.2 · Exercises

Exercises — Stage 1
1.2.2.3. Hint. Where did you start, and where did you end?

1.2.2.4. Hint. Is the object falling faster and faster, slower and slower, or at a
constant rate?
1.2.2.5. Hint. Slope is change in vertical component over change in horizontal
component.
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Hints for Exercises

1.2.2.6. Hint. Sign of velocity gives direction of motion: the velocity is positive
at time t if s(t) is increasing at time t.

Exercises — Stage 2
1.2.2.7. Hint. Velocity is distance over time.

1.2.2.8. Hint. Use that
√
a−b
c

=
√
a−b
c
·
(√

a+b√
a+b

)
= a−b2

c(
√
a+b)

.

1.3 · The Limit of a Function
1.3.2 · Exercises

Exercises — Stage 1
1.3.2.2. Hint. Consider the difference between a limit and a one-sided limit.
1.3.2.3. Hint. Pay careful attention to which limits are one-sided and which are
not.
1.3.2.5. Hint. The function doesn’t have to be continuous.
1.3.2.6. Hint. See Question 1.3.2.5

1.3.2.7. Hint. See Question 1.3.2.5

1.3.2.8. Hint. What is the relationship between the limit and the two one-sided
limits?
1.3.2.9. Hint. What is the relationship between the limit and the two one-sided
limits?

Exercises — Stage 2
1.3.2.14. Hint. What are the one-sided limits?
1.3.2.16. Hint. Think about what it means that x does not appear in the function

f(x) =
1

10
.

1.3.2.17. Hint. We only care about what happens really, really close to x = 3.

1.4 · Calculating Limits with Limit Laws
1.4.2 · Exercises

Exercises — Stage 1
1.4.2.2. Hint. Try to make two functions with factors that will cancel.

1.4.2.3. Hint. Try to make g(x) cancel out.

1.4.2.5. Hint. See Questions 1.4.2.2, 1.4.2.3, and 1.4.2.4.

Exercises — Stage 2
1.4.2.6. Hint. Find the limit of the numerator and denominator separately.
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1.4.2.7. Hint. Break it up into smaller pieces, evaluate the limits of the pieces.

1.4.2.8. Hint. First find the limit of the “inside” function,
4x− 2

x+ 2
.

1.4.2.9. ∗. Hint. Is cos(−3) zero?

1.4.2.10. ∗. Hint. Expand, then simplify.

1.4.2.14. ∗. Hint. Try the simplest method first.

1.4.2.15. ∗. Hint. Factor the denominator.
1.4.2.16. ∗. Hint. Factor the numerator and the denominator.
1.4.2.17. ∗. Hint. Factor the numerator.
1.4.2.18. ∗. Hint. Simplify first by factoring the numerator.

1.4.2.19. Hint. The function is a polynomial.

1.4.2.20. ∗. Hint. Multiply both the numerator and the denominator by the
conjugate of the numerator,

√
x2 + 8 + 3.

1.4.2.21. ∗. Hint. Multiply both the numerator and the denominator by the
conjugate of the numerator,

√
x+ 7 +

√
11− x.

1.4.2.22. ∗. Hint. Multiply both the numerator and the denominator by the
conjugate of the numerator,

√
x+ 2 +

√
4− x.

1.4.2.23. ∗. Hint. Multiply both the numerator and the denominator by the
conjugate of the numerator,

√
x− 2 +

√
4− x.

1.4.2.24. ∗. Hint. Multiply both the numerator and the denominator by the
conjugate of the denominator, 2 +

√
5− t.

1.4.2.25. Hint. Consider the factors x2 and cos
(

3
x

)
separately. Review the

squeeze theorem.

1.4.2.26. Hint. Look for a reason to ignore the trig. Review the squeeze theorem.

1.4.2.27. ∗. Hint. As in the previous questions, we want to use the Squeeze
Theorem. If x < 0, then −x is positive, so x < −x. Use this fact when you bound
your expressions.

1.4.2.28. Hint. Factor the numerator.
1.4.2.29. Hint. Factor the denominator; pay attention to signs.

1.4.2.30. Hint. First find the limit of the “inside” function.
1.4.2.31. Hint. Factor; pay attention to signs.

1.4.2.32. Hint. Look for perfect squares

1.4.2.33. Hint. Think about what effect changing d has on the function x5 −
32x+ 15.

1.4.2.34. Hint. There’s an easy way.

1.4.2.35. ∗. Hint. What can you do to safely ignore the sine function?
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1.4.2.36. ∗. Hint. Factor
1.4.2.37. Hint. If you’re looking at the hints for this one, it’s probably easier
than you think.

1.4.2.38. Hint. You’ll want to simplify this, since t = 1
2
is not in the domain

of the function. One way to start your simplification is to add the fractions in the
numerator by finding a common denominator.

1.4.2.39. Hint. If you’re not sure how
|x|
x

behaves, try plugging in a few values
of x, like x = ±1 and x = ±2.

1.4.2.40. Hint. Look to Question 1.4.2.39 to see how a function of the form
|X|
X

behaves.
1.4.2.41. Hint. Is anything weird happening to this function at x = 0?

1.4.2.42. Hint. Use the limit laws.
1.4.2.43. ∗. Hint. The denominator goes to zero; what must the numerator go
to?

Exercises — Stage 3
1.4.2.45. Hint. Try plotting points. If you can’t divide by f(x), take a limit.

1.4.2.46. Hint. There is a close relationship between f and g. Fill in the following
table:

x f(x) g(x)
f(x)

g(x)
−3

−2

−1

−0

1

2

3

1.4.2.47. Hint. Velocity of white ball when t = 1 is lim
h→0

s(1 + h)− s(1)

h
.

1.4.2.49. Hint. When you’re evaluating lim
x→0−

f(x), you’re only considering values
of x that are less than 0.
1.4.2.50. Hint. When you’re considering lim

x→−4−
f(x), you’re only considering

values of x that are less than −4. When you’re considering lim
x→−4+

f(x), think about

the domain of the rational function in the top line.

1.5 · Limits at Infinity
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1.5.2 · Exercises

Exercises — Stage 1
1.5.2.1. Hint. It might not look like a traditional polynomial.

1.5.2.2. Hint. The degree of the polynomial matters.

Exercises — Stage 2
1.5.2.3. Hint. What does a negative exponent do?

1.5.2.4. Hint. You can think about the behaviour of this function by remember-
ing how you first learned to describe exponentiation.

1.5.2.5. Hint. The exponent will be a negative number.

1.5.2.6. Hint. What single number is the function approaching?

1.5.2.7. Hint. The highest-order term dominates when x is large.

1.5.2.8. Hint. Factor the highest power of x out of both the numerator and the
denominator. You can factor through square roots (carefully).

1.5.2.9. ∗. Hint. Multiply and divide by the conjugate,
√
x2 + 5x+

√
x2 − x.

1.5.2.10. ∗. Hint. Divide both the numerator and the denominator by the
highest power of x that is in the denominator.
Remember that √ is defined to be the positive square root. Consequently, if x < 0,
then

√
x2, which is positive, is not the same as x, which is negative.

1.5.2.11. ∗. Hint. Factor out the highest power of the denominator.

1.5.2.12. ∗. Hint. The conjugate of (
√
x2 + x− x) is (

√
x2 + x+ x).

Multiply by 1 =

√
x2 + x+ x√
x2 + x+ x

to coax your function into a fraction.

1.5.2.13. ∗. Hint. Divide both the numerator and the denominator by the
highest power of x that is in the denominator.

1.5.2.14. ∗. Hint. Divide both the numerator and the denominator by the
highest power of x that is in the denominator.

1.5.2.15. ∗. Hint. Divide both the numerator and the denominator by the
highest power of x that is in the denominator.

1.5.2.16. Hint. Divide both the numerator and the denominator by x (which is
the largest power of x in the denominator). In the numerator, move the resulting
factor of 1/x inside the two roots. Be careful about the signs when you do so. Even
and odd roots behave differently– see Question 1.5.2.10.

1.5.2.17. ∗. Hint. Divide both the numerator and the denominator by the
highest power of x that is in the denominator.

1.5.2.18. Hint. Divide both the numerator and the denominator by the highest
power of x that is in the denominator. It is not always true that

√
x2 = x.
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1.5.2.19. Hint. Simplify.

1.5.2.20. ∗. Hint. What is a simpler version of |x| when you know x < 0?

1.5.2.22. ∗. Hint. Divide both the numerator and the denominator by the
highest power of x that is in the denominator. When is

√
x = x, and when is√

x = −x?
1.5.2.23. Hint. Divide both the numerator and the denominator by the highest
power of x that is in the denominator. Pay careful attention to signs.

1.5.2.24. ∗. Hint. Multiply and divide the expression by its conjugate,(√
n2 + 5n+ n

)
.

1.5.2.25. Hint. Consider what happens to the function as a becomes very, very
small. You shouldn’t need to do much calculation.
1.5.2.26. Hint. Since x = 3 is not in the domain of the function, we need to be
a little creative. Try simplifying the function.

Exercises — Stage 3
1.5.2.27. Hint. This is a bit of a trick question. Consider what happens to a
rational function as x→ ±∞ in each of these three cases:

• the degree of the numerator is smaller than the degree of the denominator,

• the degree of the numerator is the same as the degree of the denominator, and

• the degree of the numerator is larger than the degree of the denominator.

1.5.2.28. Hint. We tend to conflate “infinity” with “some really large number.”

1.6 · Continuity
1.6.4 · Exercises

Exercises — Stage 1
1.6.4.1. Hint. Try a repeating pattern.

1.6.4.2. Hint. f is my height.

1.6.4.3. Hint. The intermediate value theorem only works for a certain kind of
function.
1.6.4.7. Hint. Compare what is given to you to the definition of continuity.

1.6.4.8. Hint. Compare what is given to you to the definition of continuity.

1.6.4.9. Hint. What if the function is discontinuous?
1.6.4.10. Hint. What is h(0)?

Exercises — Stage 2
1.6.4.11. Hint. Use the definition of continuity.
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1.6.4.12. Hint. If this is your password, you might want to change it.

1.6.4.13. ∗. Hint. Find the domain: when is the denominator zero?
1.6.4.14. ∗. Hint. When is the denominator zero? When is the argument of the
square root negative?

1.6.4.15. ∗. Hint. When is the denominator zero? When is the argument of the
square root negative?

1.6.4.16. ∗. Hint. There are infinitely many points where it is not continuous.

1.6.4.17. ∗. Hint. x = c is the important point.

1.6.4.18. ∗. Hint. The important place is x = 0.

1.6.4.19. ∗. Hint. The important point is x = c.

1.6.4.20. ∗. Hint. The important point is x = 2c.

Exercises — Stage 3
1.6.4.21. Hint. Consider the function f(x) = sinx− x+ 1.

1.6.4.22. ∗. Hint. Consider the function f(x) = 3x − x2, and how it relates to
the problem and the IVT.

1.6.4.23. ∗. Hint. Consider the function 2 tanx− x− 1 and its roots.

1.6.4.24. ∗. Hint. Consider the function f(x) =
√

cos(πx) − sin(2πx) − 1/2,
and be careful about where it is continuous.

1.6.4.25. ∗. Hint. Consider the function f(x) = 1/ cos2(πx) − x − 3
2
, paying

attention to where it is continuous.

1.6.4.26. Hint. We want f(x) to be 0; 0 is between a positive number and a
negative number. Try evaluating f(x) for some integer values of x.

1.6.4.27. Hint. 3
√

7 is the value where x3 = 7.

1.6.4.28. Hint. You need to consider separately the cases where f(a) < g(a) and
f(a) = g(a). Let h(x) = f(x)− g(x). What is h(c)?

2 · Derivatives
2.1 · Revisiting Tangent Lines
2.1.2 · Exercises

Exercises — Stage 1
2.1.2.2. Hint. You can use 2.1.2.2.a to explain 2.1.2.2.b.

2.1.2.3. Hint. Your calculations for slope of the secant lines will all have the
same denominators; to save yourself some time, you can focus on the numerators.

Exercises — Stage 2
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2.1.2.4. Hint. You can do this by calculating several secant lines. You can also
do this by getting out a ruler and trying to draw the tangent line very carefully.

2.1.2.5. Hint. There are many possible values for Q and R.

2.1.2.6. Hint. A line with slope 0 is horizontal.

2.2 · Definition of the Derivative
2.2.4 · Exercises

Exercises — Stage 1
2.2.4.1. Hint. What are the properties of f ′ when f is a line?

2.2.4.2. Hint. Be very careful not to confuse f and f ′.

2.2.4.3. Hint. Be very careful not to confuse f and f ′.

2.2.4.5. Hint. The slope has to look “the same” from the left and the right.

2.2.4.6. Hint. Use the definition of the derivative, and what you know about
limits.
2.2.4.7. Hint. Consider continuity.

2.2.4.8. Hint. Look at the definition of the derivative. Your answer will be a
fraction.

Exercises — Stage 2
2.2.4.9. Hint. You need a point (given), and a slope (derivative).

2.2.4.10. Hint. You’ll need to add some fractions.
2.2.4.11. ∗. Hint. You don’t have to take the limit from the left and right
separately–things will cancel nicely.

2.2.4.12. ∗. Hint. You might have to add fractions.

2.2.4.14. Hint. Your limit should be easy.

2.2.4.15. ∗. Hint. Add fractions.
2.2.4.16. ∗. Hint. For f to be differentiable at x = 2, two things must be true:
it must be continuous at x = 2, and the derivative from the right must equal the
derivative from the left.

2.2.4.17. ∗. Hint. After you plug in f(x) to the definition of a derivative, you’ll
want to multiply and divide by the conjugate

√
1 + x+ h+

√
1 + x.

Exercises — Stage 3
2.2.4.18. Hint. From Section 1.2, compare the definition of velocity to the def-
inition of a derivative. When you’re finding the derivative, you’ll need to cancel a
lot on the numerator, which you can do by expanding the polynomials.
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2.2.4.19. ∗. Hint. You’ll need to look at limits from the left and right. The
fact that f(0) = 0 is useful for your computation. Recall that if x < 0 then√
x2 = |x| = −x.

2.2.4.20. ∗. Hint. You’ll need to look at limits from the left and right. The fact
that f(0) = 0 is useful for your computation.

2.2.4.21. ∗. Hint. You’ll need to look at limits from the left and right. The fact
that f(0) = 0 is useful for your computation.

2.2.4.22. ∗. Hint. You’ll need to look at limits from the left and right. The fact
that f(1) = 0 is useful for your computation.

2.2.4.23. . Hint. There’s lots of room between 0 and 1
8
; see what you can do

with it.
2.2.4.24. Hint. Set up your usual limit, then split it into two pieces

2.2.4.25. Hint. You don’t need the definition of the derivative for a line.

2.2.4.26. ∗. Hint. A generic point on the curve has coordinates (α, α2). In terms
of α, what is the equation of the tangent line to the curve at the point (α, α2)? What
does it mean for (1,−3) to be on that line?

2.2.4.27. ∗. Hint. Remember for a constant n,

lim
h→0

hn =


0 n > 0

1 n = 0

DNE n < 0

2.3 · Interpretations of the Derivative
2.3.3 · Exercises

Exercises — Stage 2
2.3.3.1. Hint. Think about units.

Exercises — Stage 3
2.3.3.8. Hint. There are 360 degrees in one rotation.

2.3.3.9. Hint. P ′(t) was discussed in Question 2.3.3.7.

2.4 · Arithmetic of Derivatives - a Differentiation Tool-
box
2.4.2 · Exercises

Exercises — Stage 1
2.4.2.1. Hint. Look at the Sum rule.
2.4.2.2. Hint. Try an example, like f(x) = g(x) = x.

2.4.2.3. Hint. Simplify.
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2.4.2.4. Hint. g(x) = f(x) + f(x) + f(x)

Exercises — Stage 2
2.4.2.5. Hint. Use linearity and the known derivatives of x2 and x1/2.

2.4.2.6. Hint. You have already seen d
dx
{√x}.

2.4.2.7. ∗. Hint. The equation of a line can be determined using a point, and
the slope. The derivative of x3 can be found by writing x3 = (x)(x2).

2.4.2.8. ∗. Hint. Be careful to distinguish between speed and velocity.

2.4.2.10. Hint. How do you take care of that power?

2.4.2.11. Hint. You know how to take the derivative of a reciprocal; this might
be faster than using the quotient rule.

Exercises — Stage 3
2.4.2.12. Hint. Population growth is rate of change of population.

2.4.2.14. ∗. Hint. Interpret it as a derivative that you know how to compute.

2.4.2.15. Hint. The answer is not 10 square metres per second.

2.4.2.16. Hint. You don’t need to know g(0) or g′(0).

2.6 · Using the Arithmetic of Derivatives – Examples
2.6.2 · Exercises

Exercises — Stage 1
2.6.2.1. Hint. Check signs.

2.6.2.2. Hint. Read Lemma 2.6.9 carefully.

Exercises — Stage 2
2.6.2.3. Hint. First, factor an x out of the derivative. What’s left over looks like
a quadratic equation, if you take x2 to be your variable, instead of x.

2.6.2.4. Hint. 1
t

= t−1

2.6.2.5. Hint. First simplify. Don’t be confused by the role reversal of x and y:
x is just the name of the function

(
2y + 1

y

)
· y3, which is a function of the variable

y. You are to differentiate with respect to y.

2.6.2.6. Hint.
√
x = x1/2

2.6.2.8. Hint. You don’t need to multiply through.

2.6.2.9. Hint. You can use the quotient rule.
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2.6.2.13. ∗. Hint. There are two pieces of the given function that could cause
problems.

2.6.2.14. Hint. 3
√
x = x1/3

2.6.2.15. Hint. Simplify first.

Exercises — Stage 3
2.6.2.17. ∗. Hint. Let m be the slope of such a tangent line, and let P1 and
P2 be the points where the tangent line is tangent to the two curves, respectively.
There are three equations m fulfils: it has the same slope as the curves at the given
points, and it is the slope of the line passing through the points P1 and P2.

2.6.2.18. Hint. A line has equation y = mx + b, for some constants m and b.
What has to be true for y = mb + x to be tangent to the first curve at the point
x = α, and to the second at the point x = β?

2.6.2.19. ∗. Hint. Compare this to one of the forms given in the text for the
definition of the derivative.

2.7 · Derivatives of Exponential Functions
2.7.3 · Exercises

Exercises — Stage 1
2.7.3.1. Hint. Two of the functions are the same.
2.7.3.3. Hint. When can you use the power rule?

2.7.3.4. Hint. What is the shape of the curve eax, when a is a positive consant?

Exercises — Stage 2
2.7.3.5. Hint. Quotient rule

2.7.3.6. Hint. e2x = (ex)2

2.7.3.7. Hint. ea+x = eaex

2.7.3.8. Hint. Figure out where the derivative is positive.

2.7.3.9. Hint. e−x = 1
ex

2.7.3.10. Hint. Product rule will work nicely here. Alternately, review the result
of Question 2.7.3.6.

2.7.3.11. Hint. To find the sign of a product, compare the signs of each factor.
The function et is always positive.

Exercises — Stage 3
2.7.3.12. Hint. After you differentiate, factor out ex.

2.7.3.13. Hint. Simplify.
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2.7.3.14. ∗. Hint. In order to be differentiable, a function should be continuous.
To determine the differentiability of the function at x = 1, use the definition of the
derivative.

2.8 · Derivatives of Trigonometric Functions
2.8.8 · Exercises

Exercises — Stage 1
2.8.8.1. Hint. A horizontal tangent line is where the graph appears to “level off.”

2.8.8.2. Hint. You are going to mark there points on the sine graph where the
graph is the steepest, going up.

Exercises — Stage 2
2.8.8.3. Hint. You need to memorize the derivatives of sine, cosine, and tangent.

2.8.8.4. Hint. There are infinitely many values. You need to describe them all.

2.8.8.5. Hint. Simplify first.

2.8.8.6. Hint. The identity won’t help you.

2.8.8.8. Hint. Quotient rule

2.8.8.11. Hint. Use an identity.

2.8.8.12. Hint. How can you move the negative signs to a location that you can
more easily deal with?

2.8.8.13. Hint. Apply the quotient rule.

2.8.8.14. ∗. Hint. The only spot to worry about is when x = 0. For f(x) to
be differentiable, it must be continuous, so first find the value of b that makes f
continuous at x = 0. Then, find the value of a that makes the derivatives from the
left and right of x = 0 equal to each other.

Exercises — Stage 3
2.8.8.16. ∗. Hint. Compare this to one of the forms given in the text for the
definition of the derivative.
2.8.8.17. ∗. Hint. Compare this to one of the forms given in the text for the
definition of the derivative.
2.8.8.18. ∗. Hint. Compare this to one of the forms given in the text for the
definition of the derivative.

2.8.8.19. Hint. tan θ =
sin θ

cos θ

2.8.8.20. ∗. Hint. In order for a derivative to exist, the function must be
continuous, and the derivative from the left must equal the derivative from the
right.
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2.8.8.21. ∗. Hint. There are infinitely many places where it does not exist.

2.8.8.27. Hint. You can set up the derivative using the limit definition: f ′(0) =

lim
h→0

f(h)− f(0)

h
. If the limit exists, it gives you f ′(0); if the limit does not exist,

you conclude f ′(0) does not exist.
To evaluate the limit, recall that when we differentiated sine, we learned that for h
near 0,

cosh ≤ sinh

h
≤ 1

2.8.8.28. ∗. Hint. Recall |x| =

{
x x ≥ 0

−x x < 0
. To determine whether h(x) is

differentiable at x = 0, use the definition of the derivative.

2.8.8.29. ∗. Hint. To decide whether the function is differentiable, use the
definition of the derivative.

2.8.8.30. ∗. Hint. In this chapter, we learned lim
x→0

sinx

x
= 1. If you divide the

numerator and denominator by x5, you can make use of this knowledge.

2.9 · One More Tool – the Chain Rule
2.9.4 · Exercises

Exercises — Stage 1
2.9.4.1. Hint. For parts 2.9.4.1.a and 2.9.4.1.b, remember the definition of a
derivative:

dK

dU
= lim

h→0

K(U + h)−K(U)

h
.

When h is positive, U + h is an increased urchin population; what is the sign of
K(U + h)−K(U)?
For part 2.9.4.1.c, use the chain rule!

2.9.4.2. Hint. Remember that Leibniz notation suggests fractional cancellation.

Exercises — Stage 2
2.9.4.3. Hint. If g(x) = cosx and h(x) = 5x + 3, then f(x) = g(h(x)). So we
apply the chain rule, with “outside” function cosx and “inside” function 5x+ 3.

2.9.4.4. Hint. You can expand this into a polynomial, but it’s easier to use the
chain rule. If g(x) = x5, and h(x) = x2 + 2, then f(x) = g(h(x)).

2.9.4.5. Hint. You can expand this into a polynomial, but it’s easier to use the
chain rule. If g(k) = k17, and h(k) = 4k4 + 2k2 + 1, then T (k) = g(h(k)).

2.9.4.6. Hint. If we define g(x) =
√
x and h(x) =

x2 + 1

x2 − 1
, then f(x) = g(h(x)).

To differentiate the square root function:
d

dx
{√x} =

d

dx

{
x1/2

}
=

1

2
x−1/2 =

1

2
√
x
.
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2.9.4.7. Hint. You’ll need to use the chain rule twice.
2.9.4.8. ∗. Hint. Use the chain rule.
2.9.4.9. ∗. Hint. Use the chain rule.
2.9.4.10. ∗. Hint. Use the chain rule.
2.9.4.11. ∗. Hint. Use the chain rule.

2.9.4.12. ∗. Hint. Recall
1

x2
= x−2 and

√
x2 − 1 = (x2 − 1)1/2.

2.9.4.14. Hint. If we let g(x) = secx and h(x) = e2x+7, then f(x) = g(h(x)), so
by the chain rule, f ′(x) = g′(h(x)) ·h′(x). However, in order to evaluate h′(x), we’ll
need to use the chain rule again.

2.9.4.15. Hint. What trig identity can you use to simplify the first factor in the
equation?

2.9.4.16. Hint. Velocity is the derivative of position with respect to time. In
this case, the velocity of the particle is given by s′(t).

2.9.4.17. Hint. The slope of the tangent line is the derivative. You’ll need to
use the chain rule twice.
2.9.4.18. ∗. Hint. Start with the product rule, then use the chain rule to
differentiate e4x.
2.9.4.19. ∗. Hint. Start with the quotient rule; you’ll need the chain rule only
to differentiate e3x.
2.9.4.20. ∗. Hint. More than one chain rule needed here.
2.9.4.21. ∗. Hint. More than one chain rule application is needed here.

2.9.4.22. ∗. Hint. More than one chain rule application is needed here.

2.9.4.23. ∗. Hint. More than one chain rule application is needed here.

2.9.4.24. ∗. Hint. What rule do you need, besides chain? Also, remember that
cos2 x = [cosx]2.

2.9.4.27. ∗. Hint. The product of two functions is zero exactly when at least
one of the functions is zero.

2.9.4.28. Hint. If t ≥ 1, then 0 < 1
t
≤ 1.

2.9.4.29. Hint. The notation cos3(5x− 7) means [cos(5x− 7)]3. So, if g(x) = x3

and h(x) = cos(5x− 7), then g(h(x)) = [cos(5x+ 7)]3 = cos3(5x+ 7).

2.9.4.30. ∗. Hint. In Example 2.6.6, we generalized the product rule to three
factors:

d

dx
{f(x)g(x)h(x)} = f ′(x)g(x)h(x) + f(x)g′(x)h(x)

+ f(x)g(x)h′(x)

This isn’t strictly necessary, but it will simplify your computations.
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Exercises — Stage 3
2.9.4.31. Hint. At time t, the particle is at the point

(
x(t), y(t)

)
, with x(t) = cos t

and y(t) = sin t. Over time, the particle traces out a curve; let’s call that curve
y = f(x). Then y(t) = f

(
x(t)

)
, so the slope of the curve at the point

(
x(t), y(t)

)
is

f ′
(
x(t)

)
. You are to determine the values of t for which f ′

(
x(t)

)
= −1.

2.9.4.32. ∗. Hint. Set f(x) = ex+x2 and g(x) = 1 + x. Compare f(0) and g(0),
and compare f ′(x) and g′(x).

2.9.4.33. Hint. If sin 2x and 2 sinx cosx are the same, then they also have the
same derivatives.
2.9.4.34. Hint. This is a long, nasty problem, but it doesn’t use anything you
haven’t seen before. Be methodical, and break the question into as many parts as
you have to. At the end, be proud of yourself for your problem-solving abilities and
tenaciousness!
2.9.4.35. Hint. To sketch the curve, you can start by plotting points. Alternately,
consider x2 + y.

2.10 · The Natural Logarithm
2.10.3 · Exercises

Exercises — Stage 1
2.10.3.1. Hint. Each speaker produces 3dB of noise, so if P is the power of one
speaker, 3 = V (P ) = 10 log10

(
P
S

)
. Use this to find V (10P ) and V (100P ).

2.10.3.2. Hint. The question asks you when A(t) = 2000. So, solve 2000 =
1000et/20 for t.
2.10.3.3. Hint. What happens when cosx is a negative number?

Exercises — Stage 2
2.10.3.4. Hint. There are two easy ways: use the chain rule, or simplify first.

2.10.3.5. Hint. There are two easy ways: use the chain rule, or simplify first.

2.10.3.6. Hint. Don’t be fooled by a common mistake: log(x2 + x) is not the
same as log(x2) + log x.

2.10.3.7. Hint. Use the base-change formula to convert this to natural logarithm
(base e).

2.10.3.9. Hint. Use the chain rule.
2.10.3.10. Hint. Use the chain rule twice.
2.10.3.11. ∗. Hint. You’ll need to use the chain rule twice.
2.10.3.12. ∗. Hint. Use the chain rule.
2.10.3.13. ∗. Hint. Use the chain rule to differentiate.
2.10.3.14. ∗. Hint. You can differentiate this by using the chain rule several
times.
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2.10.3.15. ∗. Hint. Using logarithm rules before you differentiate will make this
easier.
2.10.3.16. Hint. Using logarithm rules before you differentiate will make this
easier.
2.10.3.17. Hint. First, differentiate using the chain rule and any other necessary
rules. Then, plug in x = 2.

2.10.3.18. ∗. Hint. In the text, you are given the derivative
d

dx
ax, where a is a

constant.

2.10.3.19. Hint. You’ll need to use logarithmic differentiation. Set g(x) =
log(f(x)), and find g′(x). Then, use that to find f ′(x). This is the method used in

the text to find
d

dx
ax.

2.10.3.20. ∗. Hint. Use Question 2.10.3.19 and the base-change formula,

logb(a) =
log a

log b
.

2.10.3.21. Hint. To make this easier, use logarithmic differentiation. Set g(x) =
log(f(x)), and find g′(x). Then, use that to find f ′(x). This is the method used in

the text to find
d

dx
ax, and again in Question 2.10.3.19.

2.10.3.22. Hint. To make this easier, use logarithmic differentiation. Set g(x) =
log(f(x)), and find g′(x). Then, use that to find f ′(x). This is the method used in

the text to find
d

dx
ax, and again in Question 2.10.3.19.

2.10.3.23. Hint. It’s not going to come out nicely, but there’s a better way than
blindly applying quotient and product rules, or expanding giant polynomials.

2.10.3.24. ∗. Hint. You’ll need to use logarithmic differentiation. Set g(x) =
log(f(x)), and find g′(x). Then, use that to find f ′(x). This is the method used in

the text to find
d

dx
ax, and again in Question 2.10.3.19.

2.10.3.25. ∗. Hint. You’ll need to use logarithmic differentiation. Set g(x) =
log(f(x)), and find g′(x). Then, use that to find f ′(x). This is the method used in

the text to find
d

dx
ax, and again in Question 2.10.3.19.

2.10.3.26. ∗. Hint. You’ll need to use logarithmic differentiation. Set g(x) =
log(f(x)), and find g′(x). Then, use that to find f ′(x). This is the method used in

the text to find
d

dx
ax, and again in Question 2.10.3.19.

2.10.3.27. ∗. Hint. You’ll need to use logarithmic differentiation. Differentiate

log(f(x)), then solve for f ′(x). This is the method used in the text to find
d

dx
ax.

2.10.3.28. ∗. Hint. You’ll need to use logarithmic differentiation. Differentiate
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log(f(x)), then solve for f ′(x). This is the method used in the text to find
d

dx
ax.

2.10.3.29. ∗. Hint. You’ll need to use logarithmic differentiation. Differentiate

log(f(x)), then solve for f ′(x). This is the method used in the text to find
d

dx
ax.

Exercises — Stage 3
2.10.3.30. Hint. Evaluate

d

dx

{
log
(

[f(x)]g(x)
)}

.

2.10.3.31. Hint. Differentiate y = log(f(x)). When is the derivative equal to
zero?

2.11 · Implicit Differentiation
2.11.2 · Exercises

Exercises — Stage 1
2.11.2.1. Hint. Where did the y′ come from?

2.11.2.2. Hint. The three points to look at are (0,−4), (0, 0), and (0, 4). What
does the slope of the tangent line look like there?

2.11.2.3. Hint. A function must pass the vertical line test: one input cannot
result in two different outputs.

Exercises — Stage 2
2.11.2.4. ∗. Hint. Remember that y is a function of x. Use implicit differenti-

ation, then collect all the terms containing
dy

dx
on one side of the equation to solve

for
dy

dx
.

2.11.2.5. ∗. Hint. Differentiate implicitly, then solve for y′.

2.11.2.6. ∗. Hint. Remember that y is a function of x. You can determine
explicitly the values of x for which y(x) = 1.

2.11.2.8. ∗. Hint. Plug in y = 0 at a strategic point in your work to simplify
your computation.

2.11.2.10. ∗. Hint. Plug in y = 0 at a strategic point in your work to simplify
your computation.

2.11.2.11. Hint. If the tangent line has slope y′, and it is parallel to y = x, then
y′ = 1.

2.11.2.12. ∗. Hint. You don’t need to solve for y′ in general: only at a single
point.

2.11.2.13. ∗. Hint. After you differentiate implicitly, get all the terms containing
y′ onto one side so you can solve for y′.
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Exercises — Stage 3
2.11.2.14. ∗. Hint. You don’t need to solve for dy

dx
for all values of x–only when

y = 0.

2.12 · Inverse Trigonometric Functions
2.12.2 · Exercises

Exercises — Stage 1
2.12.2.1. Hint. Remember that only certain numbers can come out of sine and
cosine, but any numbers can go in.

2.12.2.2. Hint. What is the range of the arccosine function?

2.12.2.3. Hint. A one-to-one function passes the horizontal line test. To graph
the inverse of a function, reflect it across the line y = x.

2.12.2.4. Hint. Your answer will depend on a. The arcsine function alone won’t
give you every value.

2.12.2.5. Hint. In order for x to be in the domain of f , you must be able to plug
x into both arcsine and arccosecant.

Exercises — Stage 2
2.12.2.6. Hint. For the domain of f , remember the domain of arcsine is [−1, 1].

2.12.2.7. Hint. The domain of arccos(t) is [−1, 1], but you also have to make
sure you aren’t dividing by zero.

2.12.2.8. Hint.
d

dx
{arcsecx} =

1

|x|
√
x2 − 1

, and the domain of arcsecx is |x| ≥
1.

2.12.2.9. Hint. The domain of arctan(x) is all real numbers.

2.12.2.10. Hint. The domain of arcsinx is [−1, 1], and the domain of
√
x is

x ≥ 0.

2.12.2.11. Hint. This occurs only once.

2.12.2.12. Hint. The answer is a very simple expression.

2.12.2.13. ∗. Hint. chain rule
2.12.2.16. Hint. You can simplify the expression before you differentiate to
remove the trigonometric functions. If arctanx = θ, then fill in the sides of the
triangle below using the definition of arctangent and the Pythagorean theorem:
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θ

With the sides labeled, you can figure out sin (arctanx) = sin (θ).

2.12.2.17. Hint. You can simplify the expression before you differentiate to
remove the trigonometric functions. If arcsinx = θ, then fill in the sides of the
triangle below using the definition of arctangent and the Pythagorean theorem:

θ

With the sides labeled, you can figure out cot (arcsinx) = cot (θ).

2.12.2.18. ∗. Hint. What is the slope of the line y = 2x+ 9?

2.12.2.19. Hint. Differentiate using the chain rule.

Exercises — Stage 3
2.12.2.20. ∗. Hint. If g(y) = f−1(y), then f(g(y)) = f (f−1(y)) = y. Differenti-
ate this last equality using the chain rule.

2.12.2.21. ∗. Hint. To simplify notation, let g(y) = f−1(y). Simplify and
differentiate g(f(x)).

2.12.2.22. ∗. Hint. To simplify notation, let g(y) = f−1(y). Simplify and
differentiate g(f(x)).

2.12.2.23. Hint. Use logarithmic differentiation.

2.12.2.24. Hint. Where are those functions defined?
2.12.2.25. Hint. Compare this to one of the forms given in the text for the
definition of the derivative.

2.12.2.26. Hint. f−1(7) is the number y that satisfies f(y) = 7.

2.12.2.27. Hint. If f−1(y) = 0, that means f(0) = y. So, we’re looking for the
number that we plug into f−1 to get 0.

2.12.2.28. Hint. As usual, after you differentiate implicitly, get all the terms
containing y′ onto one side of the equation, so you can factor out y′.

559



Hints for Exercises

2.13 · The Mean Value Theorem
2.13.5 · Exercises

Exercises — Stage 1
2.13.5.1. Hint. How long would it take the caribou to travel 5000 km, travelling
at its top speed?

2.13.5.2. Hint. Let f(x) be the position of the crane, where x is the hour of the
day.

2.13.5.3. Hint. For an example, look at Figure 2.13.4.

2.13.5.4. Hint. How does this question differ from the statement of the mean
value theorem?
2.13.5.6. Hint. Where is f(x) differentiable?

Exercises — Stage 2
2.13.5.7. ∗. Hint. To use Rolle’s Theorem, you will want two values where the
function is zero. If you’re stuck finding one of them, think about when x2 − 2πx is
equal to zero.

2.13.5.11. Hint. To show that there are exactly n roots, you need to not only
show that n exist, but also that there are not more than n.

2.13.5.12. Hint. To show that there are exactly n roots, you need to not only
show that n exist, but also that there are not more than n. If you can’t explicitly
find the root(s), you can use the intermediate value theorem to show they exist.

2.13.5.13. Hint. If f(x) = 0, then |x3| = |sin (x5)| ≤ 1. When |x| < 1, is cos(x5)
positive or negative?

2.13.5.14. Hint. Let f(x) = ex − 4 cos(2x), and use Rolle’s Theorem. What is
the interval where f(x) can have a positive root?

2.13.5.15. ∗. Hint. For 2.13.5.15.b, what does Rolle’s Theorem tell you has to
happen in order for f(x) to have more than one root in [−1, 1]?

2.13.5.16. ∗. Hint. Since f(x) = ex is a continuous and differentiable function,
the MVT promises that there exists some number c such that

f ′(c) =
f(T )− f(0)

T
.

Find that c, in terms of T .

2.13.5.17. Hint. Let f(x) = arcsec x+ arccsc c− C. What is f ′(x)?

Exercises — Stage 3
2.13.5.18. ∗. Hint. Show that f is differentiable by showing that f ′(x) exists
for every x. Then, the Mean Value Theorem applies. What is the largest f ′(x) can
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be, for any x? If f(100) < 100, what does the MVT tell you must be true of f ′(c)
for some c?

2.13.5.19. Hint. In order for f−1(x) to be defined over an interval, f(x) must
be one–to–one over that interval.

2.13.5.20. Hint. In order for f−1(x) to be defined over an interval, f(x) must
be one–to–one over that interval.
2.13.5.21. Hint. Let h(x) = f(x) − g(x). What does the Mean Value Theorem
tell you about the derivative of h?

2.13.5.22. Hint. Rolle’s Theorem relates the roots of a function to the roots of
its derivative.
2.13.5.23. Hint. To show that there are exactly n distinct roots, you need to
not only show that n exist, but also that there are not more than n.

2.14 · Higher Order Derivatives
2.14.2 · Exercises

Exercises — Stage 1
2.14.2.1. Hint. If you know the first derivative, this should be easy.

2.14.2.2. Hint. Exactly two of the statements must be true.

2.14.2.3. Hint. Use factorials, as in Example 2.14.2.

2.14.2.4. Hint. The problem isn’t with any of the algebra.

Exercises — Stage 2
2.14.2.5. Hint. Recall

d

dx
log x =

1

x
.

2.14.2.6. Hint. Recall
d

dx
{arctanx} =

1

1 + x2
= (1 + x2)−1.

2.14.2.7. Hint. Use implicit differentiation.

2.14.2.8. Hint. The acceleration is given by s′′(t).

2.14.2.9. Hint. Remember to use the chain rule.
2.14.2.10. Hint. h′(t) gives the velocity of the particle, and h′′(t) gives its
acceleration–the rate the velocity is changing.

2.14.2.11. Hint. h′(t) gives the velocity of the particle, and h′′(t) gives its
acceleration–the rate the velocity is changing. Be wary of signs–as in legends, they
may be misleading.

2.14.2.12. Hint. You don’t need to solve for y′′ in general–only when x = y = 0.
To do this, you also need to find y′ at the point (0, 0).

2.14.2.13. Hint. To show that two functions are unequal, you can show that one
input results in different outputs.
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Exercises — Stage 3
2.14.2.14. Hint. Only one of the curves could possibly represent y = f(x).

2.14.2.15. Hint. Remember
d

dx
{2x} = 2x log 2.

2.14.2.16. Hint. Differentiate a few times until you get zero, remembering that
a, b, c, and d are all constants.

2.14.2.17. ∗. Hint. Use a similar method to Question 2.9.4.32, Section 2.9.

2.14.2.18. ∗. Hint. For 2.14.2.18.b, you know a point where the curve and
tangent line intersect, and you know what the tangent line looks like. What do the
derivatives tell you about the shape of the curve?

2.14.2.19. Hint. Review Pascal’s Triangle.

2.14.2.20. Hint. Rolle’s Theorem relates the roots of a function to the roots of
its derivative. So, the fifth derivative tells us something about the fourth, the fourth
derivative tells us something about the third, and so on.

2.14.2.21. Hint. You’ll want to use Rolle’s Theorem, but the first derivative
won’t be very tractable–use the idea behind Question 2.14.2.20.

2.14.2.22. ∗. Hint. You can re-write this function as a piecewise function, with
branches x ≥ 0 and x < 0. To figure out the derivatives at x = 0, use the definition
of a derivative.

3 · Applications of derivatives
3.1 · Velocity and Acceleration
3.1.2 · Exercises

Exercises — Stage 1
3.1.2.1. Hint. Is the velocity changing at t = 2?

3.1.2.2. Hint. The acceleration (rate of change of velocity) is constant.

3.1.2.3. Hint. Remember the difference between speed and velocity.

3.1.2.4. Hint. How is this different from the wording of Question 3.1.2.3?

Exercises — Stage 2
3.1.2.5. Hint. The equation of an object falling from rest on the earth is derived
in Example 3.1.2. It would be difficult to use exactly the version given for s(t), but
using the same logic, you can find an equation for the height of the flower pot at
time t.
3.1.2.6. Hint. Remember that a falling object has an acceleration of 9.8 m

s2
.

3.1.2.7. Hint. Acceleration is constant, so finding a formula for the distance your
keys have travelled is a similar problem to finding a formula for something falling.

3.1.2.8. Hint. See Example 3.1.3.
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3.1.2.9. Hint. Be careful to match up the units.

3.1.2.10. Hint. Think about what it means for the car to decelerate at a constant
rate. You might also review Question 3.1.2.2.

3.1.2.11. Hint. Let a be the acceleration of the shuttle. Start by finding a, then
find the position function of the shuttle.

3.1.2.12. Hint. Review Example 3.1.2, but account for the fact that your initial
velocity is not zero.

3.1.2.13. Hint. Be very careful with units. The acceleration of gravity you’re
used to is 9.8 metres per second squared, so you might want to convert 325 kpm to
metres per second.

3.1.2.14. Hint. Since gravity alone brings it down, its acceleration is a constant
−9.8 m

s2
.

3.1.2.15. Hint. First, find an equation for a(t), the acceleration of the car, noting
that a′(t) is constant. Then, use this to find an equation for the velocity of the car.
Be careful about seconds versus hours.

Exercises — Stage 3
3.1.2.16. Hint. We recommend using two different functions to describe your
height: h1(t) while you are in the air, not yet touching the trampoline, and h2(t)
while you are in the trampoline, going down.
Both h1(t) and h2(t) are quadratic equations, since your acceleration is constant
over both intervals, but be very careful about signs.

3.1.2.17. Hint. First, find an expression for the speed of the object. You can let
v0 be its velocity at time t = 0.

3.2 · Related Rates
3.2.2 · Exercises

Exercises — Stage 1
3.2.2.1. Hint. If you know P , you can figure out Q.

Exercises — Stage 2
3.2.2.2. ∗. Hint. Since the point moves along the unit circle, we know that
x2 + y2 = 1, where x and y are functions of time.

3.2.2.3. ∗. Hint. You’ll need some implicit differentiation: what should your
variable be? Example 3.2.3 shows how to work with percentage rate of change.

3.2.2.4. ∗. Hint. For 3.2.2.4.b, refer to Example 3.2.3 for percentage rate of
change.

3.2.2.5. ∗. Hint. Pay attention to direction, and what it means for the sign
(plus/minus) of the velocities of the particles.

563



Hints for Exercises

3.2.2.6. ∗. Hint. You’ll want to think about the difference in the y-coordinates
of the two particles.

3.2.2.7. ∗. Hint. Draw a picture, and be careful about signs.

3.2.2.8. ∗. Hint. You’ll want to think about the difference in height of the two
snails.
3.2.2.9. ∗. Hint. The length of the ladder is changing.

3.2.2.10. Hint. If a trapezoid has height h and (parallel) bases b1 and b2, then
its area is h

(
b1+b2

2

)
. To figure out how wide the top of the water is when the water

is at height h, you can cut the trapezoid up into a rectangle and two triangles, and
make use of similar triangles.

3.2.2.11. Hint. Be careful with units. One litre is 1000 cm3, which is not the
same as 10 m3.
3.2.2.12. Hint. You, the rocket, and the rocket’s original position form a right
triangle.

3.2.2.13. ∗. Hint. Your picture should be a triangle.

3.2.2.14. Hint. Let θ be the angle between the two hands. Using the Law of

Cosines, you can get an expression for D in terms of θ. To find
dθ

dt
, use what you

know about how fast clock hands move.
3.2.2.15. ∗. Hint. The area in the annulus is the area of the outer circle minus
the area of the inner circle.

3.2.2.16. Hint. The volume of a sphere with radius R is
4

3
πr3.

3.2.2.17. Hint. The area of a triangle is half its base times its height. To find
the base, split the triangle into two right triangles.

3.2.2.18. Hint. The easiest way to figure out the area of the sector of an annulus
(or a circle) is to figure out the area of the entire annulus, then multiply by what
proportion of the entire annulus the sector is. For example, if your sector is 1

10
of the

entire annulus, then its area is 1
10

of the area of the entire annulus. (See Section A.4
to see how this works out for circles.)

3.2.2.19. Hint. Think about the ways in which this problem is similar to and
different from Example 3.2.6 and Question 3.2.2.18.

3.2.2.20. Hint. The volume of a cone with height h and radius r is 1
3
πr2h. Also,

one millilitre is the same as one cubic centimetre.

Exercises — Stage 3
3.2.2.21. Hint. If you were to install the buoy, how would you choose the length
of rope? For which values of θ do sin θ and cos θ have different signs? How would
those values of θ look on the diagram?
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3.2.2.22. Hint. At both points of interest, the point is moving along a straight
line. From the diagram, you can figure out the equation of that line.
For the question “How fast is the point moving?” in part (b), remember that the
velocity of an object can be found by differentiating (with respect to time) the
equation that gives the position of the object. The complicating factors in this case
are that (1) the position of our object is not given as a function of time, and (2)
the position of our object is given in two dimensions, not one.

3.2.2.23. Hint. (a) Since the perimeter of the cross section of the bottle does not
change, p (the perimeter of the ellipse) is the same as the perimeter of the circle of
radius 5.
(b) The volume of the bottle will be the area of its cross section times its height.
This is always the case when you have some two-dimensional shape, and turn it into
a three-dimensional object by “pulling” the shape straight up. (For example, you
can think of a cylinder as a circle that has been “pulled” straight up. To understand
why this formula works, think about what is means to measure the area of a shape
in square centimetres, and the volume of an object in cubic centimetres.)

(c) You can use what you know about a and the formula from (a) to find b and
db

dt
.

Then use the formula from (b).

3.2.2.24. Hint. If A = 0, you can figure out C and D from the relationship given.

3.3 · Exponential Growth and Decay — a First Look
at Differential Equations
3.3.4 · Exercises
· Exercises for § 3.3.1

Exercises — Stage 1
3.3.4.1. Hint. Review the definition of a differential equation at the beginning
of this section.
3.3.4.2. Hint. You can test whether a given function solves a differential equation
by substituting the function into the equation.

3.3.4.3. Hint. Solve 0 = Ce−kt for t.

Exercises — Stage 2
3.3.4.4. ∗. Hint. No calculus here–just a review of the algebra of exponentials.

3.3.4.5. ∗. Hint. Use Theorem 3.3.2.
3.3.4.6. Hint. From the text, we see the half-life of Carbon-14 is 5730 years. A
microgram (µg) is one-millionth of a gram, but you don’t need to know that to solve
this problem.

3.3.4.7. Hint. The quantity of Radium-226 in the sample at time t will be Q(t) =
Ce−kt for some positive constants C and k. You can use the given information to

565



Hints for Exercises

find C and e−k.
In the following work, remember we use log to mean natural logarithm, loge.

3.3.4.8. ∗. Hint. The fact that the mass of the sample decreases at a rate
proportional to its mass tells us that, if Q(t) is the mass of Polonium-201, the
following differential equation holds:

dQ

dt
= −kQ(t)

where k is some positive constant. Compare this to Theorem 3.3.2.

3.3.4.9. Hint. The amount of Radium-221 in a sample at time t will be Q(t) =
Ce−kt for some positive constants C and k. You can leave C as a variable–it’s the
original amount in the sample, which isn’t specified. What you want to find is the
value of t such that Q(t) = 0.0001Q(0) = 0.0001C.

Exercises — Stage 3
3.3.4.10. Hint. You don’t need to know the original amount of Polonium-210 in
order to answer this question: you can leave it as some constant C, or you can call
it 100%.
3.3.4.11. Hint. Try to find the most possible and least possible remaining
Uranium-232, given the bounds in the problem.

· Exercises for § 3.3.2

Exercises — Stage 1
3.3.4.1. Hint. You can refer to Corollary 3.3.8, but you can also just differentiate

the various proposed functions and see whether, in fact,
dT

dt
is the same as 5[T−20].

3.3.4.2. Hint. From Newton’s Law of Cooling and Corollary 3.3.8, the tempera-
ture of the object will be

T (t) = [T (0)− A]eKt + A

where A is the ambient temperature, T (0) is the initial temperature of the copper,
and K is some constant.

3.3.4.3. Hint. What is lim
t→∞

eKt when K is positive, negative, or zero?

3.3.4.4. Hint. Solve A = [T (0)− A]ekt for t.

Exercises — Stage 2
3.3.4.5. Hint. From Newton’s Law of Cooling and Corollary 3.3.8, we know the
temperature of the copper will be

T (t) = [T (0)− A]eKt + A
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Hints for Exercises

where A is the ambient temperature, T (0) is the initial temperature of the copper,
and K is some constant. Use the given information to find an expression for T (t)
not involving any unknown constants.

3.3.4.6. Hint. From Newton’s Law of Cooling and Corollary 3.3.8, we know the
temperature of the stone t minutes after it leaves the fire is

T (t) = [T (0)− A]eKt + A

where A is the ambient temperature, T (0) is the temperature of the stone the instant
it left the fire, and K is some constant.

Exercises — Stage 3
3.3.4.8. ∗. Hint. Newton’s Law of Cooling models the temperature of the tea
after t minutes as

T (t) = [T (0)− A]eKt + A

where A is the ambient temperature, T (0) is the initial temperature of the tea, and
K is some constant.

3.3.4.9. Hint. What is lim
t→∞

T (t)?

· Exercises for § 3.3.3

Exercises — Stage 1
3.3.4.1. Hint. P (0) is also (probably) a positive constant.

Exercises — Stage 2
3.3.4.2. Hint. The assumption that the animals grow according to the Malthu-
sian model tells us that their population t years after 2015 is given by P (t) = 121ebt

for some constant b.
3.3.4.3. Hint. The Malthusian model says that the population of bacteria t hours
after being placed in the dish will be P (t) = 1000ebt for some constant b.

3.3.4.4. Hint. If 1928 is a years after the shipwreck, you might want to make use
of the fact that eb(a+1) = ebaeb.
3.3.4.5. Hint. If the population has a net birthrate per individual per unit time
of b, then the Malthusian model predicts that the number of individuals at time t
will be P (t) = P (0)ebt. You can use the test population to find eb.

Exercises — Stage 3
3.3.4.6. Hint. One way to investigate the sign of k is to think about f ′(t): is it
positive or negative?

· Further problems for § 3.3
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3.3.4.1. ∗. Hint. Use Theorem 3.3.2 to figure out what f(x) looks like.

3.3.4.2. Hint. To use Corollary 3.3.8, you need to re-write the differential equation
as

dT

dt
= 7

[
T −

(
−9

7

)]
.

3.3.4.3. ∗. Hint. The amount of the material at time t will be Q(t) = Ce−kt for
some constants C and k.

3.3.4.4. Hint. In your calculations, it might come in handy that e30K =
(
e15K

)2.

3.3.4.5. ∗. Hint. The differential equation in the problem has the same form as the
differential equation from Newton’s Law of Cooling.

3.3.4.6. ∗. Hint. We know the form of the solution A(t) from Corollary 3.3.8.

3.3.4.7. ∗. Hint. If a function’s rate of change is proportional to the function itself,
what does the function looks like?
3.3.4.8. ∗. Hint. The equation from Newton’s Law of Cooling, in Corollary 3.3.8,
has a similar form to the differential equation in this question.

3.4 · Approximating Functions Near a Specified Point
— Taylor Polynomials
3.4.11 · Exercises
· Exercises for § 3.4.1

Exercises — Stage 1
3.4.11.1. Hint. An approximation should be something you can actually figure
out–otherwise it’s no use.

Exercises — Stage 2
3.4.11.2. Hint. You’ll need some constant a to approximation log(0.93) ≈ log(a).
This a should have two properties: it should be close to 0.93, and you should be
able to easily evaluate log(a).

3.4.11.3. Hint. You’ll need some constant a to approximate arcsin(0.1) ≈
arcsin(a). This a should have two properties: it should be close to 0.1, and you
should be able to easily evaluate arcsin(a).

3.4.11.4. Hint. You’ll need some constant a to approximate
√

3 tan(1) ≈√
3 tan(a). This a should have two properties: it should be close to 1, and you

should be able to easily evaluate
√

3 tan(a).
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Exercises — Stage 3
3.4.11.5. Hint. We could figure out 10.13 exactly, if we wanted, with pen and
paper. Since we’re asking for an approximation, we aren’t after perfect accuracy.
Rather, we’re after ease of calculation.

· Exercises for § 3.4.2

Exercises — Stage 1
3.4.11.1. Hint. The linear approximation L(x) is chosen so that f(5) = L(5)
and f ′(5) = L′(5).

3.4.11.2. Hint. The graph of the linear approximation is a line, passing through
(2, f(2)), with slope f ′(2).

3.4.11.3. Hint. It’s an extremely accurate approximation.

Exercises — Stage 2
3.4.11.4. Hint. You’ll need to centre your approximation about some x = a,
which should have two properties: you can easily compute log(a), and a is close to
0.93.

3.4.11.5. Hint. Approximate the function f(x) =
√
x.

3.4.11.6. Hint. Approximate the function f(x) = 5
√
x.

Exercises — Stage 3
3.4.11.7. Hint. Approximate the function f(x) = x3.

3.4.11.8. Hint. One possible choice of f(x) is f(x) = sinx.

3.4.11.9. Hint. Compare the derivatives.

· Exercises for § 3.4.3

Exercises — Stage 1
3.4.11.1. Hint. If Q(x) is the quadratic approximation of f about 3, then Q(3) =
f(3), Q′(3) = f ′(3), and Q′′(3) = f ′′(3).

3.4.11.2. Hint. It is a very good approximation.

Exercises — Stage 2
3.4.11.3. Hint. Approximate f(x) = log x.

3.4.11.4. Hint. You’ll probably want to centre your approximation about x = 0.

3.4.11.5. Hint. The quadratic approximation of a function f(x) about x = a is

f(x) ≈ f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)2
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3.4.11.6. Hint. One way to go about this is to approximate the function f(x) =
5 · x1/3 , because then 54/3 = 5 · 51/3 = f(5).

3.4.11.7. Hint. For 3.4.11.7.c, look for cancellations.

3.4.11.8. Hint. Compare (c) to (b).
Compare (e) and (f) to (d).
To get an alternating sign, consider powers of (−1).

Exercises — Stage 3
3.4.11.9. Hint. You can evaluate f(1) exactly. Recall

d

dx
arcsinx =

1√
1− x2

.

3.4.11.10. Hint. Let f(x) = ex, and use the quadratic approximation of f(x)
about x = 0 (given in your text, or you can reproduce it) to approximate f(1).

3.4.11.11. Hint. Be wary of indices: for example
3∑

n=1

n =
7∑

n=5

(n− 4).

· Exercises for § 3.4.4

Exercises — Stage 1
3.4.11.1. Hint. T ′′3 (x) and f ′′(x) agree when x = 1.

3.4.11.2. Hint. The nth degree Taylor polynomial for f(x) about x = 5 is

Tn(x) =
n∑
k=0

f (k)(5)

k!
(x− 5)k

Match up the terms.

Exercises — Stage 3
3.4.11.3. Hint. The fourth-degree Maclaurin polynomial for f(x) is

T4(x) = f(0) + f ′(0)x+
1

2
f ′′(0)x2 +

1

3!
f ′′′(0)x3 +

1

4!
f (4)(0)x4

while the third-degree Maclaurin polynomial for f(x) is

T3(x) = f(0) + f ′(0)x+
1

2
f ′′(0)x2 +

1

3!
f ′′′(0)x3

3.4.11.4. Hint. The third-degree Taylor polynomial for f(x) about x = 1 is

T3(x) = f(1) + f ′(1)(x− 1) +
1

2
f ′′(1)(x− 1)2 +

1

3!
f ′′′(1)(x− 1)3

How can you recover f(1), f ′(1), f ′′(1), and f ′′′(1) from T4(x)?
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3.4.11.5. Hint. Compare the given polynomial to the more standard form of the
nth degree Taylor polynomial,

n∑
k=0

1

k!
f (k)(5)(x− 5)k

and notice that the term you want (containing f (10)(5)) corresponds to k = 10 in
the standard form, but is not the term corresponding to k = 10 in the polynomial
given in the question.

3.4.11.6. Hint. T ′′′3 (a) = f ′′′(a)

· Exercises for § 3.4.5

Exercises — Stage 1
3.4.11.1. Hint. The derivatives of f(x) repeat themselves.

3.4.11.2. Hint. You are approximating a polynomial with a polynomial.

3.4.11.3. Hint. Recall
d

dx
{2x} = 2x log 2, where log 2 is the constant loge 2.

3.4.11.4. Hint. Just keep differentiating–it gets easier!

3.4.11.5. Hint. Start by differentiating, and finding the pattern for f (k)(0). Re-
member the chain rule!

Exercises — Stage 3
3.4.11.6. Hint. You’ll need to differentiate xx. This is accomplished using loga-
rithmic differentiation, covered in Section 2.10.

3.4.11.7. Hint. What is 6 arctan

(
1√
3

)
?

3.4.11.8. Hint. After a few derivatives, this will be very similar to Exam-
ple 3.4.13.

3.4.11.9. Hint. Treat the even and odd powers separately.

3.4.11.10. Hint. Compare this to the Maclaurin polynomial for ex.

3.4.11.11. Hint. Compare this to the Maclaurin polynomial for cosine.

· Exercises for § 3.4.6

Exercises — Stage 1
3.4.11.1. Hint. ∆x and ∆y represent changes in x and y, respectively, while
f(x) and f (x+ ∆x) are the y-values the function takes.

3.4.11.2. Hint. Let f(x) be the number of problems finished after x minutes of
work.
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Exercises — Stage 2
3.4.11.3. Hint. ∆y = f(5.1)− f(5)

3.4.11.4. Hint. Use the approximation ∆y ≈ s′(4)∆x when x is near 4.

· Exercises for § 3.4.7

Exercises — Stage 1
3.4.11.1. Hint. Is the linear approximation exact, or approximate?

3.4.11.2. Hint. When an exact value Q0 is measured as Q0 + ∆Q, Defini-
tion 3.4.25
gives us the absolute error as |∆Q|, and the percentage error as 100

|∆Q|
Q0

.

3.4.11.3. Hint. Let ∆y is the change in f(x) associated to a change in x from a
to a+ ∆x. The linear approximation tells us

∆y ≈ f ′(a)∆x

while the quadratic approximation tells us

∆y ≈ f ′(a)∆x+
1

2
f ′′(a) (∆x)2

Exercises — Stage 2
3.4.11.4. Hint. The exact area desired is A0. Let the corresponding exact radius
desired be r0. The linear approximation tells us ∆A ≈ A′(r0)∆r. Use this relation-
ship, and what you know about the error allowable in A, to find the error allowable
in r.

3.4.11.5. Hint. For part (b), cut the triangle (with angle θ and side d) into two
right triangles.

3.4.11.6. Hint. The volume of a cone of height h and radius r is 1
3
πr2h.

Exercises — Stage 3
3.4.11.7. Hint. Remember that the amount of the isotope present at time t is
Q(t) = Q(0)e−kt for some constant k. The measured quantity after 3 years will
allow you to replace k in the equation, then solving Q(t) = 1

2
Q(0) for t will give you

the half-life of the isotope.

· Exercises for § 3.4.8

Exercises — Stage 1
3.4.11.1. Hint. R(10) = f(10)− F (10) = −3− 5
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3.4.11.2. Hint. Equation 3.4.33 tells us

|f(2)− T3(2)| =
∣∣∣∣f (4)(c)

4!
(2− 0)4

∣∣∣∣
for some c strictly between 0 and 2.

3.4.11.3. Hint. You are approximating a third-degree polynomial with a fifth-
degree Taylor polynomial. You should be able to tell how good your approximation
will be without a long calculation.

3.4.11.4. Hint. Draw a picture — it should be clear how the two approximations
behave.

Exercises — Stage 2
3.4.11.5. Hint. In this case, Equation 3.4.33 tells us that

|f(11.5)− T5(11.5)| =
∣∣∣∣f (6)(c)

6!
(11.5− 11)6

∣∣∣∣
for some c strictly between 11 and 11.5.

3.4.11.6. Hint. In this case, Equation 3.4.33 tells us that |f(0.1)− T2(0.1)| =∣∣∣∣f (3)(c)

3!
(0.1− 0)3

∣∣∣∣ for some c strictly between 0 and 0.1.

3.4.11.7. Hint. In our case, Equation 3.4.33 tells us∣∣∣∣f (−1

4

)
− T5

(
−1

4

)∣∣∣∣ =

∣∣∣∣∣f (6)(c)

6!

(
−1

4
− 0

)6
∣∣∣∣∣

for some c between −1

4
and 0.

3.4.11.8. Hint. In this case, Equation 3.4.33 tells us that |f(30)− T3(30)| =∣∣∣∣f (4)(c)

4!
(30− 32)4

∣∣∣∣ for some c strictly between 30 and 32.

3.4.11.9. Hint. In our case, Equation 3.4.33 tells us |f (0.01)− T1 (0.01)| =∣∣∣∣f (2)(c)

2!

(
0.01− 1

π

)2

∣∣∣∣ for some c between 0.01 and
1

π
.

3.4.11.10. Hint. Using Equation 3.4.33,
∣∣∣∣f (1

2

)
− T2

(
1

2

)∣∣∣∣ =∣∣∣∣∣f (3)(c)

3!

(
1

2
− 0

)3
∣∣∣∣∣ for some c in

(
0,

1

2

)
.

Exercises — Stage 3
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3.4.11.11. Hint. It helps to have a formula for f (n)(x). You can figure it out
by taking several derivatives and noticing the pattern, but also this has been given
previously in the text.

3.4.11.12. Hint. You can approximate the function f(x) = x
1
7 .

It’s a good bit of trivia to know 37 = 2187.
A low-degree Taylor approximation will give you a good enough estimation. If you
guess a degree, and take that Taylor polynomial, the error will probably be less than
0.001 (but you still need to check).

3.4.11.13. Hint. Use the 6th-degree Maclaurin approximation for f(x) = sin x.

3.4.11.14. Hint. For part 3.4.11.14.c, after you plug in the appropriate values to
Equation 3.4.33, simplify the upper and lower bounds for e separately. In particular,
for the upper bound, you’ll have to solve for e.

· Further problems for § 3.4

Exercises — Stage 1
3.4.11.1. ∗. Hint. Compare the given polynomial to the definition of a Maclaurin
polynomial.

3.4.11.3. ∗. Hint. Compare the given polynomial to the definition of a Taylor
polynomial.

Exercises — Stage 2
3.4.11.5. ∗. Hint. You can use the error formula to determine whether the
approximation is too large or too small.

3.4.11.6. ∗. Hint. Use the function f(x) =
√
x.

3.4.11.7. ∗. Hint. Use the function f(x) = x1/3. What is a good choice of
centre?

3.4.11.8. ∗. Hint. Try using the function f(x) = x5.

3.4.11.9. ∗. Hint. If you use the function f(x) = sin(x), what is a good centre?

3.4.11.10. ∗. Hint. Recall
d

dx
{arctanx} =

1

1 + x2
.

3.4.11.11. ∗. Hint. Try using the function f(x) = (2 + x)3.

3.4.11.12. ∗. Hint. You can try using f(x) = (8 + x)1/3. What is a suitable
centre for your approximation?

3.4.11.13. ∗. Hint. This is the same as the Maclaurin polynomial.

3.4.11.14. ∗. Hint. This is a straightforward application of Equation 3.4.33.

3.4.11.17. ∗. Hint. 52/3 = f(52) = f(25)
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Exercises — Stage 3
3.4.11.18. Hint. The fourth-degree Maclaurin polynomial for f(x) is

T4(x) = f(0) + f ′(0)x+
1

2
f ′′(0)x2 +

1

3!
f ′′′(0)x3 +

1

4!
f (4)(0)x4

while the third-degree Maclaurin polynomial for f(x) is

T3(x) = f(0) + f ′(0)x+
1

2
f ′′(0)x2 +

1

3!
f ′′′(0)x3

3.4.11.19. ∗. Hint. For part 3.4.11.19.c, think about what the quadratic ap-
proximation looks like — is it pointing up or down?

3.4.11.22. ∗. Hint. For (c), you can write f(x) as the sum of Q(x) and its error
term.
For (d), you can use the linear approximation of ex centred at 0, with its error term
when x = 0.1.

3.5 · Optimisation
3.5.4 · Exercises
· Exercises for § 3.5.1

Exercises — Stage 1
3.5.4.1. Hint. Estimate f ′(0).

3.5.4.2. Hint. If the graph is discontinuous at a point, it is not differentiable at
that point.

3.5.4.3. Hint. Try making a little bump at x = 2, the letting the function get
quite large somewhere else.

Exercises — Stage 2
3.5.4.4. Hint. Critical points are those values of x for which f ′(x) = 0.
Singular points are those values of x for which f(x) is not differentiable.

Exercises — Stage 3
3.5.4.5. Hint. We’re only after local extrema, not global. Let f(x) be our func-
tion. If there is some interval around x = 2 where nothing is bigger than f(2), then
f(2) is a local maximum, whether or not it is a maximum overall.

3.5.4.6. Hint. By Theorem 3.5.4, if x = 2 not a critical point, then it must be a
singular point.

3.5.4.7. Hint. You should be able to figure out the global minima of f(x) in your
head.

Remember with absolute values, |X| =
{
X X ≥ 0

−X X < 0
.
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3.5.4.8. Hint. Review the definitions of critical points and extrema: Defini-
tion 3.5.6 and Definition 3.5.3.

· Exercises for § 3.5.2

Exercises — Stage 1
3.5.4.1. Hint. One way to avoid a global minimum is to have lim

x→∞
f(x) = −∞.

Since f(x) keeps getting lower and lower, there is no one value that is the lowest.

3.5.4.2. Hint. Try allowing the function to approach the x-axis without ever
touching it.

3.5.4.3. Hint. Since the global minimum value occurs at x = 5 and x = −5, it
must be true that f(5) = f(−5).

Exercises — Stage 2
3.5.4.4. Hint. Global extrema will either occur at critical points in the interval
(−5, 5) or at the endpoints x = 5, x = −5.

3.5.4.5. Hint. You only need to consider critical points that are in the interval
(−4, 0).

· Exercises for § 3.5.3

Exercises — Stage 1
3.5.4.1. ∗. Hint. Factor the derivative.
3.5.4.2. ∗. Hint. Remember to test endpoints.

3.5.4.4. ∗. Hint. One way to decide whether a critical point x = c is a local
extremum is to consider the first derivative. For example: if f ′(x) is negative for
all x just to the left of c, and positive for all x just to the right of c, then f(x)
decreases up till c, then increases after c, so f(x) has a local minimum at c.

3.5.4.5. ∗. Hint. One way to decide whether a critical point x = c is a local
extremum is to consider the first derivative. For example: if f ′(x) is negative for
all x just to the left of c, and positive for all x just to the right of c, then f(x)
decreases up till c, then increases after c, so f(x) has a local minimum at c.

3.5.4.6. ∗. Hint. Start with a formula for travel time from P to B. You might
want to assign a variable to the distance from A where your buggy first reaches the
road.
3.5.4.7. ∗. Hint. A box has three dimensions; make variables for them, and
write the relations given in the problem in terms of these variables.

3.5.4.8. ∗. Hint. Find a formula for the cost of the base, and another formula
for the cost of the other sides. The total cost is the sum of these two formulas.
3.5.4.9. ∗. Hint. The setup is this:
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x

y

X

Y

O

3.5.4.10. ∗. Hint. Put the whole system on xy-axes, so that you can easily
describe the pieces using (x, y)-coordinates.

3.5.4.11. ∗. Hint. The surface area consists of two discs and a strip. Find the
areas of these pieces.
The volume of a cylinder with radius r and height h is πr2h.

h

r

r

h

3.5.4.12. ∗. Hint. If the circle has radius r, and the entire window has perimeter
P , what is the height of the rectangle?

Exercises — Stage 3
3.5.4.14. ∗. Hint. Use logarithmic differentiation to find f ′(x).

3.5.4.15. ∗. Hint. When you are finding the global extrema of a function,
remember to check endpoints as well as critical points.

3.6 · Sketching Graphs
3.6.7 · Exercises
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· Exercises for § 3.6.1

Exercises — Stage 1
3.6.7.1. Hint. What happens if g(x) = x+ 3?

Exercises — Stage 2
3.6.7.2. Hint. Use domains and intercepts to distinguish between the functions.

3.6.7.3. Hint. To find p, the equation f(0) = 2 gives you two possible values of
p. Consider the domain of f(x) to decide between them.

3.6.7.4. Hint. Check for horizontal asymptotes by evaluating lim
x→±∞

f(x), and

check for vertical asymptotes by finding any value of x near which f(x) blows up.

3.6.7.5. Hint. Check for horizontal asymptotes by evaluating lim
x→±∞

f(x), and

check for vertical asymptotes by finding any value of x near which f(x) blows up.

· Exercises for § 3.6.2

Exercises — Stage 1
3.6.7.1. Hint. For each of the graphs, consider where the derivative is positive,
negative, and zero.

Exercises — Stage 2
3.6.7.2. ∗. Hint. Where is f ′(x) > 0?

3.6.7.3. ∗. Hint. Consider the signs of the numerator and the denominator of
f ′(x).

3.6.7.4. ∗. Hint. Remember
d

dx
{arctanx} =

1

1 + x2
.

· Exercises for § 3.6.3

Exercises — Stage 1
3.6.7.1. Hint. There are two intervals where the function is concave up, and two
where it is concave down.
3.6.7.2. Hint. Try allowing your graph to have horizontal asymptotes. For ex-
ample, let the function get closer and closer to the x-axis (or another horizontal
line) without touching it.

3.6.7.3. Hint. Consider f(x) = (x− 3)4.

Exercises — Stage 3

578



Hints for Exercises

3.6.7.5. ∗. Hint. You must show it has at least one inflection point (try the
Intermediate Value Theorem), and at most one inflection point (consider whether
the second derivative is increasing or decreasing).

3.6.7.6. ∗. Hint. Use 3.6.7.6.a in proving 3.6.7.6.b.

3.6.7.7. Hint. Since x = 3 is an inflection point, we know the concavity of f(x)
changes at x = 3. That is, there is some interval around 3, with endpoints a and b,
such that

• f ′′(a) < 0 and f ′′(x) < 0 for every x between a and 3, and

• f ′′(b) > 0 and f ′′(x) > 0 for every x between b and 3.

Use the IVT to show that f ′′(x) = 3 for some x between a and b; then show that
this value of x can’t be anything except x = 3.

· Exercises for § 3.6.4

Exercises — Stage 1
3.6.7.1. Hint. This function is symmetric across the y-axis.

3.6.7.2. Hint. There are two.
3.6.7.3. Hint. Since the function is even, you only have to reflect the portion
shown across the y-axis to complete the sketch.

3.6.7.4. Hint. Since the function is odd, to complete the sketch, reflect the
portion shown across the y-axis, then the x-axis.

Exercises — Stage 2
3.6.7.5. Hint. A function is even if f(−x) = f(x).

3.6.7.6. Hint. Its period is not 2π.

3.6.7.7. Hint. Simplify f(−x) to see whether it is the same as f(x), −f(x), or
neither.

3.6.7.8. Hint. Simplify f(−x) to see whether it is the same as f(x), −f(x), or
neither.

3.6.7.9. Hint. Find the smallest value k such that f(x + k) = f(x) for any x in
the domain of f .
You may use the fact that the period of g(X) = tanX is π.

Exercises — Stage 3
3.6.7.10. Hint. It is true that f(x) = f(x + 2π) for every x in the domain of
f(x), but the period is not 2π.

· Exercises for § 3.6.6
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Exercises — Stage 1
3.6.7.1. ∗. Hint. You’ll find the intervals of increase and decrease. These will
give you a basic outline of the behaviour of the function. Use concavity to refine
your picture.

3.6.7.2. ∗. Hint. The local maximum is also a global maximum.

3.6.7.3. ∗. Hint. The sign of the first derivative is determined entirely by the
numerator, but the sign of the second derivative depends on both the numerator
and the denominator.
3.6.7.4. ∗. Hint. The function is odd.
3.6.7.5. ∗. Hint. The function is continuous at x = 0, but its derivative is not.

3.6.7.6. ∗. Hint. Since you aren’t asked to find the intervals of concavity exactly,
sketch the intervals of increase and decrease, and turn them into a smooth curve.
You might not get exactly the intervals of concavity that are given in the solution,
but there should be the same number of intervals as the solution, and they should
have the same positions relative to the local extrema.

3.6.7.7. ∗. Hint. Use intervals of increase and decrease, concavity, and asymp-
totes to sketch the curve.
3.6.7.8. Hint. Although the function exhibits a certain kind of repeating be-
haviour, it is not periodic.

3.6.7.9. ∗. Hint. The period of this function is 2π. So, it’s enough to graph the
curve y = f(x) over the interval [−π, π], because that figure will simply repeat.
Use trigonometric identities to write f ′′(x) = −4(4 sin2 x+ sinx−2). Then you can
find where f ′′(x) = 0 by setting y = sinx and solving 0 = 4y2 + y − 2.

3.6.7.10. Hint. There is one point where the curve is continuous but has a
vertical tangent line.

Exercises — Stage 3
3.6.7.11. ∗. Hint. Use lim

x→−∞
f ′(x) to determine lim

x→−∞
f(x).

3.6.7.12. ∗. Hint. Once you have the graph of a function, reflect it over the line
y = x to graph its inverse. Be careful of the fact that f(x) is only defined in this
problem for x ≥ 0.

3.6.7.14. ∗. Hint. For (a), don’t be intimidated by the new names: we can
graph these functions using the methods learned in this section.
For (b), remember that to define an inverse of a function, we need to restrict the
domain of that function to an interval where it is one-to-one. Then to graph the
inverse, we can simply reflect the original function over the line y = x.
For (c), set y(x) = cosh−1(x), so cosh(y(x)) = x. The differentiate using the
chain rule. To get your final answer in terms of x (instead of y), use the identity
cosh2(y)− sinh2(y) = 1.

3.7 · L’Hôpital’s Rule, Indeterminate Forms
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3.7.4 · Exercises

Exercises — Stage 1
3.7.4.1. Hint. Try making one function a multiple of the other.

3.7.4.2. Hint. Try making one function a multiple of the other, but not a constant
multiple.

3.7.4.3. Hint. Try modifying the function from Example 3.7.20.

Exercises — Stage 2
3.7.4.4. ∗. Hint. Plugging in x = 1 to the numerator and denominator makes
both zero. This is exactly one of the indeterminate forms where l’Hôpital’s rule can
be directly applied.

3.7.4.5. ∗. Hint. Is this an indeterminate form?

3.7.4.6. ∗. Hint. First, rearrange the expression to a more natural form (without
a negative exponent).

3.7.4.7. ∗. Hint. If at first you don’t succeed, try, try again.

3.7.4.8. ∗. Hint. Keep at it!

3.7.4.9. Hint. Rather than use l’Hôpital, try factoring out x2 from the numerator
and denominator.
3.7.4.10. ∗. Hint. Keep going!

3.7.4.12. Hint. Try plugging in x = 0. Is this an indeterminate form?

3.7.4.13. Hint. Simplify the trigonometric part first.

3.7.4.14. Hint. Rationalize, then remember your training.

3.7.4.15. ∗. Hint. If it is too difficult to take a derivative for l’Hôpital’s Rule,
try splitting up the function into smaller chunks and evaluating their limits inde-
pendently.

3.7.4.17. ∗. Hint. Try manipulating the function to get it into a nicer form

3.7.4.19. Hint. lim
x→0

x2
√

sin2 x = (sin2 x)
1
x2 ; what form is this?

3.7.4.20. Hint. lim
x→0

x2
√

cosx = lim
x→0

(cosx)
1
x2

3.7.4.21. Hint. logarithms

3.7.4.22. Hint. Introduce yet another logarithm.

3.7.4.23. ∗. Hint. If the denominator tends to zero, and the limit exists, what
must be the limit of the numerator?
3.7.4.24. ∗. Hint. Start with one application of l’Hôpital’s Rule. After that,
you need to consider three distinct cases: k > 2, k < 2, and k = 2.
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Exercises — Stage 3
3.7.4.25. Hint. Percentage error: 100

∣∣∣exact−approxexact
∣∣∣. Absolute error: |exact −

approx|. (We’ll see these definitions again in 3.4.25.)

4 · Towards Integral Calculus
4.1 · Introduction to Antiderivatives
4.1.2 · Exercises

Exercises — Stage 1
4.1.2.1. Hint. The function f(x) is an antiderivative of f ′(x), but it is not the
most general one.

4.1.2.2. Hint. When f(x) is positive, its antiderivative F (x) is increasing. When
f(x) is negative, its antiderivative F (x) is decreasing. When f(x) = 0, F (x) has a
horizontal tangent line.

Exercises — Stage 2
4.1.2.3. Hint. For any constant n 6= −1, an antiderivative of xn is 1

n+1
xn+1.

4.1.2.4. Hint. For any constant n 6= −1, an antiderivative of xn is 1
n+1

xn+1.

4.1.2.5. Hint. For any constant n 6= −1, an antiderivative of xn is 1
n+1

xn+1. The
constant n does not have to be an integer.

4.1.2.6. Hint. What is the derivative of
√
x?

4.1.2.7. Hint. The derivative of e5x+11 is close to, but not exactly the same as,
f(x). Don’t be afraid to just make a guess. But be sure to check by differentiating
your guess. If the derivative isn’t what you want, you will often still learn enough
to be able to then guess the correct antiderivative.

4.1.2.8. Hint. From the table in the text, an antiderivative of sinx is − cosx,
and an antiderivative of cosx is sinx.
4.1.2.9. Hint. What is the derivative of tangent?

4.1.2.10. Hint. What is an antiderivative of
1

x
?

4.1.2.11. Hint.
7√

3− 3x2
=

7√
3

(
1√

1− x2

)
4.1.2.12. Hint. How is this similar to the derivative of the arctangent function?

4.1.2.13. Hint. First, find the antiderivative of f ′(x). Your answer will have an
unknown +C in it. Figure out which value of C gives f(1) = 10.

4.1.2.14. Hint. Remember that one antiderivative of cosx is sinx (not − sinx).

4.1.2.15. Hint. An antiderivative of
1

x
is log(x) + C, but only for x > 0.
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4.1.2.16. Hint. What is the derivative of the arcsine function?

4.1.2.17. Hint. If P (t) is the population at time t, then the information given in
the problem is P ′(t) = 100e2t.

4.1.2.18. Hint. You can’t know exactly —there will be a constant involved.

4.1.2.19. Hint. If P (t) is the amount of power in kW-hours the house has used
since time t = 0, where t is measured in hours, then the information given is that
P ′(t) = 0.5 sin

( π
24
t
)

+ 0.25 kW.

Exercises — Stage 3
4.1.2.20. ∗. Hint. The derivatives should match. Remember sin−1 is another
way of writing arcsine.

4.1.2.21. Hint. Think about the product rule.

4.1.2.22. Hint. Think about the quotient rule for derivatives.

4.1.2.23. Hint. Notice that the derivative of x3 is 3x2.
4.1.2.24. Hint. Think about the chain rule for derivatives. You might need to
multiply your first guess by a constant.

4.1.2.25. Hint. Simplify.

4.1.2.26. Hint. This problem is similar to Question 4.1.2.11, but you’ll have to

do some harder factoring. Try getting f(x) into the form a

(
1√

1− (bx)2

)
for some

constants a and b.

4.1.2.27. Hint. Following Example 4.1.7 let V (H) be the volume of the solid
formed by rotating the segment of the parabola from x = −H to x = H. The plan
is to evaluate

V ′(H) = lim
h→H

V (H)− V (h)

H − h
and then antidifferentiate V ′(H) to find V (H). Since you don’t know V (H)−V (h)
(yet), first find upper and lower bounds on it when h < H. These bounds can be
the volumes of two cylinders, one with radius H (and what height?) and the other
with radius h.
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Appendix E

1 · Limits
1.1 · Drawing Tangents and a First Limit
1.1.2 · Exercises

Exercises — Stage 1
1.1.2.1. Answer.

x

y
y = f(x)

P

Q

(a)

(b)

(c)

1.1.2.2. Answer.

a True

b In general, this is false. For most functions f(x) this will be false, but there
are some functions for which it is true.

1.1.2.3. Answer. At least once.

1.2 · Another Limit and Computing Velocity
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1.2.2 · Exercises

Exercises — Stage 1
1.2.2.1. Answer. Speed is nonnegative; velocity has a sign (positive or negative)
that indicates direction.
1.2.2.2. Answer. Yes–an object that is not moving has speed 0.

1.2.2.3. Answer. 0 kph

1.2.2.4. Answer. The speed at the one second mark is larger than the average
speed.

1.2.2.5. Answer. The slope of a curve is given by
change in vertical component

change in horizontal component
. The change in the vertical component is

exactly s(b)− s(a), and the change in the horizontal component is exactly b− a.
1.2.2.6. Answer. (0, 2) ∪ (6, 7)

Exercises — Stage 2
1.2.2.7. Answer.

a 24 units per second.

b 6 units per second

1.2.2.8. Answer.

a 1
4
units per second

b 1
2
units per second

c 1
6
units per second

Remark: the average velocity is not the average of the two instantaneous velocities.

1.3 · The Limit of a Function
1.3.2 · Exercises

Exercises — Stage 1
1.3.2.1. Answer.

a lim
x→−2

f(x) = 1

b lim
x→0

f(x) = 0

c lim
x→2

f(x) = 2

1.3.2.2. Answer. DNE
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1.3.2.3. Answer.

a lim
x→−1−

f(x) = 2

b lim
x→−1+

f(x) = −2

c lim
x→−1

f(x) = DNE

d lim
x→−2+

f(x) = 0

e lim
x→2−

f(x) = 0

1.3.2.4. Answer. Many answers are possible; here is one.

x

y
y = f(x)

3

10

1.3.2.5. Answer. Many answers are possible; here is one.

x

y
y = f(x)

3

10
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1.3.2.6. Answer. In general, this is false.

1.3.2.7. Answer. False

1.3.2.8. Answer. lim
x→−2−

f(x) = 16

1.3.2.9. Answer. Not enough information to say.

Exercises — Stage 2
1.3.2.10. Answer. lim

t→0
sin t = 0

1.3.2.11. Answer. lim
x→0+

log x = −∞

1.3.2.12. Answer. lim
y→3

y2 = 9

1.3.2.13. Answer. lim
x→0−

1

x
= −∞

1.3.2.14. Answer. lim
x→0

1

x
= DNE

1.3.2.15. Answer. lim
x→0

1

x2
=∞

1.3.2.16. Answer. lim
x→3

1

10
=

1

10

1.3.2.17. Answer. 9

1.4 · Calculating Limits with Limit Laws
1.4.2 · Exercises

Exercises — Stage 1
1.4.2.1. Answer. (1.4.2.1.a) and (1.4.2.1.d)

1.4.2.2. Answer. There are many possible answers; one is f(x) = 10(x − 3),
g(x) = x− 3.

1.4.2.3. Answer. There are many possible answers; one is f(x) = (x − 3)2 and
g(x) = x− 3. Another is f(x) = 0 and g(x) = x− 3.

1.4.2.4. Answer. There are many possible answers; one is f(x) = x− 3, g(x) =
(x− 3)3.

1.4.2.5. Answer. Any real number; positive infinity; negative infinity; does not
exist.

Exercises — Stage 2
1.4.2.6. Answer. 0
1.4.2.7. Answer. 6
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1.4.2.8. Answer. 16

1.4.2.9. ∗. Answer. 4/ cos(3)

1.4.2.10. ∗. Answer. 2

1.4.2.11. ∗. Answer. −7/2

1.4.2.12. ∗. Answer. 3

1.4.2.13. ∗. Answer. −3
2

1.4.2.14. ∗. Answer. log(2)− 1

1.4.2.15. ∗. Answer. 1
4

1.4.2.16. ∗. Answer.
1

2

1.4.2.17. ∗. Answer. 5

1.4.2.18. ∗. Answer. −6

1.4.2.19. Answer. −14

1.4.2.20. ∗. Answer. −1
3

1.4.2.21. ∗. Answer. 1
6

1.4.2.22. ∗. Answer. 1√
3

1.4.2.23. ∗. Answer. 1
1.4.2.24. ∗. Answer. 12
1.4.2.25. Answer. 0

1.4.2.26. Answer. 1
2

1.4.2.27. ∗. Answer. 0
1.4.2.28. Answer. 5
1.4.2.29. Answer. −∞

1.4.2.30. Answer.
√

2

3

1.4.2.31. Answer. DNE
1.4.2.32. Answer. ∞
1.4.2.33. Answer. x5 − 32x+ 15

1.4.2.34. Answer. 0

1.4.2.35. ∗. Answer. 0

1.4.2.36. ∗. Answer. 2
1.4.2.37. Answer. 0

1.4.2.38. Answer. −32

9
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1.4.2.39. Answer. DNE
1.4.2.40. Answer. DNE

1.4.2.41. Answer. −9

2

1.4.2.42. Answer. −4

1.4.2.43. ∗. Answer. a =
7

2

1.4.2.44. Answer.

a lim
x→0

f(x) = 0

b lim
x→0

g(x) = DNE

c lim
x→0

f(x)g(x) = 2

d lim
x→0

f(x)

g(x)
= 0

e lim
x→2

f(x) + g(x) =
9

2

f lim
x→0

f(x) + 1

g(x+ 1)
= 1

Exercises — Stage 3
1.4.2.45. Answer.

x

y

1

1

Pictures may vary somewhat; the important points are the values of the function
at integer values of x, and the vertical asymptotes.

1.4.2.46. Answer.

589



Answers to Exercises

x

y

1

1

y =
f(x)

g(x)

1.4.2.47. Answer. 10
1.4.2.48. Answer. 1.4.2.48.a DNE , DNE
1.4.2.48.b 0
1.4.2.48.c No: it is only true when both lim

x→a
f(x) and lim

x→a
g(x) exist.

1.4.2.49. Answer. 1.4.2.49.a lim
x→0−

f(x) = −3

1.4.2.49.b lim
x→0+

f(x) = 3

1.4.2.49.c lim
x→0

f(x) =DNE

1.4.2.50. Answer. 1.4.2.50.a lim
x→−4−

f(x) = 0

1.4.2.50.b lim
x→−4+

f(x) = 0

1.4.2.50.c lim
x→−4

f(x) = 0

1.5 · Limits at Infinity
1.5.2 · Exercises

Exercises — Stage 1
1.5.2.1. Answer. There are many answers: any constant polynomial has this
property. One answer is f(x) = 1.

1.5.2.2. Answer. There are many answers: any odd-degree polynomial has this
property. One answer is f(x) = x.
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Exercises — Stage 2
1.5.2.3. Answer. 0
1.5.2.4. Answer. ∞
1.5.2.5. Answer. 0

1.5.2.6. Answer. DNE
1.5.2.7. Answer. −∞
1.5.2.8. Answer.

√
3

1.5.2.9. ∗. Answer. 3

1.5.2.10. ∗. Answer. −3
4

1.5.2.11. ∗. Answer. −1

2

1.5.2.12. ∗. Answer. 1
2

1.5.2.13. ∗. Answer. 5
3

1.5.2.14. ∗. Answer. 0

1.5.2.15. ∗. Answer. 4
7

1.5.2.16. Answer. 1
1.5.2.17. ∗. Answer. 0
1.5.2.18. Answer. −1

1.5.2.19. Answer. 1

1.5.2.20. ∗. Answer. −1

1.5.2.21. ∗. Answer. −3
2

1.5.2.22. ∗. Answer. −5
3

1.5.2.23. Answer. −∞

1.5.2.24. ∗. Answer.
5

2

1.5.2.25. Answer. lim
a→0+

a2 − 1
a

a− 1
=∞

1.5.2.26. Answer. lim
x→3

2x+ 8
1

x−3
+ 1

x2−9

= 0
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Exercises — Stage 3
1.5.2.27. Answer. No such rational function exists.
1.5.2.28. Answer. This is the amount of the substance that will linger long-
term. Since it’s nonzero, the substance would be something that would stay in your
body. Something like “tattoo ink” is a reasonable answer, while “penicillin” is not.

1.6 · Continuity
1.6.4 · Exercises

Exercises — Stage 1
1.6.4.1. Answer. Many answers are possible; the tangent function behaves like
this.
1.6.4.2. Answer. At some time between my birth and now, I was exactly one
meter tall.

1.6.4.3. Answer. One example is f(x) =

{
0 when 0 ≤ x ≤ 1

2 when 1 < x ≤ 2
. The IVT only

guarantees f(c) = 1 for some c in [0, 2] when f is continuous over [0, 2]. If f is not
continuous, the IVT says nothing.

x

y

1.6.4.4. Answer. Yes
1.6.4.5. Answer. No
1.6.4.6. Answer. No
1.6.4.7. Answer. True.
1.6.4.8. Answer. True.
1.6.4.9. Answer. In general, false.

1.6.4.10. Answer. lim
x→0+

h(x) = 0

Exercises — Stage 2
1.6.4.11. Answer. k = 0

1.6.4.12. Answer. Since f is a polynomial, it is continuous over all real numbers.
f(0) = 1 < 12345 and f(12345) = 123453 + 123452 + 12345 + 1 > 12345 (since all
terms are positive). So by the IVT, f(c) = 12345 for some c between 0 and 12345.
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1.6.4.13. ∗. Answer. (−∞,−1) ∪ (−1, 1) ∪ (1,+∞)

1.6.4.14. ∗. Answer. (−∞,−1) ∪ (1,+∞)

1.6.4.15. ∗. Answer. The function is continuous except at x =
±π,±3π,±5π, · · ·.
1.6.4.16. ∗. Answer. x 6= nπ, where n is any integer

1.6.4.17. ∗. Answer. ±2

1.6.4.18. ∗. Answer. c = 1

1.6.4.19. ∗. Answer. −1, 4

1.6.4.20. ∗. Answer. c = 1, c = −1

Exercises — Stage 3
1.6.4.21. Answer. This isn’t the kind of equality that we can just solve; we’ll
need a trick, and that trick is the IVT. The general idea is to show that sinx is
somewhere bigger, and somewhere smaller, than x− 1. However, since the IVT can
only show us that a function is equal to a constant, we need to slightly adjust our
language. Showing sinx = x − 1 is equivalent to showing sinx − x + 1 = 0, so let
f(x) = sin x− x+ 1, and let’s show that it has a real root.
First, we need to note that f(x) is continuous (otherwise we can’t use the IVT).
Now, we need to find a value of x for which it is positive, and for which it’s negative.
By checking a few values, we find f(0) is positive, and f(100) is negative. So, by the
IVT, there exists a value of x (between 0 and 100) for which f(x) = 0. Therefore,
there exists a value of x for which sinx = x− 1.

1.6.4.22. ∗. Answer. We let f(x) = 3x−x2. Then f(x) is a continuous function,
since both 3x and x2 are continuous for all real numbers.
We want a value a such that f(a) > 0. We see that a = 0 works since

f(0) = 30 − 0 = 1 > 0.

We want a value b such that f(b) < 0. We see that b = −1 works since

f(−1) =
1

3
− 1 < 0.

So, because f(x) is continuous on (−∞,∞) and f(0) > 0 while f(−1) < 0, then the
Intermediate Value Theorem guarantees the existence of a real number c ∈ (−1, 0)
such that f(c) = 0.

1.6.4.23. ∗. Answer. We let f(x) = 2 tan(x)−x− 1. Then f(x) is a continuous
function on the interval (−π/2, π/2) since tan(x) = sin(x)/ cos(x) is continuous
on this interval, while x + 1 is a polynomial and therefore continuous for all real
numbers.
We find a value a ∈ (−π/2, π/2) such that f(a) < 0. We observe immediately that
a = 0 works since

f(0) = 2 tan(0)− 0− 1 = 0− 1 = −1 < 0.
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We find a value b ∈ (−π/2, π/2) such that f(b) > 0. We see that b = π/4 works
since

f(π/4) = 2 tan(π/4)− π/4− 1 = 2− π/4− 1 = 1− π/4
= (4− π)/4 > 0

because 3 < π < 4.
So, because f(x) is continuous on [0, π/4] and f(0) < 0 while f(π/4) > 0, then the
Intermediate Value Theorem guarantees the existence of a real number c ∈ (0, π/4)
such that f(c) = 0.

1.6.4.24. ∗. Answer. Let f(x) =
√

cos(πx) − sin(2πx) − 1/2. This function is
continuous provided cos(πx) ≥ 0. This is true for 0 ≤ x ≤ 1

2
.

Now f takes positive values on [0, 1/2]:

f(0) =
√

cos(0)− sin(0)− 1/2 =
√

1− 1/2 = 1/2.

And f takes negative values on [0, 1/2]:

f(1/2) =
√

cos(π/2)− sin(π)− 1/2 = 0− 0− 1/2 = −1/2

(Notice that f(1/3) = (
√

2−
√

3)/2− 1/2 also works)
So, because f(x) is continuous on [0, 1/2) and f(0) > 0 while f(1/2) < 0, then the
Intermediate Value Theorem guarantees the existence of a real number c ∈ (0, 1/2)
such that f(c) = 0.

1.6.4.25. ∗. Answer. We let f(x) =
1

cos2(πx)
−x− 3

2
. Then f(x) is a continuous

function on the interval (−1/2, 1/2) since cosx is continuous everywhere and non-
zero on that interval.
The function f takes negative values. For example, when x = 0:

f(0) =
1

cos2(0)
− 0− 3

2
= 1− 3

2
= −1

2
< 0.

It also takes positive values, for instance when x = 1/4:

f(1/4) =
1

(cos π/4)2
− 1

4
− 3

2

=
1

1/2
− 1 + 6

4

= 2− 7/4 = 1/4 > 0.

By the IVT there is c, 0 < c < 1/4 such that f(c) = 0, in which case

1

(cos πc)2
= c+

3

2
.
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1.6.4.26. Answer. [0, 1] is the easiest answer to find. Also acceptable are
[−2,−1] and [14, 15].

1.6.4.27. Answer. 1.91
1.6.4.28. Answer.

• If f(a) = g(a), or f(b) = g(b), then we simply take c = a or c = b.

• Suppose f(a) 6= g(a) and f(b) 6= g(b). Then f(a) < g(a) and g(b) < f(b), so
if we define h(x) = f(x) − g(x), then h(a) < 0 and h(b) > 0. Since h is the
difference of two functions that are continuous over [a, b], also h is continuous
over [a, b]. So, by the Intermediate Value Theorem, there exists some c ∈ (a, b)
with h(c) = 0; that is, f(c) = g(c).

2 · Derivatives
2.1 · Revisiting Tangent Lines
2.1.2 · Exercises

Exercises — Stage 1
2.1.2.1. Answer. If Q is to the left of the y axis, the secant line has positive
slope; if Q is to the right of the y axis, the secant line has negative slope.

2.1.2.2. Answer. 2.1.2.2.a closer
2.1.2.2.b the tangent line has the larger slope

2.1.2.3. Answer. {(a), (c), (e)}, {(b), (f)}, {(d)}

Exercises — Stage 2
2.1.2.4. Answer. Something like 1.5. A reasonable answer would be between 1
and 2.

2.1.2.5. Answer. There is only one tangent line to f(x) at P (shown in blue),
but there are infinitely many choices of Q and R (one possibility shown in red).

x

y

y = f(x)

P

Q

R
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2.1.2.6. Answer.

x

y

y = f(x)

2.2 · Definition of the Derivative
2.2.4 · Exercises

Exercises — Stage 1
2.2.4.1. Answer. (a), (d)

2.2.4.2. Answer. (e)

2.2.4.3. Answer. (b)

2.2.4.4. ∗. Answer. By definition, f(x) = x3 is differentiable at x = 0 if the
limit

lim
h→0

f(h)− f(0)

h
= lim

h→0

h3 − 0

h

exists.
2.2.4.5. Answer. x = −1 and x = 3

2.2.4.6. Answer. True. (Contrast to Question 2.2.4.7.)

2.2.4.7. Answer. In general, false. (Contrast to Question 2.2.4.6.)

2.2.4.8. Answer. metres per second

Exercises — Stage 2
2.2.4.9. Answer. y − 6 = 3(x− 1), or y = 3x+ 3

2.2.4.10. Answer.
−1

x2

2.2.4.11. ∗. Answer. By definition

f ′(0) = lim
h→0

f(h)− f(0)

h
= lim

h→0

h|h|
h

= lim
h→0
|h| = 0

In particular, the limit exists, so the derivative exists (and is equal to zero).
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2.2.4.12. ∗. Answer.
−2

(x+ 1)2

2.2.4.13. ∗. Answer.
−2x

[x2 + 3]2

2.2.4.14. Answer. 1

2.2.4.15. ∗. Answer. f ′(x) = − 2

x3

2.2.4.16. ∗. Answer. a = 4, b = −4

2.2.4.17. ∗. Answer. f ′(x) =
1

2
√

1 + x
when x > −1; f ′(x) does not exist when

x ≤ −1.

Exercises — Stage 3
2.2.4.18. Answer. v(t) = 4t3 − 2t

2.2.4.19. ∗. Answer. No, it does not.

2.2.4.20. ∗. Answer. No, it does not.

2.2.4.21. ∗. Answer. Yes, it is.

2.2.4.22. ∗. Answer. Yes, it is.

2.2.4.23. . Answer. Many answers are possible; here is one.

x

y

1

1

2.2.4.24. Answer.

p′(x) = lim
h→0

p(x+ h)− p(x)

h
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= lim
h→0

f(x+ h) + g(x+ h)− f(x)− g(x)

h

= lim
h→0

f(x+ h)− f(x) + g(x+ h)− g(x)

h

= lim
h→0

[
f(x+ h)− f(x)

h
+
g(x+ h)− g(x)

h

]
(∗) =

[
lim
h→0

f(x+ h)− f(x)

h

]
+

[
lim
h→0

g(x+ h)− g(x)

h

]
= f ′(x) + g′(x)

At step (∗), we use the limit law that lim
x→a

[F (x) +G(x)] = lim
x→a

F (x) + lim
x→a

G(x),
as long as lim

x→a
F (x) and lim

x→a
G(x) exist. Because the problem states that f ′(x) and

g′(x) exist, we know that lim
h→0

f(x+ h)− f(x)

h
and lim

h→0

g(x+ h)− g(x)

h
exist, so our

work is valid.
2.2.4.25. Answer. 2.2.4.25.a f ′(x) = 2 and g′(x) = 1
2.2.4.25.b p′(x) = 4x
2.2.4.25.c no
2.2.4.26. ∗. Answer. y = 6x− 9 and y = −2x− 1

2.2.4.27. ∗. Answer. a > 1

2.3 · Interpretations of the Derivative
2.3.3 · Exercises

Exercises — Stage 2
2.3.3.1. Answer. 2.3.3.1.a The average rate of change of the height of the water
over the single day starting at t = 0, measured in m

hr
.

2.3.3.1.b The instantaneous rate of change of the height of the water at the time
t = 0.
2.3.3.2. Answer. Profit per additional widget sold, when t widgets are being
sold. This is called the marginal profit per widget, when t widgets are being sold.

2.3.3.3. Answer. T ′(d) measures how quickly the temperature is changing per
unit change of depth, measured in degrees per metre. |T ′(d)| will probably be largest
when d is near zero, unless there are hot springs or other underwater heat sources.

2.3.3.4. Answer. Calories per additional gram, when there are w grams

2.3.3.5. Answer. The acceleration of the object.

2.3.3.6. Answer. Degrees Celsius temperature change per joule of heat added.
(This is closely related to heat capacity and to specific heat — there’s a nice expla-
nation of this on Wikipedia.)

2.3.3.7. Answer. Number of bacteria added per degree. That is: the number of
extra bacteria (possibly negative) that will exist in the population by raising the
temperature by one degree.
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Exercises — Stage 3
2.3.3.8. Answer. 360R′(t)

2.3.3.9. Answer. If P ′(t) is positive, your sample is below the ideal temperature,
and if P ′(t) is negative, your sample is above the ideal temperature. If P ′(t) = 0,
you don’t know whether the sample is exactly at the ideal temperature, or way
above or below it with no living bacteria.

2.4 · Arithmetic of Derivatives - a Differentiation Tool-
box
2.4.2 · Exercises

Exercises — Stage 1
2.4.2.1. Answer. True
2.4.2.2. Answer. False, in general.

2.4.2.3. Answer. True
2.4.2.4. Answer. If you’re creative, you can find lots of ways to differentiate!

• Constant multiple: g′(x) = 3f ′(x).

• Product rule: g′(x) = d
dx
{3}f(x) + 3f ′(x) = 0f(x) + 3f ′(x) = 3f ′(x).

• Sum rule: g′(x) = d
dx
{f(x) + f(x) + f(x)} = f ′(x) + f ′(x) + f ′(x) = 3f ′(x).

• Quotient rule: g′(x) = d
dx

{
f(x)

1
3

}
=

1
3
f ′(x)−f(x)(0)

1
9

=
1
3
f ′(x)
1
9

= 9
(

1
3

)
f ′(x) =

3f ′(x).

All rules give g′(x) = 3f ′(x).

Exercises — Stage 2
2.4.2.5. Answer. f ′(x) = 6x+ 2√

x

2.4.2.6. Answer. −36x+ 24
√
x+ 20√

x
− 45

2.4.2.7. ∗. Answer. y − 1
8

= 3
4
·
(
x− 1

2

)
, or y = 3

4
x− 1

4

2.4.2.8. ∗. Answer. 2.4.2.8.a 4
2.4.2.8.b left
2.4.2.8.c decreasing

2.4.2.9. ∗. Answer.
1

(x+ 1/2)2 , or
4

(2x+ 1)2

2.4.2.10. Answer. −72

2.4.2.11. Answer. y − 1
2

= −1
8
(x− 1), or y = −1

8
x+ 5

8

Exercises — Stage 3
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2.4.2.12. Answer. b′(t)− d′(t)
2.4.2.13. ∗. Answer. {(1, 3), (3, 27)}

2.4.2.14. ∗. Answer.
1

2
√

100180

2.4.2.15. Answer. 20t+ 7 square metres per second.

2.4.2.16. Answer. 0

2.4.2.17. Answer. First expression, f(x) =
g(x)

h(x)
:

f ′(x) =
h(x)g′(x)− g(x)h′(x)

h2(x)

Second expresson, f(x) =
g(x)

k(x)
· k(x)

h(x)
:

f ′(x) =

(
k(x)g′(x)− g(x)k′(x)

k2(x)

)(
k(x)

h(x)

)
+

(
g(x)

k(x)

)(
h(x)k′(x)− k(x)h′(x)

h2(x)

)
=
k(x)g′(x)− g(x)k′(x)

k(x)h(x)
+
g(x)h(x)k′(x)− g(x)k(x)h′(x)

k(x)h2(x)

=
h(x)k(x)g′(x)− h(x)g(x)k′(x)

k(x)h2(x)
+
g(x)h(x)k′(x)− g(x)k(x)h′(x)

k(x)h2(x)

=
h(x)k(x)g′(x)− h(x)g(x)k′(x) + g(x)h(x)k′(x)− g(x)k(x)h′(x)

k(x)h2(x)

=
h(x)k(x)g′(x)− g(x)k(x)h′(x)

k(x)h2(x)

=
h(x)g′(x)− g(x)h′(x)

h2(x)

and this is exactly what we got from differentiating the first expression.

2.6 · Using the Arithmetic of Derivatives – Examples
2.6.2 · Exercises

Exercises — Stage 1
2.6.2.1. Answer. In the quotient rule, there is a minus, not a plus. Also, 2(x+
1) + 2x is not the same as 2(x+ 1).
The correct version is:

f(x) =
2x

x+ 1

f ′(x) =
2(x+ 1)−2x

(x+ 1)2
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=
2

(x+ 1)2

2.6.2.2. Answer. False

Exercises — Stage 2
2.6.2.3. Answer. 4x(x2 + 2)(x2 + 3)

2.6.2.4. Answer. 12t3 + 15t2 + 1
t2

2.6.2.5. Answer. x′(y) = 8y3 + 2y

2.6.2.6. Answer. T ′(x) =
(x2 + 3)

(
1

2
√
x

)
− (
√
x+ 1)(2x)

(x2 + 3)2

2.6.2.7. ∗. Answer.
21− 4x− 7x2

(x2 + 3)2

2.6.2.8. Answer. 7

2.6.2.9. Answer.
3x4 + 30x3 − 2x− 5

(x2 + 5x)2

2.6.2.10. ∗. Answer.
−3x2 + 12x+ 5

(2− x)2

2.6.2.11. ∗. Answer.
−22x

(3x2 + 5)2

2.6.2.12. ∗. Answer.
4x3 + 12x2 − 1

(x+ 2)2

2.6.2.13. ∗. Answer. The derivative of the function is

(1− x2) · 1
2
√
x
−√x · (−2x)

(1− x2)2
=

(1− x2)− 2x · (−2x)

2
√
x(1− x2)2

The derivative is undefined if either x < 0 or x = 0,±1 (since the square-root is
undefined for x < 0 and the denominator is zero when x = 0, 1,−1. Putting this
together — the derivative exists for x > 0, x 6= 1.

2.6.2.14. Answer.
(

3
5
x
−4
5 + 5x

−2
3

)
(3x2 + 8x− 5) + (3 5

√
x+ 15 3

√
x+ 8) (6x+ 8)

2.6.2.15. Answer. f ′(x) = (2x + 5)(x−1/2 + x−2/3) + (x2 + 5x +
1)
(−1

2
x−3/2 − 2

3
x−5/3

)
2.6.2.16. Answer. x = −5 and x = 1

Exercises — Stage 3
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2.6.2.17. ∗. Answer. y = x− 1

4

2.6.2.18. Answer.

y = 4x− 4 and y = −2x− 1

2.6.2.19. ∗. Answer. 2015 · 22014

2.7 · Derivatives of Exponential Functions
2.7.3 · Exercises

Exercises — Stage 1
2.7.3.1. Answer. A-(a) and (d), B-(e), C-(c), D-(b)

2.7.3.2. Answer. (b), (d), (e)

2.7.3.3. Answer. False
2.7.3.4. Answer. increasing

Exercises — Stage 2

2.7.3.5. Answer.
(x− 1)ex

2x2

2.7.3.6. Answer. 2e2x

2.7.3.7. Answer. ea+x

2.7.3.8. Answer. x > −1

2.7.3.9. Answer. −e−x

2.7.3.10. Answer. 2e2x

2.7.3.11. Answer. When t is in the interval (−2, 0).
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Exercises — Stage 3
2.7.3.12. Answer. g′(x) = [f(x) + f ′(x)]ex

2.7.3.13. Answer. (b) and (d)

2.7.3.14. ∗. Answer. a = b =
e

2

2.8 · Derivatives of Trigonometric Functions
2.8.8 · Exercises

Exercises — Stage 1
2.8.8.1. Answer.

x

y

π−π

y = sinx

y = cosx

The graph f(x) = sinx has horizontal tangent lines precisely at those points where
cosx = 0.
2.8.8.2. Answer.

x

y

π−π

y = sinx

y = cosx

The graph f(x) = sinx has maximum slope at those points where cosx has a
maximum. That is, where cosx = 1.

Exercises — Stage 2
2.8.8.3. Answer. f ′(x) = cos x− sinx+ sec2 x

2.8.8.4. Answer. x = π
4

+ πn, for any integer n.

2.8.8.5. Answer. 0

2.8.8.6. Answer. f ′(x) = 2(cos2 x− sin2 x)

2.8.8.7. Answer. f ′(x) = ex(cotx− csc2 x)

2.8.8.8. Answer. f ′(x) =
2 + 3 secx+ 2 sinx− 2 tanx secx+ 3 sinx tanx

(cosx+ tanx)2

2.8.8.9. Answer. f ′(x) =
5 secx tanx− 5 secx− 1

ex
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2.8.8.10. Answer. f ′(x) = (ex + cotx)(30x5 + cscx cotx) + (ex − csc2 x)(5x6 −
cscx)

2.8.8.11. Answer. − sin(θ)

2.8.8.12. Answer. f ′(x) = − cosx− sinx

2.8.8.13. Answer.
(

cos θ + sin θ

cos θ − sin θ

)2

+ 1

2.8.8.14. ∗. Answer. a = 0, b = 1.

2.8.8.15. ∗. Answer. y − π = 1 · (x− π/2)

Exercises — Stage 3
2.8.8.16. ∗. Answer. − sin(2015)

2.8.8.17. ∗. Answer. −
√

3/2

2.8.8.18. ∗. Answer. −1

2.8.8.19. Answer.

tan θ =
sin θ

cos θ

So, using the quotient rule,

d

dθ
{tan θ} =

cos θ cos θ − sin θ(− sin θ)

cos2 θ
=

cos2 θ + sin2 θ

cos2 θ

=

(
1

cos θ

)2

= sec2 θ

2.8.8.20. ∗. Answer. a = −2
3
, b = 2

2.8.8.21. ∗. Answer. All values of x except x = π
2

+ nπ, for any integer n.

2.8.8.22. ∗. Answer. The function is differentiable whenever x2 + x − 6 6= 0
since the derivative equals

10 cos(x) · (x2 + x− 6)− 10 sin(x) · (2x+ 1)

(x2 + x− 6)2
,

which is well-defined unless x2 +x−6 = 0. We solve x2 +x−6 = (x−2)(x+3) = 0,
and get x = 2 and x = −3. So, the function is differentiable for all real values x
except for x = 2 and for x = −3.

2.8.8.23. ∗. Answer. The function is differentiable whenever sin(x) 6= 0 since
the derivative equals

sin(x) · (2x+ 6)− cos(x) · (x2 + 6x+ 5)

(sinx)2
,

which is well-defined unless sinx = 0. This happens when x is an integer multiple

604



Answers to Exercises

of π. So, the function is differentiable for all real values x except x = nπ, where n
is any integer.

2.8.8.24. ∗. Answer. y − 1 = 2 · (x− π/4)

2.8.8.25. ∗. Answer. y = 2x+ 2

2.8.8.26. Answer. x = 3π
4

+ nπ for any integer n.

2.8.8.27. Answer. f ′(0) = 0

2.8.8.28. ∗. Answer. h′(x) =

{
cosx x > 0

− cosx x < 0
It exists for all x 6= 0.

2.8.8.29. ∗. Answer. 2.8.8.29.iii
2.8.8.30. ∗. Answer. 2

2.9 · One More Tool – the Chain Rule
2.9.4 · Exercises

Exercises — Stage 1
2.9.4.1. Answer. 2.9.4.1.a dK

dU
is negative

2.9.4.1.b dU
dO

is negative
2.9.4.1.c dK

dO
is positive

2.9.4.2. Answer. negative

Exercises — Stage 2
2.9.4.3. Answer. −5 sin(5x+ 3)

2.9.4.4. Answer. 10x(x2 + 2)4

2.9.4.5. Answer. 17(4k4 + 2k2 + 1)16 · (16k3 + 4k)

2.9.4.6. Answer. −2x
(x2−1)

√
x4−1

2.9.4.7. Answer. −ecos(x2) · sin(x2) · 2x
2.9.4.8. ∗. Answer. −4

2.9.4.9. ∗. Answer. [cosx− x sinx]ex cos(x)

2.9.4.10. ∗. Answer. [2x− sinx]ex
2+cos(x)

2.9.4.11. ∗. Answer. 3

2
√
x−1
√
x+2

3

2.9.4.12. ∗. Answer. f ′(x) = − 2

x3
+

x√
x2 − 1

is defined for x in (−∞, 1)∪(1,∞).

2.9.4.13. ∗. Answer. f ′(x) =
(1 + x2)(5 cos 5x)− (sin 5x)(2x)

(1 + x2)2

605



Answers to Exercises

2.9.4.14. Answer. 2e2x+7 sec(e2x+7) tan(e2x+7)

2.9.4.15. Answer. y = 1

2.9.4.16. Answer. t = 2
3
and t = 4

2.9.4.17. Answer. 2e sec2(e)

2.9.4.18. ∗. Answer. y′ = 4e4x tanx+ e4x sec2 x

2.9.4.19. ∗. Answer.
3

(1 + e3)2

2.9.4.20. ∗. Answer. 2 sin(x) · cos(x) · esin2(x)

2.9.4.21. ∗. Answer. cos (e5x) · e5x · 5

2.9.4.22. ∗. Answer. −ecos(x2) · sin(x2) · 2x

2.9.4.23. ∗. Answer. y′ = − sin
(
x2 +

√
x2 + 1

)(
2x+

x√
x2 + 1

)
2.9.4.24. ∗. Answer. y′ = 2x cos2 x− 2(1 + x2) sinx cosx

2.9.4.25. ∗. Answer. y′ =
e3x(3x2 − 2x+ 3)

(1 + x2)2

2.9.4.26. ∗. Answer. −40

2.9.4.27. ∗. Answer. (1, 1) and (−1,−1).

2.9.4.28. Answer. Always

2.9.4.29. Answer. ex sec3(5x− 7)(1 + 15 tan(5x− 7))

2.9.4.30. ∗. Answer. e2x cos 4x+ 2xe2x cos 4x− 4xe2x sin 4x

Exercises — Stage 3
2.9.4.31. Answer. t =

π

4

2.9.4.32. ∗. Answer. Let f(x) = ex+x2 and g(x) = 1+x. Then f(0) = g(0) = 1.
f ′(x) = (1 + 2x)ex+x2 and g′(x) = 1. When x > 0,

f ′(x) = (1 + 2x)ex+x2 > 1 · ex+x2 = ex+x2 > e0+02 = 1 = g′(x).

Since f(0) = g(0), and f ′(x) > g′(x) for all x > 0, that means f and g start at the
same place, but f always grows faster. Therefore, f(x) > g(x) for all x > 0.

2.9.4.33. Answer. cos(2x) = cos2 x− sin2 x

2.9.4.34. Answer.

f ′(x) =
1

3

(√
x3 − 9 tanx

ecscx2

) 2
3

·
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ecscx2
(
− 2x

√
x3−9 tanx cos(x2)

sin2(x2)
− 3x2 tanx

2
√
x3−9

−
√
x3−9 sec2 x

)
(tan2 x)(x3 − 9)

2.9.4.35. Answer. 2.9.4.35.a

x

y

(1,0)
t=π/2

(−1,0)
t=3π/2

(0,1)
t=0,π,2π

(
− 1√

2
, 1
2

)
t=5π/4,7π/4

(
1√
2
, 1
2

)
t=π/4,3π/4

The particle traces the curve y = 1− x2 restricted to domain [−1, 1]. At t = 0, the
particle is at the top of the curve, (1, 0). Then it moves to the right, and goes back
and forth along the curve, repeating its path every 2π units of time.
2.9.4.35.b

√
3

2.10 · The Natural Logarithm
2.10.3 · Exercises

Exercises — Stage 1
2.10.3.1. Answer. Ten speakers: 13 dB. One hundred speakers: 23 dB.

2.10.3.2. Answer. 20 log 2 ≈ 14 years

2.10.3.3. Answer. (b)

Exercises — Stage 2
2.10.3.4. Answer. f ′(x) =

1

x

2.10.3.5. Answer. f ′(x) =
2

x

2.10.3.6. Answer. f ′(x) =
2x+ 1

x2 + x

2.10.3.7. Answer. f ′(x) =
1

x log 10

2.10.3.8. ∗. Answer. y′ =
1− 3 log x

x4
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2.10.3.9. Answer.
d

dθ
log(sec θ) = tan θ

2.10.3.10. Answer. f ′(x) =
−ecos(log x) sin(log x)

x

2.10.3.11. ∗. Answer. y′ =
2x+ 4x3

2
√
x4+1

x2 +
√
x4 + 1

2.10.3.12. ∗. Answer.
tanx

2
√
− log(cos x)

2.10.3.13. ∗. Answer.
√
x2 + 4 + x

x
√
x2 + 4 + x2 + 4

=
1√

x2 + 4

2.10.3.14. ∗. Answer. g′(x) =
2xex

2√
1 + x4 + 2x3

ex2
√

1 + x4 + 1 + x4

2.10.3.15. ∗. Answer.
4

3

2.10.3.16. Answer. f ′(x) =
3x

x2 + 5
− 2x3

x4 + 10

2.10.3.17. Answer.
40

3

2.10.3.18. ∗. Answer. g′(x) = πx log π + πxπ−1

2.10.3.19. Answer. f ′(x) = xx(log x+ 1)

2.10.3.20. ∗. Answer. xx(log x+ 1) +
1

x log 10

2.10.3.21. Answer. f ′(x) =
1

4

(
4

√
(x4+12)(x4−x2+2)

x3

)(
4x3

x4+12
+

4x3 − 2x

x4−x2+2
− 3

x

)
2.10.3.22. Answer.

f ′(x) = (x+ 1)(x2 + 1)2(x3 + 1)3(x4 + 1)4(x5 + 1)5[
1

x+ 1
+

4x

x2 + 1
+

9x2

x3 + 1
+

16x3

x4 + 1
+

25x4

x5 + 1

]

2.10.3.23. Answer.
(

x2 + 2x+ 3

3x4 + 4x3 + 5

)(
1

x2 + 2x+ 3
− 6x2

3x4 + 4x3 + 5
− 1

2(x+ 1)2

)
2.10.3.24. ∗. Answer. f ′(x) = (cos x)sinx [(cosx) log(cosx)− sinx tanx]

2.10.3.25. ∗. Answer.
d

dx
{(tanx)x} = (tanx)x

(
log(tan x) +

x

sinx cosx

)
2.10.3.26. ∗. Answer. 2x(x2 + 1)x

2+1(1 + log(x2 + 1))
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2.10.3.27. ∗. Answer. f ′(x) = (x2 + 1)sin(x) ·
(
cosx · log(x2 + 1) + 2x sinx

x2+1

)
2.10.3.28. ∗. Answer. xcos3(x) ·

(
−3 cos2(x) sin(x) log(x) +

cos3(x)

x

)

2.10.3.29. ∗. Answer. (3 + sin(x))x
2−3 ·

[
2x log(3 + sin(x)) +

(x2 − 3) cos(x)

3 + sin(x)

]

Exercises — Stage 3

2.10.3.30. Answer.
d

dx

{
[f(x)]g(x)

}
= [f(x)]g(x)

[
g′(x) log(f(x)) +

g(x)f ′(x)

f(x)

]
2.10.3.31. Answer. Let g(x) := log(f(x)). Notice g′(x) = f ′(x)

f(x)
.

In order to show that the two curves have horizontal tangent lines at the same
values of x, we will show two things: first, that if f(x) has a horizontal tangent line
at some value of x, then also g(x) has a horizontal tangent line at that value of x.
Second, we will show that if g(x) has a horizontal tangent line at some value of x,
then also f(x) has a horizontal tangent line at that value of x.
Suppose f(x) has a horizontal tangent line where x = x0 for some point x0. This
means f ′(x0) = 0. Then g′(x0) = f ′(x0)

f(x0)
. Since f(x0) 6= 0, f ′(x0)

f(x0)
= 0

f(x0)
= 0, so g(x)

also has a horizontal tangent line when x = x0. This shows that whenever f has a
horizontal tangent line, g has one too.
Now suppose g(x) has a horizontal tangent line where x = x0 for some point x0.
This means g′(x0) = 0. Then g′(x0) = f ′(x0)

f(x0)
= 0, so f ′(x0) exists and is equal to

zero. Therefore, f(x) also has a horizontal tangent line when x = x0. This shows
that whenever g has a horizontal tangent line, f has one too.

2.11 · Implicit Differentiation
2.11.2 · Exercises

Exercises — Stage 1
2.11.2.1. Answer. (a) and (b)

2.11.2.2. Answer. At (0, 4) and (0,−4),
dy

dx
is 0; at (0, 0),

dy

dx
does not exist.

2.11.2.3. Answer. (a) no

(b) no
dy

dx
= −x

y
. It is not possible to write

dy

dx
as a function of x, because (as stated

in (b)) one value of x may give two values of
dy

dx
. For instance, when x = π/4, at

the point
(
π

4
,

1√
2

)
the circle has slope

dy

dx
= −1, while at the point

(
π

4
,
−1√

2

)
the

circle has slope
dy

dx
= 1.
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Exercises — Stage 2
2.11.2.4. ∗. Answer.

dy

dx
= −e

x + y

ey + x

2.11.2.5. ∗. Answer.
dy

dx
=

y2 + 1

ey − 2xy

2.11.2.6. ∗. Answer. At (x, y) = (4, 1), y′ = − 1

π + 1
. At (x, y) = (−4, 1),

y′ =
1

π − 1
.

2.11.2.7. ∗. Answer. −2x sin(x2 + y) + 3x2

4y3 + sin(x2 + y)

2.11.2.8. ∗. Answer. At (x, y) = (1, 0), y′ = −6, and at (x, y) = (−5, 0),
y′ = 6

25
.

2.11.2.9. ∗. Answer. dy
dx

=
cos(x+ y)− 2x

2y − cos(x+ y)

2.11.2.10. ∗. Answer. At (x, y) = (2, 0) we have y′ = −3
2
, and at (x, y) =

(−4, 0) we have y′ = −3
4
.

2.11.2.11. Answer.

(√
3

2
,
−1

2
√

3

)
,

(
−
√

3

2
,

1

2
√

3

)

2.11.2.12. ∗. Answer. −28

3

2.11.2.13. ∗. Answer.
dy

dx
= − 2xy2 + sin y

2x2y + x cos y

Exercises — Stage 3
2.11.2.14. ∗. Answer. At (x, y) = (2, 0), y′ = −2. At (x, y) = (−2, 0), y′ = 2.

2.11.2.15. Answer. x = 0, x = 1, x = −1

2.12 · Inverse Trigonometric Functions
2.12.2 · Exercises

Exercises — Stage 1
2.12.2.1. Answer. (a) (−∞,∞)
(b) all integer multiples of π
(c) [−1, 1]

2.12.2.2. Answer. False
2.12.2.3. Answer.
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x

y

y = f−1(x)

1

2.12.2.4. Answer.

• If |a| > 1, there is no point where the curve has horizontal tangent line.

• If |a| = 1, the curve has a horizontal tangent line where x = 2πn+
aπ

2
for any

integer n.

• If |a| < 1, the curve has a horizontal tangent line where x = 2πn + arcsin(a)
or x = (2n+ 1)π − arcsin(a) for any integer n.

2.12.2.5. Answer. Domain: x = ±1. Not differentiable anywhere.

Exercises — Stage 2
2.12.2.6. Answer. f ′(x) =

1√
9− x2

; domain of f is [−3, 3].

2.12.2.7. Answer. f ′(t) =
− t2−1√

1−t2 − 2t arccos t

(t2 − 1)2
, and the domain of f(t) is

(−1, 1).

2.12.2.8. Answer. The domain of f(x) is all real numbers, and f ′(x) =
−2x

(x2 + 2)
√
x4 + 4x2 + 3

.

2.12.2.9. Answer. f ′(x) =
1

a2 + x2
and the domain of f(x) is all real numbers.

2.12.2.10. Answer. f ′(x) = arcsin x, and the domain of f(x) is [−1, 1].

2.12.2.11. Answer. x = 0

2.12.2.12. Answer.
d

dx
{arcsinx+ arccosx} = 0
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2.12.2.13. ∗. Answer. y′ =
−1

x2

√
1− 1

x2

2.12.2.14. ∗. Answer. y′ =
−1

1 + x2

2.12.2.15. ∗. Answer. 2x arctanx+ 1

2.12.2.16. Answer. Let θ = arctanx. Then θ is the angle of a right triangle
that gives tan θ = x. In particular, the ratio of the opposite side to the adjacent
side is x. So, we have a triangle that looks like this:

θ

x

1

√
x2 + 1

where the length of the hypotenuse came from the Pythagorean Theorem. Now,

sin (arctanx) = sin θ =
opp
hyp

=
x√
x2 + 1

From here, we differentiate using the quotient rule:

d

dx

{
x√
x2 + 1

}
=

√
x2 + 1− x 2x

2
√
x2+1

x2 + 1

=

(√
x2 + 1− x2√

x2+1

x2 + 1

)
·
√
x2 + 1√
x2 + 1

=
(x2 + 1)− x2

(x2 + 1)3/2

=
1

(x2 + 1)3/2
= (x2 + 1)−3/2

2.12.2.17. Answer. Let θ = arcsinx. Then θ is the angle of a right triangle that
gives sin θ = x. In particular, the ratio of the opposite side to the hypotenuse is x.
So, we have a triangle that looks like this:
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θ

x

√
1− x2

1

where the length of the adjacent side came from the Pythagorean Theorem. Now,

cot (arcsinx) = cot θ =
adj
opp

=

√
1− x2

x

From here, we differentiate using the quotient rule:

d

dx

{√
1− x2

x

}
=
x −2x

2
√

1−x2 −
√

1− x2

x2

=
−x2 − (1− x2)

x2
√

1− x2

=
−1

x2
√

1− x2

2.12.2.18. ∗. Answer. (x, y) = ±
(√

3
2
, π

3

)
2.12.2.19. Answer. x =

(2n+ 1)π

2
for any integer n

Exercises — Stage 3
2.12.2.20. ∗. Answer. g′(y) =

1

1− sin g(y)

2.12.2.21. ∗. Answer.
1

2

2.12.2.22. ∗. Answer.
1

e+ 1

2.12.2.23. Answer. f ′(x) = [sinx + 2]arcsecx

(
log[sinx+ 2]

|x|
√
x2 − 1

+
arcsecx · cosx

sinx+ 2

)
.

The domain of f(x) is |x| ≥ 1.

2.12.2.24. Answer. The function
1√

x2 − 1
exists only for those values of x with

x2 − 1 > 0: that is, the domain of
1√

x2 − 1
is |x| > 1. However, the domain of

arcsine is |x| ≤ 1. So, there is not one single value of x where arcsinx and
1√

x2 − 1
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are both defined.
If the derivative of arcsin(x) were given by

1√
x2 − 1

, then the derivative of arcsin(x)

would not exist anywhere, so we would probably just write “derivative does not
exist,” instead of making up a function with a mismatched domain. Also, the
function f(x) = arcsin(x) is a smooth curve–its derivative exists at every point
strictly inside its domain. (Remember not all curves are like this: for instance,
g(x) = |x| does not have a derivative at x = 0, but x = 0 is strictly inside its

domain.) So, it’s a pretty good bet that the derivative of arcsine is not
1√

x2 − 1
.

2.12.2.25. Answer.
1

2

2.12.2.26. Answer. f−1(7) = −25

4

2.12.2.27. Answer. f(0) = −7

2.12.2.28. Answer. y′ =
2x
√

1− (x+ 2y)2 − 1

2− 2y
√

1− (x+ 2y)2
, or equivalently, y′ =

2x cos(x2 + y2)− 1

2− 2y cos(x2 + y2)

2.13 · The Mean Value Theorem
2.13.5 · Exercises

Exercises — Stage 1
2.13.5.1. Answer. The caribou spent at least about 71 and a half hours travelling
during its migration (probably much more) in one year.

2.13.5.2. Answer. At some point during the day, the crane was travelling at
exactly 10 kph.

2.13.5.3. Answer. One possible answer:
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x

y

a bc

Another possible answer:

x

y

a bc

2.13.5.4. Answer. One possible answer: f(x) =

{
0 x 6= 10

10 x = 10

Another answer: f(x) =

{
10 x 6= 0

0 x = 0

Yet another answer: f(x) =


5 x 6= 0, 10

10 x = 10

0 x = 0

2.13.5.5. Answer. (a) No such function is possible: Rolle’s Theorem guarantees
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f ′(c) = 0 for at least one point c ∈ (1, 2).
For the other functions, examples are below, but many answers are possible.

x

y

1 2

(b)

x

y

1 2

(c)

x

y

1 2

(d)

2.13.5.6. Answer. The function f(x) is continuous over all real numbers, but it is
only differentiable when x 6= 0. So, if we want to apply the MVT, our interval must
consist of only positive numbers or only negative numbers: the interval (−4, 13) is
not valid.
It is possible to use the mean value theorem to prove what we want: if a = 1 and
b = 144, then f(x) is differentiable over the interval (1, 144) (since 0 is not contained
in that interval), and f(x) is continuous everywhere, so by the mean value theorem

there exists some point c where f ′(x) =

√
|144| −

√
|1|

144− 1
=

11

143
=

1

13
.

That being said, an easier way to prove that a point exists is to simply find it–
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without using the MVT. When x > 0, f(x) =
√
x, so f ′(x) =

1

2
√
x
. Then

f ′
(

169

4

)
=

1

13
.

Exercises — Stage 2
2.13.5.7. ∗. Answer. We note that f(0) = f(2π) = 0. Then using the Mean
Value Theorem (note that the function is differentiable for all real numbers), we
conclude that there exists c in (0, 2π) such that

f ′(c) =
f(2π)− f(0)

2π − 0
= 0.

2.13.5.8. ∗. Answer. We note that f(0) = f(1) = 0. Then using the Mean
Value Theorem (note that the function is differentiable for all real numbers), we get
that there exists c ∈ (0, 1) such that

f ′(c) =
f(1)− f(0)

1− 0
= 0.

2.13.5.9. ∗. Answer. We note that f(0) = f(2π) =
√

3 + π2. Then using the
Mean Value Theorem (note that the function is differentiable for all real numbers
since 3 + sin x > 0), we get that there exists c ∈ (0, 2π) such that

f ′(c) =
f(2π)− f(0)

2π − 0
= 0.

2.13.5.10. ∗. Answer. We note that f(0) = 0 and f(π/4) = 0. Then using the
Mean Value Theorem (note that the function is differentiable for all real numbers),
we get that there exists c ∈ (0, π/4) such that

f ′(c) =
f(π/4)− f(0)

π/4− 0
= 0.

2.13.5.11. Answer. 1

2.13.5.12. Answer. 2

2.13.5.13. Answer. 1

2.13.5.14. Answer. 1

2.13.5.15. ∗. Answer. 2.13.5.15.a

f ′(x) = 15x4 − 30x2 + 15 = 15
(
x4 − 2x2 + 1

)
= 15

(
x2 − 1

)2 ≥ 0

The derivative is nonnegative everywhere. The only values of x for which f ′(x) = 0
are 1 and −1, so f ′(x) > 0 for every x in (−1, 1).
2.13.5.15.b If f(x) has two roots a and b in [−1, 1], then by Rolle’s Theorem, f ′(c) =
0 for some x strictly between a and b. But since a and b are in [−1, 1], and c is
between a and b, that means c is in (−1, 1); however, we know for every c in (−1, 1),
f ′(c) > 0, so this can’t happen. Therefore, f(x) does not have two roots a and b in
[−1, 1]. This means f(x) has at most one root in [−1, 1].

617



Answers to Exercises

2.13.5.16. ∗. Answer. log

(
eT − 1

T

)
2.13.5.17. Answer. See the solution for the argument that arcsecx = C −
arccscx for some constant C.
The constant C =

π

2
.

Exercises — Stage 3
2.13.5.18. ∗. Answer. Since e−f(x) is always positive (regardless of the value of
f(x)),

f ′(x) =
1

1 + e−f(x)
<

1

1 + 0
= 1

for every x.
Since f ′(x) exists for every x, we see that f is differentiable, so the Mean Value
Theorem applies. If f(100) is greater than or equal to 100, then by the Mean Value
Theorem, there would have to be some c between 0 and 100 such that

f ′(c) =
f(100)− f(0)

100
≥ 100

100
= 1

Since f ′(x) ≤ 1 for every x, there is no value of c as described. Therefore, it is not
possible that f(100) ≥ 100. So, f(100) < 100.

2.13.5.19. Answer. Domain of f−1(x): (−∞,∞) Interval where f is one–to–one,
and range of f−1(x): (−∞,∞)

2.13.5.20. Answer. One–to–one interval, and range of f−1:
[
−2π

3
, 2π

3

]
Domain

of f−1:
[
−
(
π
3

+
√

3
2

)
,
(
π
3

+
√

3
2

)]
2.13.5.21. Answer. Define h(x) = f(x)−g(x), and notice h(a) = f(a)−g(a) < 0
and h(b) = f(b) − g(b) > 0. Since h is the difference of two functions that are
continuous over [a, b] and differentiable over (a, b), also h is continuous over [a, b]
and differentiable over (a, b). So, by the Mean Value Theorem, there exists some
c ∈ (a, b) with

h′(c) =
h(b)− h(a)

b− a
Since (a, b) is an interval, b > a, so the denominator of the above expression is
positive; since h(b) > 0 > h(a), also the numerator of the above expression is
positive. So, h′(c) > 0 for some c ∈ (a, b). Since h′(c) = f ′(c) − g′(c), we conclude
f ′(c) > g′(c) for some c ∈ (a, b).

2.13.5.22. Answer. 3

2.13.5.23. Answer. 2

2.14 · Higher Order Derivatives
2.14.2 · Exercises
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Exercises — Stage 1
2.14.2.1. Answer. ex

2.14.2.2. Answer. 2.14.2.2.ii, 2.14.2.2.iv

2.14.2.3. Answer.
3

15!

2.14.2.4. Answer. The derivative
dy

dx
is

11

4
only at the point (1, 3): it is not

constantly
11

4
, so it is wrong to differentiate the constant

11

4
to find

d2y

dx2
. Below is

a correct solution.

−28x+ 2y + 2xy′ + 2yy′ = 0

Plugging in x = 1, y = 3:

−28 + 6 + 2y′ + 6y′ = 0

y′ =
11

4
at the point (1, 3)

Differentiating the equation −28x+ 2y + 2xy′ + 2yy′ = 0:

−28 + 2y′ + 2y′ + 2xy′′ + 2y′y′ + 2yy′′ = 0

4y′ + 2(y′)2 + 2xy′′ + 2yy′′ = 28

At the point (1, 3), y′ =
11

4
. Plugging in:

4

(
11

4

)
+ 2

(
11

4

)2

+ 2(1)y′′ + 2(3)y′′ = 28

y′′ =
15

64

Exercises — Stage 2
2.14.2.5. Answer. f ′′(x) =

1

x

2.14.2.6. Answer.
d2

dx2
{arctanx} =

−2x

(1 + x2)2

2.14.2.7. Answer.
d2y

dx2
=
−1

y3

2.14.2.8. Answer. 0

2.14.2.9. Answer.
d3

dx3
{log(5x2 − 12)} =

100x(5x2 + 36)

(5x2 − 12)3

2.14.2.10. Answer. speeding up
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2.14.2.11. Answer. slower
2.14.2.12. Answer. −4

2.14.2.13. Answer. (a) true
(b) true
(c) false

Exercises — Stage 3
2.14.2.14. Answer. (ii)

2.14.2.15. Answer. f (n) = 2x(log 2)n

2.14.2.16. Answer. n = 4

2.14.2.17. ∗. Answer.

• 2.14.2.17.a f ′(x) = (1 + 2x)ex+x2 f ′′(x) = (4x2 + 4x+ 3)ex+x2 h′(x) = 1 + 3x
h′′(x) = 3

• 2.14.2.17.b f(0) = h(0) = 1; f ′(0) = h′(0) = 1; f ′′(0) = h′′(0) = 3

• 2.14.2.17.c f and h “start at the same place”, since f(0) = h(0). Also f ′(0) =
h′(0), and f ′′(x) = (4x2+4x+3)ex+x2 > 3ex+x2 > 3 = h′′(x) when x > 0. Since
f ′(0) = h′(0), and since f ′ grows faster than h′ for positive x, we conclude
f ′(x) > h′(x) for all positive x. Now we can conclude that (since f(0) = h(0)
and f grows faster than h when x > 0) also f(x) > h(x) for all positive x.

2.14.2.18. ∗. Answer.

a y′(1) =
4

13

b

2.14.2.19. Answer.

• 2.14.2.19.a g′′(x) = [f(x) + 2f ′(x) + f ′′(x)]ex

• 2.14.2.19.b g′′′(x) = [f(x) + 3f ′(x) + 3f ′′(x) + f ′′′(x)]ex

• 2.14.2.19.c g(4)(x) = [f(x) + 4f ′(x) + 6f ′′(x) + 4f ′′′(x) + f (4)(x)]ex
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2.14.2.20. Answer. m+ n

2.14.2.21. Answer. 2

2.14.2.22. ∗. Answer. 2.14.2.22.a In order to make f(x) a little more tractable,

let’s change the format. Since |x| =
{

x x ≥ 0

−x x < 0
, then:

f(x) =

{
−x2 x < 0

x2 x ≥ 0.

Now, we turn to the definition of the derivative to figure out whether f ′(0) exists.

f ′(0) = lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

f(h)− 0

h
= lim

h→0

f(h)

h
if it exists.

Since f looks different to the left and right of 0, in order to evaluate this limit, we
look at the corresponding one-sided limits. Note that when h approaches 0 from
the right, h > 0 so f(h) = h2. By contrast, when h approaches 0 from the left,
h < 0 so f(h) = −h2.

lim
h→0+

f(h)

h
= lim

h→0+

h2

h
= lim

h→0+
h = 0

lim
h→0−

f(h)

h
= lim

h→0−

−h2

h
= lim

h→0−
−h = 0

Since both one-sided limits exist and are equal to 0,

lim
h→0

f(0 + h)− f(0)

h
= 0

and so f is differentiable at x = 0 and f ′(0) = 0.
2.14.2.22.b From 2.14.2.22.a, f ′(0) = 0 and

f(x) =

{
−x2 x < 0

x2 x ≥ 0.

So,

f ′(x) =

{
−2x x < 0

2x x ≥ 0.

Then, we know the second derivative of f everywhere except at x = 0:

f ′′(x) =


−2 x < 0

?? x = 0

2 x > 0.

So, whenever x 6= 0, f ′′(x) exists. To investigate the differentiability of f ′(x) when
x = 0, again we turn to the definition of a derivative. If

lim
h→0

f ′(0 + h)− f ′(0)

h
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exists, then f ′′(0) exists.

lim
h→0

f ′(0 + h)− f ′(0)

h
= lim

h→0

f ′(h)− 0

h
= lim

h→0

f ′(h)

h

Since f(h) behaves differently when h is greater than or less than zero, we look at
the one-sided limits.

lim
h→0+

f ′(h)

h
= lim

h→0+

2h

h
= 2

lim
h→0−

f ′(h)

h
= lim

h→0−

−2h

h
= −2

Since the one-sided limits do not agree,

lim
h→0

f ′(0 + h)− f ′(0)

h
= DNE

So, f ′′(0) does not exist. Now we have a complete picture of f ′′(x):

f ′′(x) =


−2 x < 0

DNE x = 0

2 x > 0.

3 · Applications of derivatives
3.1 · Velocity and Acceleration
3.1.2 · Exercises

Exercises — Stage 1
3.1.2.1. Answer. False (but its velocity is zero)

3.1.2.2. Answer. It takes 10 seconds to accelerate from 2 m
s
to 3 m

s
, and 100

seconds to accelerate from 3 m
s
to 13 m

s
.

3.1.2.3. Answer. In general, false.

3.1.2.4. Answer. True

Exercises — Stage 2
3.1.2.5. Answer. The pot is falling at 14 metres per second, just as it hits the
ground.

3.1.2.6. Answer. (a) 4.9x2 metres
(b) 4.9x2 + x metres

3.1.2.7. Answer. 8− 4
√

3 ≈ 1 sec

3.1.2.8. Answer. 7.2 sec
3.1.2.9. Answer. 72 000 kph per hour
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3.1.2.10. Answer.
100

7
≈ 14 kph

3.1.2.11. Answer. about 1240 miles
3.1.2.12. Answer. 49 metres per second

3.1.2.13. Answer. About 416 metres

3.1.2.14. Answer. v0 =
√

1960 ≈ 44 metres per second

3.1.2.15. Answer. ≈ 74.2 kph

Exercises — Stage 3
3.1.2.16. Answer. Time elapsed:

1

4.9
+

1

9.8
≈ 0.3 seconds

3.1.2.17. Answer. The acceleration is given by 2tv0 log 2, where v0 is the velocity
of the object at time t = 0.

3.2 · Related Rates
3.2.2 · Exercises

Exercises — Stage 1
3.2.2.1. Answer. ii and iv

Exercises — Stage 2
3.2.2.2. ∗. Answer. −3

2

3.2.2.3. ∗. Answer. 6%

3.2.2.4. ∗. Answer. 3.2.2.4.a 0
3.2.2.4.b 100

F ′

F
= 15%, or F ′ = 0.15F

3.2.2.5. ∗. Answer. −17

5
units per second

3.2.2.6. ∗. Answer.
4

5
units per second

3.2.2.7. ∗. Answer. increasing at 7 mph

3.2.2.8. ∗. Answer. 8 cm per minute

3.2.2.9. ∗. Answer. −13

6
metres per second

3.2.2.10. Answer. The height of the water is decreasing at
3

16
= 0.1875 cm

min
.

3.2.2.11. Answer.
1

29200
metres per second (or about 1 centimetre every five

minutes)
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3.2.2.12. Answer.

(
2(

1235
72

)2
+ 4

)(
6175

3

)
≈ 13.8 rad

hour
≈ 0.0038 rad

sec

3.2.2.13. ∗. Answer. 3.2.2.13.a
24

13
≈ 1.85 km/min

3.2.2.13.b about .592 radians/min

3.2.2.14. Answer.
55
√

21π

42
≈ 19 centimetres per hour.

3.2.2.15. ∗. Answer.
dA

dt
= −2π

cm2

s

3.2.2.16. Answer. 288π cubic units per unit time

3.2.2.17. Answer. 0 square centimetres per minute

3.2.2.18. Answer. −7π

12
≈ −1.8

cm3

sec2

3.2.2.19. Answer. The flow is decreasing at a rate of
√

7

1000

m3

sec2
.

3.2.2.20. Answer.
−15

49π
≈ −0.097 cm per minute

Exercises — Stage 3
3.2.2.21. Answer.

a
dD

dt
=

1

2
√

2
metres per hour

b The river is higher than 2 metres.

c The river’s flow has reversed direction. (This can happen near an ocean at
high tide.)

3.2.2.22. Answer. (a) 2 units per second

(b) Its y-coordinate is decreasing at
1

2
unit per second. The point is moving at

√
5

2
units per second.

3.2.2.23. Answer. (a) 10π = π
[
3(a+ b)−

√
(a+ 3b)(3a+ b)

]
or equivalently,

10 = 3(a+ b)−
√

(a+ 3b)(3a+ b)
(b) 20πab
(c) The water is spilling out at about 375.4 cubic centimetres per second. The exact

amount is − 200π

9−
√

35

(
1− 2

(
3
√

35− 11

3
√

35− 13

))
cm3

sec
.

3.2.2.24. Answer. B(10) = 0
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3.3 · Exponential Growth and Decay — a First Look
at Differential Equations
3.3.4 · Exercises
· Exercises for § 3.3.1

Exercises — Stage 1
3.3.4.1. Answer. (a), (b)

3.3.4.2. Answer. (a), (d)

3.3.4.3. Answer. If C = 0, then there was none to start out with, and Q(t) = 0
for all values of t.
If C 6= 0, then Q(t) will never be 0 (but as t gets bigger and bigger, Q(t) gets closer
and closer to 0).

Exercises — Stage 2
3.3.4.4. ∗. Answer. A = 5, k =

1

7
· log (π/5)

3.3.4.5. ∗. Answer. y(t) = 2e−3(t−1), or equivalently, y(t) = 2e3e−3t

3.3.4.6. Answer. 5 · 2−
10000
5730 ≈ 1.5 µg

3.3.4.7. Answer. Radium-226 has a half life of about 1600 years.

3.3.4.8. ∗. Answer.
log 2

log 6
= log6(2) years, which is about 139 days

3.3.4.9. Answer. 120 · log 10

log 2
seconds, or about six and a half minutes.

Exercises — Stage 3
3.3.4.10. Answer. About 0.5% of the sample decays in a day. The exact amount

is
[
100

(
1− 2−

1
138

)]
%.

3.3.4.11. Answer. After ten years, the sample contains between 6.2 and 6.8 µg
of Uranium-232.

· Exercises for § 3.3.2

Exercises — Stage 1
3.3.4.1. Answer. (a), (c), (d)

3.3.4.2. Answer. The temperature of the room is -10 degrees, and the room is
colder than the object.

3.3.4.3. Answer. K is a negative number. It cannot be positive or zero.
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3.3.4.4. Answer. If the object has a different initial temperature than its sur-
roundings, then T (t) is never equal to A. (But as time goes on, it gets closer and
closer.)
If the object starts out with the same temperature as its surrounding, then T (t) = A
for all values of t.

Exercises — Stage 2

3.3.4.5. Answer.
−10 log(750)

log
(

2
15

) ≈ 32.9 seconds

3.3.4.6. Answer. 10
log(10)

log(5)
≈ 14.3 minutes

Exercises — Stage 3
3.3.4.7. ∗. Answer. If Newton adds his cream just before drinking, the coffee
ends up {cooler by 0.85◦ C}.

3.3.4.8. ∗. Answer.

a
dT

dt
=

1

5
log

(
4

5

)
(T − 30)

b
5 log(2/5)

log(4/5)
≈ 20.53 min

3.3.4.9. Answer. positive

· Exercises for § 3.3.3

Exercises — Stage 1
3.3.4.1. Answer. If P (0) = 0, yes. If P (0) 6= 0, no: it does not take into account
external constraints on population growth.

Exercises — Stage 2
3.3.4.2. Answer. The Malthusian model predicts the herd will number 217 in-
dividuals in 2020.

3.3.4.3. Answer.
log(3)

log(2)
≈ 1.6 hours

3.3.4.4. Answer. 1912 or 1913

3.3.4.5. Answer.
106

54 − 1
≈ 1603

Exercises — Stage 3
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3.3.4.6. Answer. (a) At t = 0, there are 100 units of the radioactive isotope in
the sample. k is negative.
(b) At t = 0, there are 100 individuals in the population. k is positive.
(c) The ambient temperature is 0 degrees. k is negative.

· Further problems for § 3.3
3.3.4.1. ∗. Answer. f(2) = 2e2π

3.3.4.2. Answer. Solutions to the differential equation have the form

T (t) =

[
T (0) +

9

7

]
e7t − 9

7

for some constant T (0).

3.3.4.3. ∗. Answer.
8 log(0.4)

log(0.8)
≈ 32.85 days

3.3.4.4. Answer. 25◦ C
3.3.4.5. ∗. Answer.

a A(t) = 90,000·e0.05t−40,000. When the graduate is 65, they will have $625,015.05
in the account.

b $49,437.96

3.3.4.6. ∗. Answer. 3.3.4.6.a A(t) = 150,000− 30,000 e0.06t

3.3.4.6.b after {26.8 yrs}

3.3.4.7. ∗. Answer.
9 log 2

log 3
≈ 5.68 hr

3.3.4.8. ∗. Answer. (a) v(t) =
[
v0 + g

k

]
e−kt − g

k

(b) lim
t→∞

v(t) = −g
k

3.4 · Approximating Functions Near a Specified Point
— Taylor Polynomials
3.4.11 · Exercises
· Exercises for § 3.4.1

Exercises — Stage 1
3.4.11.1. Answer. Since f(0) is closer to g(0) than it is to h(0), you would
probably want to estimate f(0) ≈ g(0) = 1 + 2 sin(1) if you had the means to
efficiently figure out what sin(1) is, and if you were concerned with accuracy. If you
had a calculator, you could use this estimation. Also, later in this chapter we will
learn methods of approximating sin(1) that do not require a calculator, but they
do require time.
Without a calculator, or without a lot of time, using f(0) ≈ h(0) = 0.7 probably
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makes the most sense. It isn’t as accurate as f(0) ≈ g(0), but you get an estimate
very quickly, without worrying about figuring out what sin(1) is.

Exercises — Stage 2
3.4.11.2. Answer. log(0.93) ≈ log(1) = 0

x

y

y = f(x)

y = 0

0.93

1

3.4.11.3. Answer. arcsin(0.1) ≈ 0

3.4.11.4. Answer.
√

3 tan(1) ≈ 3

Exercises — Stage 3
3.4.11.5. Answer. 10.13 ≈ 103 = 1000

· Exercises for § 3.4.2

Exercises — Stage 1
3.4.11.1. Answer. (a) f(5) = 6
(b) f ′(5) = 3
(c) not enough information to know

3.4.11.2. Answer.

x

y

y = f(x)

2

The linear approximation is shown in red.

3.4.11.3. Answer. f(x) = 2x+ 5

Exercises — Stage 2
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3.4.11.4. Answer. log(0.93) ≈ −0.07

x

y

y = f(x)

y = x− 1

1

3.4.11.5. Answer.
√

5 ≈ 9

4

3.4.11.6. Answer. 5
√

30 ≈ 79

40

Exercises — Stage 3
3.4.11.7. Answer. 10.13 ≈ 1030, 10.13 = 1030.301

3.4.11.8. Answer. There are many possible answers. One is f(x) = sin x, a = 0,
and b = π.

3.4.11.9. Answer. a =
√

3

· Exercises for § 3.4.3

Exercises — Stage 1
3.4.11.1. Answer. f(3) = 9, f ′(3) = 0, f ′′(3) = −2; there is not enough infor-
mation to know f ′′′(3).

3.4.11.2. Answer. f(x) ≈ 2x+ 5

Exercises — Stage 2
3.4.11.3. Answer. log(0.93) ≈ −0.07245

3.4.11.4. Answer. cos

(
1

15

)
≈ 449

450

3.4.11.5. Answer. e2x ≈ 1 + 2x+ 2x2

3.4.11.6. Answer. One approximation: e
4
3 ≈ 275

32

3.4.11.7. Answer. 3.4.11.7.a 26
3.4.11.7.b 16

3.4.11.7.c
10

11

3.4.11.7.d
75

64
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3.4.11.8. Answer. For each of these, there are many solutions. We provide some
below.

a 1 + 2 + 3 + 4 + 5 =
5∑

n=1

n

b 2 + 4 + 6 + 8 =
4∑

n=1

2n

c 3 + 5 + 7 + 9 + 11 =
5∑

n=1

(2n+ 1)

d 9 + 16 + 25 + 36 + 49 =
7∑

n=3

n2

e 9 + 4 + 16 + 5 + 25 + 6 + 36 + 7 + 49 + 8 =
7∑

n=3

(n2 + n+ 1)

f 8 + 15 + 24 + 35 + 48 =
7∑

n=3

(n2 − 1)

g 3− 6 + 9− 12 + 15− 18 =
6∑

n=1

(−1)n+13n

Exercises — Stage 3
3.4.11.9. Answer. f(1) ≈ 2, f(1) = π

3.4.11.10. Answer. e ≈ 2.5

3.4.11.11. Answer.

• [3.4.11.11.a=3.4.11.11.d= 3.4.11.11.e], and

• [3.4.11.11.b=3.4.11.11.g], and

• [3.4.11.11.c=3.4.11.11.f]

· Exercises for § 3.4.4

Exercises — Stage 1
3.4.11.1. Answer. f ′′(1) = −4

3.4.11.2. Answer. f (10)(5) = 10!

Exercises — Stage 3
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3.4.11.3. Answer. T3(x) = −x3 + x2 − x+ 1

3.4.11.4. Answer. T3(x) = −7 + 7(x−1) + 9(x−1)2 + 5(x−1)3, or equivalently,
T3(x) = 5x3 − 6x2 + 4x− 10

3.4.11.5. Answer. f (10)(5) =
11 · 10!

6

3.4.11.6. Answer. a =
√
e

· Exercises for § 3.4.5

Exercises — Stage 1
3.4.11.1. Answer.

T16(x) = 1+x−1

2
x2− 1

3!
x3+

1

4!
x4+

1

5!
x5− 1

6!
x6− 1

7!
x7+

1

8!
x8+

1

9!
x9

− 1

10!
x10− 1

11!
x11+

1

12!
x12+

1

13!
x13− 1

14!
x14− 1

15!
x15

+
1

16!
x16

3.4.11.2. Answer. T100(t) = 127.5 + 48(t− 5) + 4.9(t− 5)2 = 4.9t2 − t+ 10

3.4.11.3. Answer. Tn(x) =
n∑
k=0

2(log 2)k

k!
(x− 1)k

3.4.11.4. Answer.

T6(x) = 7 + 5(x− 1) +
7

2
(x− 1)2 +

1

3
(x− 1)3 − 1

12
(x− 1)4

+
1

30
(x− 1)5 − 1

60
(x− 1)6

3.4.11.5. Answer. Tn(x) =
n∑
k=0

xk

Exercises — Stage 3
3.4.11.6. Answer. T3(x) = 1 + (x− 1) + (x− 1)2 + 1

2
(x− 1)3

3.4.11.7. Answer. π = 6 arctan

(
1√
3

)
≈ 82

45

√
3 ≈ 3.156

3.4.11.8. Answer. T100(x) = −1 +
100∑
k=2

(−1)k

k(k − 1)
(x− 1)k
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3.4.11.9. Answer.

T2n(x) =
n∑
`=0

(−1)`

(2`)!
√

2

(
x− π

4

)2`

+
n−1∑
`=0

(−1)`

(2`+ 1)!
√

2

(
x− π

4

)2`+1

3.4.11.10. Answer.

1 +
1

2
+

1

3!
+

1

4!
+ · · ·+ 1

157!
≈ e− 1

3.4.11.11. Answer. We estimate that the sum is close to − 1√
2
.

· Exercises for § 3.4.6

Exercises — Stage 1
3.4.11.1. Answer.

x

y

y = f(x)

x x+ ∆x

f(x)

f (x+ ∆x)

∆x

∆y

3.4.11.2. Answer. Let f(x) be the number of problems finished after x minutes
of work. The question tells us that 5∆y ≈ ∆x. So, if ∆x = 15, ∆y ≈ 3. That is, in
15 minutes more, you will finish about 3 more problems.

Exercises — Stage 2
3.4.11.3. Answer. (a) ∆y ≈ 1

260
≈ 0.003846

(b) ∆y ≈ 51

13520
≈ 0.003772

3.4.11.4. Answer. (a) ∆y ≈ 1.1 metres per second
(b) The increase from the first to the second jump is bigger.

· Exercises for § 3.4.7

Exercises — Stage 1
3.4.11.1. Answer. False.
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3.4.11.2. Answer. Absolute error: 0.17; percentage error: 2.92%

3.4.11.3. Answer. The linear approximates estimates the error in f(x) to be
about 60, while the quadratic approximates estimates the error in f(x) to be about
63.

Exercises — Stage 2
3.4.11.4. Answer. 1%

3.4.11.5. Answer. (a)
9

2
θ

(b) θ = 2 arcsin

(
d

6

)
(c)

9√
36− 0.682

· 0.02 ≈ 0.03

3.4.11.6. Answer. We estimate that the volume decreased by about 0.00245
cubic metres, or about 2450 cubic centimetres.

Exercises — Stage 3
3.4.11.7. Answer. Correct to within about 10.4 years (or about 53%)

· Exercises for § 3.4.8

Exercises — Stage 1
3.4.11.1. Answer. (a) False
(b) True
(c) True
(d) True

3.4.11.2. Answer. Equation 3.4.33 gives us the bound |f(2) − T3(2)| < 6. A
calculator tells us actually |f(2)− T3(2)| ≈ 1.056.

3.4.11.3. Answer. |f(37)− T (37)| = 0

3.4.11.4. Answer. You do, you clever goose!

Exercises — Stage 2
3.4.11.5. Answer. |f(11.5)− T5(11.5)| < 9

7 · 26
< 0.02

3.4.11.6. Answer. |f(0.1)− T2(0.1)| < 1

1125

3.4.11.7. Answer.
∣∣∣∣f (−1

4

)
− T5

(
−1

4

)∣∣∣∣ < 1

6 · 46
< 0.00004

3.4.11.8. Answer. Your answer may vary. One reasonable answer is
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|f(30)− T3(30)| < 14

57 · 9 · 15
< 0.000002.

Another reasonable answer is |f(30)− T3(30)| < 14

57 · 9 < 0.00002.

3.4.11.9. Answer. Equation 3.4.33 gives the bound |f(0.01) − Tn(0.01)| ≤
1002

(
100
π
− 1
)2.

A more reasonable bound on the error is that it is less than 5.
3.4.11.10. Answer. Using Equation 3.4.33,∣∣∣∣f (1

2

)
− T2

(
1

2

)∣∣∣∣ < 1

10
.

The actual error is ∣∣∣∣f (1

2

)
− T2

(
1

2

)∣∣∣∣ =
π

6
− 1

2

which is about 0.02.

Exercises — Stage 3
3.4.11.11. Answer. Any n greater than or equal to 3.

3.4.11.12. Answer. 7
√

2200 ≈ 3 +
13

7 · 36
≈ 3.00255

3.4.11.13. Answer. If we’re going to use Equation 3.4.33, then we’ll probably
be taking a Taylor polynomial. Using Example 3.4.16, the 6th-degree Maclaurin
polynomial for sinx is

T6(x) = T5(x) = x− x3

3!
+
x5

5!
so let’s play with this a bit. Equation 3.4.33 tells us that the error will depend on
the seventh derivative of f(x), which is − cosx:

f(1)− T6(1) = f (7)(c)
17

7!

sin(1)−
(

1− 1

3!
+

1

5!

)
=
− cos c

7!

sin(1)− 101

5!
=
− cos c

7!

sin(1) =
4242− cos c

7!

for some c between 0 and 1. Since −1 ≤ cos c ≤ 1,

4242− 1

7!
≤ sin(1) ≤ 4242 + 1

7!
4241

7!
≤ sin(1) ≤ 4243

7!
4241

5040
≤ sin(1) ≤ 4243

5040
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Remark: there are lots of ways to play with this idea to get better estimates. One
way is to take a higher-degree Maclaurin polynomial. Another is to note that, since

0 < c < 1 <
π

3
, then

1

2
< cos c < 1, so

4242− 1

7!
< sin(1) <

4242− 1
2

7!
4241

5040
< sin(1) <

8483

10080
<

4243

5040

If you got tighter bounds than asked for in the problem, congratulations!

3.4.11.14. Answer. (a) T4(x) =
∑4

n=0
xn

n!

(b) T4(1) = 65
24

(c) See the solution.

· Further problems for § 3.4

Exercises — Stage 1
3.4.11.1. ∗. Answer. f ′(0) = 0 and f ′′(0) = 6.

3.4.11.2. ∗. Answer. 4

3.4.11.3. ∗. Answer. h′(2) =
1

2
, h′′(2) = 0

Exercises — Stage 2
3.4.11.4. ∗. Answer. (a) 1.92
(b) 1.918

3.4.11.5. ∗. Answer. 101/3 ≈ 13

6
; this approximation is too big.

3.4.11.6. ∗. Answer.
√

2 ≈ 3

2

3.4.11.7. ∗. Answer. 3
√

26 ≈ 80

27

3.4.11.8. ∗. Answer. (10.1)5 ≈ 105, 000

3.4.11.9. ∗. Answer. sin

(
101π

100

)
≈ − π

100

3.4.11.10. ∗. Answer. arctan(1.1) ≈
(
π

4
+

1

20

)
3.4.11.11. ∗. Answer.

8012

1000

3.4.11.12. ∗. Answer. (8.06)2/3 ≈ 402

100
=

201

50
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3.4.11.13. ∗. Answer. 1 + x+ 2x2 +
14

3
x3

3.4.11.14. ∗. Answer.

• By Equation 3.4.33, the absolute value of the error is∣∣∣∣f ′′′(c)3!
· (2− 1)3

∣∣∣∣ =

∣∣∣∣ c

6(22− c2)

∣∣∣∣
for some c ∈ (1, 2).

• When 1 ≤ c ≤ 2, we know that 18 ≤ 22 − c2 ≤ 21, and that numerator and
denominator are non-negative, so∣∣∣∣ c

6(22− c2)

∣∣∣∣ =
c

6(22− c2)
≤ 2

6(22− c2)
≤ 2

6 · 18

=
1

54
≤ 1

50

as required.

• Alternatively, notice that c is an increasing function of c, while 22 − c2 is a
decreasing function of c. Hence the fraction is an increasing function of c and
takes its largest value at c = 2. Hence∣∣∣∣ c

6(22− c2)

∣∣∣∣ ≤ 2

6× 18
=

1

54
≤ 1

50
.

3.4.11.15. ∗. Answer.

• By Equation 3.4.33, there is c ∈ (0, 0.5) such that the error is

R4 =
f (4)(c)

4!
(0.5− 0)4

=
1

24 · 16
· cos(c2)

3− c

• For any c we have | cos(c2)| ≤ 1, and for c < 0.5 we have 3− c > 2.5, so that∣∣∣∣cos(c2)

3− c

∣∣∣∣ ≤ 1

2.5
.

• We conclude that

|R4| ≤
1

2.5 · 24 · 16
=

1

60 · 16
<

1

60 · 10
=

1

600
<

1

500

3.4.11.16. ∗. Answer.
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• By Equation 3.4.33, there is c ∈ (0, 1) such that the error is∣∣∣∣f ′′′(c)3!
· (1− 0)3

∣∣∣∣ =

∣∣∣∣ e−c

6(8 + c2)

∣∣∣∣ .
• When 0 < c < 1, we know that 1 > e−c > e−1 and 8 ≤ 8 + c2 < 9, so∣∣∣∣ e−c

6(8 + c2)

∣∣∣∣ =
e−c

6(8 + c2)

<
1

6|8 + c2|
<

1

6× 8
=

1

48
<

1

40

as required.

3.4.11.17. ∗. Answer. 3.4.11.17.a 2.9259
3.4.11.17.b 2.9241
3.4.11.17.c 4

9
25−5/3

Exercises — Stage 3
3.4.11.18. Answer. T3(x) = 5x2 − 9

3.4.11.19. ∗. Answer. (a) 1.05
(b) 1.0483

3.4.11.19.c

3.4.11.20. ∗. Answer. 3.4.11.20.a 0.9
3.4.11.20.b {0.8867}

3.4.11.20.c
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3.4.11.21. ∗. Answer. log 10.3 ≈ 2.33259 The error is between −0.00045 and
−0.00042.

3.4.11.22. ∗. Answer. (a) L(x) = e+ ex
(b) Q(x) = e+ ex+ ex2

(c) Since ex2 > 0 for all x > 0, L(x) < Q(x) for all x > 0.
From the error formula, we know that

f(x) = f(0) + f ′(0)x+
1

2
f ′′(0)x2 +

1

3!
f ′′′(c)x3

= Q(x) +
1

6

(
ec + 3e2c + e3c

)
ee
c

x3

for some c between 0 and x. Since 1
6

(ec + 3e2c + e3c) ee
c is positive for any c, for all

x > 0, 1
6

(ec + 3e2c + e3c) ee
c
x3 > 0, so Q(x) < f(x).

(d) 1.105 < e0.1 < 1.115

3.5 · Optimisation
3.5.4 · Exercises
· Exercises for § 3.5.1

Exercises — Stage 1
3.5.4.1. Answer.

x

y

y = f(x)

There is a critical point at x = 0. The x-value of the red dot is a singular point,
and a local maximum occurs there.
3.5.4.2. Answer.
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x

y

y = f(x)

a b

The x-coordinate corresponding to the blue dot (let’s call it a) is a critical point,
and f(x) has a local and global minimum at x = a. The x-coordinate corresponding
to the discontinuity (let’s call it b) is a singular point, but there is not a global or
local extremum at x = b.
3.5.4.3. Answer. One possible answer is shown below.

x

y

2

Exercises — Stage 2
3.5.4.4. Answer. The critical points are x = 3 and x = −1. These two points
are the only places where local extrema might exist. There are no singular points.
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Exercises — Stage 3
3.5.4.5. Answer.

x

y

2

local max

x

y

2

neither

x

y

2

neither

x

y

2

local max

3.5.4.6. Answer. There are many possible answers. Every answer must have
x = 2 as a singular point strictly inside the domain of f(x). Two possibilities are
shown below.

x

y

2
x

y

2

3.5.4.7. Answer. x = −7, x = −1, and x = 5

3.5.4.8. Answer. Every real number c is a critical point of f(x), and f(x) has a
local and global maximum and minimum at x = c. There are no singular points.

· Exercises for § 3.5.2

Exercises — Stage 1
3.5.4.1. Answer. Two examples are given below, but many are possible.
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x

y

y = f(x)

x

y

y = f(x)

3.5.4.2. Answer. Two examples are given below, but many are possible.

x

y

y = ex

x

y

y = arctanx+ 2

3.5.4.3. Answer. One possible answer:
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x

y

y = f(x)

−5 5

Exercises — Stage 2
3.5.4.4. Answer. The global maximum is 45 at x = 5 and the global minimum
is −19 at x = −3.

3.5.4.5. Answer. The global maximum over the interval is 61 at x = −3, and
the global minimum is 7 at x = 0.

· Exercises for § 3.5.3

Exercises — Stage 1
3.5.4.1. ∗. Answer. The global maximum is f(−1) = 6, the global minimum is
f(−2) = −20.

3.5.4.2. ∗. Answer. Global maximum is f(2) = 12, global minimum is f(1) =
−14.

3.5.4.3. ∗. Answer. Global maximum is f(4) = 30, global minimum is f(2) =
−10.

3.5.4.4. ∗. Answer. Local max at (−2, 20), local min at (2,−12).

3.5.4.5. ∗. Answer. (−2, 33) max, and (2,−31) min

3.5.4.6. ∗. Answer. Q should be 4
√

3 kilometres from A

3.5.4.7. ∗. Answer. 10× 30× 15

3.5.4.8. ∗. Answer. 2× 2× 6

3.5.4.9. ∗. Answer. X = Y =
√

2

3.5.4.10. ∗. Answer. The largest possible perimeter is 2
√

5R and the smallest
possible perimeter is 2R.
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3.5.4.11. ∗. Answer.
A3/2

3
√

6π

3.5.4.12. ∗. Answer.
P 2

2(π + 4)

3.5.4.13. ∗. Answer. (a) x =

√
A

3p
, y =

√
Ap

3
, and z =

√
Ap√

3(1 + p)
(b) p = 1

(The dimensions of the resulting baking pan are x = y =

√
A

3
and z =

1

2

√
A

3
.)

Exercises — Stage 3
3.5.4.14. ∗. Answer. 3.5.4.14.a xx(1 + log x)

3.5.4.14.b x =
1

e
3.5.4.14.c local minimum

3.5.4.15. ∗. Answer. Maximum area: do not cut, make a circle and no square.

Minimum area: make a square out of a piece that is
4

4 + π
of the total length of the

wire.

3.6 · Sketching Graphs
3.6.7 · Exercises
· Exercises for § 3.6.1

Exercises — Stage 1
3.6.7.1. Answer. In general, false.

Exercises — Stage 2
3.6.7.2. Answer.
f(x) = A(x)
g(x) = C(x)
h(x) = B(x)
k(x) = D(x)

3.6.7.3. Answer. (a) p = e2

(b) b = −e2, 1− e2

3.6.7.4. Answer. vertical asymptote at x = 3; horizontal asymptotes

lim
x→±∞

f(x) =
2

3

3.6.7.5. Answer. horizontal asymptote y = 0 as x→ −∞; no other asymptotes

· Exercises for § 3.6.2

Exercises — Stage 1
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3.6.7.1. Answer.

A′(x) = l(x) B′(x) = p(x) C ′(x) = n(x)

D′(x) = o(x) E ′(x) = m(x)

Exercises — Stage 2
3.6.7.2. ∗. Answer. (−2,∞)

3.6.7.3. ∗. Answer. (1, 4)

3.6.7.4. ∗. Answer. (−∞, 1)

· Exercises for § 3.6.3

Exercises — Stage 1
3.6.7.1. Answer.

x

y

concave up concave down concave up

concave down

3.6.7.2. Answer.
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x

y

−5 5

3.6.7.3. Answer. In general, false.

Exercises — Stage 2
3.6.7.4. ∗. Answer. x = 1, y = 11

Exercises — Stage 3
3.6.7.5. ∗. Answer. Let

g(x) = f ′′(x) = x3 + 5x− 20.

Then g′(x) = 3x2+5, which is always positive. That means g(x) is strictly increasing
for all x. So, g(x) can change signs once, from negative to positive, but it can never
change back to negative. An inflection point of f(x) occurs when g(x) changes
signs. So, f(x) has at most one inflection point.
Since g(x) is continuous, we can apply the Intermediate Value Theorem to it. Notice
g(3) > 0 while g(0) < 0. By the IVT, g(x) = 0 for at least one x ∈ (0, 3). Since
g(x) is strictly increasing, at the point where g(x) = 0, g(x) changes from negative
to positive. So, the concavity of f(x) changes. Therefore, f(x) has at least one
inflection point.
Now that we’ve shown that f(x) has at most one inflection point, and at least one
inflection point, we conclude it has exactly one inflection point.

3.6.7.6. ∗. Answer. 3.6.7.6.a Let

g(x) = f ′(x)

Then f ′′(x) is the derivative of g(x). Since f ′′(x) > 0 for all x, g(x) = f ′(x) is
strictly increasing for all x. In other words, if y > x then g(y) > g(x).
Suppose g(x) = 0. Then for every y that is larger than x, g(y) > g(x), so g(y) 6= 0.
Similarly, for every y that is smaller than x, g(y) < g(x), so g(y) 6= 0. Therefore,
g(x) can only be zero for at most one value of x. Since g(x) = f ′(x), that means
f(x) can have at most one critical point.
Suppose f ′(c) = 0. Since f ′(x) is a strictly increasing function, f ′(x) < 0 for all
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x < c and f ′(x) > 0 for all x > c.

c

x < c, so
f ′(x) < f ′(c) = 0

x > c, so
f ′(x) > f ′(c) = 0

Then f(x) is decreasing for x < c and increasing for x > c. So f(x) > f(c) for all
x 6= c.

c

f(x) decreasing, so
f(x) > f(c)

f(x) increasing, so
f(x) > f(c)

y = f(x)

x < c x > c

Since f(x) > f(c) for all x 6= c, so c is an absolute minimum for f(x).
3.6.7.6.b We know that the maximum over an interval occurs at an endpoint, a
critical point, or a singular point.

• Since f ′(x) exists everywhere, there are no singular points.

• If the maximum were achieved at a critical point, that critical point would
have to provide both the absolute maximum and the absolute minimum (by
part (a)). So, the function would have to be a constant and consequently could
not have a nonzero second derivative. So the maximum is not at a critical
point.

That leaves only the endpoints of the interval.

3.6.7.7. Answer. If x = 3 is an inflection point, then the concavity of f(x)
changes at x = 3. That is, there is some interval strictly containing 3, with endpoints
a and b, such that

• f ′′(a) < 0 and f ′′(x) < 0 for every x between a and 3, and

• f ′′(b) > 0 and f ′′(x) > 0 for every x between b and 3.

Since f ′′(a) < 0 and f ′′(b) > 0, and since f ′′(x) is continuous, the Intermediate
Value Theorem tells us that there exists some x strictly between a and b with
f ′′(x) = 0. So, we know f ′′(x) = 0 somewhere between a and b. The question is,
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where exactly could that be?

• f ′′(x) < 0 (and hence f ′′(x) 6= 0) for all x between a and 3

• f ′′(x) > 0 (and hence f ′′(x) 6= 0) for all x between b and 3

• So, any number between a and b that is not 3 has f ′′(x) 6= 0.

So, x = 3 is the only possible place between a and b where f ′′(x) could be zero.
Therefore, f ′′(3) = 0.

· Exercises for § 3.6.4

Exercises — Stage 1
3.6.7.1. Answer. even
3.6.7.2. Answer. odd, periodic

3.6.7.3. Answer.

x

y

3.6.7.4. Answer.
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x

y

Exercises — Stage 2
3.6.7.5. Answer. A function is even if f(−x) = f(x).

f(−x) =
(−x)4 − (−x)6

e(−x)2

=
x4 − x6

ex2

= f(x)

So, f(x) is even.

3.6.7.6. Answer. For any real number x, we will show that f(x) = f(x+ 4π).

f(x+ 4π) = sin(x+ 4π) + cos

(
x+ 4π

2

)
= sin(x+ 4π) + cos

(x
2

+ 2π
)

= sin(x) + cos
(x

2

)
= f(x)

So, f(x) is periodic.

3.6.7.7. Answer. even
3.6.7.8. Answer. none
3.6.7.9. Answer. 1
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Exercises — Stage 3
3.6.7.10. Answer. π

· Exercises for § 3.6.6

Exercises — Stage 1
3.6.7.1. ∗. Answer. 3.6.7.1.a (−∞, 3]
3.6.7.1.b f(x) in increasing on (−∞, 2) and decreasing on (2, 3). There is a local
maximum at x = 2 and a local minimum at the endpoint x = 3.
3.6.7.1.c f(x) is always concave down and has no inflection points.
3.6.7.1.d (3, 0)

3.6.7.1.e

x

y

(3, 0)

(2.2)

3.6.7.2. ∗. Answer. The open dot is the inflection point, and the closed dot is
the local and global maximum.

x

y
(
2, 3

8

)

2 3
√

203
√

2

3.6.7.3. ∗. Answer. The open dot marks the inflection point.
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x

y

−1− 3
√

4 3
√

2

3.6.7.4. ∗. Answer.

x

y

−1 1−
√

3
√

3

3
√

3
2

−3
√

3
2

3.6.7.5. ∗. Answer. 3.6.7.5.a One branch of the function, the exponential func-
tion ex, is continuous everywhere. So f(x) is continuous for x < 0. When x ≥ 0,

f(x) =
x2 + 3

3(x+ 1)
, which is continuous whenever x 6= −1 (so it’s continuous for all
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x > 0). So, f(x) is continuous for x > 0. To see that f(x) is continuous at x = 0,
we see:

lim
x→0−

f(x) = lim
x→0−

ex = 1

lim
x→0+

f(x) = lim
x→0+

x2 + 3

3(x+ 1)
= 1

So, lim
x→0

f(x) = 1 = f(0)

Hence f(x) is continuous at x = 0, so f(x) is continuous everywhere.
3.6.7.5.b

• i. f(x) is increasing for x < 0 and x > 1, decreasing for 0 < x < 1, has a local
max at (0, 1), and has a local min at

(
1, 2

3

)
.

• ii. f(x) is concave upwards for all x 6= 0.

• iii. The x–axis is a horizontal asymptote as x→ −∞.

3.6.7.5.c

x

y

(0, 1)
(1, 2

3
)

3.6.7.6. ∗. Answer.

3.6.7.7. ∗. Answer. 3.6.7.7.a

• Increasing: (−1, 1), decreasing: (−∞,−1) ∪ (1,∞)

• concave up: (−
√

3, 0) ∪ (
√

3,∞), concave down: (−∞,−
√

3) ∪ (0,
√

3)
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• inflection points: x = ±
√

3, 0

3.6.7.7.b The local and global minimum of f(x) is at (−1, −1√
e
), and the local and

global maximum of f(x) is at (1, 1√
e
).

3.6.7.7.c In the graph below, open dots are inflection points, and solid dots are
extrema.

x

y

−1 1−
√

3 √
3

−1√
e

1√
e

3.6.7.8. Answer. Local maxima occur at x = 2π
3

+ 2πn for all integers n, and
local minima occur at x = −2π

3
+ 2πn for all integers n. Inflection points occur at

every integer multiple of π.
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x

y

2π
3

−2π
3

4π
3

−4π
3

8π
3

−8π
3

10π
3

−10π
3

14π
3

−14π
3

3.6.7.9. ∗. Answer. Below is the graph y = f(x) over the interval [−π, π]. The
sketch of the curve over a larger domain is simply a repetition of this figure.

653



Answers to Exercises

x

y

π−π π
2

−π
2 −π

6−5π
6

ab π − a−π − b

6

−3

−2

On the interval [0, π], the maximum value of f(x) is 6 and the minimum value is
−2.

Let a = arcsin

(
−1 +

√
33

8

)
≈ 0.635 ≈ 0.2π and b = arcsin

(
−1−

√
33

8

)
≈

−1.003 ≈ −0.3π . The points −π− b , b , a , and π− a are inflection points.

3.6.7.10. Answer. The closed dot is the local minimum, and the open dots
are inflection points at x = −1 and x = −2 ±

√
1.5. The graph has horizontal

asymptotes y = 0 as x goes to ±∞.
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x

y

−1−2

−1

1

Exercises — Stage 3
3.6.7.11. ∗. Answer.

• 3.6.7.11.a decreasing for x < 0 and x > 2, increasing for 0 < x < 2, minimum
at (0, 0), maximum at (2, 2).

• 3.6.7.11.b concave up for x < 2 −
√

2 and x > 2 +
√

2, concave down for
2−
√

2 < x < 2 +
√

2, inflection points at x = 2±
√

2.

• 3.6.7.11.c∞

3.6.7.11.d
Open dots indicate inflection points, and closed dots indicate local extrema.

x

y

22−
√

2 2 +
√

2

655



Answers to Exercises

3.6.7.12. ∗. Answer. 3.6.7.12.a

x

y

y = f(x)

1

1

There are no inflection points or extrema, except the endpoint (0, 1).
3.6.7.12.b

x

y

y = g(x)1

1

There are no inflection points or extrema, except the endpoint (1, 0).
3.6.7.12.c The domain of g is (0, 1]. The range of g is [0,∞).
3.6.7.12.d g′(1

2
) = −2
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3.6.7.13. ∗. Answer. (a)

x

y

−1
4√5

1
4√5

4

5 4√5

−4

5 4√5

Local maximum at x = − 1
4√5
; local minimum at x = 1

4√5
; inflection point at the

origin; concave down for x < 0 ; concave up for x > 0.
(b) The number of distinct real roots of x5 − x+ k is:

• 1 when |k| > 4

5 4
√

5

• 2 when |k| = 4

5 4
√

5

• 3 when |k| < 4

5 4
√

5

3.6.7.14. ∗. Answer. (a)
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x

y
y = sinhx

x

y
y = coshx

1

(b) For any real x, define sinh−1(x) to be the unique solution of sinh(y) = x.
For every x ∈ [1,∞), define cosh−1(x) to be the unique y ∈ [0,∞) that obeys
cosh(y) = x.

x

y

y = sinh−1 x

x

y

y = cosh−1 x

(c)
d

dx
{cosh−1(x)} =

1√
x2 − 1

3.7 · L’Hôpital’s Rule, Indeterminate Forms
3.7.4 · Exercises

Exercises — Stage 1
3.7.4.1. Answer. There are many possible answers. Here is one: f(x) = 5x,
g(x) = 2x.

3.7.4.2. Answer. There are many possible answers. Here is one: f(x) = x,
g(x) = x2.

3.7.4.3. Answer. There are many possible answers. Here is one: f(x) = 1 + 1
x
,

g(x) = x log 5 (recall we use log to mean logarithm base e).

Exercises — Stage 2
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3.7.4.4. ∗. Answer. − 2

π

3.7.4.5. ∗. Answer. −∞
3.7.4.6. ∗. Answer. 0
3.7.4.7. ∗. Answer. 0
3.7.4.8. ∗. Answer. 3
3.7.4.9. Answer. 2

3.7.4.10. ∗. Answer. 0

3.7.4.11. ∗. Answer. 1
2

3.7.4.12. Answer. 0
3.7.4.13. Answer. 5

3.7.4.14. Answer. ∞
3.7.4.15. ∗. Answer. 3

3.7.4.16. ∗. Answer. 3
2

3.7.4.17. ∗. Answer. 0

3.7.4.18. ∗. Answer. 1
3

3.7.4.19. Answer. 0

3.7.4.20. Answer. 1√
e

3.7.4.21. Answer. 1
3.7.4.22. Answer. 1
3.7.4.23. ∗. Answer. c = 0

3.7.4.24. ∗. Answer.

lim
x→0

ek sin(x2) − (1 + 2x2)

x4
=


−∞ k < 2

2 k = 2

∞ k > 2

Exercises — Stage 3
3.7.4.25. Answer.

• We want to find the limit as n goes to infinity of the percentage error,

lim
n→∞

100
|S(n)− A(n)|
|S(n)| . Since A(n) is a nicer function than S(n), let’s simplify:
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lim
n→∞

100
|S(n)− A(n)|
|S(n)| = 100

∣∣∣∣1− lim
n→∞

A(n)

S(n)

∣∣∣∣.
We figure out this limit the natural way:

100

∣∣∣∣1− lim
n→∞

A(n)

S(n)

∣∣∣∣ = 100

∣∣∣∣∣∣∣∣∣1− lim
n→∞

5n4

5n4 − 13n3 − 4n+ log(n)︸ ︷︷ ︸
num→∞
den→∞

∣∣∣∣∣∣∣∣∣
= 100

∣∣∣∣1− lim
n→∞

20n3

20n3 − 39n2 − 4 + 1
n

∣∣∣∣
= 100

∣∣∣∣1− lim
n→∞

n3

n3
· 20

20− 39
n
− 4

n3 + 1
n4

∣∣∣∣
= 100|1− 1| = 0

So, as n gets larger and larger, the relative error in the approximation gets
closer and closer to 0.

• Now, let’s look at the absolute error.

lim
n→∞

|S(n)− A(n)| = lim
n→∞

| − 13n3 − 4n+ log n| =∞

So although the error gets small relative to the giant numbers we’re talking
about, the absolute error grows without bound.

4 · Towards Integral Calculus
4.1 · Introduction to Antiderivatives
4.1.2 · Exercises

Exercises — Stage 1
4.1.2.1. Answer. F (x) = f(x) + C

4.1.2.2. Answer.
C(x)

Exercises — Stage 2
4.1.2.3. Answer. F (x) = x3 + x5 + 5x2 − 9x+ C

4.1.2.4. Answer. F (x) =
3

40
x8 − 18

5
x5 +

1

2
x2 + C

4.1.2.5. Answer. F (x) = 3x
4
3 +

45

17x1.7
+ C

4.1.2.6. Answer. F (x) =
2

7

√
x+ C
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4.1.2.7. Answer. F (x) =
1

5
e5x+11 + C

4.1.2.8. Answer. F (x) = −3

5
cos(5x) +

7

13
sin(13x) + C

4.1.2.9. Answer. F (x) = tan(x+ 1) + C

4.1.2.10. Answer. F (x) = log |x+ 2|+ C

4.1.2.11. Answer. F (x) =
7√
3

arcsin(x) + C

4.1.2.12. Answer. F (x) =
1

5
arctan(5x) + C

4.1.2.13. Answer. f(x) = x3 − 9

2
x2 + 4x+

19

2

4.1.2.14. Answer. f(x) =
1

2
sin(2x) + π

4.1.2.15. Answer. f(x) = log |x|
4.1.2.16. Answer. f(x) = arcsin x+ x− π − 1

4.1.2.17. Answer. It takes 1
2

log 7 hours (about 58 minutes) for the initial colony
to increase by 300 individuals.

4.1.2.18. Answer. At time t, the amount of money in your bank account is
75000e

t
50 + C dollars, for some constant C.

4.1.2.19. Answer.
24

π
+ 6 ≈ 13.6 kWh

Exercises — Stage 3
4.1.2.20. ∗. Answer. f ′(x) = g′(x) =

1√
x− x2

; f and g differ only by a

constant.

4.1.2.21. Answer. F (x) = sin(2x) cos(3x) + C

4.1.2.22. Answer. F (x) =
ex

x2 + 1
+ C

4.1.2.23. Answer. F (x) = ex
3

+ C

4.1.2.24. Answer. F (x) = −5

2
cos(x2) + C

4.1.2.25. Answer. F (x) =
1

2
x2 + C.

4.1.2.26. Answer. F (x) = 7 arcsin

(
x√
3

)
+ C
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4.1.2.27. Answer. V (H) = 2π

(
1

5
H5 +

2

3
H3 +H

)
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Appendix F

1 · Limits
1.1 · Drawing Tangents and a First Limit
1.1.2 · Exercises

Exercises — Stage 1
1.1.2.1. Solution.

x

y
y = f(x)

P

Q

(a)

(b)

(c)

The tangent line to y = f(x) at a point should go through the point, and be “in the
same direction” as f at that point. The secant line through P and Q is simply the
straight line passing through P and Q.

1.1.2.2. Solution.

a True: since y = 2x+ 3 is the tangent line to y = f(x) at the point x = 2, this
means the function and the tangent line have the same value at x = 2. So
f(2) = 2(2) + 3 = 7.
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b In general, this is false. We are only guaranteed that the curve y = f(x)
and its tangent line y = 2x + 3 agree at x = 2. The functions f(x) and
2x + 3 may or may not take the same values when x 6= 2. For example, if
f(x) = 2x+ 3, then of course f(x) and 2x+ 3 agree for all values of x. But if
f(x) = 2x+ 3 + (x− 2)2, then f(x) and 2x+ 3 agree only for x = 2.

1.1.2.3. Solution. Since the tangent line to the curve at point P passes through
point P , the curve and the tangent line touch at point P . So, they must intersect
at least once. By drawing various examples, we can see that different curves may
touch their tangent lines exactly once, exactly twice, exactly three times, etc.

x

y y = f(x)

P

Blue tangent line touches curve only once, at P

x

y
y = f(x)

P

Blue tangent line touches curve twice

x

y

y = f(x)

P

Blue tangent line touches curve many times

1.2 · Another Limit and Computing Velocity
1.2.2 · Exercises

Exercises — Stage 1
1.2.2.1. Solution. Speed is nonnegative; velocity has a sign (positive or negative)
that indicates direction.
1.2.2.2. Solution. Yes–an object that is not moving has speed 0.

1.2.2.3. Solution. Since you started and ended in the same place, your difference
in position was 0, and your difference in time was 24 hours. So, your average velocity

was
0

24
= 0 kph.

1.2.2.4. Solution. Objects accelerate as they fall — their speed gets bigger and
bigger. So in the entire first second of falling, the object is at its fastest at the
one-second mark. We have defined the average speed over a time interval to be
distance moved

time taken
. We do not yet know how to compute the distanced travelled by

an object whose speed is not constant. But our intuition certainly says that the
distance travelled is no more than the maximum speed times the time taken, so
that the average speed is no larger that the maximum speed. In the next chapter
we will verify that intuition mathematically. See Example 2.13.7. So the average
speed will be a smaller number then the speed at the one-second mark, which is the
maximum speed.

1.2.2.5. Solution. The slope of a curve is given by
change in vertical component

change in horizontal component
. The change in the vertical component is

exactly s(b)− s(a), and the change in the horizontal component is exactly b− a.
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1.2.2.6. Solution. The velocity is positive when the object is going in the in-
creasing direction; it is going “up” on the graph when t is between 0 and 2, and
when t is between 6 and 7. So, the velocity is positive when t is in (0, 2) ∪ (6, 7).

Exercises — Stage 2
1.2.2.7. Solution.

a Average velocity:

change in position
change in time

=
s(5)− s(3)

5− 3
=

(3 · 52 + 5)− (3 · 32 + 5)

5− 3

= 24 units per second.

b From the notes, we know the velocity of an object at time a is

v(a) = lim
h→0

s(a+ h)− s(a)

h

So, in our case:

v(1) = lim
h→0

s(1 + h)− s(1)

h
= lim

h→0

[3(1 + h)2 + 5]− [3(1)2 + 5]

h

= lim
h→0

6h+ 3h2

h
= lim

h→0
6 + 3h = 6

So the velocity when t = 1 is 6 units per second.

1.2.2.8. Solution.

a Average velocity:

change in position
change in time

=
s(9)− s(1)

9− 1
=

3− 1

9− 1

=
1

4
units per second.

b From the notes, we know the velocity of an object at time a is

v(a) = lim
h→0

s(a+ h)− s(a)

h

So, in our case:

v(1) = lim
h→0

s(1 + h)− s(1)

h
= lim

h→0

√
1 + h− 1

h

= lim
h→0

√
1 + h− 1

h
·
(√

1 + h+ 1√
1 + h+ 1

)
= lim

h→0

(1 + h)− 1

h(
√

1 + h+ 1)

= lim
h→0

1√
1 + h+ 1

=
1

2
units per second
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c

v(9) = lim
h→0

s(9 + h)− s(9)

h
= lim

h→0

√
9 + h− 3

h

= lim
h→0

√
9 + h− 3

h
·
(√

9 + h+ 3√
9 + h+ 3

)
= lim

h→0

(9 + h)− 9

h(
√

9 + h+ 3)

= lim
h→0

1√
9 + h+ 3

=
1

6
units per second

Remark: the average velocity is not the average of the two instantaneous velocities.

1.3 · The Limit of a Function
1.3.2 · Exercises

Exercises — Stage 1
1.3.2.1. Solution.

a lim
x→−2

f(x) = 1: as x gets very close to −2, y gets very close to 1.

b lim
x→0

f(x) = 0: as x gets very close to 0, y also gets very close to 0.

c lim
x→2

f(x) = 2: as x gets very close to 2, y gets very close to 2. We ignore the
value of the function where x is exactly 2.

1.3.2.2. Solution. The limit does not exist. As x approaches 0 from the left,
y approaches -1; as x approaches 0 from the right, y approaches 1. This tells us
lim
x→0−

f(x) = −1 and lim
x→0+

f(x) = 1, but neither of these are what the question
asked. Since the limits from left and right do not agree, the limit does not exist.
Put another way, there is no single number y approaches as x approaches 0, so the
limit lim

x→0
f(x) does not exist.

1.3.2.3. Solution.

a lim
x→−1−

f(x) = 2: as x approaches −1 from the left, y approaches 2. It doesn’t

matter that the function isn’t defined at x = −1, and it doesn’t matter what
happens to the right of x = −1.

b lim
x→−1+

f(x) = −2: as x approaches −1 from the right, y approaches -2. It

doesn’t matter that the function isn’t defined at −1, and it doesn’t matter
what happens to the left of −1.

c lim
x→−1

f(x) = DNE: since the limits from the left and right don’t agree, the
limit does not exist.

d lim
x→−2+

f(x) = 0: as x approaches −2 from the right, y approaches 0. It doesn’t
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matter that the function isn’t defined at 2, or to the left of 2.

e lim
x→2−

f(x) = 0: as x approaches 2 from the left, y approaches 0. It doesn’t
matter that the function isn’t defined at 2, or to the right of 2.

1.3.2.4. Solution. Many answers are possible; here is one.

x

y
y = f(x)

3

10

As x gets closer and closer to 3, y gets closer and closer to 10: this shows lim
x→3

f(x) =

10. Also, at 3 itself, the function takes the value 10; this shows f(3) = 10.

1.3.2.5. Solution. Many answers are possible; here is one.

x

y
y = f(x)

3

10

Note that, as x gets closer and closer to 3 except at 3 itself, y gets closer and closer
to 10: this shows lim

x→3
f(x) = 10. Then, when x = 3, the function has value 0: this

shows f(3) = 0.
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1.3.2.6. Solution. In general, this is false. The limit as x goes to 3 does not take
into account the value of the function at 3: f(3) can be anything.

1.3.2.7. Solution. False. The limit as x goes to 3 does not take into account the
value of the function at 3: f(3) tells us nothing about lim

x→3
f(x).

1.3.2.8. Solution. lim
x→−2−

f(x) = 16: in order for the limit lim
x→2

f(x) to exist and

be equal to 16, both one sided limits must exist and be equal to 16.

1.3.2.9. Solution. Not enough information to say. If lim
x→−2+

f(x) = 16, then

lim
x→−2

f(x) = 16. If lim
x→−2+

f(x) 6= 16, then lim
x→−2

f(x) does not exist.

Exercises — Stage 2
1.3.2.10. Solution. lim

t→0
sin t = 0: as t approaches 0, sin t approaches 0 as well.

1.3.2.11. Solution. lim
x→0+

log x = −∞: as x approaches 0 from the right, log x is
negative and increasingly large, growing without bound.

1.3.2.12. Solution. lim
y→3

y2 = 9: as y gets closer and closer to 3, y2 gets closer

and closer to 32.

1.3.2.13. Solution. lim
x→0−

1

x
= −∞: as x gets closer and closer to 0 from the left,

1

x
becomes a larger and larger negative number.

1.3.2.14. Solution. lim
x→0

1

x
= DNE: as x gets closer and closer to 0 from the left,

1

x
becomes a larger and larger negative number; but as x gets closer and closer to

0 from the right,
1

x
becomes a larger and larger positive number. So the limit from

the left is not the same as the limit from the right, and so lim
x→0

1

x
= DNE. Contrast

this with Question 1.3.2.15.

1.3.2.15. Solution. lim
x→0

1

x2
=∞: as x gets closer and closer to 0 from the either

side,
1

x2
becomes a larger and larger positive number, growing without bound.

Contrast this with Question 1.3.2.14.

1.3.2.16. Solution. lim
x→3

1

10
=

1

10
: no matter what x is,

1

10
is always

1

10
. In

particular, as x approaches 3,
1

10
stays put at

1

10
.

1.3.2.17. Solution. When x is very close to 3, f(x) looks like the function x2.
So: lim

x→3
f(x) = lim

x→3
x2 = 9

668



Solutions to Exercises

1.4 · Calculating Limits with Limit Laws
1.4.2 · Exercises

Exercises — Stage 1
1.4.2.1. Solution. Zeroes cause a problem when they show up in the denomina-
tor, so we can only compute (1.4.2.1.a) and (1.4.2.1.d). (Both these limits are zero.)
Be careful: there is no such rule as “zero divided by zero is one,” or “zero divided
by zero is zero.”

1.4.2.2. Solution. The statement lim
x→3

f(x)

g(x)
= 10 tells us that, as x gets very

close to 3, f(x) is 10 times as large as g(x). We notice that if f(x) = 10g(x), then
f(x)

g(x)
= 10, so lim

x→
f(x)

g(x)
= 10 wherever f and g exist. So it’s enough to find a

function g(x) that has limit 0 at 3. Such a function is (for example) g(x) = x− 3.
So, we take f(x) = 10(x − 3) and g(x) = x − 3. It is easy now to check that

lim
x→3

f(x) = lim
x→3

g(x) = 0 and lim
x→3

f(x)

g(x)
= lim

x→3

10(x− 3)

x− 3
= lim

x→3
10 = 10.

1.4.2.3. Solution.

• As we saw in Question 1.4.2.2, x − 3 is a function with limit 0 at x = 3.
So one way of thinking about this question is to try choosing f(x) so that
f(x)
g(x)

= g(x) = x − 3 too, which leads us to the solution f(x) = (x − 3)2 and
g(x) = x− 3. This is one of many, many possible answers.

• Another way of thinking about this problem is that f(x) should go to 0 “more
strongly” than g(x) when x approaches 3. One way of a function going to
0 really strongly is to make that function identically zero. So we can set

f(x) = 0 and g(x) = x − 3. Now
f(x)

g(x)
is equal to 0 whenever x 6= 3, and

is undefined at x = 3. Since the limit as x goes to three does not take into

account the value of the function at 3, we have lim
x→3

f(x)

g(x)
= 0.

There are many more possible answers.

1.4.2.4. Solution. One way to start this problem is to remember lim
x→0

1

x2
= ∞.

(Using
1

x2
as opposed to

1

x
is important, since lim

x→0

1

x
does not exist.) Then by

“shifting” by three, we find lim
x→3

1

(x− 3)2
= ∞. So it is enough to arrange that

f(x)

g(x)
=

1

(x− 3)2
. We can achieve this with f(x) = x− 3 and g(x) = (x− 3)3, and

maintain lim
x→3

f(x) = lim
x→3

g(x) = 0. Again, this is one of many possible solutions.
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1.4.2.5. Solution. Any real number; positive infinity; negative infinity; does not
exist.
This is an important thing to remember: often, people see limits that look like

0

0
and think that the limit must be 1, or 0, or infinite. In fact, this limit could be
anything–it depends on the relationship between f and g.
Questions 1.4.2.2 and 1.4.2.3 show us examples where the limit is 10 and 0; they
can easily be modified to make the limit any real number.
Question 1.4.2.4 show us an example where the limit is∞; it can easily be modified
to make the limit −∞ or DNE.

Exercises — Stage 2
1.4.2.6. Solution. Since we’re not trying to divide by 0, or multiply by

infinity: lim
t→10

2(t− 10)2

t
=

2 · 0
10

= 0

1.4.2.7. Solution. Since we’re not doing anything dodgy like putting 0 in the

denominator, lim
y→0

(y + 1)(y + 2)(y + 3)

cos y
=

(0 + 1)(0 + 2)(0 + 3)

cos 0
=

6

1
= 6.

1.4.2.8. Solution. Since the limits of the numerator and denominator exist, and

since the limit of the denominator is nonzero: lim
x→3

(
4x− 2

x+ 2

)4

=

(
4(3)− 2

3 + 2

)4

= 16

1.4.2.9. ∗. Solution.

lim
t→−3

(
1− t
cos(t)

)
=

lim
t→−3

(1− t)
lim
t→−3

cos(t)
= 4/ cos(−3) = 4/ cos(3)

1.4.2.10. ∗. Solution. If try naively then we get 0/0, so we expand and then
simplify:

(2 + h)2 − 4

2h
=
h2 + 4h+ 4− 4

2h
=
h

2
+ 2

Hence the limit is lim
h→0

(
h

2
+ 2

)
= 2.

1.4.2.11. ∗. Solution.

lim
t→−2

(
t− 5

t+ 4

)
=

limt→−2(t− 5)

limt→−2(t+ 4)
= −7/2.

1.4.2.12. ∗. Solution.

lim
t→1

√
5x3 + 4 =

√
lim
t→1

(
5x3 + 4

)
=
√

5 lim
t→1

(x3) + 4 =
√

9 = 3.
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1.4.2.13. ∗. Solution.

lim
t→−1

(
t− 2

t+ 3

)
=

lim
t→−1

(t− 2)

lim
t→−1

(t+ 3)
= −3/2.

1.4.2.14. ∗. Solution. We simply plug in x = 1: lim
x→1

[
log(1 + x)− x

x2

]
=

log(2)− 1.

1.4.2.15. ∗. Solution. If we try naively then we get 0/0, so we simplify first:

x− 2

x2 − 4
=

x− 2

(x− 2)(x+ 2)
=

1

x+ 2

Hence the limit is lim
x→2

1

x+ 2
= 1/4.

1.4.2.16. ∗. Solution. If we try to plug in x = 4, we find the denominator is
zero. So to get a better idea of what’s happening, we factor the numerator and
denominator:

lim
x→4

x2 − 4x

x2 − 16
= lim

x→4

x(x− 4)

(x+ 4)(x− 4)

= lim
x→4

x

x+ 4

=
4

8
=

1

2

1.4.2.17. ∗. Solution. If we try to plug in x = 2, we find the denominator is
zero. So to get a better idea of what’s happening, we factor the numerator:

lim
x→2

x2 + x− 6

x− 2
= lim

x→2

(x+ 3)(x− 2)

x− 2

= lim
x→2

(x+ 3) = 5

1.4.2.18. ∗. Solution. If we try naively then we get 0/0, so we simplify first:

x2 − 9

x+ 3
=

(x− 3)(x+ 3)

(x+ 3)
= x− 3

Hence the limit is lim
x→−3

(x− 3) = −6.

1.4.2.19. Solution. To calculate the limit of a polynomial, we simply evaluate

the polynomial: lim
t→2

1

2
t4 − 3t3 + t =

1

2
· 24 − 3 · 23 + 2 = −14

1.4.2.20. ∗. Solution.
√
x2 + 8− 3

x+ 1
=

√
x2 + 8− 3

x+ 1
·
√
x2 + 8 + 3√
x2 + 8 + 3
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=
(x2 + 8)− 32

(x+ 1)(
√
x2 + 8 + 3)

=
x2 − 1

(x+ 1)(
√
x2 + 8 + 3)

=
(x− 1)(x+ 1)

(x+ 1)(
√
x2 + 8 + 3)

=
(x− 1)√
x2 + 8 + 3

lim
x→−1

√
x2 + 8− 3

x+ 1
= lim

x→−1

(x− 1)√
x2 + 8 + 3

=
−2√
9 + 3

= −2

6
= −1

3
.

1.4.2.21. ∗. Solution. If we try to do the limit naively we get 0/0. Hence we
must simplify.

√
x+ 7−

√
11− x

2x− 4
=

√
x+ 7−

√
11− x

2x− 4
·
(√

x+ 7 +
√

11− x√
x+ 7 +

√
11− x

)
=

(x+ 7)− (11− x)

(2x− 4)(
√
x+ 7 +

√
11− x)

=
2x− 4

(2x− 4)(
√
x+ 7 +

√
11− x)

=
1√

x+ 7 +
√

11− x

So, lim
x→2

√
x+ 7−

√
11− x

2x− 4
= lim

x→2

1√
x+ 7 +

√
11− x

=
1√

9 +
√

9

=
1

6

1.4.2.22. ∗. Solution. If we try to do the limit naively we get 0/0. Hence we
must simplify.

√
x+ 2−

√
4− x

x− 1
=

√
x+ 2−

√
4− x

x− 1
·
√
x+ 2 +

√
4− x√

x+ 2 +
√

4− x
=

(x+ 2)− (4− x)

(x− 1)(
√
x+ 2 +

√
4− x)

=
2x− 2

(x− 1)(
√
x+ 2 +

√
4− x)

=
2√

x+ 2 +
√

4− x
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So the limit is

lim
x→1

√
x+ 2−

√
4− x

x− 1
= lim

x→1

2√
x+ 2 +

√
4− x

=
2√

3 +
√

3

=
1√
3

1.4.2.23. ∗. Solution. If we try to do the limit naively we get 0/0. Hence we
must simplify.

√
x− 2−

√
4− x

x− 3
=

√
x− 2−

√
4− x

x− 3
·
√
x− 2 +

√
4− x√

x− 2 +
√

4− x
=

(x− 2)− (4− x)

(x− 3)(
√
x− 2 +

√
4− x)

=
2x− 6

(x− 3)(
√
x− 2 +

√
4− x)

=
2√

x− 2 +
√

4− x

So, lim
x→3

√
x− 2−

√
4− x

x− 3
= lim

x→3

2√
x− 2 +

√
4− x

=
2

1 + 1

= 1.

1.4.2.24. ∗. Solution. Here we get 0/0 if we try the naive approach. Hence we
must simplify.

3t− 3

2−
√

5− t =
3t− 3

2−
√

5− t ×
2 +
√

5− t
2 +
√

5− t
=
(
2 +
√

5− t
) 3t− 3

22 − (5− t)
=
(
2 +
√

5− t
) 3t− 3

t− 1

=
(
2 +
√

5− t
) 3(t− 1)

t− 1

So there is a cancelation. Hence the limit is

lim
t→1

3t− 3

2−
√

5− t = lim
t→1

(
2 +
√

5− t
)
· 3

= 12

1.4.2.25. Solution. This is a classic example of the Squeeze Theorem. It is

tempting to try to use arithmetic of limits: lim
x→0
−x2 = 0, and lim

x→0
cos

(
3

x

)
=
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something, and zero times something is 0. However, this is invalid reasoning, be-

cause we can only use arithmetic of limits when those limits exist, and lim
x→0

cos

(
3

x

)
does not exist. So, we need the Squeeze Theorem.
Since −1 ≤ cos

(
3
x

)
≤ 1, we can bound our function of interest from above and

below (being careful of the sign!):

−x2(1) ≤ −x2cos

(
3

x

)
≤ −x2(−1)

So our function of interest is between −x2 and x2. Since lim
x→0
−x2 = lim

x→0
x2 = 0, by

the Squeeze Theorem, also lim
x→0
−x2 cos

(
3

x

)
= 0.

Advice about writing these up: whenever we use the Squeeze Theorem, we need
to explicitly write that two things are true: that the function we’re interested is
bounded above and below by two other functions, and that both of those functions
have the same limit. Then we can conclude (and we need to write this down as
well!) that our original function also shares that limit.

1.4.2.26. Solution. Recall that sine and cosine, no matter what (real-number)
input we feed them, spit out numbers between −1 and 1. So we can bound our
horrible numerator, rather than trying to deal with it directly.

x4(−1) + 5x2(−1) + 2 ≤ x4sin

(
1

x

)
+ 5x2cos

(
1

x

)
+ 2 ≤ x4(1) + 5x2(1) + 2

Further, notice that our bounded functions tend to the same value as x goes to 0:

lim
x→0

x4(−1) + 5x2(−1) + 2 = lim
x→0

x4 + 5x2 + 2 = 2.

So, by the Squeeze Theorem, also

lim
x→0

x4 sin

(
1

x

)
+ 5x2 cos

(
1

x

)
+ 2 = 2.

Now, we evaluate our original limit:

lim
x→0

x4 sin
(

1
x

)
+ 5x2 cos

(
1
x

)
+ 2

(x− 2)2
=

2

(−2)2
=

1

2
.

1.4.2.27. ∗. Solution. lim
x→0

sin2

(
1

x

)
= DNE, so we think about using the

Squeeze Theorem. We’ll need to bound the expression x sin2

(
1

x

)
, but the bounding

is a little delicate. For any non-zero value we plug in for x, sin2

(
1

x

)
is a number

in the interval [0, 1]. If a is a number in the interval [0, 1], then:

0 <xa < x when x is positive
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x <xa < 0 when x is negative

We’ll show you two ways to use this information to create bound that will allow
you to apply the Squeeze Theorem.

• Solution 1: We will evaluate separately the limit from the right and from the
left.

When x > 0,

0 ≤ x sin2

(
1

x

)
≤ x

because 0 ≤ sin2

(
1

x

)
≤ 1. Since

lim
x→0+

0 = 0 and lim
x→0+

x = 0

then by the Squeeze Theorem, also

lim
x→0+

x sin2

(
1

x

)
= 0.

Similarly, When x < 0,

x ≤ x sin2

(
1

x

)
≤ 0

because 0 ≤ sin2

(
1

x

)
≤ 1. Since

lim
x→0−

x = 0 and lim
x→0−

0 = 0

then by the Squeeze Theorem, also

lim
x→0−

x sin2

(
1

x

)
= 0.

Since the one-sided limits are both equal to zero,

lim
x→0

x sin2

(
1

x

)
= 0.

Remark: this is a perfectly fine proof, but it seems to repeat itself. Since the
cases x < 0 and x > 0 are so similar, we would like to take care of them
together. This can be done as shown below.

• Solution 2: If x 6= 0, then 0 ≤ sin2

(
1

x

)
≤ 1, so

−|x| ≤ x sin2

(
1

x

)
≤ |x|.
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Since
lim
x→0
−|x| = 0 and lim

x→0
|x| = 0

then by the Squeeze Theorem, also

lim
x→0

x sin2

(
1

x

)
= 0.

1.4.2.28. Solution. When we plug w = 5 in to the numerator and denominator,
we find that each becomes zero. Since we can’t divide by zero, we have to dig a
little deeper. When a polynomial has a root, that also means it has a factor: we
can factor (w − 5) out of the top. That lets us cancel:

lim
w→5

2w2 − 50

(w − 5)(w − 1)
= lim

w→5

2(w − 5)(w + 5)

(w − 5)(w − 1)
= lim

w→5

2(w + 5)

(w − 1)
.

Note that the function
2w2 − 50

(w − 5)(w − 1)
is NOT defined at w = 5, while the function

2(w + 5)

(w − 1)
IS defined at w = 5; so strictly speaking, these two functions are not equal.

However, for every value of w that is not 5, the functions are the same, so their limits
are equal. Furthermore, the limit of the second function is quite easy to calculate,

since we’ve eliminated the zero in the denominator: lim
w→5

2(w + 5)

(w − 1)
=

2(5 + 5)

5− 1
= 5.

So lim
w→5

2w2 − 50

(w − 5)(w − 1)
= lim

w→5

2(w + 5)

(w − 1)
= 5.

1.4.2.29. Solution. When we plug in r = −5 to the denominator, we find that it
becomes 0, so we need to dig deeper. The numerator is not zero, so cancelling is out.
Notice that the denominator is factorable: r2 +10r+25 = (r+5)2. As r approaches
−5 from either side, the denominator gets very close to zero, but stays positive. The
numerator gets very close to −5. So, as r gets closer to −5, we have something close
to −5 divided by a very small, positive number. Since the denominator is small,
the fraction will have a large magnitude; since the numerator is negative and the
denominator is positive, the fraction will be negative. So, lim

r→−5

r

r2 + 10r + 25
= −∞

1.4.2.30. Solution. First, we find lim
x→−1

x3 + x2 + x+ 1

3x+ 3
. When we plug in x =

−1 to the top and the bottom, both become zero. In a polynomial, where there is
a root, there is a factor, so this tells us we can factor out (x+ 1) from both the top
and the bottom. It’s pretty easy to see how to do this in the bottom. For the top,
if you’re having a hard time, one factoring method (of many) to try is long division
of polynomials; another is to factor out (x + 1) from the first two terms and the
last two terms. (Detailed examples of long division are given in Appendix A.16 and
Examples 1.10.2 and 1.10.3 of the CLP-2 Integral Calculus text.)

lim
x→−1

x3 + x2 + x+ 1

3x+ 3
= lim

x→−1

x2(x+ 1) + (x+ 1)

3x+ 3
= lim

x→−1

(x+ 1)(x2 + 1)

3(x+ 1)
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= lim
x→−1

x2 + 1

3
=

(−1)2 + 1

3
=

2

3
.

One thing to note here is that the function
x3 + x2 + x+ 1

3x+ 3
is not defined at x = −1

(because we can’t divide by zero). So we replaced it with the function
x2 + 1

3
, which

IS defined at x = −1. These functions only differ at x = −1; they are the same at
every other point. That is why we can use the second function to find the limit of
the first function.
Now we’re ready to find the actual limit asked in the problem:

lim
x→−1

√
x3 + x2 + x+ 1

3x+ 3
=

√
2

3
.

1.4.2.31. Solution. When we plug x = 0 into the denominator, we get 0, which
means we need to look harder. The numerator is not zero, so we won’t be able to
cancel our problems away. Let’s factor to make things clearer.

x2 + 2x+ 1

3x5 − 5x3
=

(x+ 1)2

x3(3x2 − 5)

As x gets close to 0, the numerator is close to 1; the term (3x2−5) is negative; and the
sign of x3 depends on the direction we’re approaching 0 from. Since we’re dividing
a numerator that is very close to 1 by something that’s getting very close to 0, the
magnitude of the fraction is getting bigger and bigger without bound. Since the
sign of the fraction flips depending on whether we are using numbers slightly bigger
than 0, or slightly smaller than 0, that means the one-sided limits are ∞ and −∞,

respectively. (In particular, lim
x→0−

x2 + 2x+ 1

3x5 − 5x3
= ∞ and lim

x→0+

x2 + 2x+ 1

3x5 − 5x3
= −∞.)

Since the one-sided limits don’t agree, the limit does not exist.

1.4.2.32. Solution. As usual, we first try plugging in t = 7, but the denominator
is 0, so we need to think harder. The top and bottom are both squares, so let’s go

ahead and factor:
t2x2 + 2tx+ 1

t2 − 14t+ 49
=

(tx+ 1)2

(t− 7)2
. Since x is positive, the numerator

is nonzero. Also, the numerator is positive near t = 7. So, we have something
positive and nonzero on the top, and we divide it by the bottom, which is positive
and getting closer and closer to zero. The quotient is always positive near t = 7,

and it is growing in magnitude without bound, so lim
t→7

t2x2 + 2tx+ 1

t2 − 14t+ 49
=∞.

Remark: there is an important reason we specified that x must be a positive con-
stant. Suppose x were −1

7
(which is negative and so was not allowed in the question

posed). In this case, we would have

lim
t→7

t2x2 + 2tx+ 1

t2 − 14t+ 49
= lim

t→7

(tx+ 1)2

(t− 7)2

= lim
t→7

(−t/7 + 1)2

(t− 7)2
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= lim
t→7

(−1/7)2(t− 7)2

(t− 7)2

= lim
t→7

(−1/7)2

=
1

49
6=∞

1.4.2.33. Solution. The function whose limit we are taking does not depend on
d. Since x is a constant, x5−32x+15 is also a constant–it’s just some number, that
doesn’t change, regardless of what d does. So lim

d→0
x5 − 32x+ 15 = x5 − 32x+ 15.

1.4.2.34. Solution. There’s a lot going on inside that sine function... and we
don’t have to care about any of it. No matter what horrible thing we put inside a
sine function, the sine function will spit out a number between −1 and 1. So that
means we can bound our horrible function like this:

(x− 1)2 · (−1) ≤ (x− 1)2sin

[(
x2 − 3x+ 2

x2 − 2x+ 1

)2

+ 15

]
≤ (x− 1)2 · (1)

Since lim
x→1

(x− 1)2 · (−1) = lim
x→1

(x− 1)2 · (1) = 0, the Squeeze Theorem tells us that

lim
x→1

(x− 1)2 sin

[(
x2 − 3x+ 2

x2 − 2x+ 1

)2

+ 15

]
= 0

as well.
1.4.2.35. ∗. Solution. Since −1 ≤ sinx ≤ 1 for all values of x,

−1 ≤ sin
(
x−100

)
≤ 1

(−1)x1/101 ≤ x1/101sin
(
x−100

)
≤ (1)x1/101 when x > 0, and

(1)x1/101 ≤ x1/101sin
(
x−100

)
≤ (−1)x1/101 when x < 0. Also,

lim
x→0

x1/101 = lim
x→0
−x1/101 = 0 So, by the Squeeze Theorem,

lim
x→0−

x1/101 sin
(
x−100

)
= 0 = lim

x→0+
x1/101 sin

(
x−100

)
and so

0 = lim
x→0

x1/101 sin
(
x−100

)
.

Remark: there is a technical point here. When x is a positive number, −x is
negative, so (−1)x < x. But, when x is negative, −x is positive, so (−1)x > x.
This is why we take the one-sided limits of our function, and apply the Squeeze
Theorem to them separately. It is not true to say that, for instance, (−1)x1/101 ≤
x1/101 sin

(
x−100

)
when x is near zero, because this does not hold when x is less than

zero.
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1.4.2.36. ∗. Solution.

lim
x→2

x2 − 4

x2 − 2x
= lim

x→2

(x− 2)(x+ 2)

x(x− 2)
= lim

x→2

x+ 2

x
= 2

1.4.2.37. Solution. When we plug in x = 5 to the top and the bottom, both

limits exist, and the bottom is nonzero. So lim
x→5

(x− 5)2

x+ 5
=

0

10
= 0.

1.4.2.38. Solution. Since we can’t plug in t = 1
2
, we’ll simplify. One way to start

is to add the fractions in the numerator. We’ll need a common demoninator, such
as 3t2(t2 − 1).

lim
t→ 1

2

1
3t2

+ 1
t2−1

2t− 1
= lim

t→ 1
2

t2−1
3t2(t2−1)

+ 3t2

3t2(t2−1)

2t− 1

= lim
t→ 1

2

4t2−1
3t2(t2−1)

2t− 1

= lim
t→ 1

2

4t2 − 1

3t2(t2 − 1)(2t− 1)

= lim
t→ 1

2

(2t+ 1)(2t− 1)

3t2(t2 − 1)(2t− 1)

= lim
t→ 1

2

2t+ 1

3t2(t2 − 1)

Since we cancelled out the term that was causing the numerator and denominator
to be zero when t = 1

2
, now t = 1

2
is in the domain of our function, so we simply

plug it in:

=
1 + 1

3
4

(
1
4
− 1
)

=
2

3
4

(
−3

4

)
= −32

9

1.4.2.39. Solution. We recall that

|x| =
{

x , x ≥ 0

−x , x < 0

So,

|x|
x

=

{
x
x

, x > 0
−x
x

, x < 0

=

{
1 , x > 0

−1 , x < 0
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Therefore,

3 +
|x|
x

=

{
4 , x > 0

2 , x < 0

Since our function gives a value of 4 when x is to the right of zero, and a value of

2 when x is to the left of zero, lim
x→0

(
3 +
|x|
x

)
does not exist.

To further clarify the situation, the graph of y = f(x) is sketched below:

x

y

4

2

1.4.2.40. Solution. If we factor out 3 from the numerator, our function becomes

3
|d+ 4|
d+ 4

. We recall that

|X| =
{

X , X ≥ 0

−X , X < 0

So, with X = d+ 4,

3
|d+ 4|
d+ 4

=


3d+4
d+4

, d+ 4 > 0

3−(d+4)
d+4

, d+ 4 < 0

=

{
3 , d > −4

−3 , d < −4

Since our function gives a value of 3 when d > −4, and a value of −3 when d < −4,

lim
d→−4

|3d+ 12|
d+ 4

does not exist.

To further clarify the situation, the graph of y = f(x) is sketched below:
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x

y

−3

−4

1.4.2.41. Solution. Note that x = 0 is in the domain of our function, and nothing
“weird” is happening there: we aren’t dividing by zero, or taking the square root of
a negative number, or joining two pieces of a piecewise-defined function. So, as x

gets extremely close to zero,
5x− 9

|x|+ 2
is getting extremely close to

0− 9

0 + 2
=
−9

2
.

That is, lim
x→0

5x− 9

|x|+ 2
= −9

2
.

1.4.2.42. Solution. Since we aren’t dividing by zero, and all these limits exist:

lim
x→−1

xf(x) + 3

2f(x) + 1
=

(−1)(−1) + 3

2(−1) + 1
= −4.

1.4.2.43. ∗. Solution. As x→ −2, the denominator goes to 0, and the numera-
tor goes to −2a+7. For the ratio to have a limit, the numerator must also converge

to 0, so we need a =
7

2
. Then,

lim
x→−2

x2 + ax+ 3

x2 + x− 2
= lim

x→−2

x2 + 7
2
x+ 3

(x+ 2)(x− 1)

= lim
x→−2

(x+ 2)(x+ 3
2
)

(x+ 2)(x− 1)

= lim
x→−2

x+ 3
2

x− 1

=
1

6

so the limit exists when a =
7

2
.
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1.4.2.44. Solution.

a lim
x→0

f(x) = 0: as x approaches 0, so does 2x.

b lim
x→0

g(x) = DNE: the left and right limits do not agree, so the limit does not
exist. In particular: lim

x→0−
g(x) = −∞ and lim

x→0+
g(x) =∞.

c lim
x→0

f(x)g(x) = lim
x→0

2x · 1

x
= lim

x→0
2 = 2. Remark: although the limit of g(x)

does not exist here, the limit of f(x)g(x) does.

d lim
x→0

f(x)

g(x)
= lim

x→0

2x
1
x

= lim
x→0

2x2 = 0

e lim
x→2

f(x) + g(x) = lim
x→2

2x+
1

x
= 4 +

1

2
=

9

2

f lim
x→0

f(x) + 1

g(x+ 1)
= lim

x→0

2x+ 1
1

x+1

=
1

1
= 1

Exercises — Stage 3
1.4.2.45. Solution. We can begin by plotting the points that are easy to read
off the diagram.

x f(x) 1
f(x)

−3 −3 −1
3

−2 0 UND

−1 3 1
3

0 3 1
3

1 3
2

2
3

2 0 UND

3 1 1

Note that 1
f(x)

is undefined when f(x) = 0. So 1
f(x)

is undefined at x = −2 and
x = 2. We shall look more closely at the behaviour of 1

f(x)
for x near ±2 shortly.

Plotting the above points, we get the following picture:
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x

y

1

1

Since f(x) is constant when x is between -1 and 0, then also 1
f(x)

is constant between
-1 and 0, so we update our picture:

x

y

1

1

The big question that remains is the behaviour of 1
f(x)

when x is near -2 and 2.
We can answer this question with limits. As x approaches −2 from the left, f(x)
gets closer to zero, and is negative. So 1

f(x)
will be negative, and will increase in

magnitude without bound; that is, lim
x→−2−

1

f(x)
= −∞. Similarly, as x approaches

−2 from the right, f(x) gets closer to zero, and is positive. So 1
f(x)

will be positive,
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and will increase in magnitude without bound; that is, lim
x→−2+

1

f(x)
= ∞. We add

this behaviour to our graph:

x

y

1

1

Now, we consider the behaviour at x = 2. Since f(x) gets closer and closer to 0

AND is positive as x approaches 2, we conclude lim
x→2

1

f(x)
= ∞. Adding to our

picture:

x

y

1

1

Now the only remaining blank space is between x = 0 and x = 1. Since f(x) is a
smooth curve that stays away from 0, we can draw some kind of smooth curve here,
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and call it good enough. (Later on we’ll go into more details about drawing graphs.
The purpose of this exercise was to utilize what we’ve learned about limits.)

x

y

1

1

1.4.2.46. Solution. We can start by examining points.

x f(x) g(x)
f(x)

g(x)
−3 −3 −1.5 2

−2 0 0 UND
−1 3 1.5 2

−0 3 1.5 2

1 1.5 .75 2

2 0 0 UND
3 1 .5 2

We cannot divide by zero, so
f(x)

g(x)
is not defined when x = ±2. But for every other

value of x that we plotted, f(x) is twice as large as g(x),
f(x)

g(x)
= 2. With this in

mind, we see that the graph of f(x) is exactly the graph of 2g(x).
This gives us the graph below.
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x

y

1

1

y =
f(x)

g(x)

Remark: f(2) = g(2) = 0, so
f(2)

g(2)
does not exist, but lim

x→2

f(x)

g(x)
= 2. Although we

are trying to “divide by zero” at x = ±2, it would be a mistake here to interpret
this as a vertical asymptote.

1.4.2.47. Solution. Velocity of white ball when t = 1 is lim
h→0

s(1 + h)− s(1)

h
, so

the given information tells us lim
h→0

s(1 + h)− s(1)

h
= 5. Then the velocity of the red

ball when t = 1 is lim
h→0

2s(1 + h)− 2s(1)

h
= lim

h→0
2 · s(1 + h)− s(1)

h
= 2 · 5 = 10.

1.4.2.48. Solution. 1.4.2.48.a Neither limit exists. When x gets close to 0, these
limits go to positive infinity from one side, and negative infinity from the other.

1.4.2.48.b lim
x→0

[f(x) + g(x)] = lim
x→0

[
1

x
− 1

x

]
= lim

x→0
0 = 0.

1.4.2.48.c No: this is an example of a time when the two individual functions have
limits that don’t exist, but the limit of their sum does exist. This “sum rule” is only
true when both lim

x→a
f(x) and lim

x→a
g(x) exist.

1.4.2.49. Solution. 1.4.2.49.a When we evaluate the limit from the left, we only
consider values of x that are less than zero. For these values of x, our function is
x2 − 3. So, lim

x→0−
f(x) = lim

x→0−
(x2 − 3) = −3.

1.4.2.49.b When we evaluate the limit from the right, we only consider values of
x that are greater than zero. For these values of x, our function is x2 + 3. So,
lim
x→0+

f(x) = lim
x→0+

(x2 + 3) = 3.

1.4.2.49.c Since the limits from the left and right do not agree, lim
x→0

f(x) =DNE.

686



Solutions to Exercises

x

y

3

−3

1.4.2.50. Solution. 1.4.2.50.a When we evaluate lim
x→−4−

f(x), we only consider

values of x that are less than −4. For these values, f(x) = x3 + 8x2 + 16x. So,

lim
x→4−

f(x) = lim
x→−4−

(x3 + 8x2 + 16x) = (−4)3 + 8(−4)2 + 16(−4) = 0

Note that, because x3 + 8x2 + 16x is a polynomial, we can evaluate the limit by
directly substituting in x = −4.
1.4.2.50.b When we evaluate lim

x→−4+
f(x), we only consider values of x that are

greater than −4. For these values,

f(x) =
x2 + 8x+ 16

x2 + 30x− 4

So

lim
x→−4+

f(x) = lim
x→−4+

x2 + 8x+ 16

x2 + 30x− 4

This is a rational function, and x = −4 is in its domain (we aren’t doing anything
suspect, like dividing by 0), so again we can directly substitute x = −4 to evaluate
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the limit:

lim
x→−4+

f(x) =
(−4)2 + 8(−4) + 16

(−4)2 + 30(−4)− 4
=

0

−108
= 0

1.4.2.50.c Since lim
x→−4−

f(x) = lim
x→−4+

f(x) = 0, we conclude that lim
x→−4

f(x) = 0

1.5 · Limits at Infinity
1.5.2 · Exercises

Exercises — Stage 1
1.5.2.1. Solution. Any polynomial of degree one or higher will go to ∞ or −∞
as x goes to ∞. So, we need a polynomial of degree 0–that is, f(x) is a constant.
One possible answer is f(x) = 1.

1.5.2.2. Solution. This will be the case for any polynomial of odd degree. For
instance, f(x) = x.
Many answers are possible: also f(x) = x15 − 32x2 + 9 satisfies lim

x→∞
f(x) =∞ and

lim
x→−∞

f(x) = −∞.

Exercises — Stage 2
1.5.2.3. Solution. lim

x→∞
2−x = lim

x→∞
1

2x
= 0

1.5.2.4. Solution. As x gets larger and larger, 2x grows without bound. (For
integer values of x, you can imagine multiplying 2 by itself more and more times.)
So, lim

x→∞
2x =∞.

1.5.2.5. Solution. Write X = −x. As x becomes more and more negative, X
becomes more and more positive. From Question 1.5.2.4, we know that 2X grows
without bound as X gets larger and larger. Since 2x = 2−(−x) = 2−X = 1

2X
, as we

let x become a huge negative number, we are in effect dividing by a huge positive
number; hence lim

x→−∞
2x = 0.

A more formulaic way to describe the above is this: lim
x→−∞

2x = lim
X→∞

2−X =

lim
X→∞

1
2X

= 0.

1.5.2.6. Solution. There is no single number that cosx approaches as x becomes
more and more strongly negative: as x grows in the negative direction, the function
oscillates between −1 and +1, never settling close to one particular number. So,
this limit does not exist.

1.5.2.7. Solution. The highest-order term in this polynomial is −3x5, so this
dominates the function’s behaviour as x goes to infinity. More formally:

lim
x→∞

(
x− 3x5 + 100x2

)
= lim

x→∞
−3x5

(
1− 1

3x4
− 100

3x3

)
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= lim
x→∞
−3x5 = −∞

because

lim
x→∞

(
1− 1

3x4
− 100

3x3

)
= 1− 0− 0 = 1.

1.5.2.8. Solution. Our standard trick is to factor out the highest power of x in
the denominator: x4. We just have to be a little careful with the square root. Since
we are taking the limit as x goes to positive infinity, we have positive x-values, so√
x2 = x and

√
x8 = x4.

lim
x→∞

√
3x8 + 7x4 + 10

x4 − 2x2 + 1
= lim

x→∞

√
x8(3 + 7

x4
) + 10

x4(1− 2
x2

+ 1
x4

)

= lim
x→∞

√
x8

√
3 + 7

x4
+ 10

x4(1− 2
x2

+ 1
x4

)

= lim
x→∞

x4
√

3 + 7
x4

+ 10

x4(1− 2
x2

+ 1
x4

)

= lim
x→∞

x4
(√

3 + 7
x4

+ 10
x4

)
x4(1− 2

x2
+ 1

x4
)

= lim
x→∞

√
3 + 7

x4
+ 10

x4

1− 2
x2

+ 1
x4

=

√
3 + 0 + 0

1− 0 + 0
=
√

3

1.5.2.9. ∗. Solution. We have two terms, each getting extremely large. It’s
unclear at first what happens when we subtract them. To get this equation into
another form, we multiply and divide by the conjugate,

√
x2 + 5x+

√
x2 − x.

lim
x→∞

[√
x2 + 5x−

√
x2 − x

]
= lim

x→∞

[
(
√
x2 + 5x−

√
x2 − x)(

√
x2 + 5x+

√
x2 − x)√

x2 + 5x+
√
x2 − x

]

= lim
x→∞

(x2 + 5x)− (x2 − x)√
x2 + 5x+

√
x2 − x

= lim
x→∞

6x√
x2 + 5x+

√
x2 − x

Now we divide the numerator and denominator by x. In the case of the denominator,
since x > 0, x =

√
x2.

= lim
x→∞

6(x)
√
x2

√
1 + 5

x
+
√
x2

√
1− 1

x
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= lim
x→∞

6(x)

(x)
√

1 + 5
x

+ (x)
√

1− 1
x

= lim
x→∞

6√
1 + 5

x
+
√

1− 1
x

=
6√

1 + 0 +
√

1− 0
= 3

1.5.2.10. ∗. Solution. Note that for large negative x, the first term in the
denominator

√
4x2 + x ≈

√
4x2 = |2x| = −2x not +2x. A good way to avoid

incorrectly computing
√
x2 when x is negative is to define y = −x and express

everything in terms of y. That’s what we’ll do.

lim
x→−∞

3x√
4x2 + x− 2x

= lim
y→+∞

−3y√
4y2 − y + 2y

= lim
y→+∞

−3y

y
√

4− 1
y

+ 2y

= lim
y→+∞

−3√
4− 1

y
+ 2

=
−3√

4− 0 + 2
since 1/y → 0 as y → +∞

= −3

4

1.5.2.11. ∗. Solution. The highest power of x in the denominator is x2, so we
divide the numerator and denominator by x2:

lim
x→−∞

1− x− x2

2x2 − 7
= lim

x→−∞
1/x2 − 1/x− 1

2− 7/x2

=
0− 0− 1

2− 0
= −1

2

1.5.2.12. ∗. Solution.

lim
x→∞

(√
x2 + x− x

)
= lim

x→∞

(√
x2 + x− x

)(√
x2 + x+ x

)
√
x2 + x+ x

= lim
x→∞

(x2 + x)− x2

√
x2 + x+ x

= lim
x→∞

x√
x2 + x+ x

= lim
x→∞

1√
1 + 1

x
+ 1

=
1

2

1.5.2.13. ∗. Solution. We have, after dividing both numerator and denominator
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by x2 (which is the highest power of the denominator) that

5x2 − 3x+ 1

3x2 + x+ 7
=

5− 3
x

+ 1
x2

3 + 1
x

+ 7
x2

.

Since 1/x→ 0 and also 1/x2 → 0 as x→ +∞, we conclude that

lim
x→+∞

5x2 − 3x+ 1

3x2 + x+ 7
=

5

3
.

1.5.2.14. ∗. Solution. We have, after dividing both numerator and denominator
by x (which is the highest power of the denominator) that

√
4x+ 2

3x+ 4
=

√
4
x

+ 2
x2

3 + 4
x

.

Since 1/x→ 0 and also 1/x2 → 0 as x→ +∞, we conclude that

lim
x→+∞

√
4x+ 2

3x+ 4
=

0

3
= 0.

1.5.2.15. ∗. Solution. The dominant terms in the numerator and denominator
have order x3. Taking out that common factor we get

4x3 + x

7x3 + x2 − 2
=

4 + 1
x2

7 + 1
x
− 2

x3

.

Since 1/xa → 0 as x→ +∞ (for a > 0), we conclude that

lim
x→+∞

4x3 + x

7x3 + x2 − 2
=

4

7
.

1.5.2.16. Solution.

• Solution 1

We want to factor out x, the highest power in the denominator. Since our
limit only sees negative values of x, we must remember that 4

√
x4 = |x| = −x,

although 3
√
x3 = x.

lim
x→−∞

3
√
x2 + x− 4

√
x4 + 5

x+ 1
= lim

x→−∞

3

√
x3( 1

x
+ 1

x2
)− 4

√
x4(1 + 5

x4
)

x(1 + 1
x
)

= lim
x→−∞

3
√
x3 3

√
1
x

+ 1
x2
− 4
√
x4 4

√
1 + 5

x4

x(1 + 1
x
)

= lim
x→−∞

x 3

√
1
x

+ 1
x2
− (−x) 4

√
1 + 5

x4

x(1 + 1
x
)
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= lim
x→−∞

3

√
1
x

+ 1
x2

+ 4

√
1 + 5

x4

1 + 1
x

=
3
√

0 + 0 + 4
√

1 + 0

1 + 0
= 1

• Solution 2

Alternately, we can use the transformation lim
x→−∞

f(x) = lim
x→∞

f(−x). Then

we only look at positive values of x, so roots behave nicely: 4
√
x4 = |x| = x.

lim
x→−∞

3
√
x2 + x− 4

√
x4 + 5

x+ 1
= lim

x→∞

3
√

(−x)2 − x− 4
√

(−x)4 + 5

−x+ 1

= lim
x→∞

3
√
x2 − x− 4

√
x4 + 5

−x+ 1

= lim
x→∞

3
√
x3 3

√
1
x
− 1

x2
− 4
√
x4 4

√
1 + 5

x4

x(−1 + 1
x
)

= lim
x→∞

x 3

√
1
x
− 1

x2
− x 4

√
1 + 5

x4

x(−1 + 1
x
)

= lim
x→∞

3

√
1
x
− 1

x2
− 4

√
1 + 5

x4

−1 + 1
x

=
3
√

0− 0− 4
√

1 + 0

−1 + 0
=
−1

−1
= 1

1.5.2.17. ∗. Solution. We have, after dividing both numerator and denominator
by x3 (which is the highest power of the denominator) that:

lim
x→∞

5x2 + 10

3x3 + 2x2 + x
= lim

x→∞

5
x

+ 10
x3

3 + 2
x

+ 1
x2

=
0

3
= 0.

1.5.2.18. Solution. Since we only consider negative values of x,
√
x2 = |x| = −x.

lim
x→−∞

x+ 1√
x2

= lim
x→−∞

x+ 1

−x
= lim

x→−∞
x

−x +
1

−x
= lim

x→−∞
−1− 1

x

= −1

1.5.2.19. Solution. Since we only consider positive values of x,
√
x2 = |x| = x.

lim
x→∞

x+ 1√
x2

= lim
x→∞

x+ 1

x
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= lim
x→∞

1 +
1

x
= 1 + 0 = 1

1.5.2.20. ∗. Solution. When x < 0, |x| = −x and so lim
x→∞

sin

(
π

2
· |x|
x

)
+

1

x
=

sin(−π/2) = −1.

1.5.2.21. ∗. Solution. We divide both the numerator and the denominator
by the highest power of x in the denominator, which is x. Since x < 0, we have√
x2 = |x| = −x, so that

√
x2 + 5

x
= −

√
x2 + 5

x2
= −

√
1 +

5

x2
.

Since 1/x→ 0 and also 1/x2 → 0 as x→ −∞, we conclude that

lim
x→−∞

3x+ 5√
x2 + 5− x

= lim
x→−∞

3 + 5
x

−
√

1 + 5
x2
− 1

=
3

−1− 1
= −3

2
.

1.5.2.22. ∗. Solution. We divide both the numerator and the denominator
by the highest power of x in the denominator, which is x. Since x < 0, we have√
x2 = |x| = −x, so that

√
4x2 + 15

x
=

√
4x2 + 15

−
√
x2

= −
√

4x2 + 15

x2
= −

√
4 +

15

x2
.

Since 1/x→ 0 and also 1/x2 → 0 as x→ −∞, we conclude that

lim
x→−∞

5x+ 7√
4x2 + 15− x

= lim
x→−∞

5 + 7
x

−
√

4 + 15
x2
− 1

=
5

−2− 1
= −5

3
.

1.5.2.23. Solution.

lim
x→−∞

3x7 + x5 − 15

4x2 + 32x
= lim

x→−∞

x2(3x5 + x3 − 15
x2

)

x2(4 + 32
x

)

= lim
x→−∞

3x5 + x3 − 15
x2

4 + 32
x

= lim
x→+∞

3(−x)5 + (−x)3 − 15
(−x)2

4 + 32
−x

= lim
x→+∞

−3x5 − x3 − 15
x2

4− 32
x

= −∞
1.5.2.24. ∗. Solution. We multiply and divide the expression by its conjugate,
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n2 + 5n+ n

)
.

lim
n→∞

(√
n2 + 5n− n

)
= lim

n→∞

(√
n2 + 5n− n

)(√n2 + 5n+ n√
n2 + 5n+ n

)

= lim
n→∞

(n2 + 5n)− n2

√
n2 + 5n+ n

= lim
n→∞

5n√
n2 + 5n+ n

= lim
n→∞

5 · n
√
n2

√
1 + 5

n
+ n

Since n > 0, we can simplify
√
n2 = n.

= lim
n→∞

5 · n
n
√

1 + 5
n

+ n

= lim
n→∞

5√
1 + 5

n
+ 1

=
5√

1 + 0 + 1
=

5

2

1.5.2.25. Solution.
• Solution 1:

When a approaches 0 from the right, the numerator approaches negative in-

finity, and the denominator approaches −1. So, lim
a→0+

a2 − 1
a

a− 1
=∞.

More precisely, using Theorem 1.5.9:

lim
a→0+

1

a
= +∞

Also, lim
a→0+

a2 = 0

So, using Theorem 1.5.9,

lim
a→0+

a2 − 1

a
= −∞

Furthermore, lim
a→0+

a− 1 = −1

So, using our theorem, lim
a→0+

a2 − 1
a

a− 1
=∞

• Solution 2:

Since a = 0 is not in the domain of our function, a reasonable impulse is to
simplify.

a2 − 1
a

a− 1

(a
a

)
=

a3 − 1

a(a− 1)
=

(a− 1)(a2 + a+ 1)

a(a− 1)
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So,

lim
a→0+

a2 − 1
a

a− 1
= lim

a→0+

(a− 1)(a2 + a+ 1)

a(a− 1)

= lim
a→0+

a2 + a+ 1

a

= lim
a→0+

a+ 1 +
1

a
=∞

1.5.2.26. Solution. Since x = 3 is not in the domain of the function, we simplify,
hoping we can cancel a problematic term.

lim
x→3

2x+ 8
1

x−3
+ 1

x2−9

= lim
x→3

2x+ 8
x+3
x2−9

+ 1
x2−9

= lim
x→3

2x+ 8
x+4
x2−9

= lim
x→3

(2x+ 8)(x2 − 9)

x+ 4
= 0

Exercises — Stage 3
1.5.2.27. Solution. First, we need a rational function whose limit at infinity is
a real number. This means that the degree of the bottom is greater than or equal
to the degree of the top. There are two cases: the denominator has higher degree
than the numerator, or the denominator has the same degree as the numerator.
If the denominator has higher degree than the numerator, then lim

x→∞
f(x) =

lim
x→−∞

f(x) = 0, so the limits are equal–not what we’re looking for.
If the denominator has the same degree as the numerator, then the limit as x goes
to ±∞ is the ratio of the leading terms: again, the limits are equal. So no rational
function exists as described.
1.5.2.28. Solution. The amount of the substance that will linger long-term is
some positive number–the substance will stick around. One example of a substance
that does this is the ink in a tattoo. (If the injection was of medicine, probably it
will be metabolized, and lim

t→∞
c(t) = 0.)

Remark: it actually doesn’t make much sense to let t go to infinity: after a few
million hours, you won’t even have a body, so what is c(t) measuring? Often when
we use formulas in the real world, there is an understanding that they are only good
for some fixed range. We often use the limit as t goes to infinity as a stand-in for
the function’s long-term behaviour.

1.6 · Continuity
1.6.4 · Exercises

Exercises — Stage 1
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1.6.4.1. Solution. Many answers are possible; the tangent function behaves like
this.
1.6.4.2. Solution. If we let f be my height, the time of my birth is a, and now is
b, then we know that f(a) ≤ 1 ≤ f(b). It is reasonable to assume that my height is
a continuous function. So by the IVT, there is some value c between a and b where
f(c) = 1. That is, there is some time (we called it c) between my birth and today
when I was exactly one meter tall.
Notice the IVT does not say precisely what day I was one meter tall; it only guar-
antees that such a day occurred between my birth and today.

1.6.4.3. Solution. One example is f(x) =

{
0 when 0 ≤ x ≤ 1

2 when 1 < x ≤ 2
. The IVT only

guarantees f(c) = 1 for some c in [0, 2] when f is continuous over [0, 2]. If f is not
continuous, the IVT says nothing.

x

y

1.6.4.4. Solution. Yes. This is a straightforward application of IVT.

1.6.4.5. Solution. No. IVT says that f(x) = 0 for some x between 10 and 20,
but it doesn’t have to be exactly half way between.

1.6.4.6. Solution. No. IVT says nothing about functions that are not guar-
anteed to be continuous at the outset. It’s quite easy to construct a func-
tion that is as described, but not continuous. For example, the function pic-
tured below, whose equation format is somewhat less enlightening than its graph:

f(x) =

{
−26

5
x+ 65, 10 ≤ x < 15

−26
5
x+ 91, 15 ≤ x ≤ 20

.

x

y

10 15 20

13

−13
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1.6.4.7. Solution. True. Since f(t) is continuous at t = 5, that means lim
t→5

f(t) =

f(5). For that to be true, f(5) must exist — that is, 5 is in the domain of f(x).

1.6.4.8. Solution. True. Using the definition of continuity, lim
t→5

f(t) = f(5) = 17.

1.6.4.9. Solution. In general, false. If f(t) is continuous at t = 5, then f(5) = 17;
if f(t) is discontinuous at t = 5, then f(5) either does not exist, or is a number
other than 17.

An example of a function with lim
t→5

f(t) = 17 6= f(5) is f(t) =

{
17 , t 6= 5

0 , t = 5
,

shown below.

x

y

5

1.6.4.10. Solution. Since f(x) and g(x) are continuous at zero, and since g2(x)+
1 must be nonzero, then h(x) is continuous at 0 as well. According to the definition
of continuity, then lim

x→0
h(x) exists and is equal to h(0) = 0f(0)

g2(0)+1
= 0.

Since the limit lim
x→0

h(x) exists and is equal to zero, also the one-sided limit lim
x→0+

h(x)

exists and is equal to zero.

Exercises — Stage 2
1.6.4.11. Solution. Using the definition of continuity, we need k = lim

x→0
f(x).

Since the limit is blind to what actually happens to f(x) at x = 0, this is equivalent

to k = lim
x→0

x sin

(
1

x

)
. So if we find the limit, we solve the problem.

As x gets small, sin
(

1
x

)
goes a little crazy (see example 1.3.5), so let’s get rid of

it by using the Squeeze Theorem. We can bound the function above and below,
but we should be a little careful about whether we’re going from the left or the
right. The reason we need to worry about direction is illustrated with the following
observation:
If a ≤ b and x > 0, then xa ≤ xb. (For example, plug in x = 1, a = 2, b = 3.) But
if a ≤ b and x < 0, then xa ≥ xb. (For example, plug in x = −1, a = 2, b = 3.) So
first, let’s find lim

x→0−
sin
(

1
x

)
. When x < 0,

1 ≥ sin

(
1

x

)
≥ −1
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so: x(1) ≤ x sin

(
1

x

)
≤ x(−1)

and lim
x→0−

x = lim
x→0−

−x = 0, so by the Squeeze Theorem, also lim
x→0−

x sin

(
1

x

)
= 0.

Now, let’s find lim
x→0+

x sin

(
1

x

)
. When x > 0,

−1 ≤ sin

(
1

x

)
≤ 1

so: x(−1) ≤ xsin

(
1

x

)
≤ x(1)

and lim
x→0+

x = lim
x→0+

−x = 0, so by the Squeeze Theorem, also lim
x→0+

x sin

(
1

x

)
= 0.

Since the limits from the left and right agree, we conclude lim
x→0

x sin

(
1

x

)
= 0, so

when k = 0, the function is continuous at x = 0.

1.6.4.12. Solution. Since f is a polynomial, it is continuous over all real numbers.
f(0) = 1 < 12345 and f(12345) = 123453 + 123452 + 12345 + 1 > 12345 (since all
terms are positive). So by the IVT, f(c) = 12345 for some c between 0 and 12345.

1.6.4.13. ∗. Solution. f(x) is a rational function and so is continuous except
when its denominator is zero. That is, except when x = 1 and x = −1.

1.6.4.14. ∗. Solution. The function is continuous when x2 − 1 > 0, i.e. (x −
1)(x+ 1) > 0, which yields the intervals (−∞,−1) ∪ (1,+∞).

1.6.4.15. ∗. Solution. The function 1/
√
x is continuous on (0,+∞) and the

function cos(x) + 1 is continuous everywhere.
So 1/

√
cos(x) + 1 is continuous except when cosx = −1. This happens when x is an

odd multiple of π. Hence the function is continuous except at x = ±π,±3π,±5π, · · ·.
1.6.4.16. ∗. Solution. The function is continuous when sin(x) 6= 0. That is,
when x is not an integer multiple of π.

1.6.4.17. ∗. Solution. The function is continuous for x 6= c since each of those
two branches are polynomials. So, the only question is whether the function is
continuous at x = c; for this we need

lim
x→c−

f(x) = f(c) = lim
x→c+

f(x).

We compute
lim
x→c−

f(x) = lim
x→c−

8− cx = 8− c2;

f(c) = 8− c · c = 8− c2 and

lim
x→c+

f(x) = lim
x→c+

x2 = c2.

So, we need 8− c2 = c2, which yields c2 = 4, i.e. c = −2 or c = 2.
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1.6.4.18. ∗. Solution. The function is continuous for x 6= 0 since x2 + c and
cos cx are continuous everywhere. It remains to check continuity at x = 0. To do
this we must check that the following three are equal.

lim
x→0+

f(x) = lim
x→0+

x2 + c = c

f(0) = c

lim
x→0−

f(x) = lim
x→0−

cos cx = cos 0 = 1

Hence when c = 1 we have the limits agree.

1.6.4.19. ∗. Solution. The function is continuous for x 6= c since each of those
two branches are defined by polynomials. Thus, the only question is whether the
function is continuous at x = c. Furthermore,

lim
x→c−

f(x) = c2 − 4

and
lim
x→c+

f(x) = f(c) = 3c .

For continunity we need both limits and the value to agree, so f is continuous if
and only if c2 − 4 = 3c, that is if and only if

c2 − 3c− 4 = 0 .

Factoring this as (c− 4)(c+ 1) = 0 yields c = −1 or c = +4.

1.6.4.20. ∗. Solution. The function is continuous for x 6= c since each of those
two branches are polynomials. So, the only question is whether the function is
continuous at x = c; for this we need

lim
x→2c−

f(x) = f(2c) = lim
x→2c+

f(x).

We compute
lim

x→2c−
f(x) = lim

x→2c−
6− cx = 6− 2c2;

f(2c) = 6− c · 2c = 6− 2c2 and

lim
x→2c+

f(x) = lim
x→2c+

x2 = 4c2.

So, we need 6− 2c2 = 4c2, which yields c2 = 1, i.e. c = −1 or c = 1.

Exercises — Stage 3
1.6.4.21. Solution. This isn’t the kind of equality that we can just solve; we’ll
need a trick, and that trick is the IVT. The general idea is to show that sinx is
somewhere bigger, and somewhere smaller, than x− 1. However, since the IVT can
only show us that a function is equal to a constant, we need to slightly adjust our
language. Showing sinx = x − 1 is equivalent to showing sinx − x + 1 = 0, so let
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f(x) = sin x− x+ 1, and let’s show that it has a real root.
First, we need to note that f(x) is continuous (otherwise we can’t use the IVT).
Now, we need to find a value of x for which it is positive, and for which it’s negative.
By checking a few values, we find f(0) is positive, and f(100) is negative. So, by the
IVT, there exists a value of x (between 0 and 100) for which f(x) = 0. Therefore,
there exists a value of x for which sinx = x− 1.

1.6.4.22. ∗. Solution. We let f(x) = 3x − x2. Then f(x) is a continuous
function, since both 3x and x2 are continuous for all real numbers.
We find a value a such that f(a) > 0. We observe immediately that a = 0 works
since

f(0) = 30 − 0 = 1 > 0.

We find a value b such that f(b) < 0. We see that b = −1 works since

f(−1) =
1

3
− 1 < 0.

So, because f(x) is continuous on (−∞,∞) and f(0) > 0 while f(−1) < 0, then
the Intermediate Value Theorem guarantees the existence of a real number c in the
interval (−1, 0) such that f(c) = 0.

1.6.4.23. ∗. Solution. We let f(x) = 2 tan(x)−x−1. Then f(x) is a continuous
function on the interval (−π/2, π/2) since tan(x) = sin(x)/ cos(x) is continuous
on this interval, while x + 1 is a polynomial and therefore continuous for all real
numbers.
We find a value a ∈ (−π/2, π/2) such that f(a) < 0. We observe immediately that
a = 0 works since

f(0) = 2 tan(0)− 0− 1 = 0− 1 = −1 < 0.

We find a value b ∈ (−π/2, π/2) such that f(b) > 0. We see that b = π/4 works
since

f(π/4) = 2 tan(π/4)− π/4− 1 = 2− π/4− 1 = 1− π/4
= (4− π)/4 > 0

because 3 < π < 4.
So, because f(x) is continuous on [0, π/4] and f(0) < 0 while f(π/4) > 0, then the
Intermediate Value Theorem guarantees the existence of a real number c ∈ (0, π/4)
such that f(c) = 0.

1.6.4.24. ∗. Solution. Let f(x) =
√

cos(πx)− sin(2πx)− 1/2. This function is
continuous provided cos(πx) ≥ 0. This is true for 0 ≤ x ≤ 1

2
.

Now f takes positive values on [0, 1/2]:

f(0) =
√

cos(0)− sin(0)− 1/2 =
√

1− 1/2 = 1/2.

And f takes negative values on [0, 1/2]:

f(1/2) =
√

cos(π/2)− sin(π)− 1/2 = 0− 0− 1/2 = −1/2
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(Notice that f(1/3) = (
√

2−
√

3)/2− 1/2 also works)
So, because f(x) is continuous on [0, 1/2) and f(0) > 0 while f(1/2) < 0, then the
Intermediate Value Theorem guarantees the existence of a real number c ∈ (0, 1/2)
such that f(c) = 0.

1.6.4.25. ∗. Solution. We let f(x) =
1

cos2(πx)
−x−3

2
. Then f(x) is a continuous

function on the interval (−1/2, 1/2) since cosx is continuous everywhere and non-
zero on that interval.
The function f takes negative values. For example, when x = 0:

f(0) =
1

cos2(0)
− 0− 3

2
= 1− 3

2
= −1

2
< 0.

It also takes positive values, for instance when x = 1/4:

f(1/4) =
1

(cos π/4)2
− 1

4
− 3

2

=
1

1/2
− 1 + 6

4

= 2− 7/4 = 1/4 > 0.

By the IVT there is c, 0 < c < 1/4 such that f(c) = 0, in which case

1

(cos πc)2
= c+

3

2
.

1.6.4.26. Solution. f(x) is a polynomial, so it’s continuous everywhere. If we
can find values a and b so that f(a) > 0 and f(b) < 0, then by the IVT, there will
exist some c in (a, b) where f(c) = 0; that is, there is a root in the interval [a, b].
Let’s start plugging in easy values of x.
f(0) = 15, and f(1) = 1− 15 + 9− 18 + 15 = −8. Since 0 is between f(0) and f(1),
and since f is continuous, by IVT there must be some x in [0, 1] for which f(x) = 0:
that is, there is some root in [0, 1].
That was the easiest interval to find. If you keep playing around, you find two more.
f(−1) = 26 (positive) and f(−2) = −1001 (negative), so there is a root in [−2,−1].
The arithmetic is nasty, but there is also a root in [14, 15].
This is an important trick. For high-degree polynomials, it is often impossible to
get the exact values of the roots. Using the IVT, we can at least give a range where
a root must be.

1.6.4.27. Solution. Let f(x) = x3. Since f is a polynomial, it is continuous
everywhere. If f(a) < 7 < f(b), then 3

√
7 is somewhere between a and b. If we can

find a and b that satisfy these inequalities, and are very close together, that will
give us a good approximation for 3

√
7.

• Let’s start with integers. 13 < 7 < 23, so 3
√

7 is in the interval (1, 2).
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• Let’s narrow this down, say by testing f(1.5). (1.5)3 = 3.375 < 7, so 3
√

7 is in
the interval (1.5, 2).

• Let’s narrow further, say by testing f(1.75). (1.75)3 ≈ 5.34 < 7, so 3
√

7 is in
the interval (1.75, 2).

• Testing various points, we find f(1.9) < 7 < f(2), so 3
√

7 is between 1.9 and
2.

• By testing more, we find f(1.91) < 7 < f(1.92), so 3
√

7 is in (1.91, 1.92).

• In order to get an approximation for 3
√

7 that is rounded to two decimal
places, we have to know whether 3

√
7 is greater or less than 1.915; indeed

f(1.915) ≈ 7.02 > 7, so 3
√

7 < 1.915; then rounded to two decimal places,
3
√

7 ≈ 1.91.

If this seems like the obvious way to approximate 3
√

7, that’s good. The IVT is a
formal statement of a very intuitive principle.

1.6.4.28. Solution.

• If f(a) = g(a), or f(b) = g(b), then we simply take c = a or c = b.

• Suppose f(a) 6= g(a) and f(b) 6= g(b). Then f(a) < g(a) and g(b) < f(b), so
if we define h(x) = f(x) − g(x), then h(a) < 0 and h(b) > 0. Since h is the
difference of two functions that are continuous over [a, b], also h is continuous
over [a, b]. So, by the Intermediate Value Theorem, there exists some c ∈ (a, b)
with h(c) = 0; that is, f(c) = g(c).

2 · Derivatives
2.1 · Revisiting Tangent Lines
2.1.2 · Exercises

Exercises — Stage 1
2.1.2.1. Solution. If Q is to the left of the y axis, the line through Q and P is
increasing, so the secant line has positive slope. If Q is to the right of the y axis,
the line through Q and P is decreasing, so the secant line has negative slope.

2.1.2.2. Solution. 2.1.2.2.a By drawing a few pictures, it’s easy to see that sliding
Q closer to P , the slope of the secant line increases.
2.1.2.2.b Since the slope of the secant line increases the closer Q gets to P , that
means the tangent line (which is the limit as Q approaches P ) has a larger slope
than the secant line between Q and P (using the location where Q is right now).
Alternately, by simply sketching the tangent line at P , we can see that has a steeper
slope than the secant line between P and Q.

2.1.2.3. Solution. The slope of the secant line will be
f(2)− f(−2)

2− (−2)
=
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f(2)− f(−2)

4
, in every part. So, if two lines have the same slope, that means

their differences f(2)− f(−2) will be the same.
The graphs in (a),(c), and (e) all have f(2)− f(−2) = 1, so they all have the same
secant line slope. The graphs in (b) and (f) both have f(2)− f(−2) = −1, so they
both have the same secant line slope. The graph in (d) has f(2)− f(−2) = 0, and
it is the only graph with this property, so it does not share its secant line slope with
any of the other graphs.

Exercises — Stage 2
2.1.2.4. Solution. A good approximation from the graph is f(5) = 0.5. We want
to find a secant line whose endpoints are both very close to x = 5, but that also
give us clear y-values. It looks like f(5.25) ≈ 1, and f(4.75) ≈ 1

8
. The secant line

from x = 5 to x = 5.25 has approximate slope
f(5.25)− f(5)

5.25− 5
≈ 1− .5

.25
= 2. The

secant line from x = 5 to x = 4.75 has approximate slope
0.5− 1

8

5− 4.75
=

3

2
.

The graph increases more and more quickly (gets steeper and steeper), so it makes
sense that the secant line to the left of x = 5 has a smaller slope than the secant
line to the right of x = 5. Also, if you’re taking secant lines that have endpoints
farther out from x = 5, you’ll notice that the slopes of the secant lines change quite
dramatically. You have to be very, very close to x = 5 to get any kind of accuracy.
If we split the difference, we might approximate the slope of the secant line to be
the average of 3

2
and 2, which is 7

4
.

Another way to try to figure out the tangent line is by carefully drawing it in with
a ruler. This is shown here in blue:

x

y

1 5

1

It’s much easier to take the slope of a line than a curve, and this one looks like it
has slope about 1.5. However, we drew this with a computer: by hand it’s much
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harder to draw an accurate tangent line. (That’s why we need calculus!)
The actual slope of the tangent line to the function at x = 5 is about 1.484. This
is extremely hard to figure out just from the graph–by hand, a guess between 1.25
and 1.75 would be very accurate.

2.1.2.5. Solution. There is only one tangent line to f(x) at P (shown in blue),
but there are infinitely many choices of Q and R (one possibility shown in red).
One easy way to sketch the secant line on paper is to draw any line parallel to the
tangent line, and choose two intercepts with y = f(x).

x

y

y = f(x)

P

Q

R

2.1.2.6. Solution. Any place the graph looks flat (if you imagine zooming in) is
where the tangent line has slope 0. This occurs three times.

x

y

y = f(x)

Notice that two of the indicated points are at a low point and a high point, respec-
tively. Later, we’ll use these places where the tangent line has slope zero to find
where a graph achieves its biggest and smallest values.

2.2 · Definition of the Derivative
2.2.4 · Exercises

Exercises — Stage 1
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2.2.4.1. Solution. The function shown is a line, so it has a constant slope–(a)
. Since the function is always increasing, f ′ is always positive, so also (d) holds.
Remark: it does not matter that the function itself is sometimes negative; the slope
is always positive because the function is always increasing. Also, since the slope is
constant, f ′ is neither increasing nor decreasing: it is the function that is increasing,
not its derivative.

2.2.4.2. Solution. The function is always decreasing, so f ′ is always negative,
option (e). However, the function alternates between being more and less steep, so
f ′ alternates between increasing and decreasing several times, and no other options
hold.
Remark: f is always positive, but (d) does not hold!

2.2.4.3. Solution. At the left end of the graph, f is decreasing rapidly, so f ′
is a strongly negative number. Then as we move towards x = 0, f decreases less
rapidly, so f ′ is a less strongly negative number. As we pass 0, f increases, so f ′ is
a positive number. As we move to the right, f increases more and more rapidly, so
f ′ is an increasing positive number. This description tells us that f ′ increases for
the entire range shown. So (b) holds, but not (a) or (c). Since f ′ is negative to the
left of the y axis, and positive to the right of it, also (d) and (e) do not hold.

2.2.4.4. ∗. Solution. By definition, f(x) = x3 is differentiable at x = 0 if the
limit

lim
h→0

f(h)− f(0)

h
= lim

h→0

h3 − 0

h

exists.

2.2.4.5. Solution. f ′(−1) does not exist, because to the left of x = −1 the slope
is a pretty big positive number (looks like around +1) and to the right the slope
is −1/4. Since the derivative involves a limit, that limit needs to match the limit
from the left and the limit from the right. The sharp angle made by the graph at
x = −1 indicates that the left and right limits do not match, so the derivative does
not exist.
f ′(3) also does not exist. One way to see this is to notice that the function is
discontinuous here. More viscerally, note that f(3) = 1, so as we take secant lines
with one endpoint (3, 1), and the other endpoint just to the right of x = 3, we get
slopes that are more and more strongly negative, as shown in the picture below. If
we take the limit of the slopes of these secant lines as x goes to 3 from the right,
we get −∞. (This certainly doesn’t match the slope from the left, which is −1

4
.)
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x

y

1

1

At x = −3, there is some kind of “change” in the graph; however, it is a smooth
curve, so the derivative exists here.

2.2.4.6. Solution. True. The definition of the derivative tells us that

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
,

if it exists. We know from our work with limits that if both one-sided limits
lim
h→0−

f(a+ h)− f(a)

h
and lim

h→0+

f(a+ h)− f(a)

h
exist and are equal to each other,

then lim
h→0

f(a+ h)− f(a)

h
exists and has the same value as the one-sided limits. So,

since the one-sided limits exist and are equal to one, we conclude f ′(a) exists and
is equal to one.

2.2.4.7. Solution. In general, this is false. The key problem that can arise is
that f(x) might not be continuous at x = 1. One example is the function

f(x) =

{
x x < 0

x− 1 x ≥ 0

where f ′(x) = 1 whenever x 6= 0 (so in particular, lim
x→0−

f ′(x) = lim
x→0+

f ′(x) = 1) but

f ′(0) does not exist.
There are two ways to see that f ′(0) does not exist. One is to notice that f is not
continuous at x = 0.
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x

y

y = f(x)

Another way to see that f ′(0) does not exist is to use the definition of the derivative.
Remember, in order for a limit to exist, both one-sided limits must exist. Let’s
consider the limit from the left. If h → 0−, then h < 0, so f(h) is equal to h (not
h− 1).

lim
h→0−

f(0 + h)− f(0)

h
= lim

h→0−

(h)− (−1)

h

= lim
h→0−

h+ 1

h

= lim
h→0−

1 +
1

h

= −∞

In particular, this limit does not exist. Since the one-sided limit does not exist,

lim
h→0

f(0 + h)− f(0)

h
= DNE

and so f ′(0) does not exist.

2.2.4.8. Solution. Using the definition of the derivative,

s′(t) = lim
h→0

s(t+ h)− s(t)
h

The units of the numerator are meters, and the units of the denominator are seconds
(since the denominator comes from the change in the input of the function). So,
the units of s′(t) are metres per second.
Remark: we learned that the derivative of a position function gives velocity. In this
example, the position is given in metres, and the velocity is measured in metres per
second.
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Exercises — Stage 2
2.2.4.9. Solution. We can use point-slope form to get the equation of the line, if
we have a point and its slope. The point is given: (1, 6). The slope is the derivative:

y′(1) = lim
h→0

y(1 + h)− y(1)

h

= lim
h→0

[(1 + h)3 + 5]− [13 + 5]

h

= lim
h→0

[1 + 3h+ 3h2 + h3 + 5]− [1 + 5]

h

= lim
h→0

3h+ 3h2 + h3

h
= lim

h→0
3 + 3h+ h2

= 3

So our slope is 3, which gives a line of equation y − 6 = 3(x− 1).

2.2.4.10. Solution. We set up the definition of the derivative.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

1
x+h
− 1

x

h

= lim
h→0

x
x(x+h)

− x+h
x(x+h)

h

= lim
h→0

x−(x+h)
x(x+h)

h

= lim
h→0

−h
x(x+h)

h

= lim
h→0

−1

x(x+ h)

=
−1

x2

2.2.4.11. ∗. Solution. By definition

f ′(0) = lim
h→0

f(h)− f(0)

h
= lim

h→0

h|h|
h

= lim
h→0
|h| = 0

In particular, the limit exists, so the derivative exists (and is equal to zero).

2.2.4.12. ∗. Solution. We set up the definition of the derivative.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

1

h

( 2

x+ h+ 1
− 2

x+ 1

)
= lim

h→0

2

h

(x+ 1)− (x+ h+ 1)

(x+ h+ 1)(x+ 1)
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= lim
h→0

2

h

−h
(x+ h+ 1)(x+ 1)

= lim
h→0

−2

(x+ h+ 1)(x+ 1)

=
−2

(x+ 1)2

2.2.4.13. ∗. Solution.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

1

h

( 1

(x+ h)2 + 3
− 1

x2 + 3

)
= lim

h→0

1

h

x2 − (x+ h)2

[(x+ h)2 + 3][x2 + 3]

= lim
h→0

1

h

−2xh− h2

[(x+ h)2 + 3][x2 + 3]

= lim
h→0

−2x− h
[(x+ h)2 + 3][x2 + 3]

=
−2x

[x2 + 3]2

2.2.4.14. Solution. The slope of the tangent line is the derivative. We set this
up using the same definition of the derivative that we always do. This limit is hard
to take for general x, but easy when x = 0.

f ′(0) = lim
h→0

f(0 + h)− f(0)

h

= lim
h→0

h log10(2h+ 10)− 0

h
= lim

h→0
log10(2h+ 10) = log10(10) = 1

So, the slope of the tangent line is 1.

2.2.4.15. ∗. Solution.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

1
(x+h)2

− 1
x2

h
= lim

h→0

x2 − (x+ h)2

(x+ h)2x2h

= lim
h→0

−2xh− h2

(x+ h)2x2h
= lim

h→0

−2x− h
(x+ h)2x2

=
−2x

x4

= − 2

x3

2.2.4.16. ∗. Solution. When x is not equal to 2, then the function is
differentiable– the only place we have to worry about is when x is exactly 2.
In order for f to be differentiable at x = 2, it must also be continuous at x = 2.
This forces x2

∣∣
x=2

=
[
ax+ b

]
x=2

or

2a+ b = 4.

In order for a limit to exist, the left- and right-hand limits must exist and be equal
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to each other. Since a derivative is a limit, in order for f to be differentiable at
x = 2, the left hand derivative of ax + b at x = 2 must be the same as the right
hand derivative of x2 at x = 2. Since ax+ b is a line, its derivative is a everywhere.
We’ve already seen the derivative of x2 is 2x, so we need

a = 2x
∣∣
x=2

= 4.

So, the values of a and b that makes f differentiable everywhere are a = 4 and
b = −4.

2.2.4.17. ∗. Solution. We plug in f(x) to the definition of a derivative. To
evaluate the limit, we multiply and divide by the conjugate of the numerator, then
simplify.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

√
1 + x+ h−

√
1 + x

h

= lim
h→0

√
1 + x+ h−

√
1 + x

h

(√
1 + x+ h+

√
1 + x√

1 + x+ h+
√

1 + x

)
= lim

h→0

(1 + x+ h)− (1 + x)

h(
√

1 + x+ h+
√

1 + x)

= lim
h→0

h

h(
√

1 + x+ h+
√

1 + x)

= lim
h→0

1√
1 + x+ h+

√
1 + x

=
1√

1 + x+ 0 +
√

1 + x
=

1

2
√

1 + x

The domain of the function is [−1,∞). In particular, f(x) is defined when x = −1.
However, f ′(x) is not defined when x = −1, so f ′(x) only exists over (−1,∞).
Remark: lim

x→−1+
f ′(x) = ∞, so the tangent line to f(x) at the point x = −1 has a

vertical slope.

Exercises — Stage 3
2.2.4.18. Solution. From Section 1.2, we see that the velocity is exactly the
derivative.

v(t) = lim
h→0

s(t+ h)− s(t)
h

= lim
h→0

(t+ h)4 − (t+ h)2 − t4 + t2

h

= lim
h→0

(t4 + 4t3h+ 6t2h2 + 4th3 + h4)− (t2 + 2th+ h2)− t4 + t2

h

= lim
h→0

4t3h+ 6t2h2 + 4th3 + h4 − 2th− h2

h
= lim

h→0
4t3 + 6t2h+ 4th2 + h3 − 2t− h
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= 4t3 − 2t

So, the velocity is given by v(t) = 4t3 − 2t.

2.2.4.19. ∗. Solution. The function is differentiable at x = 0 if the following
limit:

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

f(x)− 0

x
= lim

x→0

f(x)

x

exists (note that we used the fact that f(0) = 0 as per the definition of the first
branch which includes the point x = 0). We start by computing the left limit. For
this computation, recall that if x < 0 then

√
x2 = |x| = −x.

lim
x→0−

f(x)

x
= lim

x→0−

√
x2 + x4

x
= lim

x→0−

√
x2
√

1 + x2

x

= lim
x→0

−x
√

1 + x2

x
= −1

Now, from the right:
lim
x→0+

x cosx

x
= lim

x→0+
cosx = 1.

Since the limit from the left does not equal the limit from the right, the derivative
does not exist at x = 0.
2.2.4.20. ∗. Solution. The function is differentiable at x = 0 if the following
limit:

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

f(x)− 0

x
= lim

x→0

f(x)

x

exists (note that we used the fact that f(0) = 0 as per the definition of the first
branch which includes the point x = 0).
We start by computing the left limit.

lim
x→0−

f(x)

x
= lim

x→0−

x cosx

x
= lim

x→0−
cosx = 1.

Now, from the right:

lim
x→0+

√
1 + x− 1

x
= lim

x→0+

√
1 + x− 1

x
·
√

1 + x+ 1√
1 + x+ 1

= lim
x→0+

1 + x− 1

x(
√

1 + x+ 1)
= lim

x→0+

1√
1 + x+ 1

=
1

2

Since the limit from the left does not equal the limit from the right, the derivative
does not exist at x = 0.
2.2.4.21. ∗. Solution. The function is differentiable at x = 0 if the following
limit:

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

f(x)− 0

x
= lim

x→0

f(x)

x

exists (note that we used the fact that f(0) = 0 as per the definition of the first
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branch which includes the point x = 0). We compute left and right limits; so

lim
x→0−

f(x)

x
= lim

x→0−

x3 − 7x2

x
= lim

x→0−
x2 − 7x = 0

and

lim
x→0+

x3 cos
(

1
x

)
x

= lim
x→0+

x2 · cos

(
1

x

)
.

This last limit equals 0 by the Squeeze Theorem since

−1 ≤ cos

(
1

x

)
≤ 1

and so,

−x2 ≤ x2 · cos

(
1

x

)
≤ x2,

where in these inequalities we used the fact that x2 ≥ 0. Finally, since
limx→0+ −x2 = limx→0+ x

2 = 0, the Squeeze Theorem yields that also
limx→0+ x

2 cos
(

1
x

)
= 0, as claimed.

Since the left and right limits match (they’re both equal to 0), we conclude that
indeed f(x) is differentiable at x = 0 (and its derivative at x = 0 is actually equal
to 0).

2.2.4.22. ∗. Solution. The function is differentiable at x = 1 if the following
limit:

lim
x→1

f(x)− f(1)

x− 1
= lim

x→1

f(x)− 0

x− 1
= lim

x→1

f(x)

x− 1

exists (note that we used the fact that f(1) = 0 as per the definition of the first
branch which includes the point x = 0). We compute left and right limits; so

lim
x→1−

f(x)

x− 1
= lim

x→1−

4x2 − 8x+ 4

x− 1
= lim

x→1−

4(x− 1)2

x− 1

= lim
x→1−

4(x− 1) = 0

and

lim
x→1+

(x− 1)2 sin
(

1
x−1

)
x− 1

= lim
x→1+

(x− 1) · sin
(

1

x− 1

)
.

This last limit equals 0 by the Squeeze Theorem since

−1 ≤ sin

(
1

x− 1

)
≤ 1

and so,

−(x− 1) ≤ (x− 1) · sin
(

1

x− 1

)
≤ x− 1,
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where in these inequalities we used the fact that x → 1+ yields positive values for
x − 1. Finally, since limx→1+ −x + 1 = limx→1+ x − 1 = 0, the Squeeze Theorem
yields that also limx→1+(x− 1) sin

(
1

x−1

)
= 0, as claimed.

Since the left and right limits match (they’re both equal to 0), we conclude that
indeed f(x) is differentiable at x = 1 (and its derivative at x = 1 is actually equal
to 0).

2.2.4.23. . Solution. Many answers are possible; here is one.

x

y

1

1

The key is to realize that the few points you’re given suggest a pattern, but don’t
guarantee it. You only know nine points; anything can happen in between.

2.2.4.24. Solution.

p′(x) = lim
h→0

p(x+ h)− p(x)

h

= lim
h→0

f(x+ h) + g(x+ h)− f(x)− g(x)

h

= lim
h→0

f(x+ h)− f(x) + g(x+ h)− g(x)

h

= lim
h→0

[
f(x+ h)− f(x)

h
+
g(x+ h)− g(x)

h

]
(∗) =

[
lim
h→0

f(x+ h)− f(x)

h

]
+

[
lim
h→0

g(x+ h)− g(x)

h

]
= f ′(x) + g′(x)

At step (∗), we use the limit law that lim
x→a

[F (x) +G(x)] = lim
x→a

F (x) + lim
x→a

G(x),
as long as lim

x→a
F (x) and lim

x→a
G(x) exist. Because the problem states that f ′(x) and
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g′(x) exist, we know that lim
h→0

f(x+ h)− f(x)

h
and lim

h→0

g(x+ h)− g(x)

h
exist, so our

work is valid.

2.2.4.25. Solution. 2.2.4.25.a Since y = f(x) = 2x and y = g(x) = x are straight
lines, we don’t need the definition of the derivative (although you can use it if you
like). f ′(x) = 2 and g′(x) = 1.
2.2.4.25.b p(x) = 2x2, so p(x) is not a line: we use the definition of a derivative to
find p′(x).

p′(x) = lim
h→0

p(x+ h)− p(x)

h

= lim
h→0

2(x+ h)2 − 2x2

h

= lim
h→0

2x2 + 4xh+ 2h2 − 2x2

h

= lim
h→0

4xh+ 2h2

h
= lim

h→0
4x+ 2h

= 4x

2.2.4.25.c No, p′(x) = 4x 6= 2 · 1 = f ′(x) · g′(x). In general, the derivative of a
product is not the same as the derivative of the functions being multiplied.

2.2.4.26. ∗. Solution. We know that y′ = 2x. So, if we choose a point (α, α2)
on the curve y = x2, then the tangent line to the curve at that point has slope 2α.
That is, the tangent line has equation

(y − α2) = 2α(x− α)

simplified, y = (2α)x− α2

So, if (1,−3) is on the tangent line, then

−3 = (2α)(1)− α2

⇐⇒ 0 = α2 − 2α− 3

⇐⇒ 0 = (α− 3)(α + 1)

⇐⇒ α = 3, or α = −1.

So, the tangent lines y = (2α)x− α2 are

y = 6x− 9 and y = −2x− 1.

2.2.4.27. ∗. Solution. Using the definition of the derivative, f is differentiable
at 0 if and only if

lim
h→0

f(h)− f(0)

h
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exists. In particular, this means f is differentiable at 0 if and only if both one-sided
limits exist and are equal to each other.

When h < 0, f(h) = 0, so

lim
h→0−

f(h)− f(0)

h
= lim

h→0−

0− 0

h
= 0

So, f is differentiable at x = 0 if and only if

lim
h→0+

f(h)− f(0)

h
= 0.

To evaluate the limit above, we note f(0) = 0 and, when h > 0, f(h) = ha sin
(

1
h

)
,

so

lim
h→0+

f(h)− f(0)

h
= lim

h→0+

ha sin
(

1
h

)
h

= lim
h→0+

ha−1 sin

(
1

h

)
We will spend the rest of this solution evaluating the limit above for different values
of a, to find when it is equal to zero and when it is not. Let’s consider the different
values that could be taken by ha−1.

• If a = 1, then a− 1 = 0, so ha−1 = h0 = 1 for all values of h. Then

lim
h→0+

ha−1 sin

(
1

h

)
= lim

h→0+
sin

(
1

h

)
= DNE

(Recall that the function sin
(

1
x

)
oscillates faster and faster as x goes to 0. We

first saw this behaviour in Example 1.3.5.)

• If a < 1, then a − 1 < 0, so lim
h→0+

ha−1 = ∞. (Since we have a negative
exponent, we are in effect dividing by a smaller and smaller positive number.

For example, if a = 1
2
, then lim

h→0+
ha−1 = lim

h→0+
h−

1
2 = lim

h→0+

1√
h

= ∞.) Since

sin
(

1
x

)
goes back and forth between one and negative one,

lim
h→0+

ha−1 sin

(
1

x

)
= DNE

since as h goes to 0, the function oscillates between positive and negative
numbers of ever-increasing magnitude.
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• If a > 1, then a− 1 > 0, so lim
h→0+

ha−1 = 0. Although sin
(

1
x

)
oscillates wildly

near x = 0, it is bounded by −1 and 1. So,

(−1)ha−1 ≤ ha−1 sin

(
1

h

)
≤ ha−1

Since both lim
h→0+

(−1)ha−1 = 0 and lim
h→0+

ha−1 = 0, by the Squeeze Theorem,

lim
h→0+

ha−1 sin

(
1

x

)
= 0

as well.

In the above cases, we learned lim
h→0+

f(h)− f(0)

h
= lim

h→0+
ha−1 sin

(
1

x

)
= 0 when

a > 1, and

lim
h→0+

f(h)− f(0)

h
= lim

h→0+
ha−1 sin

(
1

x

)
6= 0 when a ≤ 1.

So, f is differentiable at x = 0 if and only if a > 1.

2.3 · Interpretations of the Derivative
2.3.3 · Exercises

Exercises — Stage 2

2.3.3.1. Solution. 2.3.3.1.a The slope of the secant line is
h(24)− h(0)

24− 0

m

hr
;

this is the change in height over the first day divided by the number of hours in
the first day. So, it is the average rate of change of the height over the first day,
measured in meters per hour.
2.3.3.1.b Consider 2.3.3.1.a. The secant line gives the average rate of change of the
height of the dam; as we let the second point of the secant line get closer and closer
to (0, h(0)), its slope approximates the instantaneous rate of change of the height
of the water. So the slope of the tangent line is the instantaneous rate of change of
the height of the water at the time t = 0, measured in m

hr
.

2.3.3.2. Solution. p′(t) = lim
h→0

p(t+ h)− p(t)
h

≈ p(t+ 1)− p(t)
1

= p(t+1)−p(t),
or the difference in profit caused by the sale of the (t+ 1)st widget. So, p′(t) is the
profit from the (t + 1)st widget. That is, p′(t) is the profit per additional widget
sold, when t widgets are being sold. This is called the marginal profit per widget,
when t widgets are being sold.

2.3.3.3. Solution. How quickly the temperature is changing per unit change of
depth, measured in degrees per metre. In an ordinary body of water, the temper-
ature near the surface (d = 0) is pretty variable, depending on the sun, but deep
down it is more stable (unless there are heat sources). So, one might reasonably
expect that |T ′(d)| is larger when d is near 0.
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2.3.3.4. Solution.

C ′(w) = lim
h→0

C(w + h)− C(w)

h
≈ C(w + 1)− C(w)

1
= C(w + 1)− C(w)

which is the number of calories in C(w + 1) grams minus the number of calories in
C(w) grams. This is the number of calories per additional gram, when there are w
grams.

2.3.3.5. Solution. The rate of change of velocity is acceleration. (If your velocity
is increasing, you’re accelerating; if your velocity is decreasing, you have negative
acceleration.)

2.3.3.6. Solution. The rate of change in this case will be the relationship

between the heat added and the temperature change. lim
h→0

T (j + h)− T (j)

h
≈

T (j + 1)− T (j)

1
= T (j + 1) − T (j), or the change in temperature after the ap-

plication of one joule. (This is closely related to heat capacity and to specific heat
— there’s a nice explanation of this on Wikipedia.)

2.3.3.7. Solution. As usual, it is instructive to think about the definition of the
derivative:

P ′(T ) = lim
h→0

P (T + h) = P (T )

h
≈ P (T + 1)− P (t)

1
= P (T + 1)− P (T )

This is the difference in population between two hypothetical populations, raised
one degree in temperature apart. So, it is the number of extra individuals that
exist in the hotter experiment (with the understanding that this number could be
negative, as one would expect in conditions that are hotter than the bacteria prefer).
So P ′(T ) is the number of bacteria added to the colony per degree.

Exercises — Stage 3
2.3.3.8. Solution. R′(t) is the rate at which the wheel is rotating measured in
rotations per second. To convert to degrees, we multiply by 360: 360R′(t) .

2.3.3.9. Solution. If P ′(t) is positive, your sample is below the ideal temperature,
because adding heat increases the population. If P ′(t) is negative, your sample is
above the ideal temperature, because adding heat decreases the population. If
P ′(t) = 0, then adding a little bit of heat doesn’t change the population, but it’s
unclear why this is. Perhaps your sample is deeply frozen, and adding heat doesn’t
change the fact that your population is 0. Perhaps your sample is boiling, and
again, changing the heat a little will keep the population constant at “none.” But
also, at the ideal temperature, you would expect P ′(t) = 0. This is best seen by
noting in the curve below, the tangent line is horizontal at the peak.
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x

y

frozen, P ′(t) = 0 boiled, P ′(t) = 0ideal, P ′(t) = 0

to
o c
old
, P
′ (t)

>
0 too hot, P ′(t) <

0

2.4 · Arithmetic of Derivatives - a Differentiation Tool-
box
2.4.2 · Exercises

Exercises — Stage 1
2.4.2.1. Solution. True: this is exactly what the Sum Rule states.

2.4.2.2. Solution. False, in general. The product rule tells us d
dx
{f(x)g(x)} =

f ′(x)g(x) + f(x)g′(x). An easy example of why we can’t do it the other way is to
take f(x) = g(x) = x. Then the equation becomes d

dx
{x2} = (1)(1), which is false.

2.4.2.3. Solution. True: the quotient rule tells us

d

dx

{
f(x)

g(x)

}
=
g(x)f ′(x)− f(x)g′(x)

g2(x)
=
g(x)f ′(x)

g2(x)
− f(x)g′(x)

g2(x)

=
f ′(x)

g(x)
− f(x)g′(x)

g2(x)

2.4.2.4. Solution. If you’re creative, you can find lots of ways to differentiate!

• Constant multiple: g′(x) = 3f ′(x).

• Product rule:

g′(x) =
d

dx
{3}f(x) + 3f ′(x) = 0f(x) + 3f ′(x) = 3f ′(x)

• Sum rule:

g′(x) =
d

dx
{f(x) + f(x) + f(x)} = f ′(x) + f ′(x) + f ′(x)

= 3f ′(x)

• Quotient rule:

g′(x) =
d

dx

{
f(x)

1
3

}
=

1
3
f ′(x)− f(x)(0)

1
9

=
1
3
f ′(x)

1
9
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= 9

(
1

3

)
f ′(x) = 3f ′(x)

All rules give g′(x) = 3f ′(x).

Exercises — Stage 2
2.4.2.5. Solution. We know, from Examples 2.2.5 and 2.2.9 in the CLP-1 text,
that d

dx
x2 = 2x and d

dx
x1/2 = 1

2
√
x
. So, by linearity,

f ′(x) = 3 · 2x+ 4 · 1

2
√
x

= 6x+
2√
x

2.4.2.6. Solution. We have already seen d
dx
{√x} = 1

2
√
x
in Example 2.2.9 of the

CLP-1 text. Now:

f ′(x) = (2)(8
√
x− 9x) + (2x+ 5)

(
8

2
√
x
− 9

)
= 16

√
x− 18x+ (2x+ 5)

(
4√
x
− 9

)
= −36x+ 24

√
x+

20√
x
− 45

2.4.2.7. ∗. Solution. We already know that d
dx
x = 1 and d

dx
x2 = 2x, so we can

compute the derivative of x3 by writing x3 = (x)(x2),

d

dx
x3 =

d

dx
(x)(x2) = (1)(x2) + (x)(2x) = 3x2

When this is evaluated at x = 1
2
we get 3

4
. Since we also compute

(
1
2

)3
= 1

8
, the

equation of the tangent line is

y − 1

8
=

3

4
·
(
x− 1

2

)
.

2.4.2.8. ∗. Solution. Let f(t) = t3 − 4t2 + 1. We saw in Question 2.4.2.7 that
d
dt
t3 = 3t2. So

f ′(t) = 3t2 − 8t f ′(2) = 3× 4− 8× 2 = −4

f ′′(t) = 6t− 8 f ′′(2) = 6× 2− 8 = 4

Hence at t = 2, 2.4.2.8.a the particle has speed of magnitude {4}, and 2.4.2.8.b is
moving {towards the left}. At t = 2, f ′′(2) > 0, so f ′ is increasing, i.e. becoming
less negative. Since f ′ is getting closer to zero, 2.4.2.8.c the magnitude of the speed
is {decreasing}.
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2.4.2.9. ∗. Solution. We can use the quotient rule here.

d

dx

{
2x− 1

2x+ 1

}
=

(2x+ 1)(2)− (2x− 1)(2)

(2x+ 1)2
=

4

(2x+ 1)2

=
1

(x+ 1/2)2

2.4.2.10. Solution. First, we find the y′ for general x. Using the corollary to
Theorem 2.4.3 and the quotient rule:

y′ = 2

(
3x+ 1

3x− 2

)
· d

dx

{
3x+ 1

3x− 2

}
= 2

(
3x+ 1

3x− 2

)(
(3x− 2)(3)− (3x+ 1)(3)

(3x− 2)2

)
= 2

(
3x+ 1

3x− 2

)( −9

(3x− 2)2

)
=
−18(3x+ 1)

(3x− 2)3

So, plugging in x = 1:

y′(1) =
−18(3 + 1)

(3− 2)3
= −72

2.4.2.11. Solution. We need f ′(1), so first we must find f ′(x). Since f(x) is the
reciprocal of

√
x+ 1, we can use the Corollary 2.4.6:

f ′(x) =
− d

dx
{√x+ 1}

(
√
x+ 1)2

=
− 1

2
√
x

(
√
x+ 1)2

=
−1

2
√
x(
√
x+ 1)2

,

so f ′(1) =
−1

2
√

1(
√

1 + 1)2
= −1

8
.

Now, using the point
(
1, 1

2

)
and the slope −1

8
, our tangent line has equation y− 1

2
=

−1
8
(x− 1).

Exercises — Stage 3
2.4.2.12. Solution. Population growth is rate of change of population. Popu-
lation in year 2000 + t is given by P (t) = P0 + b(t) − d(t), where P0 is the ini-
tial population of the town. Then P ′(t) is the expression we’re looking for, and
P ′(t) = b′(t)− d′(t).
It is interesting to note that the initial population does not obviously show up in
this calculation. It would probably affect b(t) and d(t), but if we know these we do
not need to know P0 to answer our question.

2.4.2.13. ∗. Solution. We already know that d
dx
x2 = 2x. So the slope of y = 3x2

at x = a is 6a. The tangent line to y = 3x2 at x = a, y = 3a2 is y−3a2 = 6a(x−a).
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This tangent line passes through (2, 9) if

9− 3a2 = 6a(2− a)

3a2 − 12a+ 9 = 0

a2 − 4a+ 3 = 0

(a− 3)(a− 1) = 0

=⇒ a = 1, 3

The points are {(1, 3), (3, 27)}.

2.4.2.14. ∗. Solution. This limit represents the derivative computed at x =

100180 of the function f(x) =
√
x. Since the derivative of f(x) is

1

2
√
x
, then its

value at x = 100180 is exactly
1

2
√

100180
.

2.4.2.15. Solution. Let w(t) and l(t) be the width and length of the rectangle.
Given in the problem is that w′(t) = 2 and l′(t) = 5. Since both functions have
constant slopes, both must be lines. Their slopes are given, and their intercepts are
w(0) = l(0) = 1. So, w(t) = 2t+ 1 and l(t) = 5t+ 1.
The area of the rectangle is A(t) = w(t) · l(t), so using the product rule, the rate at
which the area is increasing is A′(t) = w′(t)l(t) +w(t)l′(t) = 2(5t+ 1) + 5(2t+ 1) =
20t+ 7 square metres per second.

2.4.2.16. Solution. Using the product rule, f ′(x) = (2x)g(x)+x2g′(x), so f ′(0) =
0 · g(x) + 0 · g′(x) = 0. (Since g is differentiable, g′ exists.)

2.4.2.17. Solution. First expression, f(x) =
g(x)

h(x)
:

f ′(x) =
h(x)g′(x)− g(x)h′(x)

h2(x)

Second expresson, f(x) =
g(x)

k(x)
· k(x)

h(x)
:

f ′(x) =

(
k(x)g′(x)− g(x)k′(x)

k2(x)

)(
k(x)

h(x)

)
+

(
g(x)

k(x)

)(
h(x)k′(x)− k(x)h′(x)

h2(x)

)
=
k(x)g′(x)− g(x)k′(x)

k(x)h(x)
+
g(x)h(x)k′(x)− g(x)k(x)h′(x)

k(x)h2(x)

=
h(x)k(x)g′(x)− h(x)g(x)k′(x)

k(x)h2(x)
+
g(x)h(x)k′(x)− g(x)k(x)h′(x)

k(x)h2(x)

=
h(x)k(x)g′(x)− h(x)g(x)k′(x) + g(x)h(x)k′(x)− g(x)k(x)h′(x)

k(x)h2(x)

=
h(x)k(x)g′(x)− g(x)k(x)h′(x)

k(x)h2(x)
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=
h(x)g′(x)− g(x)h′(x)

h2(x)

and this is exactly what we got from differentiating the first expression.

2.6 · Using the Arithmetic of Derivatives – Examples
2.6.2 · Exercises

Exercises — Stage 1
2.6.2.1. Solution. In the quotient rule, there is a minus, not a plus. Also,
2(x+ 1) + 2x is not the same as 2(x+ 1).
The correct version is:

f(x) =
2x

x+ 1

f ′(x) =
2(x+ 1)−2x

(x+ 1)2

=
2

(x+ 1)2

2.6.2.2. Solution. False: Lemma 2.6.9 tells us that, for a constant n,
d

dx
{xn} =

nxn−1. Note that the base x is the variable and the exponent n is a constant. In
the equation given in the question, the base 2 is a constant, and the exponent x is
the variable: this is the opposite of the situation where Lemma 2.6.9 applies.
We do not yet know how to differentiate 2x. We’ll learn about it in Section 2.7

Exercises — Stage 2
2.6.2.3. Solution. f(x) = 2

3
x6 + 5x4 + 12x2 + 9 is a polynomial:

f ′(x) = 4x5 + 20x3 + 24x

= 4x(x4 + 5x2 + 6)

= 4x((x2)2 + 5(x2) + 6)

= 4x(x2 + 2)(x2 + 3)

2.6.2.4. Solution. We can rewrite slightly to make every term into a power of t:

s(t) = 3t4 + 5t3 − t−1

s′(t) = 4 · 3t3 + 3 · 5t2 − (−1) · t−2

= 12t3 + 15t2 +
1

t2

2.6.2.5. Solution. We could use the product rule here, but it’s easier to simplify
first. Don’t be confused by the role reversal of x and y: x is the name of the
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function, and y is the variable.

x(y) =

(
2y +

1

y

)
· y3

= 2y4 + y2

x′(y) = 8y3 + 2y

2.6.2.6. Solution. We’ve already seen that d
dx
{√x} = 1

2
√
x
, but if you forget this

formula it is easy to figure out:
√
x = x1/2, so d

dx
{√x} = 1

2
x−1/2 = 1

2
√
x
.

Using the quotient rule:

T (x) =

√
x+ 1

x2 + 3

T ′(x) =
(x2 + 3)

(
1

2
√
x

)
− (
√
x+ 1)(2x)

(x2 + 3)2

2.6.2.7. ∗. Solution. We use quotient rule:

(x2 + 3) · 7− 2x · (7x+ 2)

(x2 + 3)2
=

21− 4x− 7x2

(x2 + 3)2

2.6.2.8. Solution. Instead of multiplying to get our usual form of this polyno-
mial, we can use the product rule. If f1(x) = 3x3 + 4x2 + x+ 1 and f2(x) = 2x+ 5,
then f ′1(x) = 9x2 + 8x+ 1 and f ′2(x) = 2. Then

f ′(0) = f ′1(0)f2(0) + f1(0)f ′2(0)

= (1)(5) + (1)(2) = 7

2.6.2.9. Solution. Using the quotient rule,

f ′(x) =
(x2 + 5x)(9x2)− (3x3 + 1)(2x+ 5)

(x2 + 5x)2
=

3x4 + 30x3 − 2x− 5

(x2 + 5x)2

2.6.2.10. ∗. Solution. We use quotient rule:

(2− x)(6x)− (3x2 + 5)(−1)

(2− x)2
=
−3x2 + 12x+ 5

(x− 2)2

2.6.2.11. ∗. Solution. We use quotient rule:

(3x2 + 5)(−2x)− (2− x2)(6x)

(3x2 + 5)2
=

−22x

(3x2 + 5)2

2.6.2.12. ∗. Solution. We use quotient rule:

6x2 · (x+ 2)− (2x3 + 1) · 1
(x+ 2)2

=
4x3 + 12x2 − 1

(x+ 2)2
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2.6.2.13. ∗. Solution. The derivative of the function is

(1− x2) · 1
2
√
x
−√x · (−2x)

(1− x2)2
=

(1− x2)− 2x · (−2x)

2
√
x(1− x2)2

The derivative is undefined if either x < 0 or x = 0,±1 (since the square-root is
undefined for x < 0 and the denominator is zero when x = 0, 1,−1. Putting this
together — the derivative exists for x > 0, x 6= 1.

2.6.2.14. Solution. Using the product rule seems faster than expanding.

f ′(x) =
d

dx

{
3 5
√
x+ 15 3

√
x+ 8

} (
3x2 + 8x− 5

)
+
(
3 5
√
x+ 15 3

√
x+ 8

)
d

dx

{
3x2 + 8x− 5

}
=

d

dx

{
3x

1
5 + 15x

1
3 + 8

}(
3x2 + 8x− 5

)
+
(
3 5
√
x+ 15 3

√
x+ 8

)
d

dx

{
3x2 + 8x− 5

}
=

(
3

5
x
−4
5 +5x

−2
3

)(
3x2+8x−5

)
+
(
3 5
√
x+15 3

√
x+ 8

)
(6x+8)

2.6.2.15. Solution. To avoid the quotient rule, we can divide through the de-
nominator:

f(x) =
(x2 + 5x+ 1)(

√
x+ 3
√
x)

x
= (x2 + 5x+ 1)

(
√
x+ 3
√
x)

x
= (x2 + 5x+ 1)(x−1/2 + x−2/3)

Now, product rule:

f ′(x) = (2x+5)(x−1/2+x−2/3) + (x2+5x+1)

(−1

2
x−3/2− 2

3
x−5/3

)
(If you simplified differently, or used the quotient rule, you probably came up with a
different-looking answer. There is only one derivative, though, so all correct answers
will look the same after sufficient algebraic manipulation.)

2.6.2.16. Solution. The question asks us to find where f ′(x) = 0 and f(x) exists.
We can use the formula for the derivative of a reciprocal, Corollary 2.4.6:

f ′(x) =
− d

dx

{
1
5
x5 + x4 − 5

3
x3
}(

1
5
x5 + x4 − 5

3
x3
)2

=
− (x4 + 4x3 − 5x2)(

1
5
x5 + x4 − 5

3
x3
)2

=
−x2 (x2 + 4x− 5)(

1
5
x5 + x4 − 5

3
x3
)2
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=
−x2(x+ 5)(x− 1)(

1
5
x5 + x4 − 5

3
x3
)2

So our candidates for x-values where f ′(x) = 0 are x = 0, x = −5, and x = 1.
However, we need to check that f exists at these places: f(0) is undefined (and
f ′(0) doesn’t exist). So f ′(x) = 0 only when x = −5 and x = 1.

Exercises — Stage 3
2.6.2.17. ∗. Solution. Denote by m the slope of the common tangent, by
(x1, y1) the point of tangency with y = x2, and by (x2, y2) the point of tangency
with y = x2 − 2x+ 2. Then we must have

y1 = x2
1 y2 = x2

2 − 2x2 + 2 m = 2x1 = 2x2 − 2 =
y2 − y1

x2 − x1

From the “m” equations we get x1 = m
2
, x2 = m

2
+ 1 and

m =
y2 − y1

x2 − x1

= y2 − y1

= x2
2 − 2x2 + 2− x2

1

= (x2 − x1)(x2 + x1)− 2(x2 − 1)

=
(m

2
+ 1− m

2

)(m
2

+ 1 +
m

2

)
− 2

(m
2

+ 1− 1
)

= (1)(m+ 1)− 2
m

2
= 1

So m = 1 and

x1 =
1

2
, y1 =

1

4
, x2 =

3

2
, y2 =

9

4
− 3 + 2 =

5

4

An equation of the common tangent is y = x− 1
4
.

2.6.2.18. Solution. The line y = mx+ b is tangent to y = x2 at x = α if

2α = m and α2 = mα + b ⇐⇒ m = 2α and b = −α2

The same line y = mx+ b is tangent to y = −x2 + 2x− 5 at x = β if

−2β + 2 = m and − β2 + 2β − 5 = mβ + b

⇐⇒ m = 2− 2β and b = −β2 + 2β − 5− (2− 2β)β = β2 − 5

For the line to be simultaneously tangent to the two parabolas we need

m = 2α = 2− 2β and b = −α2 = β2 − 5

Substituting α = 1−β into −α2 = β2−5 gives −(1−β)2 = β2−5 or 2β2−2β−4 = 0
or β = −1, 2. The corresponding values of the other parameters are α = 2,−1,
m = 4,−2 and b = −4,−1. The two lines are {y = 4x− 4 and y = −2x− 1}.
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2.6.2.19. ∗. Solution. This limit represents the derivative computed at x = 2
of the function f(x) = x2015. To see this, simply use the definition of the derivative
at a = 2 with f(x) = x2015:

d

dx
{f(x)}

∣∣∣∣
a

= lim
x→a

f(x)− f(a)

x− a
d

dx
{x2015}

∣∣∣∣
2

= lim
x→2

x2015 − 22015

x− 2

Since the derivative of f(x) is 2015·x2014, then its value at x = 2 is exactly 2015·22014.

2.7 · Derivatives of Exponential Functions
2.7.3 · Exercises

Exercises — Stage 1
2.7.3.1. Solution. Since 1x = 1 for any x, we see that (b) is just the constant
function y = 1, so D matches to (b).
Since 2−x = 1

2x
=
(

1
2

)x, functions (a) and (d) are the same. This is the only function
out of the lot that grows as x → −∞ and shrinks as x → ∞, so A matches to (a)
and (d).
This leaves B and C to match to (c) and (e). Since 3 > 2, when x > 0, 3x > 2x.
So, (e) matches to the function that grows more quickly to the right of the x-axis:
B matches to (e), and C matches to (c).

2.7.3.2. Solution. First, let’s consider the behaviour of exponential functions ax

based on whether a is greater or less than 1. As we know, lim
x→∞

ax =

{
∞ a > 1

0 a < 1

and lim
x→−∞

ax =

{
0 a > 1

∞ a < 1
. Our function has lim

x→∞
f(x) =∞ and lim

x→−∞
f(x) = 0,

so we conclude a > 1: thus (d) and also (b) hold. (We could have also seen that (b)
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holds because ax is defined for all real numbers.)
It remains to decide whether a is greater or less than e. (If a were equal to e, then
f ′(x) would be the same as f(x).) We saw in the text that d

dx
{ax} = C(a)ax for

the function C(a) = lim
h→0

ah − 1

h
. We know that C(e) = 1. (Actually, we chose e to

be the number that has this property.) From our graph, we see that f ′(x) < f(x),

so C(a) < 1 = C(e). In other words, lim
h→0

ah − 1

h
< lim

h→0

eh − 1

h
; so, a < e. Thus (e)

holds.

2.7.3.3. Solution. The power rule tells us that d
dx
{xn} = nxn−1. In this equation,

the variable is the base, and the exponent is a constant. In the function ex, it’s
reversed: the variable is the exponent, and the base it a constant. So, the power
rule does not apply.

2.7.3.4. Solution. P (t) is an increasing function over its domain, so the popula-
tion is increasing.
There are a few ways to see that P (t) is increasing.
What we really care about is whether e0.2t is increasing or decreasing, since an
increasing function multiplied by 100 is still an increasing function, and a decreasing
function multiplied by 100 is still a decreasing function. Since f(t) = et is an
increasing function, we can use what we know about graphing functions to see that
f(0.2t) = e0.2t is also increasing.

Exercises — Stage 2
2.7.3.5. Solution. Using the quotient rule,

f ′(x) =
2xex − 2ex

4x2
=
ex(2x− 2)

4x2
=

(x− 1)ex

2x2

2.7.3.6. Solution.

f ′(x) =
d

dx
{e2x} =

d

dx
{(ex)2} = 2

d

dx
{ex}ex = 2exex = 2(ex)2 = 2e2x

2.7.3.7. Solution.

ea+x = eaex

Since ea is just a constant,

d

dx
{eaex} = ea

d

dx
{ex} = eaex = ea+x

So, f ′(x) = f(x) = ea+x.

2.7.3.8. Solution. If the derivative is positive, the function is increasing, so let’s
start by finding the derivative. We use the product rule (although Question 2.7.3.12
gives a shortcut).

f ′(x) = 1 · ex + xex = (1 + x)ex
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Since ex is always positive, f ′(x) > 0 when 1 + x > 0. So, f(x) is increasing when
x > −1.

2.7.3.9. Solution.

e−x =
1

ex

Using the rule for differentiating the reciprocal:

d

dx
{e−x} =

−ex
(ex)2

=
−1

ex
= −e−x

2.7.3.10. Solution. Using the product rule,

f ′(x) = (ex)(ex − 1) + (ex + 1)(ex) = ex(ex − 1 + ex + 1) = 2(ex)2

= 2e2x

Alternate solution: using Question 2.7.3.6:

f(x) = e2x − 1 =⇒ f ′(x) = 2e2x.

2.7.3.11. Solution. The question asks when s′(t) is negative. So, we start by
differentiating. Using the product rule:

s′(t) = et(t2 + 2t)

= et · t(t+ 2)

et is always positive, so s′(t) is negative when t and 2 + t have opposite signs. This
occurs when −2 < t < 0.

Exercises — Stage 3
2.7.3.12. Solution. Using the product rule, g′(x) = f ′(x)ex + f(x)ex = [f(x) +
f ′(x)]ex

2.7.3.13. Solution. We simplify the functions to get a better idea of what’s going
on.
(a): y = e3 log x + 1 =

(
elog x

)3
+ 1 = x3 + 1. This is not a line.

(b): 2y + 5 = e3+log x = e3elog x = e3x. Since e3 is a constant, 2y + 5 = e3x is a line.
(c): There isn’t a fancy simplification here–this isn’t a line. If that isn’t a satis-
factory answer, we can check: a line is a function with a constant slope. For our
function, y′ = d

dx
{e2x + 4} = d

dx
{e2x} = d

dx
{(ex)2} = 2exex = 2e2x. Since the

derivative isn’t constant, the function isn’t a line.
(d): y = elog x3e + log 2 = 3ex+ log 2. Since e3 and log 2 are constants, this is a line.

2.7.3.14. ∗. Solution. When we say a function is differentiable without speci-
fying a range, we mean that it is differentiable over its domain. The function f(x)
is differentiable when x 6= 1 for any values of a and b; it is up to us to figure out
which constants make it differentiable when x = 1.
In order to be differentiable, a function must be continuous. The definition of
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continuity tells us that, for f to be continuous at x = 1, we need lim
x→1

f(x) = f(1).
From the definition of f , we see f(1) = a + b = lim

x→1−
f(x), so we need lim

x→1+
f(x) =

a+ b. Since lim
x→1+

f(x) = e1 = e, we specifically need

e = a+ b.

Now, let’s consider differentiability of f at x = 1. We need the following limit to
exist:

lim
h→0

f(1 + h)− f(1)

h

In particular, we need the one-sided limits to exist and be equal:

lim
h→0−

f(1 + h)− f(1)

h
= lim

h→0+

f(1 + h)− f(1)

h

If h < 0, then 1 + h < 1, so f(1 + h) = a(1 + h)2 + b. If h > 0, then 1 + h > 1, so
f(1 + h) = e1+h. With this in mind, we begin to evaluate the one-sided limits:

lim
h→0−

f(1 + h)− f(1)

h
= lim

h→0−

[a(1 + h)2 + b]− [a+ b]

h

= lim
h→0−

ah2 + 2ah

h
= 2a

lim
h→0+

f(1 + h)− f(1)

h
= lim

h→0+

e1+h − (a+ b)

h

Since we take a+ b to be equal to e (to ensure continuity):

= lim
h→0+

e1+h − e1

h

=
d

dx
{ex}

∣∣∣∣
x=1

= e1 = e

So, we also need
2a = e

Therefore, the values of a and b that make f differentiable are a = b =
e

2
.

2.8 · Derivatives of Trigonometric Functions
2.8.8 · Exercises

Exercises — Stage 1
2.8.8.1. Solution.
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x

y

π−π

y = sinx

y = cosx

The graph f(x) = sinx has horizontal tangent lines precisely at those points where
cosx = 0. This must be true, since d

dx
{sinx} = cosx: where the derivative of sine

is zero, cosine itself is zero.

2.8.8.2. Solution.

x

y

π−π

y = sinx

y = cosx

The graph f(x) = sinx has maximum slope at those points where cosx has a
maximum. This makes sense, because f ′(x) = cosx: the maximum values of the
slope of sine correspond to the maximum values of cosine.

Exercises — Stage 2
2.8.8.3. Solution. You should memorize the derivatives of sine, cosine, and
tangent. f ′(x) = cos x− sinx+ sec2 x

2.8.8.4. Solution. f ′(x) = cos x−sinx, so f ′(x) = 0 precisely when sinx = cosx.
This happens at π/4, but it also happens at 5π/4. By looking at the unit circle, it
is clear that sinx = cosx whenever x = π

4
+ πn for some integer n.

x

y

sin(π/4) = cos(π/4)

sin(5π/4) = cos(5π/4)

2.8.8.5. Solution.

• Solution 1: f(x) = sin2 x+ cos2 x = 1, so f ′(x) = d
dx
{1} = 0.
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• Solution 2: Using the formula for the derivative of a squared function,

f ′(x) = 2 sinx cosx+ 2 cosx(− sinx)

= 2 sin x cosx− 2 sinx cosx = 0.

2.8.8.6. Solution. It is true that 2 sinx cosx = sin(2x), but we don’t know the
derivative of sin(2x). So, we use the product rule:

f ′(x) = 2 cosx cosx+ 2 sinx(− sinx) = 2(cos2 x− sin2 x).

2.8.8.7. Solution.

• Solution 1: using the product rule,

f ′(x) = ex cotx+ ex(− csc2 x) = ex(cotx− csc2 x).

• Solution 2: using the formula from Question 2.7.3.12, Section 2.7,

f ′(x) = ex(cotx− csc2 x).

2.8.8.8. Solution. We use the quotient rule.

f ′(x)

=
(cosx+tan x)(2 cosx+3 sec2 x)−(2 sinx+3 tanx)(− sinx+sec2 x)

(cosx+ tanx)2

=
2 cos2 x+ 3 cosx sec2 x+ 2 cosx tanx+ 3 tanx sec2 x

(cosx+ tanx)2

+
2 sin2 x− 2 sinx sec2 x+ 3 sinx tanx− 3 tanx sec2 x

(cosx+ tanx)2

=
2 + 3 secx+ 2 sinx− 2 tanx secx+ 3 sinx tanx

(cosx+ tanx)2

2.8.8.9. Solution. We use the quotient rule.

f ′(x) =
ex(5 secx tanx)− (5 secx+ 1)ex

(ex)2

=
5 secx tanx− 5 secx− 1

ex

2.8.8.10. Solution. We use the product rule:

f ′(x) = (ex + cotx)(30x5 + cscx cotx) + (ex − csc2 x)(5x6 − cscx)

2.8.8.11. Solution. We don’t know how to differentiate this function as it is writ-
ten, but an identity helps us. Since sin

(
π
2
− θ
)

= cos θ, we see f ′(θ) = d
dθ
{cos θ} =

− sin(θ).

2.8.8.12. Solution. We know the derivative of sinx, but not of sin(−x). So we
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re-write f(x) using identities:

f(x) = sin(−x) + cos(−x)

= − sinx+ cosx

f ′(x) = − cosx− sinx

2.8.8.13. Solution. We apply the quotient rule.

s′(θ) =
(cos θ − sin θ)(− sin θ + cos θ)− (cos θ + sin θ)(− sin θ − cos θ)

(cos θ − sin θ)2

=
(cos θ − sin θ)2 + (cos θ + sin θ)2

(cos θ − sin θ)2

= 1 +

(
cos θ + sin θ

cos θ − sin θ

)2

2.8.8.14. ∗. Solution. In order for f to be differentiable at x = 0, it must also
be continuous at x = 0. This forces

lim
x→0−

f(x) = lim
x→0+

f(x) = f(0)

or lim
x→0−

cos(x) = lim
x→0+

(ax+ b) = 1

or b = 1.
In order for f to be differentiable at x = 0, we need the limit

lim
h→0

f(0 + h)− f(0)

h

to exist. This is the case if and only if the two one-sided limits

lim
h→0−

f(0 + h)− f(0)

h
= lim

h→0−

cos(h)− cos(0)

h

and

lim
h→0+

f(0 + h)− f(0)

h
= lim

h→0+

(ah+ b)− cos(0)

h
= a since b = 1

exist and are equal. Because cos(x) is differentiable at x = 0 we have

lim
h→0−

cos(h)− cos(0)

h
=

d

dx
cos(x)

∣∣∣∣
x=0

= − sin(x)
∣∣∣
x=0

= 0

So, we need a = 0 and b = 1.

2.8.8.15. ∗. Solution. We compute the derivative of cos(x) + 2x as being
− sin(x) + 2, which evaluated at x = π

2
yields −1 + 2 = 1. Since we also compute

cos(π/2) + 2(π/2) = 0 + π, then the equation of the tangent line is

y − π = 1 · (x− π/2).
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Exercises — Stage 3
2.8.8.16. ∗. Solution. This limit represents the derivative computed at x = 2015
of the function f(x) = cos(x). To see this, simply use the definition of the derivative
at a = 2015 with f(x) = cos x:

d

dx
{f(x)}

∣∣∣∣
a

= lim
x→a

f(x)− f(a)

x− a
d

dx
{cosx}

∣∣∣∣
2015

= lim
x→2015

cos(x)− cos(2015)

x− 2015

Since the derivative of f(x) is − sin(x), its value at x = 2015 is exactly − sin(2015).

2.8.8.17. ∗. Solution. This limit represents the derivative computed at x = π/3
of the function f(x) = cos x. To see this, simply use the definition of the derivative
at a = π/3 with f(x) = cos x:

d

dx
{f(x)}

∣∣∣∣
a

= lim
x→a

f(x)− f(a)

x− a
d

dx
{cosx}

∣∣∣∣
π/3

= lim
x→π/3

cos(x)− cos(π/3)

x− π/3

= lim
x→π/3

cos(x)− 1/2

x− π/3

Since the derivative of f(x) is − sinx, then its value at x = π/3 is exactly
− sin(π/3) = −

√
3/2.

2.8.8.18. ∗. Solution. This limit represents the derivative computed at x = π of
the function f(x) = sin(x). To see this, simply use the definition of the derivative
at a = π with f(x) = sin x:

d

dx
{f(x)}

∣∣∣∣
a

= lim
x→a

f(x)− f(a)

x− a
d

dx
{sinx}

∣∣∣∣
π

= lim
x→π

sin(x)− sin(π)

x− π

= lim
x→π

sin(x)

x− π
Since the derivative of f(x) is cos(x), then its value at x = π is exactly cos(π) = −1.

2.8.8.19. Solution.

tan θ =
sin θ

cos θ
So, using the quotient rule,

d

dθ
{tan θ} =

cos θ cos θ − sin θ(− sin θ)

cos2 θ
=

cos2 θ + sin2 θ

cos2 θ

=

(
1

cos θ

)2

= sec2 θ
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2.8.8.20. ∗. Solution. In order for the function f(x) to be continuous at x = 0,

the left half formula ax+ b and the right half formula
6 cosx

2 + sin x+ cosx
must match

up at x = 0. This forces

a× 0 + b =
6 cos 0

2 + sin 0 + cos 0
=

6

3
=⇒ b = 2

In order for the derivative f ′(x) to exist at x = 0, the limit lim
h→0

f(h)− f(0)

h
must

exist. In particular, the limits lim
h→0−

f(h)− f(0)

h
and lim

h→0+

f(h)− f(0)

h
must exist

and be equal to each other.
When h→ 0−, this means h < 0, so f(h) = ah+ b = ah+ 2. So:

lim
h→0−

f(h)− f(0)

h
= lim

h→0−

(ah+ 2)− 2

h
=

d

dx
{ax+ 2}

∣∣∣∣
x=0

= a.

Similarly, when h→ 0+, then h > 0, so f(h) =
6 cosh

1 + sinh+ cosh
and

lim
h→0+

f(h)− f(0)

h
=

d

dx

{
6 cosx

2 + sin x+ cosx

}∣∣∣∣
x=0

=
−6 sinx(2 + sin x+ cosx)− 6 cosx(cosx− sinx)

(2 + sin x+ cosx)2

∣∣∣∣
x=0

.

Since the limits from the left and right must be equal, this forces

a =
−6 sin 0(2 + sin 0 + cos 0)− 6 cos 0(cos 0− sin 0)

(2 + sin 0 + cos 0)2
=

−6

(2 + 1)2

=⇒ a = −2

3

2.8.8.21. ∗. Solution. In order for f ′(x) to exist, f(x) has to exist. We already
know that tanx does not exist whenever x = π

2
+nπ for any integer n. If we look a

little deeper, since tanx = sinx
cosx

, the points where tangent does not exist correspond
exactly to the points where cosine is zero.
From its graph, tangent looks like a smooth curve over its domain, so we might
guess that everywhere tangent is defined, its derivative is defined. We can check
this: f ′(x) = sec2 x =

(
1

cosx

)2. Indeed, wherever cosx is nonzero, f ′ exists.
So, f ′(x) exists for all values of x except when x = π

2
+ nπ for some integer n.

2.8.8.22. ∗. Solution. The function is differentiable whenever x2 + x − 6 6= 0
since the derivative equals

10 cos(x) · (x2 + x− 6)− 10 sin(x) · (2x+ 1)

(x2 + x− 6)2
,

which is well-defined unless x2 +x−6 = 0. We solve x2 +x−6 = (x−2)(x+3) = 0,

734



Solutions to Exercises

and get x = 2 and x = −3. So, the function is differentiable for all real values x
except for x = 2 and for x = −3.

2.8.8.23. ∗. Solution. The function is differentiable whenever sin(x) 6= 0 since
the derivative equals

sin(x) · (2x+ 6)− cos(x) · (x2 + 6x+ 5)

(sinx)2
,

which is well-defined unless sinx = 0. This happens when x is an integer multiple
of π. So, the function is differentiable for all real values x except x = nπ, where n
is any integer.

2.8.8.24. ∗. Solution. We compute the derivative of tan(x) as being sec2(x),
which evaluated at x = π

4
yields 2. Since we also compute tan(π/4) = 1, then the

equation of the tangent line is

y − 1 = 2 · (x− π/4).

2.8.8.25. ∗. Solution. We compute the derivative y′ = cos(x)−sin(x)+ex, which
evaluated at x = 0 yields 1−0 + 1 = 2. Since we also compute y(0) = 0 + 1 + 1 = 2,
the equation of the tangent line is

y − 2 = 2(x− 0)

ie y = 2x+ 2.

2.8.8.26. Solution. We are asked to solve f ′(x) = 0. That is, ex[sinx+cos x] = 0.
Since ex is always positive, that means we need to find all points where sinx+cosx =
0. That is, we need to find all values of x where sinx = − cosx. Looking at the
unit circle, we see this happens whenever x = 3π

4
+ nπ for any integer n.

x

y

sin(−π/4) = − cos(−π/4)

sin(3π/4) = − cos(3π/4)

2.8.8.27. Solution. First, we note that our function is continuous, because

lim
x→0

f(x) = lim
x→0

sinx

x
= 1 = f(0)

This is a handy thing to check: if the function were discontinuous at x = 0, then
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we would automatically know that it was not differentiable there.
Now, on to the derivative. We can use the limit definition:

f ′(0) = lim
h→0

f(0 + h)− f(0)

h
if it exists

= lim
h→0

f(h)− 1

h

= lim
h→0

sinh
h
− 1

h

As h approaches 0, both the numerator and the denominator approach 0. So, to
evaluate the limit, we need to do more work. The key insight we can use is a result
that was shown in the text while evaluating the derivative of sine. When h is close
to 0, cosh ≤ sinh

h
≤ 1. We use this to bound our limit, and then apply the squeeze

theorem.

cosh ≤sinh

h
≤1

So, cosh− 1 ≤sinh

h
− 1 ≤1− 1 = 0

and 1
h

(
sinh
h
− 1
)
is between 0 and cosh−1

h
. We can evaluate the limit of cosh−1

h
by

noticing its similarity to the definition of the derivative.

lim
h→0

cosh− 1

h
= lim

h→0

cos(0 + h)− cos(0)

h

=
d

dx
{cosx}|x=0 = 0

So, by the Squeeze Theorem, f ′(0) = lim
h→0

sinh
h
− 1

h
= 0.

2.8.8.28. ∗. Solution. As usual, when dealing with the absolute value function,
we can make things a little clearer by splitting it up into two pieces.

|x| =
{

x x ≥ 0

−x x < 0

So,

sin |x| =
{

sinx x ≥ 0

sin(−x) x < 0
=

{
sinx x ≥ 0

− sinx x < 0

where we used the identity sin(−x) = − sinx. From here, it’s easy to see h′(x)
when x is anything other than zero.

d

dx
{sin |x|} =


cosx x > 0

?? x = 0

− cosx x < 0
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To decide whether h(x) is differentiable at x = 0, we use the definition of the
derivative. One word of explanation: usually in the definition of the derivative, h is
the tiny “change in x” that is going to zero. Since h is the name of our function, we
need another letter to stand for the tiny change in x, the size of which is tending to
zero. We chose t.

lim
t→0

h(t+ 0)− h(0)

t
= lim

t→0

sin |t|
t

We consider the behaviour of this function to the left and right of t = 0:

sin |t|
t

=

{
sin t
t

t ≥ 0
sin(−t)

t
t < 0

=

{
sin t
t

t ≥ 0

− sin t
t

t < 0

Since we’re evaluating the limit as t goes to zero, we need the fact that lim
t→0

sin t

t
= 1.

We saw this in Section 2.7, but also we know enough now to evaluate it another
way. Using the definition of the derivative:

lim
t→0

sin t

t
= lim

t→0

sin(t+ 0)− sin(0)

t
=

d

dx
{sinx}

∣∣∣∣
t=0

= cos 0 = 1

At any rate, since we know lim
t→0

sin t

t
= 1, then:

lim
t→0+

h(t+ 0)− h(0)

t
= lim

t→0+

sin t

t
= 1

lim
t→0−

h(t+ 0)− h(0)

t
= lim

t→0−

− sin t

t
= −1

So, since the one-sided limits disagree,

lim
t→0

h(t+ 0)− h(0)

t
= DNE

so h(x) is not differentiable at x = 0. Therefore,

h′(x) =

{
cosx x > 0

− cosx x < 0

2.8.8.29. ∗. Solution. Statement 2.8.8.29.i is false, since f(0) = 0. Statement
2.8.8.29.iv cannot hold, since a function that is differentiable is also continuous.

Since lim
x→0+

sinx

x
= 1 (we saw this in Section 2.8 ),

lim
x→0+

f(x) = lim
x→0+

sinx√
x

= lim
x→0+

√
x

sinx

x

= 0 · 1 = 0
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So f is continuous at x = 0, and so Statement 2.8.8.29.ii does not hold. Now let’s
consider f ′(x)

lim
x→0+

f(x)− f(0)

x
= lim

x→0+

sinx√
x
− 0

x

= lim
x→0+

1√
x

sinx

x
= +∞

Therefore, using the definition of the derivative,

f ′(0) = lim
x→0

f(x)− f(0)

x
if it exists, but

lim
x→0

f(x)− f(0)

x
= DNE

since one of the one-sided limits does not exist. So f is continuous but not differ-
entiable at x = 0. The correct statement is 2.8.8.29.iii.

2.8.8.30. ∗. Solution. Recall that lim
x→0

sinx

x
= 1. In order to take advantage of

this knowledge, we divide the numerator and denominator by x5 (because 5 is the
power of sine in the denominator, and a denominator that goes to zero generally
makes a limit harder).

lim
x→0

sinx27 + 2x5ex
99

sin5 x
= lim

x→0

sinx27

x5
+ 2ex

99(
sinx

x

)5

Now the denominator goes to 1, which is nice, but we need to take care of the

fraction
sinx27

x5
in the numerator. This fraction isn’t very familiar, but we know

that, as x goes to zero, x27 also goes to zero, so that
sinx27

x27
goes to 1. Consequently,

lim
x→0

sinx27 + 2x5ex
99

sin5 x
= lim

x→0

x22 sinx27

x27
+ 2ex

99(
sinx

x

)5 =
0× 1 + 2× e0

15
= 2

2.9 · One More Tool – the Chain Rule
2.9.4 · Exercises

Exercises — Stage 1
2.9.4.1. Solution. 2.9.4.1.a More urchins means less kelp, and fewer urchins
means more kelp. This means kelp and urchins are negatively correlated, so dK

dU
< 0.

If you aren’t sure why that is, we give a more detailed explanation here, using the
definition of the derivative. When h is a positive number, U + h is greater than U ,
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so K(U + h) is less than U , hence K(U + h)−K(U) < 0. Therefore:

lim
h→0+

K(U + h)−K(U)

h
=

negative
positive

< 0.

Similarly, when h is negative, U + h is less than U , so K(U + h)−K(U) > 0, and

lim
h→0−

K(U + h)−K(U)

h
=

positive
negative

< 0.

Therefore:
dK

dU
= lim

h→0

K(U + h)−K(U)

h
< 0.

2.9.4.1.b More otters means fewer urchins, and fewer otters means more urchins.
So, otters and urchins are negatively correlated: dU

dO
< 0.

2.9.4.1.c Using the chain rule, dK
dO

= dK
dU
· dU

dO
. Parts 2.9.4.1.a and 2.9.4.1.b tell us

both these derivatives are negative, so their product is positive: dK
dO

> 0.
We can also see that dK

dO
> 0 by thinking about the relationships as described.

When the otter population increases, the urchin population decreases, so the kelp
population increases. That means when the otter population increases, the kelp
population also increases, so kelp and otters are positively correlated. The chain
rule is a formal version of this kind of reasoning.

2.9.4.2. Solution.
dA

dE
=

dA

dB
· dB

dC
· dC

dD
· dD

dE
< 0

since we multiply three positive quantities and one negative.

Exercises — Stage 2
2.9.4.3. Solution. Applying the chain rule:

d

dx
{cos(5x+ 3)} = − sin(5x+ 3) · d

dx
{5x+ 3}

= − sin(5x+ 3) · 5
2.9.4.4. Solution. Using the chain rule,

f ′(x) =
d

dx

{(
x2 + 2

)5
}

= 5
(
x2 + 2

)4 · d

dx
{x2 + 2}

= 5(x2 + 2)4 · 2x
= 10x(x2 + 2)4

2.9.4.5. Solution. Using the chain rule,

T ′(k) =
d

dk

{(
4k4 + 2k2 + 1

)17
}
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= 17(4k4 + 2k2 + 1)16 · d

dk
{4k4 + 2k2 + 1}

= 17(4k4 + 2k2 + 1)16 · (16k3 + 4k)

2.9.4.6. Solution. Using the chain rule:

d

dx

{√
x2 + 1

x2 − 1

}
=

1

2
√

x2+1
x2−1

· d

dx

{
x2 + 1

x2 − 1

}

=
1

2

√
x2 − 1

x2 + 1
· d

dx

{
x2 + 1

x2 − 1

}
And now, the quotient rule:

=
1

2

√
x2 − 1

x2 + 1
·
(

(x2 − 1)(2x)− (x2 + 1)2x

(x2 − 1)2

)
=

1

2

√
x2 − 1

x2 + 1
·
( −4x

(x2 − 1)2

)
=

√
x2 − 1

x2 + 1
·
( −2x

(x2 − 1)2

)
=

−2x

(x2 − 1)
√
x4 − 1

2.9.4.7. Solution. If we let g(x) = ex and h(x) = cos(x2), then f(x) = g(h(x)),
so f ′(x) = g′(h(x)) · h′(x).

f ′(x) = ecos(x2) · d

dx
{cos(x2)}

In order to evaluate d
dx
{cos(x2)}, we’ll need the chain rule again.

= ecos(x2) · [− sin(x2)] · d

dx
{x2}

= −ecos(x2) · sin(x2) · 2x
2.9.4.8. ∗. Solution. We use the chain rule, followed by the quotient rule:

f ′(x) = g′
(

x

h(x)

)
· d

dx

{
x

h(x)

}
= g′

(
x

h(x)

)
· h(x)− xh′(x)

h(x)2

When x = 2:

f ′(2) = g′
(

2

h(2)

)
h(2)− 2h′(2)

h(2)2

= 4
2− 2× 3

22
= −4
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2.9.4.9. ∗. Solution. Using the chain rule, followed by the product rule:

d

dx

{
ex cos(x)

}
= ex cosx d

dx
{x cosx}

= [cosx− x sinx]ex cos(x)

2.9.4.10. ∗. Solution. Using the chain rule:

d

dx

{
ex

2+cos(x)
}

= ex
2+cosx d

dx

{
x2 + cosx

}
= [2x− sinx]ex

2+cos(x)

2.9.4.11. ∗. Solution. Using the chain rule, followed by the quotient rule:

d

dx

{√
x− 1

x+ 2

}
=

1

2

√
x− 1

x+ 2

d

dx

{
x− 1

x+ 2

}

=

√
x+ 2

2
√
x− 1

· (x+ 2)− (x− 1)

(x+ 2)2

=
3

2
√
x− 1

√
x+ 2

3

2.9.4.12. ∗. Solution. First, we manipulate our function to make it easier to
differentiate:

f(x) = x−2 + (x2 − 1)1/2

Now, we can use the power rule to differentiate
1

x2
. This will be easier than differ-

entiating
1

x2
using quotient rule, but if you prefer, quotient rule will also work.

f ′(x) = −2x−3 +
1

2
(x2 − 1)−1/2 · d

dx
{x2 − 1}

= −2x−3 +
1

2
(x2 − 1)−1/2(2x)

=
−2

x3
+

x√
x2 − 1

The function f(x) is only defined when x 6= 0 and when x2 − 1 ≥ 0. That is, when
x is in (−∞,−1] ∪ [1,∞). We have an added restriction on the domain of f ′(x):
x2 − 1 must not be zero. So, the domain of f ′(x) is (−∞,−1) ∪ (1,∞).

2.9.4.13. ∗. Solution. We use the quotient rule, noting that
d

dx
{sin 5x} =

5 cos 5x:

f ′(x) =
(1 + x2)(5 cos 5x)− (sin 5x)(2x)

(1 + x2)2
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2.9.4.14. Solution. If we let g(x) = sec x and h(x) = e2x+7, then f(x) = g(h(x)),
so by the chain rule, f ′(x) = g′(h(x)) · h′(x). Since g′(x) = sec x tanx:

f ′(x) = g′(h(x)) · h′(x)

= sec(h(x)) tan(h(x)) · h′(x)

= sec(e2x+7) tan(e2x+7) · d

dx

{
e2x+7

}
Here, we need the chain rule again:

= sec(e2x+7) tan(e2x+7) ·
[
e2x+7 · d

dx
{2x+ 7}

]
= sec(e2x+7) tan(e2x+7) ·

[
e2x+7 · 2

]
= 2e2x+7 sec(e2x+7) tan(e2x+7)

2.9.4.15. Solution. It is possible to start in on this problem with the product
rule and then the chain rule, but it’s easier if we simplify first. Since tan2 x + 1 =
sec2 x = 1

cos2 x
, we see

f(x) =
cos2 x

cos2 x
= 1

for all values of x for which cosx is nonzero. That is, f(x) = 1 for every x that is not
an integer multiple of π/2 (and f(x) is not defined when x is an integer multiple
of π/2). Therefore, f ′(x) = 0 for every x on which f exists, and in particular
f ′(π/4) = 0. Also, f(π/4) = 1, so the tangent line to f at x = π/4 is the line with
slope 0, passing through the point (π/4, 1):

y = 1

2.9.4.16. Solution. Velocity is the derivative of position with respect to time.
So, the velocity of the particle is given by s′(t). We need to find s′(t), and determine
when it is zero.
To differentiate, we us the chain rule.

s′(t) = et
3−7t2+8t · d

dt
{t3 − 7t2 + 8t}

= et
3−7t2+8t · (3t2 − 14t+ 8)

To determine where this function is zero, we factor:

= et
3−7t2+8t · (3t− 2)(t− 4)

So, the velocity is zero when et3−7t2+8t = 0, when 3t − 2 = 0, and when t − 4 = 0.
Since et3−7t2+8t is never zero, this tells us that the velocity is zero precisely when
t = 2

3
or t = 4.

2.9.4.17. Solution. The slope of the tangent line is the derivative. If we let
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f(x) = tan x and g(x) = ex
2 , then f(g(x)) = tan(ex

2
), so y′ = f ′(g(x)) · g′(x):

y′ = sec2(ex
2

) · d

dx
{ex2}

We find ourselves once more in need of the chain rule:

= sec2(ex
2

) · ex2 d

dx
{x2}

= sec2(ex
2

) · ex2 · 2x

Finally, we evaluate this derivative at the point x = 1:

y′(1) = sec2(e) · e · 2
= 2e sec2 e

2.9.4.18. ∗. Solution. Using the Product rule,

y′ =
d

dx
{e4x} tanx+ e4x sec2 x

and the chain rule:

= e4x · d

dx
{4x} · tanx+ e4x sec2 x

= 4e4x tanx+ e4x sec2 x

2.9.4.19. ∗. Solution. Using the quotient rule,

f ′(x) =
(3x2)(1 + e3x)− (x3) · d

dx
{1 + e3x}

(1 + e3x)2

Now, the chain rule:

=
(3x2)(1 + e3x)− (x3)(3e3x)

(1 + e3x)2

So, when x = 1:

f ′(1) =
3(1 + e3)− 3e3

(1 + e3)2 =
3

(1 + e3)2

2.9.4.20. ∗. Solution. This requires us to apply the chain rule twice.

d

dx

{
esin2(x)

}
= esin2(x) · d

dx

{
sin2(x)

}
= esin2(x)(2 sin(x)) · d

dx
sin(x)

= esin2(x)(2 sin(x)) · cos(x)
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2.9.4.21. ∗. Solution. This requires us to apply the chain rule twice.

d

dx

{
sin(e5x)

}
= cos

(
e5x
)
· d

dx

{
e5x
}

= cos(e5x)(e5x) · d

dx
{5x}

= cos(e5x)(e5x) · 5
2.9.4.22. ∗. Solution. We’ll use the chain rule twice.

d

dx

{
ecos(x2)

}
= ecos(x2) · d

dx
{cos(x2)}

= ecos(x2) · (− sin(x2)) · d

dx
{x2}

= −ecos(x2) · sin(x2) · 2x
2.9.4.23. ∗. Solution. We start with the chain rule:

y′ = − sin
(
x2 +

√
x2 + 1

)
· d

dx

{
x2 +

√
x2 + 1

}
= − sin

(
x2 +

√
x2 + 1

)
·
(

2x+
d

dx

{√
x2 + 1

})
and find ourselves in need of chain rule a second time:

= − sin
(
x2 +

√
x2 + 1

)
·
(

2x+
1

2
√
x2 + 1

· d

dx

{
x2 + 1

})
= − sin

(
x2 +

√
x2 + 1

)
·
(

2x+
2x

2
√
x2 + 1

)
2.9.4.24. ∗. Solution.

y = (1 + x2) cos2 x

Using the product rule,

y′ = (2x) cos2 x+ (1 + x2)
d

dx
{cos2 x}

Here, we’ll need to use the chain rule. Remember cos2 x = [cosx]2.

= 2x cos2 x+ (1 + x2)2cosx · d

dx
{cosx}

= 2x cos2 x+ (1 + x2)2 cosx · (− sinx)

= 2x cos2 x− 2(1 + x2) sinx cosx

2.9.4.25. ∗. Solution. We use the quotient rule, noting by the chain rule that
d

dx
{e3x} = 3e3x:

y′ =
(1 + x2) · 3e3x − e3x(2x)

(1 + x2)2
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=
e3x(3x2 − 2x+ 3)

(1 + x2)2

2.9.4.26. ∗. Solution. By the chain rule,

d

dx

{
h
(
x2
)}

= h′(x2) · 2x

Using the product rules and the result above,

g′(x) = 3x2h(x2) + x3h′(x2)2x

Plugging in x = 2:

g′(2) = 3(22)h(22) + 23h′(22)2× 2

= 12h(4) + 32h′(4) = 12× 2− 32× 2

= −40

2.9.4.27. ∗. Solution. Let f(x) = xe−(x2−1)/2 = xe(1−x2)/2. Then, using the
product rule,

f ′(x) = e(1−x2)/2 + x · d

dx

{
e(1−x2)/2

}
Here, we need the chain rule:

= e(1−x2)/2 + x · e(1−x2)/2 d

dx

{
1

2
(1− x2)

}
= e(1−x2)/2 + x · e(1−x2)/2 · (−x)

= (1− x2)e(1−x2)/2

There is no power of e that is equal to zero; so if the product above is zero, it must
be that 1 − x2 = 0. This happens for x = ±1. On the curve, when x = 1, y = 1,
and when x = −1, y = −1. So the points are (1, 1) and (−1,−1).

2.9.4.28. Solution. The question asks when s′(t) is negative. So, we start by
differentiating. Using the chain rule:

s′(t) = cos

(
1

t

)
· d

dt

{
1

t

}
= cos

(
1

t

)
· −1

t2

When t ≥ 1, 1
t
is between 0 and 1. Since cos θ is positive for 0 ≤ θ < π/2, and

π/2 > 1, we see that cos
(

1
t

)
is positive for the entire domain of s(t). Also, −1

t2
is

negative for the entire domain of the function. We conclude that s′(t) is negative for
the entire domain of s(t), so the particle is always moving in the negative direction.
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2.9.4.29. Solution. We present two solutions: one where we dive right in and
use the quotient rule, and another where we simplify first and use the product rule.

• Solution 1: We begin with the quotient rule:

f ′(x) =
cos3(5x− 7) d

dx
{ex} − ex d

dx
{cos3(5x− 7)}

cos6(5x− 7)

=
cos3(5x− 7)ex − ex d

dx
{cos3(5x− 7)}

cos6(5x− 7)

Now, we use the chain rule. Since cos3(5x− 7) = [cos(5x− 7)]3, our “outside”
function is g(x) = x3, and our “inside” function is h(x) = cos(5x− 1).

=
cos3(5x− 7)ex − ex · 3cos2(5x− 7) · d

dx
{cos(5x− 7)}

cos6(5x− 7)

We need the chain rule again!

=
cos3(5x−7)ex−ex · 3cos2(5x−7) · [− sin(5x−7) · d

dx
{5x−7}]

cos6(5x− 7)

=
cos3(5x− 7)ex − ex · 3cos2(5x− 7) · [− sin(5x− 7) · 5]

cos6(5x− 7)

We finish by simplifying:

=
ex cos2(5x− 7) (cos(5x− 7) + 15 sin(5x− 7))

cos6(5x− 7)

= ex
cos(5x− 7) + 15 sin(5x− 7)

cos4(5x− 7)

= ex(sec3(5x− 7) + 15 tan(5x− 7) sec3(5x− 7))

= ex sec3(5x− 7)(1 + 15 tan(5x− 7))

• Solution 2: We simplify to avoid the quotient rule:

f(x) =
ex

cos3(5x− 7)

= ex sec3(5x− 7)

Now we use the product rule to differentiate:

f ′(x) = ex sec3(5x− 7) + ex
d

dx
{sec3(5x− 7)}

Here, we’ll need the chain rule. Since sec3(5x − 7) = [sec(5x − 7)]3, our
“outside” function is g(x) = x3 and our “inside” function is h(x) = sec(5x−7),
so that g(h(x)) = [sec(5x− 7)]3 = sec3(5x− 7).

= ex sec3(5x− 7) + ex · 3 sec2(5x− 7) · d

dx
{sec(5x− 7)}
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We need the chain rule again! Recall d
dx
{secx} = secx tanx.

= ex sec3(5x− 7)

+ ex · 3 sec2(5x−7) · sec(5x−7) tan(5x−7) · d

dx
{5x−7}

= ex sec3(5x−7)

+ ex · 3 sec2(5x−7) · sec(5x−7) tan(5x−7) · 5

We finish by simplifying:

= ex sec3(5x− 7)(1 + 15 tan(5x− 7))

2.9.4.30. ∗. Solution.

• Solution 1: In Example 2.6.6, we generalized the product rule to three factors:

d

dx
{f(x)g(x)h(x)} = f ′(x)g(x)h(x) + f(x)g′(x)h(x)

+ f(x)g(x)h′(x)

Using this rule:

d

dx

{
(x)
(
e2x
)

(cos 4x)
}

=
d

dx
{x} · e2x cos 4x+x · d

dx

{
e2x
}
· cos 4x+xe2x · d

dx
{cos 4x}

= e2x cos 4x+ x
(
2e2x

)
cos 4x+ xe2x(−4 sin 4x)

= e2x cos 4x+ 2xe2x cos 4x− 4xe2x sin 4x

• Solution 2: We can use the product rule twice. In the first step, we split the
function xe2x cos 4x into the product of two functions.

d

dx

{(
xe2x

)
(cos 4x)

}
=

d

dx

{
xe2x

}
· cos 4x+ xe2x · d

dx
{cos 4x}

=

(
d

dx
{x} · e2x + x · d

dx

{
e2x
})
· cos 4x+ xe2x · d

dx
{cos 4x}

=
(
e2x + x

(
2e2x

))
· cos 4x+ xe2x(−4 sin 4x)

= e2x cos 4x+ 2xe2x cos 4x− 4xe2x sin 4x

Exercises — Stage 3
2.9.4.31. Solution. At time t, the particle is at the point

(
x(t), y(t)

)
, with

x(t) = cos t and y(t) = sin t. Over time, the particle traces out a curve; let’s call
that curve y = f(x). Then y(t) = f

(
x(t)

)
, so the slope of the curve at the point
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x(t), y(t)

)
is f ′

(
x(t)

)
. You are to determine the values of t for which f ′

(
x(t)

)
= −1.

By the chain rule

y′(t) = f ′
(
x(t)

)
· x′(t)

Substituting in x(t) = cos t and y(t) = sin t gives

cos t = f ′
(
x(t)

)
·
(
− sin t

)
so that

f ′
(
x(t)

)
= −cos t

sin t

is −1 precisely when sin t = cos t. This happens whenever t = π
4
.

Remark: the path traced by the particle is a semicircle. You can think about the
point on the unit circle with angle t, or you can notice that x2 +y2 = sin2 t+cos2 t =
1.

2.9.4.32. ∗. Solution. Let f(x) = ex+x2 and g(x) = 1+x. Then f(0) = g(0) = 1.
f ′(x) = (1 + 2x)ex+x2 and g′(x) = 1. When x > 0,

f ′(x) = (1 + 2x)ex+x2 > 1 · ex+x2 = ex+x2 > e0+02 = 1 = g′(x).

Since f(0) = g(0), and f ′(x) > g′(x) for all x > 0, that means f and g start at the
same place, but f always grows faster. Therefore, f(x) > g(x) for all x > 0.

2.9.4.33. Solution. Since sin 2x and 2 sinx cosx are the same function, they
have the same derivative.

sin 2x = 2 sin x cosx

⇒ d

dx
{sin 2x} =

d

dx
{2 sinx cosx}

2 cos 2x = 2[cos2 x− sin2 x]

cos 2x = cos2 x− sin2 x

We conclude cos 2x = cos2 x− sin2 x, which is another common trig identity.
Remark: if we differentiate both sides of this equation, we get the original identity
back.
2.9.4.34. Solution.

f(x) =
3

√
ecscx2

√
x3 − 9 tanx

=

(
ecscx2

√
x3 − 9 tanx

) 1
3

To begin the differentiation, we can choose our “outside” function to be g(x) = x
1
3 ,
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and our “inside” function to be h(x) =
ecscx2

√
x3 − 9 tanx

. Then f(x) = g(h(x)), so

f ′(x) = g′(h(x)) · h′(x) = 1
3
(h(x))−

2
3h′(x):

f ′(x) =
1

3

(
ecscx2

√
x3 − 9 tanx

)−2
3

· d

dx

{
ecscx2

√
x3 − 9 tanx

}

=
1

3

(√
x3 − 9 tanx

ecscx2

) 2
3

· d

dx

{
ecscx2

√
x3 − 9 tanx

}
This leads us to use the quotient rule:

=
1

3

(√
x3 − 9 tanx

ecscx2

) 2
3

√x3 − 9 tanx d
dx

{
ecscx2

}
− ecscx2 d

dx

{√
x3 − 9 tanx

}
(tan2 x)(x3 − 9)


Let’s figure out those two derivatives on their own, then plug them in. Using the
chain rule twice:

d

dx

{
ecscx2

}
= ecscx2 d

dx

{
cscx2

}
= ecscx2 · (− csc(x2) cot(x2)) · d

dx
{x2}

= −2xecscx2 cos(x2)

sin2(x2)

For the other derivative, we start with the product rule, then chain:
d

dx

{√
x3 − 9 tanx

}
=

d

dx

{√
x3 − 9

}
· tanx+

√
x3 − 9 sec2 x

=
1

2
√
x3−9

d

dx

{
x3−9

}
· tanx+

√
x3−9 sec2 x

=
3x2 tanx

2
√
x3 − 9

+
√
x3 − 9 sec2 x

Now, we plug these into our equation for f ′(x):

f ′(x) =
1

3

(√
x3 − 9 tanx

ecscx2

) 2
3

√x3 − 9 tanx d
dx

{
ecscx2

}
− ecscx2 d

dx

{√
x3 − 9 tanx

}
(tan2 x)(x3 − 9)


=

1

3

(√
x3 − 9 tanx

ecscx2

) 2
3

·

ecscx2
(
− 2x

√
x3−9 tanx cos(x2)

sin2(x2)
− 3x2 tanx

2
√
x3−9

−
√
x3−9 sec2 x

)
(tan2 x)(x3 − 9)

2.9.4.35. Solution. 2.9.4.35.a The table below gives us a number of points on
our graph, and the times they occur.
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t (sin t, cos2 t)

0 (0, 1)

π/4 ( 1√
2
, 1

2
)

π/2 (1, 0)

3π/4 ( 1√
2
, 1

2
)

π (0, 1)

5π/4 (− 1√
2
, 1

2
)

3π/2 (−1, 0)

7π/4 (− 1√
2
, 1

2
)

2π (0, 1)

These points will repeat with a period of 2π. With this information, we have a
pretty good idea of the particle’s motion:

x

y

(1,0)
t=π/2

(−1,0)
t=3π/2

(0,1)
t=0,π,2π

(
− 1√

2
, 1
2

)
t=5π/4,7π/4

(
1√
2
, 1
2

)
t=π/4,3π/4

The particle traces out an arc, pointing down. It starts at t = 0 at the top part of
the graph at (1, 0), then is moves to the right until it hits (1, 0) at time t = π/2.
From there it reverses direction and moves along the curve to the left, hitting the
top at time t = π and reaching (−1, 0) at time t = 3π/2. Then it returns to the top
at t = 2π and starts again.
So, it starts at the top of the curve, then moves back for forth along the length of
the curve. If goes right first, and repeats its cycle every 2π units of time.
2.9.4.35.b Let y = f(x) be the curve the particle traces in the xy-plane. Since x

is a function of t, y(t) = f(x(t)). What we want to find is
df

dx
when t =

(
10π

3

)
.

Since
df

dx
is a function of x, we note that when t =

(
10π

3

)
, x = sin

(
10π

3

)
=

sin

(
4π

3

)
= −
√

3

2
. So, the quantity we want to find (the slope of the tangent line

to the curve y = f(x) traced by the particle at the time t =

(
10π

3

)
is given by
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df

dx

(
−
√

3

2

)
.

Using the chain rule:

y(t) = f(x(t))

dy

dt
=

d

dt
{f(x(t))} =

df

dx
· dx

dt

so,
df

dx
=

dy

dt
÷ dx

dt

Using y(t) = cos2 t and x(t) = sin t:
df

dx
= (−2 cos t sin t)÷ (cos t) = −2 sin t = −2x

So, when t =
10π

3
and x = −

√
3

2
,

df

dx

(
−
√

3

2

)
= −2 · −

√
3

2
=
√

3.

Remark: The standard way to write this problem is to omit the notation f(x), and
let the variable y stand for two functions. When t is the variable, y(t) = cos2 t gives
the y-coordinate of the particle at time t. When x is the variable, y(x) gives the
y-coordinate of the particle given its position along the x-axis. This is an abuse of
notation, because if we write y(1), it is not clear whether we are referring to the
y-coordinate of the particle when t = 1 (in this case, y = cos2(1) ≈ 0.3), or the
y-coordinate of the particle when x = 1 (in this case, looking at our table of values,
y = 0). Although this notation is not strictly “correct,” it is very commonly used.
So, you might see a solution that looks like this:

The slope of the curve is
dy

dx
. To find

dy

dx
, we use the chain rule:

dy

dt
=

dy

dx
· dx

dt
d

dt

{
cos2 t

}
=

dy

dx
· d

dt
{sin t}

−2 cos t sin t =
dy

dx
· cos t

dy

dx
= −2 sin t

So, when t =
10π

3
,

dy

dx
= −2 sin

(
10π

3

)
= −2

(
−
√

3

2

)
=
√

3.

In this case, it is up to the reader to understand when y is used as a function of t, and
when it is used as a function of x. This notation (using y to be two functions, y(t)
and y(x)) is actually the accepted standard, so you should be able to understand
it.

2.10 · The Natural Logarithm
2.10.3 · Exercises
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Exercises — Stage 1
2.10.3.1. Solution. We are given that one speaker produces 3dB. So if P is the
power of one speaker,

3 = V (P ) = 10 log10

(
P

S

)
.

So, for ten speakers:

V (10P ) = 10 log10

(
10P

S

)
= 10 log10

(
P

S

)
+ 10 log10 (10)

= 3 + 10(1) = 13dB

and for one hundred speakers:

V (100P ) = 10 log10

(
100P

S

)
= 10 log10

(
P

S

)
+ 10 log10 (100)

= 3 + 10(2) = 23dB

2.10.3.2. Solution. The investment doubles when it hits $2000. So, we find the
value of t that gives A(t) = 2000:

2000 = A(t)

2000 = 1000et/20

2 = et/20

log 2 =
t

20
20 log 2 = t

2.10.3.3. Solution. From our logarithm rules, we know that when y is positive,
log(y2) = 2 log y. However, the expression cosx does not always take on positive
values, so (a) is not correct. (For instance, when x = π, log(cos2 x) = log(cos2 π) =
log ((−1)2) = log(1) = 0, while 2 log(cos π) = 2 log(−1), which does not exist.)
Because cos2 x is never negative, we notice that cos2 x = | cosx|2. When cosx is
nonzero, | cosx| is positive, so our logarithm rules tell us log (| cosx|2) = 2 log | cosx|.
When cosx is exactly zero, then both log(cos2 x) and 2 log | cosx| do not exist. So,
log(cos2 x) = 2 log | cosx|.

Exercises — Stage 2
2.10.3.4. Solution.

• Solution 1: Using the chain rule,
d

dx
{log(10x)} =

1

10x
· 10 =

1

x
.

• Solution 2: Simplifying,
d

dx
{log(10x)} =

d

dx
{log(10) + log x} = 0 +

1

x
=

1

x
.
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2.10.3.5. Solution.

• Solution 1: Using the chain rule,
d

dx

{
log(x2)

}
=

1

x2
· 2x =

2

x
.

• Solution 2: Simplifying,
d

dx

{
log(x2)

}
=

d

dx
{2 log(x)} =

2

x
.

2.10.3.6. Solution. Don’t be fooled by a common mistake: log(x2 +x) is not the

same as log(x2) + log x. We differentiate using the chain rule:
d

dx

{
log(x2 + x)

}
=

1

x2 + x
· (2x+ 1) =

2x+ 1

x2 + x
.

2.10.3.7. Solution. We know the derivative of the natural logarithm (base e),
so we use the base-change formula:

f(x) = log10 x =
log x

log 10

Since log 10 is a constant:

f ′(x) =
1

x log 10
.

2.10.3.8. ∗. Solution.

• Solution 1: Using the quotient rule,

y′ =
x3 1

x
− (log x) · 3x2

x6
=
x2 − 3x2 log x

x6
=

1− 3 log x

x4
.

• Solution 2: Using the product rule with y = log x · x−3,

y′ =
1

x
x−3 + log x · (−3)x−4 = x−4(1− 3 log x)

2.10.3.9. Solution. Using the chain rule,

d

dθ
log(sec θ) =

1

sec θ
· (sec θ · tan θ)

= tan θ

Remark: the domain of the function log(sec θ) is those values of θ for which sec θ is
positive: so, the intervals

((
2n− 1

2

)
π,
(
2n+ 1

2

)
π
)
where n is any integer. Certainly

the tangent function has a larger domain than this, but outside the domain of
log(sec θ), tan θ is not the derivative of log(sec θ).

2.10.3.10. Solution. Let’s start in with the chain rule.

f ′(x) = ecos(log x) · d

dx
{cos (log x)}
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We’ll need the chain rule again:

= ecos(log x)(− sin(log x)) · d

dx
{log x}

= ecos(log x)(− sin(log x)) · 1

x

=
−ecos(log x) sin(log x)

x

Remark: Although we have a logarithm in the exponent, we can’t cancel. The
expression ecos(log x) is not the same as the expression xcosx, or cosx.

2.10.3.11. ∗. Solution.

y = log(x2 +
√
x4 + 1)

So, we’ll need the chain rule:

y′ =
d

dx

{
x2 +

√
x4 + 1

}
x2 +

√
x4 + 1

=
2x+ d

dx

{√
x4 + 1

}
x2 +

√
x4 + 1

We need the chain rule again:

=
2x+

d
dx{x4+1}
2
√
x4+1

x2 +
√
x4 + 1

=
2x+ 4x3

2
√
x4+1

x2 +
√
x4 + 1

.

2.10.3.12. ∗. Solution. This requires us to apply the chain rule twice.

d

dx

{√
− log(cos x)

}
=

1

2
√
− log(cosx)

· d

dx
{− log (cosx)}

= − 1

2
√
− log(cos x)

· 1

cosx

d

dx
{cosx}

= − 1

2
√
− log(cos x)

· 1

cosx
· (− sinx)

=
tanx

2
√
− log(cosx)

Remark: it looks strange to see a negative sign in the argument of a square root.
Since the cosine function always gives values that are at most 1, log(cos x) is always
negative or zero over its domain. So,

√
log(cosx) is only defined for the points

where cosx = 1 (and so log(cos x) = 0–this isn’t a very interesting function! In
contrast, − log(cosx) is always positive or zero over its domain – and therefore we
can always take its square root.
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2.10.3.13. ∗. Solution. Under the chain rule, d
dx

log f(x) = 1
f(x)

f ′(x). So

d

dx

{
log
(
x+
√
x2 + 4

)}
=

1

x+
√
x2 + 4

· d

dx

{
x+
√
x2 + 4

}
=

1

x+
√
x2 + 4

·
(

1 +
2x

2
√
x2 + 4

)
=

1

x+
√
x2 + 4

·
(

2
√
x2 + 4 + 2x

2
√
x2 + 4

)
=

1√
x2 + 4

2.10.3.14. ∗. Solution. Using the chain rule,

g′(x) =
d

dx
{ex2 +

√
1 + x4}

ex2 +
√

1 + x4

=
2xex

2
+ 4x3

2
√

1+x4

ex2 +
√

1 + x4

(√
1 + x4

√
1 + x4

)

=
2xex

2√
1 + x4 + 2x3

ex2
√

1 + x4 + 1 + x4

2.10.3.15. ∗. Solution. Using logarithm rules makes this an easier problem:

g(x) = log(2x− 1)− log(2x+ 1)

So, g′(x) =
2

2x− 1
− 2

2x+ 1

and g′(1) =
2

1
− 2

3
=

4

3

2.10.3.16. Solution. We begin by simplifying:

f(x) = log

√(x2 + 5)3

x4 + 10


= log

((
(x2 + 5)3

x4 + 10

)1/2
)

=
1

2
log

(
(x2 + 5)3

x4 + 10

)
=

1

2

[
log
(
(x2 + 5)3

)
− log(x4 + 10)

]
=

1

2

[
3 log

(
(x2 + 5)

)
− log(x4 + 10)

]
Now, we differentiate using the chain rule:

f ′(x) =
1

2

[
3

2x

x2 + 5
− 4x3

x4 + 10

]
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=
3x

x2 + 5
− 2x3

x4 + 10

Remark: it is a common mistake to write log(x2 + 4) as log(x2) + log(4). These
expressions are not equivalent!

2.10.3.17. Solution. We use the chain rule twice, followed by the product rule:

f ′(x) =
1

g(xh(x))
· d

dx
{g(xh(x))}

=
1

g(xh(x))
· g′(xh(x)) · d

dx
{xh(x)}

=
1

g
(
xh(x)

) · g′(xh(x)
)
·
[
h(x) + xh′(x)

]
In particular, when x = 2:

f ′(2) =
1

g
(
2h(2)

) · g′(2h(2)
)
·
[
h(2) + 2h′(2)

]
=
g′(4)

g(4)

[
2 + 2× 3

]
=

5

3

[
2 + 2× 3

]
=

40

3

2.10.3.18. ∗. Solution. In the text, we saw that
d

dx
{ax} = ax log a for any

constant a. So,
d

dx
{πx} = πx log π.

By the power rule,
d

dx
{xπ} = πxπ−1.

Therefore, g′(x) = πx log π + πxπ−1.
Remark: we had to use two different rules for the two different terms in g(x). Al-
though the functions πx and xπ look superficially the same, they behave differently,
as do their derivatives. A function of the form (constant)x is an exponential func-
tion and not eligible for the power rule, while a function of the form xconstant is
exactly the class of function the power rule applies to.

2.10.3.19. Solution. We have the power rule to tell us the derivative of functions
of the form xn, where n is a constant. However, here our exponent is not a constant.
Similarly, in this section we learned the derivative of functions of the form ax,
where a is a constant, but again, our base is not a constant! Although the result
d

dx
ax = ax log a is not what we need, the method used to differentiate ax will tell

us the derivative of xx.
We’ll set g(x) = log(xx), because now we can use logarithm rules to simplify:

g(x) = log(f(x)) = x log x
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Now, we can use the product rule to differentiate the right side, and the chain rule
to differentiate log(f(x)):

g′(x) =
f ′(x)

f(x)
= log x+ x

1

x
= log x+ 1

Finally, we solve for f ′(x):

f ′(x) = f(x)(log x+ 1) = xx(log x+ 1)

2.10.3.20. ∗. Solution. In Question 2.10.3.19, we saw
d

dx
{xx} = xx(log x+ 1).

Using the base-change formula, log10(x) =
log x

log 10
. Since log10 is a constant,

f ′(x) =
d

dx

{
xx +

log x

log 10

}
= xx(log x+ 1) +

1

x log 10

2.10.3.21. Solution. Rather than set in with a terrible chain rule problem, we’ll
use logarithmic differentiation. Instead of differentiating f(x), we differentiate a
new function log(f(x)), after simplifying.

log(f(x)) = log
4

√
(x4 + 12)(x4 − x2 + 2)

x3

=
1

4
log

(
(x4 + 12)(x4 − x2 + 2)

x3

)
=

1

4

(
log(x4 + 12) + log(x4 − x2 + 2)− 3 log x

)
Now that we’ve simplified, we can efficiently differentiate both sides. It is impor-
tant to remember that we aren’t differentiating f(x) directly–we’re differentiating
log(f(x)).

f ′(x)

f(x)
=

1

4

(
4x3

x4 + 12
+

4x3 − 2x

x4 − x2 + 2
− 3

x

)
Our final step is to solve for f ′(x):

f ′(x) = f(x)
1

4

(
4x3

x4 + 12
+

4x3 − 2x

x4 − x2 + 2
− 3

x

)
=

1

4

(
4

√
(x4 + 12)(x4 − x2 + 2)

x3

)(
4x3

x4 + 12
+

4x3 − 2x

x4 − x2 + 2
− 3

x

)
It was possible to differentiate this function without logarithms, but the logarithms
make it more efficient.
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2.10.3.22. Solution. It’s possible to do this using the product rule a number of
times, but it’s easier to use logarithmic differentiation. Set

g(x) = log(f(x)) = log
[
(x+ 1)(x2 + 1)2(x3 + 1)3(x4 + 1)4(x5 + 1)5

]
Now we can use logarithm rules to change g(x) into a form that is friendlier to
differentiate:

= log(x+ 1) + log(x2 + 1)2 + log(x3 + 1)3 + log(x4 + 1)4

+ log(x5 + 1)5

= log(x+ 1) + 2 log(x2 + 1) + 3 log(x3 + 1) + 4 log(x4 + 1)

+ 5 log(x5 + 1)

Now, we differentiate g(x) using the chain rule:

g′(x) =
f ′(x)

f(x)
=

1

x+ 1
+

4x

x2 + 1
+

9x2

x3 + 1
+

16x3

x4 + 1
+

25x4

x5 + 1

Finally, we solve for f ′(x):

f ′(x) = f(x)

[
1

x+ 1
+

4x

x2 + 1
+

9x2

x3 + 1
+

16x3

x4 + 1
+

25x4

x5 + 1

]
= (x+ 1)(x2 + 1)2(x3 + 1)3(x4 + 1)4(x5 + 1)5

·
[

1

x+ 1
+

4x

x2 + 1
+

9x2

x3 + 1
+

16x3

x4 + 1
+

25x4

x5 + 1

]
2.10.3.23. Solution. We could do this with quotient and product rules, but it
would be pretty painful. Insteady, let’s use a logarithm.

f(x) =

(
5x2 + 10x+ 15

3x4 + 4x3 + 5

)(
1

10(x+ 1)

)
=

(
x2 + 2x+ 3

3x4 + 4x3 + 5

)(
1

2(x+ 1)

)
log(f(x)) = log

[(
x2 + 2x+ 3

3x4 + 4x3 + 5

)(
1

2(x+ 1)

)]
= log

(
x2 + 2x+ 3

3x4 + 4x3 + 5

)
+ log

(
1

2(x+ 1)

)
= log

(
x2+2x+3

)
− log

(
3x4+4x3+5

)
− log(x+1)− log(2)

Now we have a function that we can differentiate more cleanly than our original
function.

d

dx
{log(f(x))} =

d

dx

{
log
(
x2 + 2x+ 3

)
− log

(
3x4 + 4x3 + 5

)
− log (x+ 1)− log (2)

}
f ′(x)

f(x)
=

2x+ 2

x2 + 2x+ 3
− 12x3 + 12x2

3x4 + 4x3 + 5
− 1

x+ 1
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=
2(x+ 1)

x2 + 2x+ 3
− 12x2(x+ 1)

3x4 + 4x3 + 5
− 1

x+ 1

Finally, we solve for f(x):

f ′(x) = f(x)

(
2(x+ 1)

x2 + 2x+ 3
− 12x2(x+ 1)

3x4 + 4x3 + 5
− 1

x+ 1

)
=

(
x2 + 2x+ 3

3x4+4x3+5

)(
1

2(x+1)

)(
2(x+ 1)

x2+2x+3
− 12x2(x+ 1)

3x4+4x3+5
− 1

x+1

)
=

(
x2 + 2x+ 3

3x4 + 4x3 + 5

)(
1

x2 + 2x+ 3
− 6x2

3x4 + 4x3 + 5
− 1

2(x+ 1)2

)
2.10.3.24. ∗. Solution. Since f(x) has the form of a function raised to a
functional power, we will use logarithmic differentiation.

log(f(x)) = log
(
(cosx)sinx

)
= sinx · log(cos x)

Logarithm rules allowed us to simplify. Now, we differentiate both sides of this
equation:

f ′(x)

f(x)
= (cosx) log(cosx) + sin x · − sinx

cosx

= (cosx) log(cosx)− sinx tanx

Finally, we solve for f ′(x):

f ′(x) = f(x) [(cosx) log(cosx)− sinx tanx]

= (cosx)sinx [(cosx) log(cosx)− sinx tanx]

Remark: negative numbers behave in a complicated manner when they are the base
of an exponential expression. For example, the expression (−1)x is defined when x
is the reciprocal of an odd number (like x = 1

5
or x = 1

7
), but not when x is the

reciprocal of an even number (like x = 1
2
). Since the domain of f(x) was restricted

to (0, π
2
), cosx is always positive, and we avoid these complications.

2.10.3.25. ∗. Solution. Since f(x) has the form of a function raised to a
functional power, we will use logarithmic differentiation. We take the logarithm
of the function, and make use of logarithm rules:

log ((tanx)x) = x log(tan x)

Now, we can differentiate:

d
dx
{(tanx)x}
(tanx)x

= log(tanx) + x · sec2 x

tanx

= log(tanx) +
x

sinx cosx
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Finally, we solve for the derivative we want,
d

dx
{(tanx)x}:

d

dx
{(tanx)x} = (tanx)x

(
log(tan x) +

x

sinx cosx

)
Remark: the restricted domain (0, π/2) ensures that tanx is a positive number,
so we avoid the problems that arise by raising a negative number to a variety of
powers.

2.10.3.26. ∗. Solution. We use logarithmic differentiation.

log f(x) = log(x2 + 1) · (x2 + 1)

We differentiate both sides to obtain:

f ′(x)

f(x)
=

d

dx

{
log(x2 + 1) · (x2 + 1)

}
=

2x

x2 + 1
(x2 + 1) + 2x log(x2 + 1)

= 2x(1 + log(x2 + 1))

Now, we solve for f ′(x):

f ′(x) = f(x) · 2x(1 + log(x2 + 1))

= (x2 + 1)x
2+1 · 2x(1 + log(x2 + 1))

2.10.3.27. ∗. Solution. We use logarithmic differentiation: we modify our
function to consider

log f(x) = log(x2 + 1) · sinx

We differentiate using the product and chain rules:

f ′(x)

f(x)
=

d

dx

{
log(x2 + 1) · sinx

}
= cosx · log(x2 + 1) +

2x sinx

x2 + 1

Finally, we solve for f ′(x)

f ′(x) = f(x) ·
(

cosx · log(x2 + 1) +
2x sinx

x2 + 1

)
= (x2 + 1)sin(x) ·

(
cosx · log(x2 + 1) +

2x sinx

x2 + 1

)
2.10.3.28. ∗. Solution. We use logarithmic differentiation; so we modify our
function to consider

log f(x) = log(x) · cos3(x)
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Differentiating, we find:

f ′(x)

f(x)
=

d

dx

{
log(x) · cos3(x)

}
= 3 cos2(x) · (− sin(x)) · log(x) +

cos3(x)

x

Finally, we solve for f ′(x):

f ′(x) = f(x) ·
(
−3 cos2(x) sin(x) log(x) +

cos3(x)

x

)
= xcos3(x) ·

(
−3 cos2(x) sin(x) log(x) +

cos3(x)

x

)
Remark: negative numbers behave in a complicated manner when they are the base
of an exponential expression. For example, the expression (−1)x is defined when x
is the reciprocal of an odd number (like x = 1

5
or x = 1

7
), but not when x is the

reciprocal of an even number (like x = 1
2
). Since the domain of f(x) was restricted

so that x is always positive, we avoid these complications.

2.10.3.29. ∗. Solution. We use logarithmic differentiation. So, we modify our
function and consider

log f(x) = (x2 − 3) · log(3 + sin(x)) .

We differentiate:

f ′(x)

f(x)
=

d

dx

{
(x2 − 3) · log(3 + sin(x))

}
= 2x log(3 + sin(x)) + (x2 − 3)

cos(x)

3 + sin(x)

Finally, we solve for f ′(x):

f ′(x) = f(x) ·
[
2x log(3 + sin(x)) +

(x2 − 3) cos(x)

3 + sin(x)

]
= (3 + sin(x))x

2−3 ·
[
2x log(3 + sin(x)) +

(x2 − 3) cos(x)

3 + sin(x)

]

Exercises — Stage 3
2.10.3.30. Solution. We will use logarithmic differentiation. First, we take the
logarithm of our function, so we can use logarithm rules.

log
(
[f(x)]g(x)

)
= g(x) log(f(x))
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Now, we differentiate. On the left side we use the chain rule, and on the right side
we use product and chain rules.

d

dx

{
log
(
[f(x)]g(x)

)}
=

d

dx
{g(x) log(f(x))}

d
dx
{[f(x)]g(x)}
[f(x)]g(x)

= g′(x) log(f(x)) + g(x) · f
′(x)

f(x)

Finally, we solve for the derivative of our original function.

d

dx
{[f(x)]g(x)} = [f(x)]g(x)

(
g′(x) log(f(x)) + g(x) · f

′(x)

f(x)

)
Remark: in this section, we have differentiated problems of this type several times–
for example, Questions 2.10.3.24
through 2.10.3.29.

2.10.3.31. Solution. Let g(x) := log(f(x)). Notice g′(x) = f ′(x)
f(x)

.
In order to show that the two curves have horizontal tangent lines at the same
values of x, we will show two things: first, that if f(x) has a horizontal tangent line
at some value of x, then also g(x) has a horizontal tangent line at that value of x.
Second, we will show that if g(x) has a horizontal tangent line at some value of x,
then also f(x) has a horizontal tangent line at that value of x.
Suppose f(x) has a horizontal tangent line where x = x0 for some point x0. This
means f ′(x0) = 0. Then g′(x0) = f ′(x0)

f(x0)
. Since f(x0) 6= 0, f ′(x0)

f(x0)
= 0

f(x0)
= 0, so g(x)

also has a horizontal tangent line when x = x0. This shows that whenever f has a
horizontal tangent line, g has one too.
Now suppose g(x) has a horizontal tangent line where x = x0 for some point x0.
This means g′(x0) = 0. Then g′(x0) = f ′(x0)

f(x0)
= 0, so f ′(x0) exists and is equal to

zero. Therefore, f(x) also has a horizontal tangent line when x = x0. This shows
that whenever g has a horizontal tangent line, f has one too.
Remark: if we were not told that f(x) gives only positive numbers, it would not
necessarily be true that f(x) and log(f(x)) have horizontal tangent lines at the same
values of x. If f(x) had a horizontal tangent line at an x-value where f(x) were
negative, then log(f(x)) would not exist there, let alone have a horizontal tangent
line.

2.11 · Implicit Differentiation
2.11.2 · Exercises

Exercises — Stage 1
2.11.2.1. Solution. We use the power rule (a) and the chain rule (b): the power
rule tells us to “bring down the 2”, and the chain rule tells us to multiply by y′.
There is no need for the quotient rule here, as there are no quotients. Expo-
nential functions have the form (constant)function, but our function has the form
(function)constant, so we did not use (d).
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2.11.2.2. Solution. At (0, 4) and (0,−4), the curve looks to be horizontal, if you
zoom in: a tangent line here would have derivative zero. At the origin, the curve

looks like its tangent line is vertical, so
dy

dx
does not exist.

x

y

2.11.2.3. Solution. (a) No. A function must pass the vertical line test: one input
cannot result in two (or more) outputs. Since one value of x sometimes corresponds
to two values of y (for example, when x = π/4, y is ±1/

√
2), there is no function

f(x) so that y = f(x) captures every point on the circle.
Remark: y = ±

√
1− x2 does capture every point on the unit circle. However, since

one input x sometimes results in two outputs y, this expression is not a function.
(b) No, for the same reasons as (a). If f ′(x) is a function, then it can give at most
one slope corresponding to one value of x. Since one value of x can correspond to
two points on the circle with different slopes, f ′(x) cannot give the slope of every
point on the circle. For example, fix any 0 < a < 1. There are two points on the
circle with x-coordinate equal to a. At the upper one, the slope is strictly negative.
At the lower one, the slope is strictly positive.
(c) We differentiate:

2x+ 2y
dy

dx
= 0

and solve for
dy

dx

dy

dx
= −x

y

But there is a y in the right-hand side of this equation, and it’s not clear how to
get it out. Our answer in (b) tells us that, actually, we can’t get it out, if we want
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the right-hand side to be a function of x. The derivative cannot be expressed as a
function of x, because one value of x corresponds to multiple points on the circle.
Remark: since y = ±

√
1− x2, we could try writing

dy

dx
= −x

y
= ± x√

1− x2

but this is not a function of x. Again, in a function, one input leads to at most one
output, but here one value of x will usually lead to two values of dy

dx
.

Exercises — Stage 2
2.11.2.4. ∗. Solution. Remember that y is a function of x. We begin with
implicit differentiation.

xy + ex + ey = 1

y + x
dy

dx
+ ex + ey

dy

dx
= 0

Now, we solve for
dy

dx
.

x
dy

dx
+ ey

dy

dx
= −(ex + y)

(x+ ey)
dy

dx
= −(ex + y)

dy

dx
= −e

x + y

ey + x

2.11.2.5. ∗. Solution. Differentiate both sides of the equation with respect to
x:

ey
dy

dx
= x · 2ydy

dx
+ y2 + 1

Now, get the derivative on one side and solve

ey
dy

dx
− 2xy

dy

dx
= y2 + 1

dy

dx
(ey − 2xy) = y2 + 1

dy

dx
=

y2 + 1

ey − 2xy

2.11.2.6. ∗. Solution.

• First we find the x-coordinates where y = 1.

x2 tan
(π

4

)
+ 2x log(1) = 16

x2 · 1 + 2x · 0 = 16
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x2 = 16

So x = ±4.

• Now we use implicit differentiation to get y′ in terms of x, y:

x2 tan(πy/4) + 2x log(y) = 16

2x tan(πy/4) + x2π

4
sec2(πy/4) · y′ + 2 log(y) +

2x

y
· y′ = 0 .

• Now set y = 1 and use tan(π/4) = 1 , sec(π/4) =
√

2 to get

2x tan(π/4) + x2π

4
sec2(π/4)y′ + 2 log(1) + 2x · y′ = 0

2x+
π

2
x2y′ + 2xy′ = 0

y′ = − 2x

x2π/2 + 2x
= − 4

πx+ 4

• So at (x, y) = (4, 1) we have y′ = − 4

4π + 4
= − 1

π + 1

• and at (x, y) = (−4, 1) we have y′ =
1

π − 1

2.11.2.7. ∗. Solution. Differentiate the equation and solve:

3x2 + 4y3 dy

dx
= − sin(x2 + y) ·

(
2x+

dy

dx

)
dy

dx
= −2x sin(x2 + y) + 3x2

4y3 + sin(x2 + y)

2.11.2.8. ∗. Solution.

• First we find the x-coordinates where y = 0.

x2e0 + 4x cos(0) = 5

x2 + 4x− 5 = 0

(x+ 5)(x− 1) = 0

So x = 1,−5.

• Now we use implicit differentiation to get y′ in terms of x, y. Differentiate
both sides of

x2ey + 4x cos(y) = 5

to get

x2 · ey · y′ + 2xey + 4x(− sin(y)) · y′ + 4 cos(y) = 0
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• Now set y = 0 to get

x2 · e0 · y′ + 2xe0 + 4x(− sin(0)) · y′ + 4 cos(0) = 0

x2y′ + 2x+ 4 = 0

y′ = −4 + 2x

x2
.

• So at (x, y) = (1, 0) we have y′ = −6,

• and at (x, y) = (−5, 0) we have y′ = 6
25
.

2.11.2.9. ∗. Solution. Differentiate the equation and solve:

2x+ 2y
dy

dx
= cos(x+ y) ·

(
1 +

dy

dx

)
dy

dx
=

cos(x+ y)− 2x

2y − cos(x+ y)

2.11.2.10. ∗. Solution.

• First we find the x-coordinates where y = 0.

x2 cos(0) + 2xe0 = 8

x2 + 2x− 8 = 0

(x+ 4)(x− 2) = 0

So x = 2,−4.

• Now we use implicit differentiation to get y′ in terms of x, y. Differentiate
both sides of

x2 cos(y) + 2xey = 8

to get

x2 · (− sin y) · y′ + 2x cos y + 2xey · y′ + 2ey = 0

• Now set y = 0 to get

x2 · (− sin 0) · y′ + 2x cos 0 + 2xe0 · y′ + 2e0 = 0

0 + 2x+ 2xy′ + 2 = 0

y′ = −2 + 2x

2x

= −1 + x

x

• So at (x, y) = (2, 0) we have y′ = −3
2
,

• and at (x, y) = (−4, 0) we have y′ = −3
4
.
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2.11.2.11. Solution. The question asks at which points on the ellipse
dy

dx
= 1.

So, we begin by differentiating, implicitly:

2x+ 6y
dy

dx
= 0

We could solve for
dy

dx
at this point, but it’s not necessary. We want to know when

dy

dx
is equal to one:

2x+ 6y(1) = 0

x = −3y

That is,
dy

dx
= 1 at those points along the ellipse where x = −3y. We plug this into

the equation of the ellipse to find the coordinates of these points.

(−3y)2 + 3y2 = 1

12y2 = 1

y = ± 1√
12

= ± 1

2
√

3

So, the points along the ellipse where the tangent line is parallel to the line y = x

occur when y =
1

2
√

3
and x = −3y, and when y =

−1

2
√

3
and x = −3y. That is, the

points

(
−
√

3

2
,

1

2
√

3

)
and

(√
3

2
,
−1

2
√

3

)
.

2.11.2.12. ∗. Solution. First, we differentiate implicitly with respect to x.
√
xy = x2y − 2

1

2
√
xy
· d

dx
{xy} = (2x)y + x2 dy

dx

y + xdy
dx

2
√
xy

= 2xy + x2 dy

dx

Now, we plug in x = 1, y = 4, and solve for
dy

dx
:

4 + dy
dx

4
= 8 +

dy

dx
dy

dx
= −28

3

2.11.2.13. ∗. Solution. Implicitly differentiating x2y(x)2 + x sin(y(x)) = 4 with
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respect to x gives

2xy2 + 2x2yy′ + sin y + xy′ cos y = 0

Then we gather the terms containing y′ on one side, so we can solve for y′:

2x2yy′ + xy′ cos y = −2xy2 − sin y

y′(2x2y + x cos y) = −2xy2 − sin y

y′ = − 2xy2 + sin y

2x2y + x cos y

Exercises — Stage 3
2.11.2.14. ∗. Solution.

• First we find the x-ordinates where y = 0.

x2 + (1)e0 = 5

x2 + 1 = 5

x2 = 4

So x = 2,−2.

• Now we use implicit differentiation to get y′ in terms of x, y:

2x+ (y + 1)ey
dy

dx
+ ey

dy

dx
= 0

• Now set y = 0 to get

2x+ (0 + 1)e0 dy

dx
+ e0 dy

dx
= 0

2x+
dy

dx
+

dy

dx
= 0

2x = −2
dy

dx

x = −dy

dx

• So at (x, y) = (2, 0) we have y′ = −2,

• and at (x, y) = (−2, 0) we have y′ = 2.

2.11.2.15. Solution. The slope of the tangent line is, of course, given by the
derivative, so let’s start by finding dy

dx
of both shapes.
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For the circle, we differentiate implicitly

2x+ 2y
dy

dx
= 0

and solve for
dy

dx

dy

dx
= −x

y

For the ellipse, we also differentiate implicitly:

2x+ 6y
dy

dx
= 0

and solve for
dy

dx

dy

dx
= − x

3y

What we want is a value of x where both derivatives are equal. However, they
might have different values of y, so let’s let y1 be the y-values associated with x
on the circle, and let y2 be the y-values associated with x on the ellipse. That is,
x2 + y2

1 = 1 and x2 + 3y2
2 = 1. For the slopes at (x, y1) on the circle and (x, y2) on

the ellipse to be equal, we need:

− x
y1

= − x

3y2

x

(
1

y1

− 1

3y2

)
= 0

So x = 0 or y1 = 3y2. Let’s think about which x-values will have a y-coordinate of
the circle be three times as large as a y-coordinate of the ellipse. If y1 = 3y2, (x, y1)
is on the circle, and (x, y2) is on the ellipse, then x2 + y2

1 = x2 + (3y2)2 = 1 and
x2 + 3y2

2 = 1. In this case:

x2 + 9y2
2 = x2 + 3y2

2

9y2
2 = 3y2

2

y2 = 0

x = ±1

We need to be a tiny bit careful here: when y = 0, y′ is not defined for either
curve. For both curves, when y = 0, the tangent lines are vertical (and so have no
real-valued slope!). Two vertical lines are indeed parallel.
So, for x = 0 and for x = ±1, the two curves have parallel tangent lines.
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x

y

x2 + y2 = 1

x2 + 3y2 = 1

2.12 · Inverse Trigonometric Functions
2.12.2 · Exercises

Exercises — Stage 1
2.12.2.1. Solution. (a) We can plug any number into the cosine function, and
it will return a number in [−1, 1]. The domain of arcsinx is [−1, 1], so any number
we plug into cosine will give us a valid number to plug into arcsine. So, the domain
of f(x) is all real numbers.
(b) We can plug any number into the cosine function, and it will return a number
in [−1, 1]. The domain of arccscx is (−∞,−1] ∪ [1,∞), so in order to have a valid
number to plug into arccosecant, we need cosx = ±1. That is, the domain of g(x)
is all values x = nπ for some integer n.
(c) The domain of arccosine is [−1, 1]. The domain of sine is all real numbers, so
no matter what number arccosine spits out, we can safely plug it into sine. So, the
domain of h(x) is [−1, 1].

2.12.2.2. Solution. False: cos t = 1 for infinitely many values of t; arccosine
gives only the single value t = 0 for which cos t = 1 and 0 ≤ t ≤ π. The particle
does not start moving until t = 10, so t = 0 is not in the domain of the function
describing its motion.
The particle will have height 1 at time 2πn, for any integer n ≥ 2.

2.12.2.3. Solution. First, we restrict the domain of f to force it to be one–to–
one. There are many intervals we could choose over which f is one–to–one, but the
question asks us to contain x = 0 and be as large as possible; this leaves us with
the following restricted function:
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x

y

1

The inverse of a function swaps the role of the input and output; so if the graph
of y = f(x) contains the point (a, b), then the graph of Y = f−1(X) contains the
point (b, a). That is, the graph of Y = f−1(X) is the graph of y = f(x) with the
x-coordinates and y-coordinates swapped. (So, since y = f(x) crosses the y-axis at
y = 1, then Y = f−1(X) crosses the X-axis at X = 1.) This swapping is equivalent
to reflecting the curve y = f(x) over the line y = x.

x

y

1

1

y = f(x)

y = f−1(x)

y = x

Remark: while you’re getting accustomed to inverse functions, it is sometimes
clearer to consider y = f(x) and Y = f−1(X): using slightly different notations
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for x (the input of f , hence the output of f−1) and X (the input of f−1, which
comes from the output of f). However, the convention is to use x for the inputs of
both functions, and y as the outputs of both functions, as is written on the graph
above.

2.12.2.4. Solution. The tangent line is horizontal when 0 = y′ = a− sinx. That
is, when a = sinx.

• If |a| > 1, then there is no value of x for which a = sinx, so the curve has no
horizontal tangent lines.

• If |a| = 1, then there are infinitely many solutions to a = sin x, but only one
solution in the interval [−π, π]: x = arcsin(a) = arcsin(±1) = ±π

2
. Then the

values of x for which a = sinx are x = 2πn+ aπ
2
for any integer n.

• If |a| < 1, then there are infinitely many solutions to a = sinx. The solution
in the interval

(
−π

2
, π

2

)
is given by x = arcsin(a). The other solution in the

interval (−π, π) is given by x = π − arcsin(a), as shown in the unit circles
below.

x

y

a

arcsin(a)
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x

y

a

arcsin(a)

π
−

ar
cs

in
(a

)
So, the values of x for which x = sin a are x = 2πn + arcsin(a) and x =
2πn+ π − arcsin(a) for any integer n.

Remark: when a = 1, then

2πn+ arcsin(a) = 2πn+
π

2
= 2πn+ π −

(π
2

)
= 2πn+ π − arcsin(a).

Similarly, when a = −1,

2πn+ arcsin(a) = 2πn− π

2
= 2π(n− 1) + π −

(
−π

2

)
= 2π(n− 1) + π − arcsin(a)

So, if we try to use the descriptions in the third bullet point to describe points where
the tangent line is horizontal when |a| = 1, we get the correct points but each point
is listed twice. This is why we separated the case |a| = 1 from the case |a| < 1.

2.12.2.5. Solution. The function arcsinx is only defined for |x| ≤ 1, and the
function arccscx is only defined for |x| ≥ 1, so f(x) has domain |x| = 1. That is,
x = ±1.
In order for f(x) to be differentiable at a point, it must exist in an open interval
around that point. (See Definition 2.2.1.) Since our function does not exist over
any open interval, f(x) is not differentiable anywhere.
So, actually, f(x) is a pretty boring function, which we can entirely describe as:
f(−1) = −π and f(1) = π.

Exercises — Stage 2
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2.12.2.6. Solution. Using the chain rule,

d

dx

{
arcsin

(x
3

)}
=

1√
1−

(
x
3

)2
· 1

3

=
1

3
√

1− x2

9

=
1√

9− x2

Since the domain of arcsine is [−1, 1], and we are plugging in
x

3
to arcsine, the

values of x that we can plug in are those that satisfy −1 ≤ x

3
≤ 1, or −3 ≤ x ≤ 3.

So the domain of f is [−3, 3].

2.12.2.7. Solution. Using the quotient rule,

d

dt

{
arccos t

t2 − 1

}
=

(t2 − 1)
(
−1√
1−t2

)
− (arccos t)(2t)

(t2 − 1)2

The domain of arccosine is [−1, 1], and since t2−1 is in the denominator, the domain
of f requires t2 − 1 6= 0, that is, t 6= ±1. So the domain of f(t) is (−1, 1).

2.12.2.8. Solution. The domain of arcsecx is |x| ≥ 1: that is, we can plug
into arcsecant only values with absolute value greater than or equal to one. Since
−x2 − 2 ≤ −2, every real value of x gives us an acceptable value to plug into
arcsecant. So, the domain of f(x) is all real numbers.

To differentiate, we use the chain rule. Remember
d

dx
{arcsecx} =

1

|x|
√
x2 − 1

.

d

dx

{
arcsec(−x2 − 2)

}
=

1

| − x2 − 2|
√

(−x2 − 2)2 − 1
· (−2x)

=
−2x

(x2 + 2)
√
x4 + 4x+ 3

.

2.12.2.9. Solution. We use the chain rule, remembering that a is a constant.

d

dx

{
1

a
arctan

(x
a

)}
=

1

a
· 1

1 +
(
x
a

)2 ·
1

a

=
1

a2 + x2

The domain of arctangent is all real numbers, so the domain of f(x) is also all real
numbers.
2.12.2.10. Solution. We differentiate using the product and chain rules.

d

dx

{
x arcsinx+

√
1− x2

}
= arcsinx+

x√
1− x2

+
−2x

2
√

1− x2
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= arcsinx

The domain of arcsinx is [−1, 1], and the domain of
√

1− x2 is all values of x so
that 1− x2 ≥ 0, so x in [−1, 1]. Therefore, the domain of f(x) is [−1, 1].

2.12.2.11. Solution. We differentiate using the chain rule:

d

dx
{arctan(x2)} =

2x

1 + x4

This is zero exactly when x = 0.

2.12.2.12. Solution. Using formulas you should memorize from this section,

d

dx
{arcsinx+ arccosx} =

1√
1− x2

+
−1√

1− x2
= 0

Remark: the only functions with derivative equal to zero everywhere are constant
functions, so arcsinx+ arccosx should be a constant. Since sin θ = cos

(
π
2
− θ
)
, we

can set

sin θ = x cos
(π

2
− θ
)

= x

where x and θ are the same in both expressions, and −π
2
≤ θ ≤ π

2
. Then

arcsinx = θ arccosx =
π

2
− θ

We note here that arcsine is the inverse of the sine function restricted to
[
−π

2
, π

2

]
. So,

since we restricted θ to this domain, sin θ = x really does imply arcsinx = θ. (For an
example of why this matters, note sin(2π) = 0, but arcsin(0) = 0 6= 2π.) Similarly,
arccosine is the inverse of the cosine function restricted to [0, π]. Since −π

2
≤ θ ≤ π

2
,

then 0 ≤ (π
2
− θ) ≤ π, so cos

(
π
2
− θ
)

= x really does imply arccosx = π
2
− θ.

So,
arcsinx+ arccosx = θ +

π

2
− θ =

π

2

which means the derivative we were calculating was actually just
d

dx

{π
2

}
= 0.

2.12.2.13. ∗. Solution. Using the chain rule,

y′ =
− 1
x2√

1−
(

1
x

)2
=

−1

x2

√
1− 1

x2

.

2.12.2.14. ∗. Solution. Using the chain rule,

y′ =
− 1
x2

1 +
(

1
x

)2 =
−1

x2 + 1
.
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2.12.2.15. ∗. Solution. Using the product rule:

d

dx

{
(1 + x2) arctanx

}
= 2x arctanx+ (1 + x2)

1

1 + x2

= 2x arctanx+ 1

2.12.2.16. Solution. Let θ = arctanx. Then θ is the angle of a right triangle
that gives tan θ = x. In particular, the ratio of the opposite side to the adjacent
side is x. So, we have a triangle that looks like this:

θ

x

1

√
x2 + 1

where the length of the hypotenuse came from the Pythagorean Theorem. Now,

sin (arctanx) = sin θ =
opp
hyp

=
x√
x2 + 1

From here, we differentiate using the quotient rule:

d

dx

{
x√
x2 + 1

}
=

√
x2 + 1− x 2x

2
√
x2+1

x2 + 1

=

(√
x2 + 1− x2√

x2+1

x2 + 1

)
·
√
x2 + 1√
x2 + 1

=
(x2 + 1)− x2

(x2 + 1)3/2

=
1

(x2 + 1)3/2
= (x2 + 1)−3/2

Remark: another strategy is to differentiate first, using the chain rule, then draw a

triangle to simplify the resulting expression
d

dx
{sin (arctanx)} =

cos(arctanx)

1 + x2
.

2.12.2.17. Solution. Let θ = arcsinx. Then θ is the angle of a right triangle
that gives sin θ = x. In particular, the ratio of the opposite side to the hypotenuse
is x. So, we have a triangle that looks like this:
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θ

x

√
1− x2

1

where the length of the adjacent side came from the Pythagorean Theorem. Now,

cot (arcsinx) = cot θ =
adj
opp

=

√
1− x2

x

From here, we differentiate using the quotient rule:

d

dx

{√
1− x2

x

}
=
x −2x

2
√

1−x2 −
√

1− x2

x2

=
−x2 − (1− x2)

x2
√

1− x2

=
−1

x2
√

1− x2

Remark: another strategy is to differentiate first, using the chain rule, then draw a

triangle to simplify the resulting expression
d

dx
{cot (arcsinx)} =

− csc2(arcsinx)√
1− x2

.

2.12.2.18. ∗. Solution. The line y = 2x + 9 has slope 2, so we must find all
values of x between −1 and 1 (arcsinx is only defined for these values of x) for
which d

dx
{arcsinx} = 2. Evaluating the derivative:

y = arcsinx

2 = y′ =
1√

1− x2

4 =
1

1− x2

1

4
= 1− x2

x2 =
3

4

x = ±
√

3

2

(x, y) = ±
(√3

2
,
π

3

)
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2.12.2.19. Solution. We differentiate using the chain rule:

d

dx
{arctan(cscx)} =

1

1 + csc2 x
· d

dx
{cscx}

=
− cscx cotx

1 + csc2 x

=
− 1

sinx
· cosx

sinx

1 +
(

1
sinx

)2

=
− cosx

sin2 x+ 1

So if f ′(x) = 0, then cosx = 0, and this happens when x =
(2n+ 1)π

2
for any

integer n. We should check that these points are in the domain of f . Arctangent is
defined for all real numbers, so we only need to check the domain of cosecant; when

x =
(2n+ 1)π

2
, then sinx = ±1 6= 0, so cscx =

1

sinx
exists.

Exercises — Stage 3
2.12.2.20. ∗. Solution. Since g(y) = f−1(y),

f(g(y)) = f
(
f−1(y)

)
= y

Now, we can differentiate with respect to y using the chain rule.

d

dy
{f(g(y))} =

d

dy
{y}

f ′(g(y)) · g′(y) = 1

g′(y) =
1

f ′(g(y))
=

1

1− sin g(y)

2.12.2.21. ∗. Solution. Write g(y) = f−1(y). Then g(f(x)) = x, so differenti-
ating both sides (using the chain rule), we see

g′(f(x)) · f ′(x) = 1

What we want is g′(π − 1), so we need to figure out which value of x gives f(x) =
π − 1. A little trial and error leads us to x = π

2
.

g′(π − 1) · f ′
(π

2

)
= 1

Since f ′(x) = 2− cos(x), f ′
(
π
2

)
= 2− 0 = 2:

g′(π − 1) · 2 = 1

g′(π − 1) =
1

2
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2.12.2.22. ∗. Solution. Write g(y) = f−1(y). Then g(f(x)) = x, so differenti-
ating both sides (using the chain rule), we see

g′(f(x))f ′(x) = 1

What we want is g′(e+1), so we need to figure out which value of x gives f(x) = e+1.
A little trial and error leads us to x = 1.

g′(f(1))f ′(1) = 1

g′(e+ 1) · f ′(1) = 1

g′(e+ 1) =
1

f ′(1)

It remains only to note that f ′(x) = ex + 1, so f ′(1) = e+ 1

g′(e+ 1) =
1

e+ 1

2.12.2.23. Solution. We use logarithmic differentiation, our standard method of
differentiating an expression of the form (function)function.

f(x) = [sinx+ 2]arcsecx

log(f(x)) = arcsec x · log[sinx+ 2]

f ′(x)

f(x)
=

1

|x|
√
x2 − 1

log[sinx+ 2] + arcsec x · cosx

sinx+ 2

f ′(x) = [sin x+ 2]arcsecx

(
log[sinx+ 2]

|x|
√
x2 − 1

+
arcsecx · cosx

sinx+ 2

)
The domain of arcsecx is |x| ≥ 1. For any x, sinx + 2 is positive, and a positive
number can be raised to any power. (Recall negative numbers cannot be raised to
any power–for example, (−1)1/2 =

√
−1 is not a real number.) So, the domain of

f(x) is |x| ≥ 1.

2.12.2.24. Solution. The function
1√

x2 − 1
exists only for those values of x with

x2 − 1 > 0: that is, the domain of
1√

x2 − 1
is |x| > 1. However, the domain of

arcsine is |x| ≤ 1. So, there is not one single value of x where arcsinx and
1√

x2 − 1
are both defined.
If the derivative of arcsin(x) were given by

1√
x2 − 1

, then the derivative of arcsin(x)

would not exist anywhere, so we would probably just write “derivative does not
exist,” instead of making up a function with a mismatched domain. Also, the
function f(x) = arcsin(x) is a smooth curve–its derivative exists at every point
strictly inside its domain. (Remember not all curves are like this: for instance,
g(x) = |x| does not have a derivative at x = 0, but x = 0 is strictly inside its
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domain.) So, it’s a pretty good bet that the derivative of arcsine is not
1√

x2 − 1
.

2.12.2.25. Solution. This limit represents the derivative computed at x = 1 of
the function f(x) = arctan x. To see this, simply use the definition of the derivative
at a = 1:

d

dx
{f(x)}

∣∣∣∣
a

= lim
x→a

f(x)− f(a)

x− a
d

dx
{arctanx}

∣∣∣∣
1

= lim
x→1

arctanx− arctan 1

x− 1

= lim
x→1

arctanx− π
4

x− 1

= lim
x→1

(
(x− 1)−1

(
arctanx− π

4

))
.

Since the derivative of f(x) is
1

1 + x2
, its value at x = 1 is exactly

1

2
.

2.12.2.26. Solution. First, let’s interpret the given information: when the input

of our function is 2x+1 for some x, then its output is
5x− 9

3x+ 7
, for that same x. We’re

asked to evaluate f−1(7), which is the number y with the property that f(y) = 7.
If the output of our function is 7, that means

7 =
5x− 9

3x+ 7

and so

7(3x+ 7) = 5x− 9

x = −29

8

So, when x = −29

8
, our equation f(2x+ 1) =

5x− 9

3x+ 7
becomes:

f

(
2 · −29

8
+ 1

)
=

5 · −29
8
− 9

3 · −29
8

+ 7

Or, equivalently:

f

(
−25

4

)
= 7

Therefore, f−1(7) = −25

4
.

2.12.2.27. Solution. If f−1(y) = 0, that means f(0) = y. So, we want to find
out what we plug into f−1 to get 0. Since we only know f−1 in terms of a variable
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x, let’s figure out what x gives us an output of 0:

2x+ 3

x+ 1
= 0

2x+ 3 = 0

x = −3

2

Now, the equation f−1(4x− 1) =
2x+ 3

x+ 1
with x =

−3

2
tells us:

f−1

(
4 · −3

2
− 1

)
=

2 · −3
2

+ 3
−3
2

+ 1

Or, equivalently:

f−1(−7) = 0

Therefore, f(0) = −7.

2.12.2.28. Solution.

• Solution 1: We begin by differentiating implicitly. Following the usual con-
vention, we use y′ to mean y′(x). We start with

arcsin(x+ 2y) = x2 + y2

Using the chain rule,

1 + 2y′√
1− (x+ 2y)2

= 2x+ 2yy′

1√
1− (x+ 2y)2

+
2y′√

1− (x+ 2y)2
= 2x+ 2yy′

2y′√
1− (x+ 2y)2

− 2yy′ = 2x− 1√
1− (x+ 2y)2

y′
(

2√
1− (x+ 2y)2

− 2y

)
= 2x− 1√

1− (x+ 2y)2

Finally, solving for y′ gives

y′ =
2x− 1√

1−(x+2y)2

2√
1−(x+2y)2

− 2y

(√
1− (x+ 2y)2√
1− (x+ 2y)2

)

y′ =
2x
√

1− (x+ 2y)2 − 1

2− 2y
√

1− (x+ 2y)2

• Solution 2: We begin by taking the sine of both sides of the equation.

arcsin(x+ 2y) = x2 + y2
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x+ 2y = sin(x2 + y2)

Now, we differentiate implicitly.

1 + 2y′ = cos(x2 + y2) · (2x+ 2yy′)

1 + 2y′ = 2x cos(x2 + y2) + 2yy′ cos(x2 + y2)

2y′ − 2yy′ cos(x2 + y2) = 2x cos(x2 + y2)− 1

y′
(
2− 2y cos(x2 + y2)

)
= 2x cos(x2 + y2)− 1

y′ =
2x cos(x2 + y2)− 1

2− 2y cos(x2 + y2)

• We used two different methods, and got two answers that look pretty different.
However, the answers ought to be equivalent. To see this, we remember that
for all values of x and y that we care about (those pairs (x, y) in the domain
of our curve), the equality

arcsin(x+ 2y) = x2 + y2

holds. Drawing a triangle:

x
2 + y

2

x+ 2y
1

√
1− (x+ 2y)2

where the adjacent side (in red) come from the Pythagorean Theorem. Then,
cos(x2 + y2) =

√
1− (x+ 2y)2, so using our second solution:

y′ =
2x cos(x2 + y2)− 1

2− 2y cos(x2 + y2)

=
2x
√

1− (x+ 2y)2 − 1

2− 2y
√

1− (x+ 2y)2

which is exactly the answer from our first solution.
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2.13 · The Mean Value Theorem
2.13.5 · Exercises

Exercises — Stage 1
2.13.5.1. Solution. We know the top speed of the caribou, so we can use this to
give the minimum possible number of hours the caribou spent travelling during its

migration. If the caribou travels at 70kph, it will take (5000km)

(
1hr

70km

)
≈ 71.4hrs

to travel 5000 kilometres. Probably the caribou wasn’t sprinting the whole time, so
probably it took it longer than that, but we can only say for sure that the caribou
spent at least about 71.4 hours migrating.

2.13.5.2. Solution. If f(x) is the position of the crane at time x, measured in
hours, then (if we let x = 0 be the beginning of the day) we know that f(24)−f(0) =
240. Since f(x) is the position of the bird, f(x) is continuous and differentiable. So,

the MVT says there is a c in (0, 24) such that f ′(x) =
f(24)− f(0)

24− 0
=

240

24
= 10.

That is, at some point c during the day, the speed of the crane was exactly 10 kph.

2.13.5.3. Solution. The MVT guarantees there is some point c strictly between
a and b where the tangent line to f(x) at x = c has the same slope as the secant
line of f(x) from x = a to x = b. So, let’s start by drawing in the secant line.

x

y

a b

What we’re looking for is a point on the curve where the tangent line is parallel to
this secant line. In fact, there are two.
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x

y

a b

So, either of the two values c1 and c2 marked below can serve as the point guaranteed
by the MVT:

x

y

a bc1 c2

2.13.5.4. Solution. Since f(x) is differentiable for all x ∈ (0, 10), then f(x) is
also continuous for all x ∈ (0, 10). If f(x) were continuous on the closed interval

[0, 10], then the MVT would guarantee f ′(x) =
f(10)− f(0)

10− 0
= 1 for some c ∈

(0, 10); however, this is not the case. So, it must be that f(x) is continuous for all
x ∈ (0, 10), but not for all x ∈ [0, 10].
Since f ′(c) = 0 for c ∈ (0, 10), that means f is constant on that interval. So, f(x)
is a function like this:
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x

y

where the height of the constant function can be anything.

So, one possible answer is f(x) =

{
0 x 6= 10

10 x = 10
.

2.13.5.5. Solution. (a) No such function is possible: Rolle’s Theorem guarantees
f ′(c) = 0 for at least one point c ∈ (1, 2).
For the other functions, examples are below, but many answers are possible.

x

y

1 2

(b)

x

y

1 2

(c)
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x

y

1 2

(d)

2.13.5.6. Solution. The function f(x) is continuous over all real numbers, but it
is only differentiable when x 6= 0. So, if we want to apply the MVT, our interval must
consist of only positive numbers or only negative numbers: the interval (−4, 13) is
not valid.
It is possible to use the mean value theorem to prove what we want: if a = 1 and
b = 144, then f(x) is differentiable over the interval (1, 144) (since 0 is not contained
in that interval), and f(x) is continuous everywhere, so by the mean value theorem

there exists some point c where f ′(x) =

√
|144| −

√
|1|

144− 1
=

11

143
=

1

13
.

That being said, an easier way to prove that a point exists is to simply find it–

without using the MVT. When x > 0, f(x) =
√
x, so f ′(x) =

1

2
√
x
. Then

f ′
(

169

4

)
=

1

13
.

Exercises — Stage 2
2.13.5.7. ∗. Solution. We note that f(0) = f(2π) = 0. Then using the Mean
Value Theorem (note that the function is differentiable for all real numbers), we
conclude that there exists c in (0, 2π) such that

f ′(c) =
f(2π)− f(0)

2π − 0
= 0.

2.13.5.8. ∗. Solution. We note that f(0) = f(1) = 0. Then using the Mean
Value Theorem (note that the function is differentiable for all real numbers), we get
that there exists c ∈ (0, 1) such that

f ′(c) =
f(1)− f(0)

1− 0
= 0.

2.13.5.9. ∗. Solution. We note that f(0) = f(2π) =
√

3 + π2. Then using the
Mean Value Theorem (note that the function is differentiable for all real numbers
since 3 + sin x > 0), we get that there exists c ∈ (0, 2π) such that

f ′(c) =
f(2π)− f(0)

2π − 0
= 0.
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2.13.5.10. ∗. Solution. We note that f(0) = 0 and f(π/4) = 0. Then using the
Mean Value Theorem (note that the function is differentiable for all real numbers),
we get that there exists c ∈ (0, π/4) such that

f ′(c) =
f(π/4)− f(0)

π/4− 0
= 0.

2.13.5.11. Solution. By inspection, we see x = 0 is a root of f(x). The question
now is whether there could possibly be other roots. Since f(x) is differentiable over
all real numbers, if there is another root a, then by Rolle’s Theorem, f ′(c) = 0 for
some c strictly between 0 and a. However, f ′(x) = 3− cosx is never zero. So, there
is no second root: f(x) has precisely one root.

2.13.5.12. Solution. The function f(x) is continuous and differentiable over all
real numbers. If a and b are distinct roots of f(x), then f ′(c) = 0 for some c strictly
between a and b (Rolle’s Theorem). So, let’s think about f ′(x).

f ′(x) = (4x+ 1)3 + 1

This is simple enough that we can find its zero explicitly:

(4x+ 1)3 + 1 = 0 ⇔ (4x+ 1)3 = −1 ⇔ 4x+ 1 = −1

⇔ 4x = −2

Hence f ′(c) = 0 only when c =
−1

2
. That the derivative only has a single zero is

very useful. It means (via Rolle’s theorem) that if f(x) has distinct roots a and b

with a < b, then we must have a <
−1

2
< b. This also means that f(x) cannot

have 3 distinct roots a, b and (say) q with a < b < q, because then Rolle’s theorem
would imply that f ′(x) would have two zeros — one between a and b and another
between b and q.
We’ve learned that f(x) has at most two roots, and we’ve learned something about
where those roots can exist, if there are indeed two of them. But that means f(x)
could have 0, 1, or 2 roots.
It’s not easy to find a root of f(x) by inspection. But we can get a good enough
picture of the graph of y = f(x) to tell exactly how many roots there are, just by
exploiting the following properties of f(x) and f ′(x).

• As x tends to ±∞, f(x) tends to +∞.

• The derivative f ′(x) = (4x+ 1)3 + 1 is negative for x < −1
2
and is positive for

x > −1
2
. That is, f(x) is decreasing for x < −1

2
and increasing for x > −1

2
.

• f
(
−1

2

)
= 1

16
− 1

2
< 0.

This means the function must look something like the graph below:
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x

y

except we are unsure of the locations of the x-intercepts. At present we only know
that one is to the left of x = 1/2 and one is to the right.
Note what happens to f(x) as x increases from strongly negative values to strongly
positive values.

• When x is large and negative, f(x) > 0.

• As x increases, f(x) decreases continuously until x = −1
2
, where f(x) < 0.

In particular, since f(−1) = 65
16
> 0 and f

(
− 1

2

)
< 0 and f(x) is continuous,

the intermediate value theorem guarantees that f(x) takes the value zero for
some x between −1

2
and −1. More descriptively put, as x increases from

hugely negative numbers to −1
2
, f(x) passes through zero exactly once.

• As x increases beyond −1
2
, f(x) increases continuously, starting negative and

becoming very large and positive when x becomes large and positive. In
particular, since f(0) = 1

16
> 0 and f

(
− 1

2

)
< 0 and f(x) is continuous,

the intermediate value theorem guarantees that f(x) takes the value zero for
some x between −1

2
and 0. So, as x increases from −1

2
to near +∞, f(x)

again passes through zero exactly once.

So f(x) must have exactly two roots, one with x < −1
2
and one with x > −1

2
.

2.13.5.13. Solution.

• We can see by inspection that f(0) = 0, so there is at least one root. We have
to determine how many any other roots there are, if any.

• The function f(x) is the sum of the two terms x3 and sin(x5). A number x is
a root of f(x) if and only if the two terms cancel each other exactly for that
value of x. That is, x is a root of f if and only if x3 = − sin(x5). To develope
some intuition in our hunt for other roots, we sketch, in the same figure, the
graphs y = x3 and y = − sin(x5). Then the roots of f(x) are precisely the x’s
where the two curves y = x3 and y = − sin(x5) intersect.
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x

y y = x3

y = − sin(x5)
y=1

y=−1

x=1

x=−1

• Looking at the sketch, we see that the two curves cannot possibly intersect at
any point having |x| > 1 — if |x| > 1, then |x3| > 1 but | − sin(x5)| ≤ 1 and
we cannot possibly have x3 = − sin(x5). That is, all roots of f(x) are in the
interval [−1, 1].

• From the sketch, we would probably guess that y = x3 and y = − sin(x5)
cross only at x = 0. We can use Rolle’s Theorem to verify that that is indeed
the case.

• If there is a root a 6= 0, then by Rolle’s Theorem (since f(x) is continuous
and differentiable for all real numbers x) f ′(c) = 0 for some c strictly between
0 and a. In particular, since we already know any roots a will be between −1
and 1, if f(x) has two roots then f ′(c) = 0 for some c ∈ (−1, 0) ∪ (0, 1).

• The derivative of f is

f ′(x) = 3x2 + 5x4 cos
(
x5
)

= x2
(
3 + 5x2 cos

(
x5
))

So, if f ′(x) = 0, then x = 0 or (3 + 5x2 cos (x5)) = 0. If x ∈ (−1, 0) ∪ (0, 1),
then

|x| < 1 =⇒ |x5| < 1 < π
2

=⇒ cos
(
x5
)
> 0

=⇒ 3 + 5x2 cos
(
x5
)
> 3

=⇒ f ′(x) 6= 0

That is, there is no c ∈ (−1, 0) ∪ (0, 1) with f ′(c) = 0. Therefore, following
our last bullet point, f(x) has only one root.

Note here that f ′(x) has many zeroes — infinitely many, in fact. However, x = 0 is
the only root of f ′(x) in the interval (−1, 1).
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2.13.5.14. Solution. We are to find the number of positive solutions to the
equation ex = 4 cos(2x). The figure below contains the graphs of y = ex and
y = 4 cos(2x). The solutions to ex = 4 cos(2x) are precisely the x’s where y = ex

and y = 4 cos(2x) cross.

It sure looks like there is exactly one crossing with x ≥ 0 and that one crossing is
somewhere between x = 0 and x = 1. Indeed since

[
ex−4 cos(2x)

]
x=0

= −3 < 0 and[
ex−4 cos(2x)

]
x=1

> e > 0 and f(x) = ex−4 cos(2x) is continuous, the intermediate
value theorem guarantees that there is at least one root with 0 < x < 1.
We still have to show that there is no second root — even if our graphs are not
accurate.
Recall that the range of the cosine function is [−1, 1]. If ex = 4 cos(2x), then
ex ≤ 4, so x ≤ log(4) ≈ 1.39. So, we only need to search for roots of f(x) on the
interval (0, 1.4): we are guaranteed there are no roots elsewhere. Over this interval,
2x ∈ (0, 2.8), so sin(2x) > 0, and thus f ′(x) = ex + 8 sin(2x) > 0. Since f ′(x)
has no roots in (0, 1.4), we conclude by Rolle’s Theorem that f(x) has at most one
root in (0, 1.4) (and so at most one positive root total). Since we’ve already found
that a root of f(x) exists in (0, 1), we conclude ex = 4 cos(2x) has precisely one
positive-valued solution.

2.13.5.15. ∗. Solution. 2.13.5.15.a

f ′(x) = 15x4 − 30x2 + 15 = 15
(
x4 − 2x2 + 1

)
= 15

(
x2 − 1

)2 ≥ 0

The derivative is nonnegative everywhere. The only values of x for which f ′(x) = 0
are 1 and −1, so f ′(x) > 0 for every x in (−1, 1).
2.13.5.15.b If f(x) has two roots a and b in [−1, 1], then by Rolle’s Theorem, f ′(c) =
0 for some x strictly between a and b. But since a and b are in [−1, 1], and c is
between a and b, that means c is in (−1, 1); however, we know for every c in (−1, 1),
f ′(c) > 0, so this can’t happen. Therefore, f(x) does not have two roots a and b in
[−1, 1]. This means f(x) has at most one root in [−1, 1].

2.13.5.16. ∗. Solution. Write f(x) = ex. Since f(x) is continuous and differen-
tiable, the Mean Value Theorem asserts that there exists some c between 0 and T
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such that

f ′(c) =
f(T )− f(0)

T − 0

The problem asks us to find this value of c. Solving:

ec =
eT − e0

T

ec =
eT − 1

T

c = log

(
eT − 1

T

)
2.13.5.17. Solution. The domains of arcsecx and C − arccscx are the same:
|x| ≥ 1. Define f(x) = arcsec x + arccscx, and note the domain of f(x) is also
|x| ≥ 1. Using Theorem 2.12.8,

f ′(x) =
d

dx
arcsecx+

d

dx
arccsc =

1

|x|
√
x2 − 1

+
−1

|x|
√
x2 − 1

= 0.

By Corollary 2.13.12, this means that f(x) is constant on any interval in |x| ≥ 1.
So f(x) is a constant, call it C+, on x ≥ 1, and f(x) is also a constant, call it C−,
on x ≤ −1.
In order to find C+, we find f(1), because we know angles for which the secant and
cosecant are x = 1.

cos(0) = 1 =⇒ sec(0) = 1
1

= 1 =⇒ arcsec(1) = 0

sin
(
π
2

)
= 1 =⇒ csc

(
π
2

)
= 1

1
= 1 =⇒ arccsc(1) = π

2

So
C+ = arcsec(1) + arccsc(1) = π

2

In order to find C−, we find f(−1), because we know angles for which the secant
and cosecant are x = −1.

cos(π) = −1 =⇒ sec(π) = 1
−1

= −1 =⇒ arcsec(−1) = π

sin
(
− π

2

)
= −1 =⇒ csc

(
− π

2

)
= 1
−1

= −1 =⇒ arccsc(−1) = −π
2

So
C− = arcsec(−1) + arccsc(−1) = π

2

This shows that f(x) = arcsecx + arccsc x = π
2
for all |x| ≥ 1 and arcsecx =

π
2
− arccscx for all |x| ≥ 1.

Exercises — Stage 3
2.13.5.18. ∗. Solution. Since e−f(x) is always positive (regardless of the value
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of f(x)),

f ′(x) =
1

1 + e−f(x)
<

1

1 + 0
= 1

for every x.
Since f ′(x) exists for every x, we see that f is differentiable, so the Mean Value
Theorem applies. If f(100) is greater than or equal to 100, then by the Mean Value
Theorem, there would have to be some c between 0 and 100 such that

f ′(c) =
f(100)− f(0)

100
≥ 100

100
= 1

Since f ′(x) < 1 for every x, there is no value of c as described. Therefore, it is not
possible that f(100) ≥ 100. So, f(100) < 100.

2.13.5.19. Solution. If 2x + sinx is one–to–one over an interval, it never takes
the same value for two distinct numbers in that interval. By Rolle’s Theorem, if
f(a) = f(b) for distinct a and b, then f ′(c) = 0 for some c between a and b. However,
f ′(x) = 2 + cos x, which is never zero. In fact, f ′(x) ≥ 1 for all x, so f(x) is strictly
increasing over its entire domain. Therefore, our function f never takes the same
value twice, so it is one–to–one over all the real numbers, (−∞,∞).
When we define the inverse function f−1(x), the domain of f is the range of f−1,
and vice-versa. In general, we might have to restrict the domain of f (and hence
the range of f−1) to an interval where f is one–to–one, but in our case, this isn’t
necessary. So, the range of f−1 is (−∞,∞) and the domain of f−1 is the range of
f : (−∞,∞).

2.13.5.20. Solution. If f(x) =
x

2
+ sin x is one–to–one over an interval, it never

takes the same value for two distinct numbers in that interval. By Rolle’s Theorem,
if f(a) = f(b) for distinct a and b, then f ′(c) = 0 for some c between a and b. Since
f ′(x) = 1

2
+cosx, f ′(x) = 0 when x = 2nπ± 2π

3
for some integer n. So, in particular,

if a and b are distinct numbers in the interval
[
−2π

3
, 2π

3

]
, then for every c strictly

between a and b, f ′(c) 6= 0, so by Rolle’s Theorem f(a) 6= f(b). Therefore f(x) is
one–to–one on the interval

[
−2π

3
, 2π

3

]
.

We should also show that the interval
[
−2π

3
, 2π

3

]
cannot be extended to a larger

interval over which f(x) is still one–to–one. Consider the derivative f ′(x) = 1
2
+cosx.

For all −2π
3
< x < 2π

3
, we have cosx > −1

2
(sketch the graph of cosx yourself) so

that f ′(x) > 0 and f(x) is increasing. But at x = 2π
3
, f ′(x) = 0, and then for x a

bit bigger than 2π
3
we have cosx < −1

2
so that f ′(x) < 0 and f(x) is decreasing. So

the graph “reverses direction”, and f(x) repeats values. (See the graph of y = f(x)
below.) The same is true for x a little smaller than −2π

3
.
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x

y

y = f(x) =
x

2
+ sinx

2π
3

−2π
3

When we define the inverse function f−1(x), first we restrict f to
[
−2π

3
, 2π

3

]
. Then

the range of f−1 is also
[
−2π

3
, 2π

3

]
. The domain of f−1 is the range of f over this

interval, so
[
−
(
π
3

+
√

3
2

)
,
(
π
3

+
√

3
2

)]
.

2.13.5.21. Solution. Define h(x) = f(x)−g(x), and notice h(a) = f(a)−g(a) <
0 and h(b) = f(b) − g(b) > 0. Since h is the difference of two functions that are
continuous over [a, b] and differentiable over (a, b), also h is continuous over [a, b]
and differentiable over (a, b). So, by the Mean Value Theorem, there exists some
c ∈ (a, b) with

h′(c) =
h(b)− h(a)

b− a
Since (a, b) is an interval, b > a, so the denominator of the above expression is
positive; since h(b) > 0 > h(a), also the numerator of the above expression is
positive. So, h′(c) > 0 for some c ∈ (a, b). Since h′(c) = f ′(c) − g′(c), we conclude
f ′(c) > g′(c) for some c ∈ (a, b).

2.13.5.22. Solution. Since f(x) is differentiable over all real numbers, it is also
continuous over all real numbers. We claim that f(x) cannot have four or more
distinct roots. For every two distinct roots a < b, Rolle’s Theorem tells us there
is a c ∈ (a, b) such that f ′(c) = 0: that is, c is a root of f ′. Since f ′ has only two
distinct roots, f can have at most three distinct roots.

793



Solutions to Exercises

a1 a2 a3

roots of f(x)

c1 c2

roots of f ′(x)

2.13.5.23. Solution. We are asked to find the number of solutions to the equation
x2 + 5x + 1 = − sinx. The figure below contains the graphs of y = x2 + 5x + 1
and y = − sinx. The solutions to x2 + 5x+ 1 = − sinx are precisely the x’s where
y = x2 + 5x+ 1 and y = − sinx cross.

x

y

y = x2 + 5x+ 1

y = 1

y = −1
y = − sinx

From the figure, it sure looks like there are two crossings. Since the function − sinx
has range [−1, 1], if the two functions cross, then also −1 ≤ x2 + 5x + 1 ≤ 1.
This portion of the quadratic function is highlighted in blue in the figure. The x
coordinates of the end points of the blue arcs are found by solving x2 +5x+1 = ±1,
i.e. x = 0, −5, and (using the quadratic equation) x = −5±

√
17

2
.

We are now in a position to exploit the intuition that we have built using the
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above figure to write a concise argument showing that f(x) has exactly two roots.
Remember that, in general, if we want to show that a function has n roots, we need
to show that there exist n distinct roots somewhere, and that there do not exist
n+ 1 distinct roots. This argument is given below, in blue text.

• f(x) is continuous over all real numbers

• f(x) = 0 only when − sinx = x2 + 5x + 1, which only happens when |x2 +

5x + 1| ≤ 1. Thus, f(x) only has roots in the intervals
[
−5, −5−

√
17

2

]
and[

−5+
√

17
2

, 0
]
.

• f(−5) = sin(−5) + 1 > 0, and f
(
−5−

√
17

2

)
= sin

(
−5−

√
17

2

)
− 1 < 0. So, by

the IVT, f(c) = 0 for some c ∈
(
−5, −5−

√
17

2

)
.

• f(0) = 1 > 0, and f
(
−5+

√
17

2

)
= sin

(
−5+

√
17

2

)
− 1 < 0. So, by the IVT,

f(c) = 0 for some c ∈
(
−5+

√
17

2
, 0
)
.

• f ′(x) = cosx + 2x + 5. If f ′(x) = 0, then 2x + 5 = − cosx, so |2x + 5| ≤ 1.
So, the only interval that can contain roots of f ′(x) is [−3,−2].

• Suppose f(x) has more than two roots. Then it has two roots in the interval[
−5, −5−

√
17

2

]
OR it has two roots in the interval

[
−5+

√
17

2
, 0
]
. Since f(x) is

differentiable for all real numbers, Rolle’s Theorem tells us that f ′(x) has a
root in

(
−5, −5−

√
17

2

)
or in

(
−5+

√
17

2
, 0
)
. However, since all roots of f ′(x) are

in the interval [−3,−2], and this interval shares no points with
(
−5, −5−

√
17

2

)
or
(
−5+

√
17

2
, 0
)
, this cannot be the case. Therefore f(x) does not have more

than two roots.

−5 −5−
√

17
2

−5+
√

17
2

0

roots of f(x)

−3 −2

roots of f ′(x)

• Since f(x) has at least two roots, and not more than two roots, f(x) has
exactly two roots.
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2.14 · Higher Order Derivatives
2.14.2 · Exercises

Exercises — Stage 1
2.14.2.1. Solution. The derivative of ex is ex: taking derivatives leaves the
function unchanged, even if we do it 180 times. So f (180) = ex.

2.14.2.2. Solution. Since f ′(x) > 0 over (a, b), we know from Corollary 2.13.12
that f(x) is increasing over (a, b), so 2.14.2.2.ii holds. Since f ′′(x) > 0, and f ′′(x) is
the derivative of f ′(x), by the same reasoning we see that f ′(x) is increasing. Since
f ′(x) is the rate at which f(x) is increasing, that means that the rate at which f ′(x)
is increasing is itself increasing: this is, 2.14.2.2.iv holds (and not 2.14.2.2.iii).
There is no reason to think 2.14.2.2.i or 2.14.2.2.v holds, but to be thorough we will
give an example showing that they do not need to be true. If f(x) = x2 − 10 and
(a, b) = (0, 1), then f ′(x) = 2x > 0 over (0, 1), and f ′′(x) = 2 > 0 everywhere, but
f(x) < 0 for all x ∈ (0, 1), so 2.14.2.2.i does not hold. Also, f ′′′(x) = 0 everywhere,
so 2.14.2.2.v does not hold either.
2.14.2.3. Solution. Every time we differentiate f(x), the constant out front gets
multiplied by an ever-decreasing constant, while the power decreases by one. As in

Example 2.14.2,
d15

dx15
ax15 = a · 15!. So, if a · 15! = 3, then a =

3

15!
.

2.14.2.4. Solution. The derivative
dy

dx
is

11

4
only at the point (1, 3): it is not

constantly
11

4
, so it is wrong to differentiate the constant

11

4
to find

d2y

dx2
. Below is

a correct solution.

−28x+ 2y + 2xy′ + 2yy′ = 0

Plugging in x = 1, y = 3:

−28 + 6 + 2y′ + 6y′ = 0

y′ =
11

4
at the point (1, 3)

Differentiating the equation −28x+ 2y + 2xy′ + 2yy′ = 0 :

−28 + 2y′ + 2y′ + 2xy′′ + 2y′y′ + 2yy′′ = 0

4y′ + 2(y′)2 + 2xy′′ + 2yy′′ = 28

At the point (1, 3), y′ =
11

4
. Plugging in:

4

(
11

4

)
+ 2

(
11

4

)2

+ 2(1)y′′ + 2(3)y′′ = 28

y′′ =
15

64
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Exercises — Stage 2
2.14.2.5. Solution.

f(x) = x log x− x

f ′(x) = log x+ x · 1

x
− 1

= log x

f ′′(x) =
1

x

2.14.2.6. Solution.

d

dx
{arctanx} =

1

1 + x2

d

dx

{
1

1 + x2

}
=

d

dx

{
(1 + x2)−1

}
= (−1)(1 + x2)−2(2x)

=
−2x

(1 + x2)2

2.14.2.7. Solution. We use implicit differentiation, twice.

2x+ 2yy′ = 0

2 + (2y)y′′ + (2y′)y′ = 0

y′′ = −(y′)2 + 1

y

So, we need an expression for y′. We use the equation 2x + 2yy′ = 0 to conclude
y′ = −x

y
:

y′′ = −

(
−x
y

)2

+ 1

y

= −
x2

y2
+ 1

y

= −x
2 + y2

y3

= − 1

y3

2.14.2.8. Solution. The question asks for s′′(1). We start our differentiation
using the quotient rule:

s′(t) =
et(t2 + 1)− et(2t)

(t2 + 1)2

=
et(t2 − 2t+ 1)

(t2 + 1)2
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Using the quotient rule again,

s′′(t) =
(t2 + 1)2 d

dt
{et(t2 − 2t+ 1)} − et(t2 − 2t+ 1) d

dt
{(t2 + 1)2}

(t2 + 1)4

=
(t2+1)2 · [et(2t−2) + et(t2−2+1)]− et(t2−2t+1) · 2(t2+1)(2t)

(t2+1)4

=
et(t2 + 1)2(t2 − 1)− 4tet(t− 1)2(t2 + 1)

(t2 + 1)4

so that

s′′(1) = 0

2.14.2.9. Solution. We differentiate using the chain rule.

d

dx
{log(5x2 − 12)} =

10x

5x2 − 12

Using the quotient rule:

d2

dx2
{log(5x2 − 12)} =

d

dx

{
10x

5x2 − 12

}
=

(5x2 − 12)(10)− 10x(10x)

(5x2 − 12)2

=
−10(5x2 + 12)

(5x2 − 12)2

Using the quotient rule one last time:

d3

dx3
{log(5x2 − 12)} =

d

dx

{−10(5x2 + 12)

(5x2 − 12)2

}
=

(5x2 − 12)2(−10)(10x) + 10(5x2 + 12)(2)(5x2 − 12)(10x)

(5x2 − 12)4

=
(5x2 − 12)(−100x) + (200x)(5x2 + 12)

(5x2 − 12)3

=
100x(−5x2 + 12 + 10x2 + 24)

(5x2 − 12)3

=
100x(5x2 + 36)

(5x2 − 12)3

2.14.2.10. Solution. The velocity of the particle is given by h′(t) = sin t. Note
0 < 1 < π, so h′(1) > 0–the particle is rising (moving in the positive direction, in
this case “up”). The acceleration of the particle is h′′(t) = cos t. Since 0 < 1 < π

2
,

h′′(t) > 0, so h′(t) is increasing: the particle is moving up, and it’s doing so at an
increasing rate. So, the particle is speeding up.
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2.14.2.11. Solution. For this problem, remember that velocity has a sign indi-
cating direction, while speed does not.
The velocity of the particle is given by h′(t) = 3t2 − 2t − 5. At t = 1, the velocity
of the particle is −4, so the particle is moving downwards with a speed of 4 units
per second. The acceleration of the particle is h′′(t) = 6t − 2, so when t = 1, the
acceleration is (positive) 4 units per second per second. That means the velocity
(currently −4 units per second) is becoming a bigger number–since the velocity is
negative, a bigger number is closer to zero, so the speed of the particle is getting
smaller. (For instance, a velocity of −3 represents a slower motion than a velocity
of −4.) So, the particle is slowing down at t = 1.

2.14.2.12. Solution.

x2 + x+ y = sin(xy)

We differentiate implicitly. For ease of notation, we write y′ for
dy

dx
.

2x+ 1 + y′ = cos(xy)(y + xy′)

We’re interested in y′′, so we implicitly differentiate again.

2 + y′′ = − sin(xy)(y + xy′)2 + cos(xy)(2y′ + xy′′)

We want to know what y′′ is when x = y = 0. Plugging these in yields the following:

2 + y′′ = 2y′

So, we need to know what y′ is when x = y = 0. We can get this from the equation
2x + 1 + y′ = cos(xy)(y + xy′), which becomes 1 + y′ = 0 when x = y = 0. So, at
the origin, y′ = −1, and

2 + y′′ = 2(−1)

y′′ = −4

Remark: a common mistake is to stop at the equation 2x+1+y′ = cos(xy)(y+xy′),

plug in x = y = 0, find y′ = −1, and decide y′′ =
d

dx
{−1} = 0. This is due to a

slight sloppiness in the usual notation. When we wrote y′ = 1, what we meant is

that at the point (0, 0),
dy

dx
= −1. More properly written:

dy

dx

∣∣∣∣
x=0,y=0

= −1. This

is not the same as saying y′ = 1 everywhere (in which case, indeed, y′′ would be 0
everywhere).

2.14.2.13. Solution. For (a) and (b), notice the following:

d

dx
sinx = cosx

d

dx
cosx = − sinx
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d

dx
{− sinx} = − cosx

d

dx
{− cosx} = sinx

d

dx
sinx = cosx

The fourth derivative is sinx is sinx, and the fourth derivative of cosx is cosx, so
(a) and (b) are true.

d

dx
tanx = sec2 x

d

dx
sec2 x = 2 sec x(secx tanx) = 2 sec2 x tanx

d

dx
{2 sec2 x tanx} = (4 sec x · secx tanx) tanx+ 2 sec2 x sec2 x

= 4 sec2 x tan2 x+ 2 sec4 x

and

d

dx
{4 sec2 x tan2 x+ 2 sec4 x}

= (8 sec x · secx tanx) tan2 x+ 4 sec2 x(2 tanx · sec2 x)

+ 8 sec3 x · secx tanx

= 8 sec2 x tan3 x+ 16 sec4 x tanx

So,
d4

dx4
tanx = 8 sec2 x tan3 x+16 sec4 x tanx. It certainly seems like this is not the

same as tanx, but remember that sometimes trig identities can fool you: tan2 x+1 =
sec2 x, and so on. So, to be absolutely sure that these are not equal, we need to find
a value of x so that the output of one is not the same as the output of the other.
When x = π

4
:

8 sec2 x tan3 x+ 16 sec4 x tanx = 8
(√

2
)2

(1)3 + 16
(√

2
)4

(1)

= 80 6= 1 = tanx

So, (c) is false.

Exercises — Stage 3
2.14.2.14. Solution. Since f ′(x) < 0, we need a decreasing function. This only
applies to (ii), (iii), and (v). Since f ′′(x) > 0, that means f ′(x) is increasing, so the
slope of the function must be increasing. In (v), the slope is constant, so f ′′(x) = 0–
therefore, it’s not (v). In (iii), the slope is decreasing, because near a the curve is
quite flat (f ′(x) near zero) but near b the curve is very steeply decreasing (f ′(x) is
a large negative number), so (iii) has a negative second derivative. By contrast, in
(ii), the line starts out as steeply decreasing (f ′(x) is a strongly negative number)
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and becomes flatter and flatter (f ′(x) nears 0), so f ′(x) is increasing–in other words,
f ′′(x) > 0. So, (ii) is the only curve that has f ′(x) < 0 and f ′′(x) > 0.

2.14.2.15. Solution. We differentiate a few time to find the pattern.

d

dx
{2x} = 2x log 2

d2

dx2
{2x} = 2x log 2 · log 2 = 2x(log 2)2

d3

dx3
{2x} = 2x(log 2)2 · log 2 = 2x(log 2)3

Every time we differentiate, we multiply the original function by another factor of
log 2. So, the nth derivative is given by:

dn

dxn
{2x} = 2x(log 2)n

2.14.2.16. Solution. We differentiate using the power rule.

df

dx
= 3ax2 + 2bx+ c

d2f

dx2
= 6ax+ 2b

d3f

dx3
= 6a

d4f

dx4
= 0

In the above work, remember that a, b, c, and d are all constants. Since they are

nonzero constants,
d3f

dx3
= 6a 6= 0. So, the fourth derivative is the first derivative to

be identically zero: n = 4.

2.14.2.17. ∗. Solution. 2.14.2.17.a Using the chain rule for f(x):

f ′(x) = (1 + 2x)ex+x2

f ′′(x) = (1 + 2x)(1 + 2x)ex+x2 + (2)ex+x2 = (4x2 + 4x+ 3)ex+x2

h′(x) = 1 + 3x

h′′(x) = 3

• 2.14.2.17.b f(0) = h(0) = 1; f ′(0) = h′(0) = 1; f ′′(0) = h′′(0) = 3

• 2.14.2.17.c f and h “start at the same place”, since f(0) = h(0). If it were
clear that f ′(x) were greater than h′(x) for x > 0, then we would know that
f grows faster than h, so we could conclude that f(x) > h(x), as desired.
Unfortunately, it is not obvious whether (1 + 2x)ex+x2 is always greater than
1 + 3x for positive x. So, we look to the second derivative. f ′(0) = h′(0),
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and f ′′(x) = (4x2 + 4x + 3)ex+x2 > 3ex+x2 > 3 = h′′(x) when x > 0. Since
f ′(0) = h′(0), and since f ′ grows faster than h′ for positive x, we conclude
f ′(x) > h′(x) for all positive x. Now we can conclude that (since f(0) = h(0)
and f grows faster than h when x > 0) also f(x) > h(x) for all positive x.

2.14.2.18. ∗. Solution.

a We differentiate implicitly.

x3y(x) + y(x)3 = 10x

3x2y(x) + x3y′(x) + 3y(x)2y′(x) = 10

Subbing in x = 1 and y(1) = 2 gives

(3)(1)(2) + (1)y′(1) + (3)(4)y′(1) = 10

13y′(1) = 4

y′(1) =
4

13

b From part 2.14.2.18.a, the slope of the curve at x = 1, y = 2 is
4

13
, so

the curve is increasing, but fairly slowly. The angle of the tangent line is
tan−1

(
4
13

)
≈ 17◦. We are also told that y′′(1) < 0. So the slope of the curve is

decreasing as x passes through 1. That is, the line is more steeply increasing
to the left of x = 1, and its slope is decreasing (getting less steep, then possibly
the slope even becomes negative) as we move past x = 1.

2.14.2.19. Solution. 2.14.2.19.a Using the product rule,

g′′(x) = [f ′(x) + f ′′(x)]ex + [f(x) + f ′(x)]ex

= [f(x) + 2f ′(x) + f ′′(x)]ex

2.14.2.19.b Using the product rule and our answer from 2.14.2.19.a,

g′′′(x) = [f ′(x) + 2f ′′(x) + f ′′′(x)]ex + [f(x) + 2f ′(x) + f ′′(x)]ex

= [f(x) + 3f ′(x) + 3f ′′(x) + f ′′′(x)]ex

2.14.2.19.c We notice that the coefficients of the derivatives of f correspond to the
entries in the rows of Pascal’s Triangle.
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1
1 1

1 12
1 13 3

1 14 46

Pascal’s Triangle

• In the first derivative of g, the coefficients of f and f ′ correspond to the entries
in the second row of Pascal’s Triangle.

• In the second derivative of g, the coefficients of f , f ′, and f ′′ correspond to
the entries in the third row of Pascal’s Triangle.

• In the third derivative of g, the coefficients of f , f ′, f ′′, and f ′′′ correspond to
the entries in the fourth row of Pascal’s Triangle.

• We guess that, in the fourth derivative of g, the coefficients of f , f ′, f ′′, f ′′′,
and f (4) will correspond to the entries in the fifth row of Pascal’s Triangle.

That is, we guess

g(4)(x) = [f(x) + 4f ′(x) + 6f ′′(x) + 4f ′′′(x) + f (4)(x)]ex

This is verified by differentiating our answer from 2.14.2.19.a using the product rule:

g′′′(x) = [f(x) + 3f ′(x) + 3f ′′(x) + f ′′′(x)]ex

g(4)(x) = [f ′(x) + 3f ′′(x) + 3f ′′′(x) + f (4)(x)]ex

+ [f(x) + 3f ′(x) + 3f ′′(x) + f ′′′(x)]ex

= [f(x) + 4f ′(x) + 6f ′′(x) + 4f ′′′(x) + f (4)(x)]ex.

2.14.2.20. Solution. Since f(x) is differentiable over all real numbers, it is also
continuous over all real numbers. Similarly, f ′(x) is differentiable over all real
numbers, so it is also continuous over all real numbers, and so on for the first n
derivatives of f(x).
Rolle’s Theorem tells us that if a and b are distinct roots of a function g, then
g′(x) = 0 for some c in (a, b). That is, g′ has a root strictly between a and b.
Expanding this idea, if g has m + 1 distinct roots, then g′ must have at least m
distinct roots, as in the sketch below.

803



Solutions to Exercises

a1 a2 a3 am+1

roots of g(x)

c1 c2 cm

roots of g′(x)

So, if f (n)(x) has only m roots, then f (n−1)(x) has at most m + 1 roots. Similarly,
since f (n−1)(x) has at mostm+1 roots, f (n−2)(x) has at mostm+2 roots. Continuing
in this way, we see f(x) = f (n−n)(x) has at most m+ n distinct roots.

2.14.2.21. Solution.

• Let’s begin by noticing that the domain of f(x) is (−1,∞).

• By inspection, f(0) = 0, so f(x) has at least one root.

• If x ∈ (−1, 0), then (x+1) is positive, log(x+1) is negative, sin(x) is negative,
and −x2 is negative. Therefore, if x < 0 is in the domain of f , then f(x) < 0.
So, f(x) has no negative roots. We focus our attention on the case x > 0.

• f ′(x) = 1− 2x+ log(x+ 1) + cosx. We would like to know how many positive
roots f ′(x) has, but it isn’t obvious. So, let’s differentiate again.

• f ′′(x) = −2 + 1
x+1
− sinx. When x > 0, 1

x+1
< 1, so f ′′(x) < −1− sin(x) ≤ 0,

so f ′′(x) has no positive roots. Since f ′(x) is continuous and differentiable
over (0,∞), and since f ′′(x) 6= 0 for all x ∈ (0,∞), by Rolle’s Theorem, f ′(x)
has at most one root in [0,∞).

• Since f(x) is continuous and differentiable over [0,∞), and f ′(x) has at most
one root in (0,∞), by Rolle’s Theorem f(x) has at most two distinct roots in
[0,∞). (Otherwise, f(a) = f(b) = f(c) = 0 for some values 0 ≤ a < b < c, so
f ′(d) = f ′(e) = 0 for some d ∈ (a, b) and some e ∈ (b, c), but since f ′(x) has
at most one root, this is impossible.)

• We know f(0) = 0, so the remaining question is whether or not f(x) has a
second root (which would have to be positive). As usual, we can show another
root exists using the intermediate value theorem. We see that for large values
of x, f(x) is negative, for example:

f(4) = 5 log 5 + sin(4)− (4)2 < 5 log(e2) + 1− 16 = 11− 16 < 0
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For positive values of x closer to zero, we hope to find a positive value of f(x).
However, it’s quite difficult to get a number c that obviously gives f(c) > 0.
It suffices to observe that f(0) = 0 and f ′(0) = 2 > 0. From the definition
of the derivative, we can conclude f(x) > 0 for some x > 0. (If it is not true
that f(x) > 0 for some x > 0, then f(x) ≤ 0 for all x > 0. The definition

of the derivative tells us that [since f ′(0) exists] f ′(0) = lim
h→0+

f(h)− f(0)

h
=

lim
h→0+

f(h)

h
; the denominator is positive, so if the numerator were always less

than or equal to zero, the limit would be less than or equal to zero as well.
However, the derivative is positive, so f(x) > 0 for some x > 0.) Therefore,
f(x) has a second root, so f(x) has precisely two roots.

2.14.2.22. ∗. Solution. 2.14.2.22.a In order to make f(x) a little more tractable,

let’s change the format. Since |x| =
{

x x ≥ 0

−x x < 0
, then:

f(x) =

{
−x2 x < 0

x2 x ≥ 0.

Now, we turn to the definition of the derivative to figure out whether f ′(0) exists.

f ′(0) = lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

f(h)− 0

h
= lim

h→0

f(h)

h
if it exists.

Since f looks different to the left and right of 0, in order to evaluate this limit, we
look at the corresponding one-sided limits. Note that when h approaches 0 from
the right, h > 0 so f(h) = h2. By contrast, when h approaches 0 from the left,
h < 0 so f(h) = −h2.

lim
h→0+

f(h)

h
= lim

h→0+

h2

h
= lim

h→0+
h = 0

lim
h→0−

f(h)

h
= lim

h→0−

−h2

h
= lim

h→0−
−h = 0

Since both one-sided limits exist and are equal to 0,

lim
h→0

f(0 + h)− f(0)

h
= 0

and so f is differentiable at x = 0 and f ′(0) = 0.
2.14.2.22.b From 2.14.2.22.a, f ′(0) = 0 and

f(x) =

{
−x2 x < 0

x2 x ≥ 0.

So,

f ′(x) =

{
−2x x < 0

2x x ≥ 0.
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Then, we know the second derivative of f everywhere except at x = 0:

f ′′(x) =


−2 x < 0

?? x = 0

2 x > 0.

So, whenever x 6= 0, f ′′(x) exists. To investigate the differentiability of f ′(x) when
x = 0, again we turn to the definition of a derivative. If

lim
h→0

f ′(0 + h)− f ′(0)

h

exists, then f ′′(0) exists.

lim
h→0

f ′(0 + h)− f ′(0)

h
= lim

h→0

f ′(h)− 0

h
= lim

h→0

f ′(h)

h

Since f(h) behaves differently when h is greater than or less than zero, we look at
the one-sided limits.

lim
h→0+

f ′(h)

h
= lim

h→0+

2h

h
= 2

lim
h→0−

f ′(h)

h
= lim

h→0−

−2h

h
= −2

Since the one-sided limits do not agree,

lim
h→0

f ′(0 + h)− f ′(0)

h
= DNE

So, f ′′(0) does not exist. Now we have a complete picture of f ′′(x):

f ′′(x) =


−2 x < 0

DNE x = 0

2 x > 0.

3 · Applications of derivatives
3.1 · Velocity and Acceleration
3.1.2 · Exercises

Exercises — Stage 1
3.1.2.1. Solution. False. The acceleration of the ball is given by h′′(t) = −9.8.
This is constant throughout its trajectory (and is due to gravity).
Remark: the velocity of the ball at t = 2 is zero, since h′(2) = −9.8(2) + 19.6 = 0,
but the velocity is only zero for an instant. Since the velocity is changing, the
acceleration is nonzero.
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3.1.2.2. Solution. The acceleration is constant, which means the rate of change
of the velocity is constant. So, since it took 10 seconds for the velocity to increase
by 1 metre per second (from 1 m

s
to 2 m

s
), then it always takes 10 seconds for the

velocity to increase by 1 metre per second.
So, it takes 10 seconds to accelerate from 2 m

s
to 3 m

s
. To accelerate from 3 m

s
to

13 m
s
(that is, to change its velocity by 10 metres per second), it takes 10×10 = 100

seconds.

3.1.2.3. Solution. Let v(a) = s′(a) be the velocity of the particle. If s′′(a) > 0,
then v′(a) > 0 — so the velocity of the particle is increasing. However, that does
not mean that its speed (the absolute value of velocity) is increasing as well. For
example, if a velocity is increasing from −4 kph to −3 kph, the speed is decreasing
from 4 kph to 3 kph. So, the statement is false in general.
Contrast this to Question 3.1.2.4.

3.1.2.4. Solution. Since s′(a) > 0, |s′(a)| = s′(a): that is, the speed and velocity
of the particle are the same. (This means the particle is moving in the positive
direction.) If s′′(a) > 0, then the velocity (and hence speed) of the particle is
increasing. So, the statement is true.

Exercises — Stage 2
3.1.2.5. Solution. From Example 3.1.2, we know that an object falling from rest
on the Earth is subject to the acceleration due to gravity, 9.8 m

s2
. So, if h(t) is the

height of the flower pot t seconds after it rolls out the window, then h′′(t) = −9.8.
(We make the acceleration negative, since the measure “height” has “up” as the
positive direction, while gravity pulls the pot in the negative direction, “down.”)
Then h′(t) is a function whose derivative is the constant −9.8 and with h′(0) = 0
(since the object fell, instead of being thrown up or down), so h′(t) = −9.8t.
What we want to know is h′(t) at the time t when the pot hits the ground. We
don’t know yet exactly what time that happens, so we go a little farther and find
an expression for h(t). The function h(t) has derivative −9.8t and h(0) = 10, so
(again following the ideas in Example 3.1.2)

h(t) =
−9.8

2
t2 + 10

Now, we can find the time when the pot hits the ground: it is the time when h(t) = 0
(and t > 0).

0 =
−9.8

2
t2 + 10

9.8

2
t2 = 10

t2 =
20

9.8

t = +

√
20

9.8
≈ 1.4sec
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The velocity of the pot at this time is

h′
(√

20

9.8

)
= −9.8

(√
20

9.8

)
= −
√

20 · 9.8 = −14
m

s

So, the pot is falling at 14 metres per second, just as it hits the ground.

3.1.2.6. Solution. (a)

• Let s(t) be the distance the stone has fallen t seconds after dropping it. Since
the acceleration due to gravity is 9.8 m

s2
, s′′(t) = 9.8. (We don’t make this

negative, because s(t) measures how far the stone has fallen, which means the
positive direction in our coordinate system is “down”, which is exactly the way
gravity is pulling.)

• Then s′(t) has a constant derivative of 9.8, so s′(t) = 9.8t+c for some constant
c. Notice s′(0) = c, so c is the velocity of the stone at the very instant you
dropped it, which is zero. Therefore, s′(t) = 9.8t.

• So, s(t) is a function with derivative 9.8t. It’s not too hard to figure out
by guessing and checking that s(t) = 9.8

2
t2 + d for some constant d. Notice

s(0) = d, so d is the distance the rock has travelled at the instant you dropped
it, which is zero. So, s(t) = 9.8

2
t2 = 4.9t2.

Remark: this is exactly the formula found in Example 3.1.2. You may, in
general, use that formula without proof, but you need to know where it comes
from and be able to apply it in other circumstances where it might be slightly
different–like part (b) below.

• The rock falls for x seconds, so the distance fallen is

4.9x2

Remark: this is a decent (if imperfect) way to figure out how deep a well is, or
how tall a cliff is, when you’re out and about. Drop a rock, square the time,
multiply by 5.

(b) We’ll go through a similar process as before.
Again, let s(t) be the distance the rock has fallen t seconds after it is let go. Then
s′′(t) = 9.8, so s′(t) = 9.8t + c. In this case, since the initial speed of the rock is 1
metre per second, 1 = s′(0) = c, so s′(t) = 9.8t+ 1.
Then, s(t) is a function whose derivative is 9.8t+ 1, so s(t) = 9.8

2
t2 + t+ d for some

constant d. Since 0 = s(0) = d, we see s(t) = 4.9t2 + t.
So, if the rock falls for x seconds, the distance fallen is

4.9x2 + x

Remark: This means there is an error of x metres in your estimation of the depth
of the well.
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3.1.2.7. Solution. Let s(t) be the distance your keys have travelled since they
left your hand. The rate at which they are travelling, s′(t), is decreasing by 0.25
metres per second. That is, s′′(t) = −0.25. Therefore, s′(t) = −0.25t + c for some
constant c. Since c = s′(0) = 2, we see

s′(t) = 2− 0.25t

Then s(t) has 2− 0.25t as its derivative, so s(t) = 2t− 1
8
t2 + d for some constant d.

At time t = 0, the keys have not yet gone anywhere, so 0 = s(0) = d. Therefore,

s(t) = 2t− 1

8
t2

The keys reach your friend when s(t) = 2 and t > 0. That is:

2 = 2t− 1

8
t2

0 =
1

8
t2 − 2t+ 2

t = 8± 4
√

3

We need to figure out which of these values of t is really the time when the keys
reach your friend. The keys travel this way from t = 0 to the time they reach your
friend. (Then s(t) no longer describes their motion.) So, we need to find the first
value of t that is positive with s(t) = 2. Since 8 − 4

√
3 > 0, this is the first time

s(t) = 2 and t > 0. So, the keys take

8− 4
√

3 ≈ 1 second

to reach your friend.

3.1.2.8. Solution. We proceed with the technique of Example 3.1.3 in mind.
Let v(t) be the velocity (in kph) of the car at time t, where t is measured in hours and
t = 0 is the instant the brakes are applied. Then v(0) = 100 and v′(t) = −50000.
Since v′(t) is constant, v(t) is a line with slope −50000 and intercept (0, 100), so

v(t) = 100− 50000t

The car comes to a complete stop when v(t) = 0, which occurs at t = 100
50000

= 1
500

hours. This is a confusing measure, so we convert it to seconds:(
1

500
hrs

)(
3600 sec

1hr

)
= 7.2 sec

3.1.2.9. Solution. Suppose the deceleration provided by the brakes is d km
hr2

.
Then if v(t) is the velocity of the car, v(t) = 120− dt (at t = 0, the velocity is 120,
and it decreases by d kph per hour). The car stops when 0 = v(t), so t = 120

d
hours.

Let s(t) be the distance the car has travelled t hours after applying the brakes.
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Then s′(t) = v(t), so s(t) = 120t− d
2
t2 + c for some constant c. Since 0 = s(0) = c,

s(t) = 120t− d

2
t2

The car needs to stop in 100 metres, which is 1
10

kilometres. We already found that
the stopping time is t = 120

d
. So:

1

10
= s

(
120

d

)
1

10
= 120

(
120

d

)
− d

2

(
120

d

)2

Multiplying both sides by d:

d

10
= 1202 − 1202

2
d = 5 · 1202

So, the brakes need to apply 72 000 kph per hour of deceleration.

3.1.2.10. Solution. Since your deceleration is constant, your speed decreases
smoothly from 100 kph to 0 kph. So, one second before your stop, you only have 1

7

of our speed left: you’re going 100
7

kph.
A less direct way to solve this problem is to note that v(t) = 100−dt is the velocity
of car t hours after braking, if d is its deceleration. Since it stops in 7 seconds (or

7
3600

hours), 0 = v
(

7
3600

)
= 100− 7

3600
d, so d = 360000

7
. Then

v

(
6

3600

)
= 100−

(
360000

7

)(
6

3600

)
= 100− 6

7
· 100 =

100

7
kph

3.1.2.11. Solution. If the acceleration was constant, then it was

17500 mph
8.5
60

hr
≈ 123500

miles

hr2

So, the velocity t hours from liftoff is

v(t) = 123500t

Therefore, the position of the shuttle t hours from liftoff (taking s(0) = 0 to be its
initial position) is

s(t) =
123500

2
t2 = 61750t2

So, after 8.5
60

hours, the shuttle has travelled

s

(
8.5

60

)
= (61750)

(
8.5

60

)2

≈ 1240 miles

or a little less than 2000 kilometres.
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3.1.2.12. Solution. We know that the acceleration of the ball will be constant.
If the height of the ball is given by h(t) while it is in the air, h′′(t) = −9.8. (The
negative indicates that the velocity is decreasing : the ball starts at its largest veloc-
ity, moving in the positive direction, then the velocity decreases to zero and then to
a negative number as the ball falls.) As in Example 3.1.2, we need a function h(t)
with h′′(t) = −9.8. Since this is a constant, h′(t) is a line with slope −9.8, so it has
the form

h′(t) = −9.8t+ a

for some constant a. Notice when t = 0, h′(0) = a, so in fact a is the initial velocity
of the ball–the quantity we want to solve for.
Again, as in Example 3.1.2, we need a function h(t) with h′(t) = −9.8t+ a. Such a
function must have the form

h(t) = −4.9t2 + at+ b

for some constant b. You can find this by guessing and checking, or simply remember
it from the text. (In Section 4.1, you’ll learn more about figuring out which functions
have a particular derivative.) Notice when t = 0, h(0) = b, so b is the initial height
of the baseball, which is 0.
So, h(t) = −4.9t2 + at = t(−4.9t + a). The baseball is at height zero when it is
pitched (t = 0) and when it hits the ground (which we want to be t = 10). So, we
want (−4.9)(10) + a = 0. That is, a = 49. So, the initial pitch should be at 49
metres per second.
Incidentally, this is on par with the fastest pitch in baseball, as recorded
by Guiness World Records: https://www.guinnessworldrecords.com/world-records/

fastest-baseball-pitch-(male)

3.1.2.13. Solution. The acceleration of a falling object due to gravity is 9.8
metres per second squared. So, the object’s velocity t seconds after being dropped
is

v(t) = 9.8t
m

s

We want v(t) to be the speed of the peregrine’s dive, so we should convert that to
metres per second:

325
km

hr
·
(

1000 m

1 km

)(
1 hr

3600 sec

)
=

1625

18

m

s

The stone will reach this velocity when

9.8t =
1625

18
⇒ t =

1625

18(9.8)

What is left to figure out is how far the stone will fall in this time. The position of
the stone s(t) has derivative 9.8t, so

s(t) = 4.9t2
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if we take s(0) = 0. So, if the stone falls for 1625
18(9.8)

seconds, in that time it travels

s

(
1625

18(9.8)

)
= 4.9

(
1625

18(9.8)

)2

≈ 416 m

So, you would have to drop a stone from about 416 metres for it to fall as fast as
the falcon.
3.1.2.14. Solution. Since gravity alone brings your cannon ball down, its accel-
eration is a constant −9.8 m

s2
. So, v(t) = v0 − 9.8t and thus its height is given by

s(t) = v0t− 4.9t2 (if we set s(0) = 0).
We want to know what value of v0 makes the maximum height 100 metres. The
maximum height is reached when v(t) = 0, which is at time t = v0

9.8
. So, we solve:

100 = s
( v0

9.8

)
100 = v0

( v0

9.8

)
− 4.9

( v0

9.8

)2

100 =

(
1

9.8
− 4.9

9.82

)
v2

0

100 =
1

2 · 9.8v
2
0

v2
0 = 1960

v0 =
√

1960 ≈ 44
m

s

where we choose the positive square root because v0 must be positive for the cannon
ball to get off the ground.

3.1.2.15. Solution. The derivative of acceleration is constant, so the acceleration
a(t) has the formmt+b. We know a(0) = −50000 and a

(
3

3600

)
= −60000 (where we

note that 3 seconds is 3
3600

hours). So, the slope of a(t) is −60000+50000
3

3600

= −12000000,
which leads us to

a(t) = −50000− (12000000)t

where t is measured in hours.
Since v′(t) = a(t) = −50000− (12000000)t, we see

v(t) =
−12000000

2
t2 − 50000t+ c = −6000000t2 − 50000t+ c

for some constant c. Since 120 = v(0) = c:

v(t) = −6000000t2 − 50000t+ 120

Then after three seconds of braking,

v

(
3

3600

)
= −6000000

(
3

3600

)2

− 50000

(
3

3600

)
+ 120

= −25

6
− 125

3
+ 120
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≈ 74.2 kph

Remark: When acceleration is constant, the position function is a quadratic func-
tion, but we don’t want you to get the idea that position functions are always
quadratic functions–in the example you just did, it was the velocity function that
was quadratic. Position, velocity, and acceleration functions don’t have to be poly-
nomial at all–it’s only in this section, where we’re dealing with the simplest cases,
that they seem that way.

Exercises — Stage 3
3.1.2.16. Solution. Different forces are acting on you (1) after you jump but
before you land on the trampoline, and (2) while you are falling into the trampo-
line. In both instances, the acceleration is constant, so both height functions are
quadratic, of the form a

2
t2 + vt + h, where a is the acceleration, v is the velocity

when t = 0, and h is the initial height.

• Let’s consider (1) first, the time during your jump before your feet touch
the trampoline. Let t = 0 be the moment you jump, and let the rim of the
trampoline be height 0. Then, since your initial velocity was (positive) 1 meter
per second, your height is given by

h1(t) =
−9.8

2
t2 + t = t

(−9.8

2
t+ 1

)
Notice that, because your acceleration is working against your positive veloc-
ity, it has a negative sign.

• We’ll need to know your velocity when your feet first touch the trampoline on
your fall. The time your feet first first touch the trampoline after your jump
is precisely when h1(t) = 0 and t > 0. That is, when t = 2

9.8
. Now, since

h′(t) = −9.8t+ 1, h′
(

2
9.8

)
= −9.8

(
2

9.8

)
+ 1 = −1. So, you are descending at a

rate of 1 metre per second at the instant your feet touch the trampoline.

Remark: it is not only coincidence that this was your initial speed. Think
about the symmetries of parabolas, and conservation of energy.

• Now we need to think about your height as the trampoline is slowing your
fall. One thing to remember about our general equation a

2
t2 + vt + h is that

v is the velocity when t = 0. But, you don’t hit the trampoline at t = 0, you
hit it at t = 2

9.8
. In order to keep things simple, let’s use a different time scale

for this second part of your journey. Let’s let h2(T ) be your height at time T ,
from the moment your feet touch the trampoline skin (T = 0) to the bottom
of your fall. Now, we can use the fact that your initial velocity is −1 metres
per second (negative, since your height is decreasing) and your acceleration
is 4.9 metres per second per second (positive, since your velocity is increasing
from a negative number to zero):

h2(T ) =
4.9

2
T 2 − T
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where still the height of the rim of the trampoline is taken to be zero.

Remark: if it seems very confusing that your free-falling acceleration is neg-
ative, while your acceleration in the trampoline is positive, remember that
gravity is pushing you down, but the trampoline is pushing you up.

• How long were you falling in the trampoline? The equation h2(T ) tells you
your height only as long as the trampoline is slowing your fall. You reach the
bottom of your fall when your velocity is zero.

h′2(T ) = 4.9T − 1

so you reach the bottom of your fall at T = 1
4.9

. Be careful: this is 1
4.9

seconds
after you entered the trampoline, not after the peak of your fall, or after you
jumped.

• The last piece of the puzzle is how long it took you to fall from the peak of
your jump to the surface of the trampoline. We know the equation of your
motion during that time: h1(t) = −9.8

2
t2 + t. You reached the peak when your

velocity was zero:

h′1(t) = −9.8t+ 1 = 0 ⇒ t =
1

9.8

So, you fell from your peak at t = 1
9.8

and reached the level of the trampoline
rim at t = 2

1.98
, which means the fall took 1

9.8
seconds.

Remark: by the symmetry mentioned early, the time it took to fall from the
peak of your jump to the surface of the trampoline is the same as one-half the
time from the moment you jumped off the rim to the moment you’re back on
the surface of the trampoline.

• So, your time falling from the peak of your jump to its bottom was 1
9.8

+ 1
4.9
≈

0.3 seconds.
3.1.2.17. Solution. Let v(t) be the velocity of the object. From the given infor-
mation:

• v(0) is some value, call it v0,

• v(1) = 2v0 (since the speed doubled in the first second),

• v(2) = 2(2)v0 (since the speed doubled in the second second),

• v(3) = 2(2)(2)v0, and so on.

So, for general t:
v(t) = 2tv(0)

To find its acceleration, we simply differentiate. Recall
d

dx
{2x} = 2x log 2, where

log denotes logarithm base e.

a(t) = 2tv0 log 2
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Remark: we can also write a(t) = v(t) log 2. The acceleration doubles every second
as well.

3.2 · Related Rates
3.2.2 · Exercises

Exercises — Stage 1
3.2.2.1. Solution. We have an equation relating P and Q:

P = Q3

We differentiate implicitly with respect to a third variable, t:

dP

dt
= 3Q2 · dQ

dt

If we know two of the three quantities
dP

dt
, Q, and

dQ

dt
, then we can find the third.

Therefore, ii is a question we can solve. If we know P , then we also know Q (it’s
just the cube root of P ), so also we can solve iv. However, if we know neither P

nor Q, then we can’t find
dP

dt
based only off

dQ

dt
, and we can’t find

dQ

dt
based only

off
dP

dt
. So we can’t solve i or iii.

Exercises — Stage 2
3.2.2.2. ∗. Solution. Suppose that at time t, the point is at

(
x(t), y(t)

)
. Then

x(t)2 + y(t)2 = 1 so that 2x(t)x′(t) + 2y(t)y′(t) = 0. We are told that at some time
t0, x(t0) = 2/

√
5, y(t0) = 1/

√
5 and y′(t0) = 3. Then

2x(t0)x′(t0) + 2y(t0)y′(t0) = 0 ⇒

2

(
2√
5

)
x′(t) + 2

(
1√
5

)
(3) = 0 ⇒

x′(t0) = −3

2

3.2.2.3. ∗. Solution. The instantaneous percentage rate of change for R is

100
R′

R
= 100

(PQ)′

PQ
R=PQ

= 100
P ′Q+ PQ′

PQ
product rule

= 100

[
P ′

P
+
Q′

Q

]
simplify

= 100[0.08− 0.02] = 6%
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3.2.2.4. ∗. Solution. 3.2.2.4.a By the quotient rule, F ′ =
P ′Q− PQ′

Q2
. At the

moment in question, F ′ =
5× 5− 25× 1

52
= 0.

3.2.2.4.b We are told that, at the second moment in time, P ′ = 0.1P and Q′ =
−0.05Q(
or equivalently 100P

′
P

= 10 and 100Q
′

Q
= −5

)
. Substituting in these values:

F ′ =
P ′Q− PQ′

Q2

=
0.1PQ− P (−0.05Q)

Q2

=
0.15PQ

Q2

= 0.15
P

Q

= 0.15F

=⇒ F ′ = 0.15F

or 100F
′
F

= 15%. That is, the instantaneous percentage rate of change of F is 15%.

3.2.2.5. ∗. Solution.

• The distance z(t) between the particles at any moment in time is

z2(t) = x(t)2 + y(t)2,

where x(t) is the position on the x-axis of the particle A at time t (measured
in seconds) and y(t) is the position on the y-axis of the particle B at the same
time t.

• We differentiate the above equation with respect to t and get

2z · z′ = 2x · x′ + 2y · y′,

• We are told that x′ = −2 and y′ = −3. (The values are negative because x
and y are decreasing.) It will take 3 seconds for particle A to reach x = 4,
and in this time particle B will reach y = 3.

• At this point z =
√
x2 + y2 =

√
32 + 42 = 5.

• Hence

10z′ = 8 · (−2) + 6 · (−3) = −34

z′ = −34

10
= −17

5
units per second.
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3.2.2.6. ∗. Solution.

• We compute the distance z(t) between the two particles after t seconds as

z2(t) = 32 + (yA(t)− yB(t))2,

where yA(t) and yB(t) are the y-coordinates of particles A and B after t
seconds, and the horizontal distance between the two particles is always 3
units.

• We are told the distance between the particles is 5 units, this happens when

(yA − yB)2 = 52 − 32 = 16

yA − yB = 4

That is, when the difference in y-coordinates is 4. This happens when t = 4.

• We differentiate the distance equation (from the first bullet point) with respect
to t and get

2z · z′ = 2(yA
′ − yB ′)(yA − yB),

• We know that (yA− yB) = 4, and we are told that z = 5, y′A = 3, and y′B = 2.
Hence

10z′(4) = 2× 1× 4 = 8

• Therefore

z′(4) =
8

10
=

4

5
units per second.

3.2.2.7. ∗. Solution.

y(t)

x(t)

A

BH

z(t)

15 mph

20 mph

As in the above figure, let x(t) be the distance between H (Hawaii) and ship B, and
y(t) be the distance between H and ship A, and z(t) be the distance between ships
A and B, all at time t. Then

x(t)2 + y(t)2 = z(t)2
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Differentiating with respect to t,

2x(t)x′(t) + 2y(t)y′(t) = 2z(t)z′(t)

x(t)x′(t) + y(t)y′(t) = z(t)z′(t)

At the specified time, x(t) is decreasing, so x′(t) is negative, and y(t) is increasing,
so y′(t) is positive.

(300)(−15) + (400)(20) =
√

3002 + 4002z′(t)

500z′(t) = 3500

z′(t) = 7 mph

3.2.2.8. ∗. Solution.

• We compute the distance d(t) between the two snails after t minutes as

d2(t) = 302 + (y1(t)− y2(t))2,

where y1(t) is the altitude of the first snail, and y2(t) the altitude of the second
snail after t minutes.

• We differentiate the above equation with respect to t and get

2d · d′ = 2(y1
′ − y2

′)(y1 − y2)

d · d′ = (y1
′ − y2

′)(y1 − y2)

• We are told that y1
′ = 25 and y2

′ = 15. It will take 4 minutes for the first
snail to reach y1 = 100, and in this time the second snail will reach y2 = 60.

• At this point d2 = 302 + (100− 60)2 = 900 + 1600 = 2500, hence d = 50.

• Therefore

50d′ = (25− 15)× (100− 60)

d′ =
400

50
= 8 cm per minute.

3.2.2.9. ∗. Solution.

• If we write z(t) for the length of the ladder at time t and y(t) for the height
of the top end of the ladder at time t we have

z(t)2 = 52 + y(t)2.

• We differentiate the above equation with respect to t and get

2z · z′ = 2y · y′,

• We are told that z′(t) = −2, so z(3.5) = 20− 3.5 · 2 = 13.
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• At this point y =
√
z2 − 52 =

√
169− 25 =

√
144 = 12.

• Hence

2 · 13 · (−2) = 2 · 12y′

y′ = −2 · 13

12
= −13

6
meters per second.

3.2.2.10. Solution. What we’re given is
dV

dt
(where V is volume of water in the

trough, and t is time), and what we are asked for is
dh

dt
(where h is the height of

the water). So, we need an equation relating V and h. First, let’s get everything in
the same units: centimetres.

60 cm

100 cm

50 cm

200 cm

h
w

We can calculate the volume of water in the trough by multiplying the area of its
trapezoidal cross section by 200 cm. A trapezoid with height h and bases b1 and
b2 has area h

(
b1+b2

2

)
. (To see why this is so, draw the trapezoid as a rectangle

flanked by two triangles.) So, using w as the width of the top of the water (as in
the diagram above), the area of the cross section of the water in the trough is

A = h

(
60 + w

2

)
and therefore the volume of water in the trough is

V = 100h(60 + w) cm3.

We need a formula for w in terms of h. If we draw lines straight up from the bottom
corners of the trapezoid, we break it into rectangles and triangles.

60

50

h

a

20
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Using similar triangles,
a

h
=

20

50
, so a =

2

5
h. Then

w = 60 + 2a

= 60 + 2

(
2

5
h

)
= 60 +

4

5
h

so

V = 100h(60 + w)

= 100h(120 +
4

5
h)

= 80h2 + 12000h

This is the equation we need, relating V and h. Differentiating implicitly with
respect to t:

dV

dt
= 2 · 80h · dh

dt
+ 12000

dh

dt

= (160h+ 12000)
dh

dt

We are given that h = 25 and
dV

dt
= 3 litres per minute. Converting to cubic

centimetres,
dV

dt
= −3000 cubic centimetres per minute. So:

−3000 = (160 · 25 + 12000)
dh

dt
dh

dt
= − 3

16
= −.1875

cm

min

So, the water level is dropping at
3

16
centimetres per minute.

3.2.2.11. Solution. If V is the volume of the water in the tank, and t is time,

then we are given
dV

dt
. What we want to know is

dh

dt
, where h is the height of the

water in the tank. A reasonable plan is to find an equation relating V and h, and
differentiate it implicitly with respect to t.
Let’s be a little careful about units. The volume of water in the tank is

(area of cross section of water)×(length of tank)

If we measure these values in metres (area in square metres, length in metres), then
the volume is going to be in cubic metres. So, when we differentiate with respect to
time, our units will be cubic metres per second. The water is flowing in at one litre
per second, or 1000 cubic centimetres per second. So, we either have to measure
our areas and distances in centimetres, or convert litres to cubic metres. We’ll do
the latter, but both are fine.
If we imagine one cubic metre as a cube, with each side of length 1 metre, then it’s
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easy to see the volume inside is (100)3 = 106 cubic centimetres: it’s the volume of a
cube with each side of length 100 cm. Since a litre is 103 cubic centimetres, and a

cubic metre is 106 cubic centimetres, one litre is 10−3 cubic metres. So,
dV

dt
=

1

103

cubic metres per second.
Let h be the height of the water (in metres). We can figure out the area of the cross
section by breaking it into three pieces: a triangle on the left, a rectangle in the
middle, and a trapezoid on the right.

h

a b1.25 m

3 m3 m

1 m

• The triangle on the left has height h metres. Let its base be a metres. It forms
a similar triangle with the triangle whose height is 1.25 metres and width is
1 metre, so:

a

h
=

1

1.25

a =
4

5
h

So, the area of the triangle on the left is

1

2
ah =

2

5
h2

• The rectangle in the middle has length 3 metres and height h metres, so its
area is 3h square metres.

• The trapezoid on the right is a portion of a triangle with base 3 metres and
height 1.25 metres. So, its area is(

1

2
(3)(1.25)

)
︸ ︷︷ ︸

area of big triangle

−
(

1

2
(b)(1.25− h)

)
︸ ︷︷ ︸

area of little triangle
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The little triangle (of base b and height 1.25− h) is formed by the air on the
right side of the tank. It is a similar triangle to the triangle of base 3 and
height 1.25, so

b

1.25− h =
3

1.25

b =
3

1.25
(1.25− h)

So, the area of the trapezoid on the right is

1

2
(3)(1.25)− 1

2

(
3

1.25

)
(1.25− h) (1.25− h)

= 3h− 6

5
h2

So, the area A of the cross section of the water is

A =
2

5
h2︸︷︷︸

triangle

+ 3h︸︷︷︸
rectangle

+ 3h− 6

5
h2︸ ︷︷ ︸

trapezoid

= 6h− 4

5
h2

So, the volume of water is

V = 5

(
6h− 4

5
h2

)
= 30h− 4h2

Differentiating with respect to time, t:

dV

dt
= 30

dh

dt
− 8h

dh

dt

When h =
1

10
metre, and

dV

dt
=

1

103
cubic metres per second,

1

103
= 30

dh

dt
− 8

(
1

10

)
dh

dt

dh

dt
=

1

29200
metres per second

This is about 1 centimetre every five minutes. You might want a bigger hose.

3.2.2.12. Solution. Let θ be the angle of your head, where θ = 0 means you
are looking straight ahead, and θ =

π

2
means you are looking straight up. We are

interested in
dθ

dt
, but we only have information about h. So, a reasonable plan is to

find an equation relating h and θ, and differentiate with respect to time.
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θ

The right triangle formed by you, the rocket, and the rocket’s original position has
adjacent side (to θ) length 2km, and opposite side (to θ) length h(t) kilometres, so

tan θ =
h

2

Differentiating with respect to t:

sec2 θ · dθ

dt
=

1

2

dh

dt
dθ

dt
=

1

2
cos2 θ · dh

dt

We know tan θ = h
2
. We draw a right triangle with angle θ (filling in the sides using

SOH CAH TOA and the Pythagorean theorem) to figure out cos θ:

θ
2

h
√ h

2 +
4

Using the triangle, cos θ =
2√

h2 + 4
, so

dθ

dt
=

1

2

(
2√

h2 + 4

)2

· dh

dt

=

(
2

h2 + 4

)
dh

dt

So, the quantities we need to know one minute after liftoff (that is, when t =
1

60
)

are h
(

1

60

)
and

dh

dt

(
1

60

)
. Recall h(t) = 61750t2.

h

(
1

60

)
=

61750

3600
=

1235

72
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dh

dt
= 2(61750)t

dh

dt

(
1

60

)
=

2(61750)

60
=

6175

3

Returning to the equation
dθ

dt
=

(
2

h2 + 4

)
dh

dt
:

dθ

dt

(
1

60

)
=

(
2(

1235
72

)2
+ 4

)(
6175

3

)
≈ 13.8

rad

hour
≈ 0.0038

rad

sec

3.2.2.13. ∗. Solution. 3.2.2.13.a Let x(t) be the distance of the train along the
track at time t, measured from the point on the track nearest the camera. Let z(t)
be the distance from the camera to the train at time t.

Then x′(t) = 2 and at the time in question, z(t) = 1.3 km and x(t) =
√

1.32 − 0.52 =
1.2 km. So

z(t)2 = x(t)2 + 0.52

2z(t)z′(t) = 2x(t)x′(t)

2× 1.3z′(t) = 2× 1.2× 2

z′(t)=
2× 1.2

1.3
≈ 1.85 km/min

3.2.2.13.b Let θ(t) be the angle shown at time t. Then

sin (θ(t)) =
x(t)

z(t)

Differentiating with respect to t:

θ′(t) cos (θ(t)) =
x′(t)z(t)− x(t)z′(t)

z(t)2

θ′(t) =
x′(t)z(t)− x(t)z′(t)

z(t)2 cos (θ(t))

From our diagram, we see cos (θ(t)) =
0.5

z(t)
, so:

= 2
x′(t)z(t)− x(t)z′(t)

z(t)

Substituting in x′(t) = 2, z(t) = 1.3, x(t) = 1.2, and z′(t) =
2× 1.2

1.3
:

θ′(t) = 2
2× 1.3− 1.2× 2×1.2

1.3

1.3
≈ .592 radians/min
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3.2.2.14. Solution. Let θ be the angle between the two hands.

D
θ

5cm

10
cm

The Law of Cosines (Appendix B.4.1) tells us that

D2 = 52 + 102 − 2 · 5 · 10 · cos θ

D2 = 125− 100 cos θ

Differentiating with respect to time t,

2D
dD

dt
= 100 sin θ · dθ

dt

Our tasks now are to find D, θ and
dθ

dt
when the time is 4:00. At 4:00, the minute

hand is straight up, and the hour hand is
4

12
=

1

3
of the way around the clock, so

θ =
1

3
(2π) =

2π

3
at 4:00. Then D2 = 125 − 100 cos

(
2π
3

)
= 125 − 100

(
−1

2

)
= 175,

so D =
√

175 = 5
√

7 at 4:00.

To calculate
dθ

dt
, remember that both hands are moving. The hour hand makes a

full rotation every 12 hours, so its rotational speed is
2π

12
=
π

6
radians per hour.

The hour hand is being chased by the minute hand. The minute hand makes a full

rotation every hour, so its rotational speed is
2π

1
= 2π radians per hour. Therefore,

the angle θ between the two hands is changing at a rate of

dθ

dt
= −

(
2π − π

6

)
=
−11π

6

rad

hr
.

Now, we plug in D, θ, and
dθ

dt
to find

dD

dt
:

2D
dD

dt
= 100 sin θ · dθ

dt

2
(

5
√

7
) dD

dt
= 100 sin

(
2π

3

)(−11π

6

)
10
√

7
dD

dt
= 100

(√
3

2

)(−11π

6

)
= −275π√

3
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dD

dt
=
−55
√

21π

42

cm

hr

So D is decreasing at
55
√

21π

42
≈ 19 centimetres per hour.

3.2.2.15. ∗. Solution. The area at time t is the area of the outer circle minus
the area of the inner circle:

A(t) = π
(
R(t)2 − r(t)2

)
So, A′(t) = 2π

(
R(t)R′(t)− r(t)r′(t)

)
Plugging in the given data,

A′ = 2π
(
3 · 2− 1 · 7

)
= −2π

So the area is shrinking at a rate of 2π
cm2

s
.

3.2.2.16. Solution. The volume between the spheres, while the little one is inside
the big one, is

V =
4

3
πR3 − 4

3
πr3

Differentiating implicitly with respect to t:

dV

dt
= 4πR2 dR

dt
− 4πr2 dr

dt

We differentiate R = 10 + 2t and r = 6t to find
dR

dt
= 2 and

dr

dt
= 6. When R = 2r,

10 + 2t = 2(6t), so t = 1. When t = 1, R = 12 and r = 6. So:

dV

dt
= 4π

(
122
)

(2)− 4π
(
62
)

(6) = 288π

So the volume between the two spheres is increasing at 288π cubic units per unit
time.
Remark: when the radius of the inner sphere increases, we are “subtracting” more
area. Since the radius of the inner sphere grows faster than the radius of the outer
sphere, we might expect the area between the spheres to be decreasing. Although
the radius of the outer sphere grows more slowly, a small increase in the radius
of the outer sphere results in a larger change in volume than the same increase in
the radius of the inner sphere. So, a result showing that the volume between the
spheres is increasing is not unreasonable.

3.2.2.17. Solution. We know something about the rate of change of the height
h of the triangle, and we want to know something about the rate of change of its
area, A. A reasonable plan is to find an equation relating A and h, and differentiate
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implicitly with respect to t. The area of a triangle with height h and base b is

A =
1

2
bh

Note, b will change with time as well as h. So, differentiating with respect to time,
t:

dA

dt
=

1

2

(
db

dt
· h+ b · dh

dt

)
We are given dh

dt
and h, but those b’s are a mystery. We need to relate them to

h. We can do this by breaking our triangle into two right triangles and using the
Pythagorean Theorem:

150
cm 200 cmh

√
1502 − h2

√
2002 − h2

So, the base of the triangle is

b =
√

1502 − h2 +
√

2002 − h2

Differentiating with respect to t:

db

dt
=

−2hdh
dt

2
√

1502 − h2
+

−2hdh
dt

2
√

2002 − h2

=
−hdh

dt√
1502 − h2

+
−hdh

dt√
2002 − h2

Using
dh

dt
= −3 centimetres per minute:

db

dt
=

3h√
1502 − h2

+
3h√

2002 − h2

When h = 120,
√

1502 − h2 = 90 and
√

2002 − h2 = 160. So, at this moment in
time:

b = 90 + 160 = 250

db

dt
=

3(120)

90
+

3(120)

160
= 4 +

9

4
=

25

4

We return to our equation relating the derivatives of A, b, and h.

dA

dt
=

1

2

(
db

dt
· h+ b · dh

dt

)
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When h = 120 cm, b = 250,
dh

dt
= −3, and

db

dt
=

25

4
:

dA

dt
=

1

2

(
25

4
(120) + 250(−3)

)
= 0

Remark: What does it mean that
dA

dt

∣∣∣∣
h=120

= 0? Certainly, as the height changes,

the area changes as well. As the height sinks to 120 cm, the area is increasing,
but after it sinks past 120 cm, the area is decreasing. So, at the instant when the
height is exactly 120 cm, the area is neither increasing nor decreasing: it is at a
local maximum. You’ll learn more about this kind of problem in Section 3.5.

3.2.2.18. Solution. Let S be the flow of salt (in cubic centimetres per second).

We want to know
dS

dt
: how fast the flow is changing at time t. We are given an

equation for S:

S =
1

5
A

where A is the uncovered area of the cut-out. So,

dS

dt
=

1

5

dA

dt

If we can find
dA

dt
, then we can find

dS

dt
. We are given information about how

quickly the door is rotating. If we let θ be the angle made by the leading edge of

the door and the far edge of the cut-out (shown below), then
dθ

dt
= −π

6
radians

per second. (Since the door is covering more and more of the cut-out, θ is getting

smaller, so
dθ

dt
is negative.)

ed
ge

of
cu
t-
ou

t

ed
ge
of
do
or

θ
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Since we know
dθ

dt
, and we want to know

dA

dt
(in order to get

dS

dt
), it is reasonable

to look for an equation relating A and θ, and differentiate it implicitly with respect

to t to get an equation relating
dA

dt
and

dθ

dt
.

The area of an annulus with outer radius 6 cm and inner radius 1 cm is π · 62 − π ·
12 = 35π square centimetres. A sector of that same annulus with angle θ has area(
θ

2π

)
(35π), since θ

2π
is the ratio of the sector to the entire annulus. (For example,

if θ = π, then the sector is half of the entire annulus, so its area is (1/2)35π.)
So, when 0 ≤ θ ≤ π

2
, the area of the cutout that is open is

A =
θ

2π
(35π) =

35

2
θ

This is the formula we wanted, relating A and θ. Differentiating with respect to t,

dA

dt
=

35

2

dθ

dt
=

35

2

(
−π

6

)
= −35π

12

Since
dS

dt
=

1

5

dA

dt
,

dS

dt
= −1

5

35π

12
= −7π

12
≈ −1.8

cm3

sec2

Remark: the change in flow of salt is constant while the door covers more and more
of the cut-out, so we never used the fact that precisely half of the cut-out was open.
We also never used the radius of the lid, which is immaterial to the flow of salt.

3.2.2.19. Solution. Let F be the flow of water through the pipe, so F =
1

5
A.

We want to know
dF

dt
, so differentiating implicitly with respect to t, we find

dF

dt
=

1

5

dA

dt
.

If we can find
dA

dt
, then we can find

dF

dt
. We know something about the shape of

the uncovered area of the pipe; a reasonable plan is to find an equation relating the
height of the door with the uncovered area of the pipe. Let h be the distance from
the top of the pipe to the bottom of the door, measured in metres.
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door
h

1 1− h

√
2h− h2

θ

Since the radius of the pipe is 1 metre, the orange line has length 1−h metres, and
the blue line has length 1 metre. Using the Pythagorean Theorem, the green line
has length

√
12 − (1− h)2 =

√
2h− h2 metres.

The uncovered area of the pipe can be broken up into a triangle (of height 1− h
and base 2

√
2h− h2) and a sector of a circle (with angle 2π − 2θ). The area of the

triangle is
(1− h)︸ ︷︷ ︸
height

√
2h− h2︸ ︷︷ ︸
1
2
base

.

The area of the sector is (
2π − 2θ

2π

)
︸ ︷︷ ︸
fraction
of circle

(π · 12)︸ ︷︷ ︸
area

of circle

= π − θ.

Remember: what we want is to find
dA

dt
, and what we know is

dh

dt
= 0.01 metres

per second. If we find θ in terms of h, we find A in terms of h, and then differentiate
with respect to t.
Since θ is an angle in a right triangle with hypotenuse 1 and adjacent side length
1−h, cos θ = 1−h

1
= 1−h. We want to conclude that θ = arccos(1−h), but let’s be

a little careful: remember that the range of the arccosine function is angles in [0, π].
We must be confident that 0 ≤ θ ≤ π in order to conclude θ = arccos(1 − h)–but
clearly, θ is in this range. (Remark: we could also have said sin θ =

√
2h−h2

1
, and

so θ = arcsin
(√

2h− h2
)
. This would require −π

2
≤ θ ≤ π

2
, which is true when

830



Solutions to Exercises

h < 1, but false for h > 1. Since our problem asks about h = 0.25, we could also
use arcsine.)
Now, we know the area of the open pipe in terms of h.

A = (area of triangle) + (area of sector)

= (1− h)
√

2h− h2 + (π − θ)
= (1− h)

√
2h− h2 + π − arccos (1− h)

We want to differentiate with respect to t. Using the chain rule:

dA

dt
=

dA

dh
· dh

dt

dA

dt
=

(
(1− h)

2− 2h

2
√

2h− h2
+ (−1)

√
2h− h2 +

−1√
1− (1− h)2

)
dh

dt

=

(
(1− h)2

√
2h− h2

−
√

2h− h2 − 1√
2h− h2

)
dh

dt

=

(
(1− h)2 − 1√

2h− h2
−
√

2h− h2

)
dh

dt

=

(−(2h− h2)√
2h− h2

−
√

2h− h2

)
dh

dt

=
(
−
√

2h− h2 −
√

2h− h2
) dh

dt

= −2
√

2h− h2
dh

dt

We note here that the negative sign makes sense: as the door lowers, h increases

and A decreases, so
dh

dt
and

dA

dt
should have opposite signs.

When h =
1

4
metres, and

dh

dt
=

1

100
metres per second:

dA

dt
= −2

√
2

4
− 1

42

(
1

100

)
= −
√

7

200

cm2

s

Since
dF

dt
=

1

5

dA

dt
:

dF

dt
= −

√
7

1000

m3

sec2

That is, the flow is decreasing at a rate of
√

7

1000

m3

sec2
.
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3.2.2.20. Solution. We are given the rate of change of the volume of liquid, and
are asked for the rate of change of the height of the liquid. So, we need an equation
relating volume and height.

The volume V of a cone with height h and radius r is 1
3
πr2h. Since we know

dV

dt
,

and want to know
dh

dt
, we need to find a way to deal with the unwanted variable r.

We can find r in terms of h by using similar triangles. Viewed from the side, the
conical glass is an equilateral triangle, as is the water in it. Using the Pythagorean
Theorem, the cone has height 5

√
3.

h

r
10

5

5
√

3

Using similar triangles,
r

h
=

5

5
√

3
, so r =

h√
3
. (Remark: we could also use the

fact that the water forms a cone that looks like an equilateral triangle when viewed

from the side to conclude r =
h√
3
.)

Now, we can write the volume of water in the cone in terms of h, and no other
variables.

V =
1

3
πr2h

=
1

3
π

(
h√
3

)2

h

=
π

9
h3

Differentiating with respect to t:

dV

dt
=
π

3
h2 dh

dt

When h = 7 cm and
dV

dt
= −5 mL per minute,

−5 =
π

3
(49)

dh

dt
dh

dt
=
−15

49π
≈ −0.097 cm per minute
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Exercises — Stage 3
3.2.2.21. Solution. As is so often the case, we use a right triangle in this problem
to relate the quantities.

2

θ

D

sin θ =
D

2
D = 2 sin θ

Using the chain rule, we differentiate both sides with respect to time, t.

dD

dt
= 2 cos θ · dθ

dt

So, if
dθ

dt
= 0.25 radians per hour and θ =

π

4
radians, then

(a)
dD

dt
= 2 cos

(π
4

)
· 0.25 = 2

(
1√
2

)
1

4
=

1

2
√

2
metres per hour.

Setting aside part (b) for a moment, let’s think about (c). If
dθ

dt
and

dD

dt
have

different signs, then because
dD

dt
= 2 cos θ · dθ

dt
, that means cos θ < 0. We have to

have a nonnegative depth, so D > 0 and D = 2 sin θ implies sin θ > 0. If sin θ ≥ 0
and cos θ < 0, then θ ∈ (π/2, π]. On the diagram, that looks like this:

2
θD

That is: the water has reversed direction. This happens, for instance, when a river
empties into the ocean and the tide is high. Skookumchuck Narrows provincial park,
in the Sunshine Coast, has reversing rapids.
Now, let’s return to (b). If the rope is only 2 metres long, and the river rises higher
than 2 metres, then our equation D = 2 sin θ doesn’t work any more: the buoy
might be stationary underwater while the water rises or falls (but stays at or above
2 metres deep).

3.2.2.22. Solution. (a) When the point is at (0,−2), its y-coordinate is not
changing, because it is moving along a horizontal line. So, the rate at which the
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particle moves is simply
dx

dt
. Let θ be the angle an observer would be looking at,

in order to watch the point. Since we know
dθ

dt
, a reasonable plan is to find an

equation relating θ and x, and then differentiate implicitly with respect to t. To do
this, let’s return to our diagram.

x

y

x

θ
2

When the point is a little to the right of (0,−2), then we can make a triangle with

the origin, as shown. If we let θ be the indicated angle, then
dθ

dt
= 1 radian per

second. (It is given that the observer is turning one radian per second, so this is
how fast θ is increasing.) From the right triangle in the diagram, we see

tan θ =
x

2

Now, we have to take care of a subtle point. The diagram we drew only makes sense
for the point when it is at a position a little to the right of (0,−2). So, right now,
we’ve only made a set-up that will find the derivative from the right. But, with a
little more thought, we see that even when x is negative (that is, when the point
is a little to the left of (0,−2)), our equation holds if we are careful about how we
define θ. Let θ be the angle between the line connecting the point and the origin,
and the y-axis, where θ is negative when the point is to the left of the y-axis.
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x

y

|x|

2|θ|

Since x and θ are both negative when the point is to the left of the y-axis,

tan |θ| = 2

|x|
tan(−θ) =

−x
2

So, since tan(−θ) = − tan(θ):

tan θ =
x

2

So, we’ve shown that the relationship tan θ =
x

2
holds when our point is at (x,−2),

regardless of the sign of x.

Moving on, since we are given
dθ

dt
and asked for

dx

dt
, we differentiate with respect

to t:

sec2 θ · dθ

dt
=

1

2
· dx

dt

When the point is at (0,−2), since the observer is turning at one radian per second,

also
dθ

dt
= 1. Also, looking at the diagram, θ = 0. Plugging in these values:

sec2 (0) · (1) =
1

2
· dx

dt

1 =
1

2
· dx

dt
dx

dt
= 2
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So, the particle is moving at 2 units per second.
(b) When the point is at (0, 2), it is moving along a line with slope −1

2
and y-

intercept 2. So, it is on the line

y = 2− 1

2
x

That is, at time t, if the point is at (x(t), y(t)), then x(t) and y(t) satisfy y(t) =
2− 1

2
x(t). Implicitly differentiating with respect to t:

dy

dt
= −1

2
· dx

dt

So, when
dx

dt
= 1,

dy

dt
= −1

2
. That is, its y-coordinate is decreasing at

1

2
unit per

second.
For the question “How fast is the point moving?”, remember that the velocity of
an object can be found by differentiating (with respect to time) the equation that
gives the position of the object. The complicating factors in this case are that (1)
the position of our object is not given as a function of time, and (2) the position
of our object is given in two dimensions (an x coordinate and a y coordinate), not
one.
Remark: the solution below is actually pretty complicated. It is within your abilities
to figure it out, but later on in your mathematical career you will learn an easier way,
using vectors. For now, take this as a relatively tough exercise, and a motivation to
keep learning: your intuition that there must be an easier way is well founded!
The point is moving along a straight line. So, to take care of complication (2), we
can give its position as a point on the line. We can take the line as a sort of axis.
We’ll need to choose a point on the axis to be the “origin”: (2, 1) is a convenient
point. Let D be the point’s (signed) distance along the “axis” from (2, 1). When
the point is a distance of one unit to the left of (2, 1), we’ll have D = −1, and
when the point is a distance of one unit to the right of (2, 1), we’ll have D = 1.

Then D changes with respect to time, and
dD

dt
is the velocity of the point. Since we

know
dx

dt
and

dy

dt
, a reasonable plan is to find an equation relating x, y, and D, and

differentiate implicitly with respect to t. (This implicit differentiation takes care of
complication (1).) Using the Pythagorean Theorem:

D2 = (x− 2)2 + (y − 1)2

Differentiating with respect to t:

2D · dD

dt
= 2(x− 2) · dx

dt
+ 2(y − 1) · dy

dt

We plug in x = 0, y = 2, dx
dt

= 1, dy
dt

= −1
2
, and D = −

√
(0− 2)2 + (2− 1)2 = −

√
5

(negative because the point is to the left of (2, 1)):

−2
√

5 · dD

dt
= 2(−2)(1) + 2(1)

(
−1

2

)
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dD

dt
=

√
5

2
units per second

3.2.2.23. Solution. (a) Since the perimeter of the bottle is unchanged (you
aren’t stretching the plastic), it is always the same as the perimeter before it was
smooshed, which is the circumference of a circle of radius 5, or 2π(5) = 10π. So,
using our approximation for the perimeter of an ellipse,

10π = π
[
3(a+ b)−

√
(a+ 3b)(3a+ b)

]
10 = 3(a+ b)−

√
(a+ 3b)(3a+ b)

(b) The area of the base of the bottle is πab (see Section A.10), and its height is 20
cm, so the volume of the bottle is

V = 20πab

(c) As you smoosh the bottle, its volume decreases, so the water spills out. (If
it turns out that the volume is increasing, then no water is spilling out–but life
experience suggests, and our calculations verify, that this is not the case.) The

water will spill out at a rate of −dV

dt
cubic centimetres per second, where V is the

volume inside the bottle. We know something about a and
da

dt
, so a reasonable plan

is to differentiate the equation from (b) (relating V and a) with respect to t.
Using the product rule, we differentiate the equation in (b) implicitly with respect
to t and get

dV

dt
= 20π

(
da

dt
b+ a

db

dt

)
So, we need to find the values of a, b,

da

dt
, and

db

dt
at the moment when a = 2b.

The equation from (a) tells us 10 = 3(a+ b)−
√

(a+ 3b)(3a+ b). So, when a = 2b,

10 = 3(2b+ b)−
√

(2b+ 3b)(6b+ b)

10 = 9b−
√

(5b)(7b) = b
(

9−
√

35
)

b=
10

9−
√

35

where we use the fact that b is a positive number, so
√
b2 = |b| = b.

Since a = 2b,

a=
20

9−
√

35
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Now we know a and b at the moment when a = 2b. We still need to know
da

dt
and

db

dt
at that moment. Since a = 5+t, always

da

dt
= 1. The equation from (a) relates a

and b, so differentiating both sides with respect to t will give us an equation relating
da

dt
and

db

dt
. When differentiating the portion with a square root, be careful not to

forget the chain rule.

0 = 3

(
da

dt
+

db

dt

)
−
(

da
dt

+ 3db
dt

)
(3a+ b) + (a+ 3b)

(
3da

dt
+ db

dt

)
2
√

(a+ 3b)(3a+ b)

Since
da

dt
= 1:

0 = 3

(
1 +

db

dt

)
−
(
1 + 3db

dt

)
(3a+ b) + (a+ 3b)

(
3 + db

dt

)
2
√

(a+ 3b)(3a+ b)

At this point, we could plug in the values we know for a and b at the moment
when a = 2b. However, the algebra goes a little smoother if we start by plugging in
a = 2b:

0 = 3

(
1 +

db

dt

)
−
(
1 + 3db

dt

)
(7b) + (5b)

(
3 + db

dt

)
2
√

(5b)(7b)

0 = 3

(
1 +

db

dt

)
− b

(
7 + 21db

dt
+ 15 + 5db

dt

)
2b
√

35

0 = 3

(
1 +

db

dt

)
− 22 + 26db

dt

2
√

35

0 = 3 + 3
db

dt
− 11√

35
− 13√

35

db

dt

−3 +
11√
35

=

(
3− 13√

35

)
db

dt

db

dt
=
−3 + 11√

35

3− 13√
35

=
−3
√

35 + 11

3
√

35− 13

Now, we can calculate
dV

dt
at the moment when a = 2b. We already found

dV

dt
= 20π

(
da

dt
b+ a

db

dt

)

So, plugging in the values of a, b,
da

dt
, and

db

dt
at the moment when a = 2b:

dV

dt
= 20π

(
(1)

(
10

9−
√

35

)
+

(
20

9−
√

35

)(−3
√

35 + 11

3
√

35− 13

))
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=
200π

9−
√

35

(
1− 2

(
3
√

35− 11

3
√

35− 13

))

≈ −375.4
cm3

sec

So the water is spilling out of the cup at about 375.4 cubic centimetres per second.
Remark: the algebra in this problem got a little nasty, but the method behind its
solution is no more difficult than most of the problems in this section. One of the
reasons why calculus is so widely taught in universities is to give you lots of practice
with problem-solving: taking a big problem, breaking it into pieces you can manage,
solving the pieces, and getting a solution.
A problem like this can sometimes derail people. Breaking it up into pieces isn’t so
hard, but when you actually do those pieces, you can get confused and forget why
you are doing the calculations you’re doing. If you find yourself in this situation,
look back a few steps to remind yourself why you started the calculation you just
did. It can also be helpful to write notes, like “We are trying to find dV

dt
. We already

know that dV
dt

= .... We still need to find a, b, da
dt

and db
dt
.”

3.2.2.24. Solution. Since A = 0, the equation relating the variables tells us:

0 = log
(
C2 +D2 + 1

)
1 = C2 +D2 + 1

0 = C2 +D2

0 = C = D

This will probably be useful information. Since we’re also given the value of a deriva-
tive, let’s differentiate the equation relating the variables implicitly with respect to

t. For ease of notation, we will write
dA

dt
= A′, etc.

A′B + AB′ =
2CC ′ + 2DD′

C2 +D2 + 1

At t = 10, A = C = D = 0:

A′B + 0 =
0 + 0

0 + 0 + 1

A′B = 0

at t = 10, A′ = 2 units per second:

2B = 0

B = 0.

3.3 · Exponential Growth and Decay — a First Look
at Differential Equations
3.3.4 · Exercises
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· Exercises for § 3.3.1

Exercises — Stage 1
3.3.4.1. Solution. In the beginning of this section, the text says “A differential
equation is an equation for an unknown function that involves the derivative of the
unknown function.” Our unknown function is y, so a differential equation is an

equation that relates y and
dy

dx
. This applies to (a) and (b), but not (c), (d), or (e).

Note that
dx

dx
= 1: this is the derivative of x with respect to x.

3.3.4.2. Solution. Theorem 3.3.2 tells us that a function is a solution to the
differential equation

dQ

dt
= kQ(t) if and only if the function has the form Q(t) =

Cekt for some constant C. In our case, we want Q(t) = 5
dQ

dt
, so

dQ

dt
=

1

5
Q(t). So,

the theorem tells us that the solutions are the functions of the form Q(t) = Cet/5.
This applies to (a) (with C = 0) and (d) (with C = 1), but none of the other
functions.
We don’t actually need a theorem to answer this question, though: we can just test
every option.

a
dQ

dt
= 0, so Q(t) = 0 = 5 · 0 = 5

dQ

dt
, so (a) is a solution.

b
dQ

dt
= 5et = Q(t), so Q(t) =

dQ

dt
6= 5

dQ

dt
, so (b) is not a solution.

c
dQ

dt
= 5e5t = 5Q(t), so Q(t) =

1

5

dQ

dt
6= 5

dQ

dt
, so (c) is not a solution.

d
dQ

dt
=

1

5
et/5 =

1

5
Q(t), so Q(t) = 5

dQ

dt
, so (d) is a solution.

e
dQ

dt
=

1

5
et/5 =

1

5
(Q(t)− 1), so Q(t) = 5

dQ

dt
+ 1, so (e) is not a solution.

3.3.4.3. Solution. What we’re asked to find is when

Q(t) = 0

That is,

Ce−kt = 0

If C = 0, then this is the case for all t. There was no isotope to begin with, and
there will continue not being any undecayed isotope forever.
If C > 0, then since e−kt > 0, also Q(t) > 0: so Q(t) is never 0 for any value of t.
(But as t gets bigger and bigger, Q(t) gets closer and closer to 0.)
Remark: The last result is somewhat disturbing: surely at some point the last
atom has decayed. The differential equation we use is a model that assumes Q runs
continuously. This is a good approximation only when there is a very large number
of atoms. In practice, that is almost always the case.
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Exercises — Stage 2
3.3.4.4. ∗. Solution. The two pieces of information give us

f(0) = A = 5 f(7) = Ae7k = π

Thus we know that A = 5 and so π = f(7) = 5e7k. Hence

e7k =
π

5
7k = log(π/5)

k =
1

7
· log(π/5).

where we use log to mean natural logarithm, loge.

3.3.4.5. ∗. Solution. In Theorem 3.3.2, we saw that if y is a function of t, and
dy

dt
= −ky, then y = Ce−kt for some constant C.

Our equation y satisfies
dy

dt
= −3y, so the theorem tells us y = Ce−3t for some

constant C.
We are also told that y(1) = 2. So, 2 = Ce−3×1 tells us C = 2e3. Then:

y = 2e3 · e−3t = 2e−3(t−1).

3.3.4.6. Solution. The amount of Carbon-14 in the sample t years after the
animal died will be

Q(t) = 5e−kt

for some constant k (where 5 is the amount of Carbon-14 in the sample at time
t = 0). So, the answer we’re looking for is Q(10000). We need to replace k with an
actual number to evaluate Q(10000), and the key to doing this is the half-life. The
text tells us that the half-life of Carbon-14 is 5730 years, so we know:

Q(5730) =
5

2

5e−k·5730 =
5

2(
e−k
)5730

=
1

2

e−k =
5730

√
1

2
= 2−

1
5730

So:

Q(t) = 5
(
e−k
)t

= 5 · 2−
t

5730

Now, we can evaluate:

Q(10000) = 5 · 2−
10000
5730 ≈ 1.5 µg
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Remark: after 2(5730) = 11, 460 years, the sample will have been sitting for two
half-lives, so its remaining Carbon-14 will be a quarter of its original amount, or
1.25 µg. It makes sense that at 10,000 years, the sample will contain slightly more
Carbon-14 than at 11,460 years. Indeed, 1.5 is slightly larger than 1.25, so our
answer seems plausible.
It’s a good habit to look for ways to quickly check whether your answer seems
plausible, since a small algebra error can easily turn into a big error in your solution.

3.3.4.7. Solution. Let 100 years ago be the time t = 0. Then if Q(t) is the
amount of Radium-226 in the sample, Q(0) = 1, and

Q(t) = e−kt

for some positive constant k. When t = 100, the amount of Radium-226 left is
0.9576 grams, so

0.9576 = Q(100) = e−k·100 =
(
e−k
)100

e−k = 0.9576
1

100

This tells us

Q(t) = 0.9576
t

100

So, if half the original amount of Radium-226 is left,

1

2
= 0.9576

t
100

log

(
1

2

)
= log

(
0.9576

t
100

)
− log 2 =

t

100
log(0.9576)

t = −100
log 2

log 0.9576
≈ 1600

So, the half life of Radium-226 is about 1600 years.

3.3.4.8. ∗. Solution. Let Q(t) denote the mass at time t. Then
dQ

dt
is the rate

at which the mass is changing. Since the rate the mass is decreasing is proportional

to the mass remaining, we know
dQ

dt
= −kQ(t), where k is a positive constant.

(Remark: since Q is decreasing,
dQ

dt
is negative. Since we cannot have a negative

mass, if we choose k to be positive, then k and Q are both positive–this is why we
added the negative sign.)
The information given in the question is:

Q(0) = 6
dQ

dt
= −kQ(t) Q(1) = 1
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for some constant k > 0. By Theorem 3.3.2, we know

Q(t) = Ce−kt

for some constant C. Since Q(0) = Ce0 = C, the given information tells us 6 = C.
(This is the initial mass of our sample.) So, Q(t) = 6e−kt. To get the full picture
of the behaviour of Q, we should find k. We do this using the given information
Q(1) = 1:

1 = Q(1) = 6e−k(1)

6−1 =
1

6
= e−k

So, all together,

Q(t) = 6
(
e−k
)t

= 6 ·
(
6−1
)t

= 61−t

The question asks us to determine the time th which obeys Q(th) =
6

2
= 3. Now

that we know the equation for Q(t), we simply solve:

Q(t) = 61−t

3 = Q(th) = 61−th

log 3 = log
(
61−th) = (1− th) log 6

log 3

log 6
= 1− th

th = 1− log 3

log 6
=

log 6− log 3

log 6
=

log 2

log 6

The half-life of Polonium-210 is
log 2

log 6
years, or about 141 days.

Remark: The actual half-life of Polonium-210 is closer to 138 days. The numbers
in the question are made to work out nicely, at the expense of some accuracy.

3.3.4.9. Solution. The amount of Radium-221 in a sample will be

Q(t) = Ce−kt

where C is the amount in the sample at time t = 0, and k is some positive constant.
We know the half-life of the isotope, so we can find e−k:

C

2
= Q(30) = Ce−k·30

1

2
=
(
e−k
)30

2−
1
30 = e−k

So,

Q(t) = C
(
e−k
)t

= C · 2−
t

30

843



Solutions to Exercises

When only 0.01% of the original sample is left, Q(t) = 0.0001C:

0.0001C = Q(t) = C · 2−
t

30

0.0001 = 2−
t

30

log(0.0001) = log

(
2−

t
30

)
log
(
10−4

)
= − t

30
log 2

−4 log 10 = − t

30
log 2

t = 120 · log 10

log 2
≈ 398.6

It takes about 398.6 seconds (that is, roughly 6 and a half minutes) for all but 0.01%
of the sample to decay.
Remark: we can do another reality check here. The half-life is 30 seconds. 6
and a half minutes represents 13 half-lives. So, the sample is halved 13 times:(

1
2

)13 ≈ 0.00012 = 0.012%. So these 13 half-lives should reduce the sample to
about 0.01% of its original amount, as desired.

Exercises — Stage 3
3.3.4.10. Solution. We know that the amount of Polonium-210 in a sample after
t days is given by

Q(t) = Ce−kt

where C is the original amount of the sample, and k is some positive constant.
The question asks us what percentage of the sample decays in a day. Since t is
measured in days, the amount that decays in a day is Q(t)−Q(t+1). The percentage

of Q(t) that this represents is 100
Q(t)−Q(t+ 1)

Q(t)
. (For example, if there were two

grams at time t, and one gram at time t+1, then 100
2− 1

1
= 50: 50% of the sample

decayed in a day.)
In order to simplify, we should figure out a better expression for Q(t). As usual, we
make use of the half-life.

Q(138) =
C

2

Ce−k·138 =
C

2(
e−k
)138

=
1

2
= 2−1

e−k = 2−
1

138

Now, we have a better formula for Q(t):

Q(t) = C
(
e−k
)t
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Q(t) = C · 2−
t

138

Finally, we can evaluate what percentage of the sample decays in a day.

100
Q(t)−Q(t+ 1)

Q(t)
= 100

C · 2−
t

138 − C · 2−
t+1
138

C · 2−
t

138

( 1
C
1
C

)

= 100
2−

t
138 − 2−

t+1
138

2−
t

138

= 100

(
2−

t
138 − 2−

t+1
138

)
2

t
138

= 100

(
1− 2−

1
138

)
≈ 0.5

About 0.5% of the sample decays in a day.
Remark: when we say that half a percent of the sample decays in a day, we don’t
mean half a percent of the original sample. If a day starts out with, say, 1 mi-
crogram, then what decays in the next 24 hours is about half a percent of that 1
microgram, regardless of what the “original” sample (at some time t = 0) held.
In particular, since the sample is getting smaller and smaller, that half of a percent
that decays every day represents fewer and fewer actual atoms decaying. That’s
why we can’t say that half of the sample (50%) will decay after about 100 days,
even though 0.5% decays every day and 100× 0.5 = 50.

3.3.4.11. Solution. The amount of Uranium-232 in the sample of ore at time t
will be

Q(t) = Q(0)e−kt

where 6.9 ≤ Q(0) ≤ 7.5. We don’t exactly know Q(0), and we don’t exactly know
the half-life, so we also won’t exactly know Q(10): we can only say that is it between
two numbers. Our strategy is to find the highest and lowest possible values of Q(10),
given the information in the problem. In order for the most possible Uranium-232
to be in the sample after 10 years, we should start with the most and have the
longest half-life (since this represents the slowest decay). So, we take Q(0) = 7.5
and Q(70) = 1

2
(7.5).

Q(t) = 7.5e−kt

1

2
(7.5) = Q(70) = 7.5e−k(70)

1

2
=
(
e−k
)70

2−
1
70 = e−k

So, in this secenario,

Q(t) = 7.5 · 2−
t

70

845



Solutions to Exercises

After ten years,

Q(10) = 7.5 · 2−
10
70 ≈ 6.79

So after ten years, the sample contains at most 6.8 µg. Now, let’s think about the
least possible amount of Uranium-232 that could be left after 10 years. We should
start with as little as possible, so take Q(0) = 6.9, and the sample should decay
quickly, so take the half-life to be 68.8 years.

Q(t) = 6.9e−kt

1

2
6.9 = Q(68.8) = 6.9e−k(68.8)

1

2
=
(
e−k
)68.8

2−
1

68.8 = e−k

In this scenario,

Q(t) = 6.9 · 2−
t

68.8

After ten years,

Q(10) = 6.9 · 2−
10

68.8 ≈ 6.24

So after ten years, the sample contains at least 6.2 µg.
After ten years, the sample contains between 6.2 and 6.8 µg of Uranium-232.

· Exercises for § 3.3.2

Exercises — Stage 1
3.3.4.1. Solution. Using Corollary 3.3.8 (with A = 20 and K = 5), solutions to
the differential equation all have the form

T (t) = [T (0)− 20]e5t + 20

for some constant T (0). This fits (a) (with T (0) = 20), (c) (with T (0) = 21), and
(d) (with T (0) = 40), but not (b) (since the constant has the wrong sign).
Instead of using the corollary, we can also just check each function for ourselves.

a
dT

dt
= 0 = 5 · 0 = 5[T (t) − 20], so (a) gives a solution to the differential

equation.

b
dT

dt
= 5[20e5t] = 5[T + 20] 6= 5[T − 20], so (b) does not give a solution to the

differential equation.

c
dT

dt
= 5[e5t] = 5[T − 20], so (c) gives a solution to the differential equation.
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d
dT

dt
= 5[20e5t] = 5[T − 20], so (d) gives a solution to the differential equation.

3.3.4.2. Solution. From Newton’s Law of Cooling and Corollary 3.3.8, the tem-
perature of the object will be

T (t) = [T (0)− A]eKt + A

where A is the ambient temperature (the temperature of the room), T (0) is the
initial temperature of the copper, and K is some constant. So, the ambient
temperature–the temperature of the room– is −10 degrees. Since the coefficient
of the exponential part of the function is positive, the temperature of the object is
higher than the temperature of the room.

3.3.4.3. Solution. As t grows very large, T (t) approaches A. That is:

lim
t→∞

T (t) = A

lim
t→∞

[T (0)− A]eKt + A = A

lim
t→∞

[T (0)− A]eKt = 0

Since the object is warmer than the room, T (0)− A is a nonzero constant. So,

lim
t→∞

eKt = 0

This tells us that K is a negative number. So, K must be negative–not zero, and
not positive.
Remark: in our work, we used the fact that the object and the room have different
temperatures (but it didn’t matter which one was hotter). If not, then T (0) = A,
and T (t) = A: that is, the temperature of the object is constant. In this case, our
usual form for the temperature of the object looks like this:

T (t) = 0eKt + A

Keeping the exponential piece in there is overkill: the temperature isn’t chang-
ing, the function is simply constant. If the object and the room have the same
temperature, K could be any real number since we’re multiplying eKt by zero.
Remark: contrast this to Question 3.3.4.9.

3.3.4.4. Solution. We want to know when

[T (0)− A]ekt + A = A

That is, when

[T (0)− A]ekt = 0

Since ekt > 0 for all values of k and t, this happens exactly when

T (0)− A = 0
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So: if the initial temperature of the object is not the same as the ambient temper-
ature, then according to this model, it never will be! (However, as t gets larger and
larger, T (t) gets closer and closer to A–it just never exactly reaches there.)
If the initial temperature of the object starts out the same as the ambient temper-
ature, then T (t) = A for all values of t.

Exercises — Stage 2
3.3.4.5. Solution. From Newton’s Law of Cooling and Corollary 3.3.8, we know
the temperature of the copper will be

T (t) = [T (0)− A]eKt + A

where A is the ambient temperature (100◦), T (0) is the temperature of the copper
at time 0 (let’s make this the instant it was dumped in the water, so T (0) = 25◦),
and K is some constant. That is:

T (t) = [25− 100]eKt + 100

= −75eKt + 100

The information given tells us that T (10) = 90, so

90 = −75e10K + 100

75
(
eK
)10

= 10(
eK
)10

=
2

15

eK =

(
2

15

) 1
10

This lets us describe T (t) without any unknown constants.

T (t) = −75
(
eK
)t

+ 100

= −75

(
2

15

) t
10

+ 100

The question asks what value of t gives T (t) = 99.9.

99.9 = −75

(
2

15

) t
10

+ 100

75

(
2

15

) t
10

= 0.1(
2

15

) t
10

=
1

750

log

( 2

15

) t
10

 = log

(
1

750

)
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t

10
log

(
2

15

)
= − log(750)

t =
−10 log(750)

log
(

2
15

) ≈ 32.9

It takes about 32.9 seconds.
3.3.4.6. Solution. The temperature of the stone t minutes after taking it from
the bonfire is

T (t) = [T (0)− A]eKt + A

= [500− 0]eKt + 0

= 500eKt

for some constant K. We are given that T (10) = 100.

100 = T (10) = 500e10K

e10K =
1

5

eK = 5−
1
10

This gives us the more complete picture for the temperature of the stone.

T (t) = 500
(
eK
)t

= 500 · 5−
t

10

If T (t) = 50 :

50 = T (t) = 500 · 5−
t

10

1

10
= 10−1 = 5−

t
10

10 = 5
t

10

log(10) =
t

10
log(5)

t = 10
log(10)

log(5)
≈ 14.3

So the stone has been out of the fire for about 14.3 minutes.

Exercises — Stage 3
3.3.4.7. ∗. Solution.

• First scenario: At time 0, Newton mixes 9 parts coffee at temperature 95◦ C
with 1 part cream at temperature 5◦ C. The resulting mixture has temperature

9× 95 + 1× 5

9 + 1
= 86◦
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The mixture cools according to Newton’s Law of Cooling, with initial tem-
perature 86◦ and ambient temperature 22◦:

T (t) = [86− 22]e−kt + 22

T (t) = 64e−kt + 22

After 10 minutes,

54 = T (10) = 22 + 64e−10k

e−10k =
54− 22

64
=

1

2

We could compute k from this, but we don’t need it.

• Second scenario: At time 0, Newton gets hot coffee at temperature 95◦ C. It
cools according to Newton’s Law of Cooling

T (t) = [T (0)− 22]e−kt + 22

In this second scenario, T (0) = 95, so

T (t) = [95− 22]e−kt + 22 = 73e−kt + 22

The value of k is the same as in the first scenario, so after 10 minutes

T (10) = 22 + 73e−10k = 22 + 73
1

2
= 58.5

This cooled coffee is mixed with cold cream to yield a mixture of temperature

9× 58.5 + 1× 5

9 + 1
= 53.15

Under the second (add cream just before drinking) scenario, the coffee ends up
cooler by 0.85◦ C .

3.3.4.8. ∗. Solution.

a By Newton’s law of cooling, the rate of change of temperature is proportional
to the difference between T (t) and the ambient temperature, which in this
case is 30◦. Thus

dT

dt
= k[T (t)− 30]

for some constant of proportionality k. To answer part (a), all we have to do
is find k.

Under Newton’s Law of Cooling, the temperature at time t will be given by

T (t) = [T (0)− A]ekt + A

= [5− 30]ekt + 30
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= −25ekt + 30

We are told T (5) = 10:

10 = −25e5k + 30

25e5k = 20

e5k =
4

5
5k = log(4/5)

k = 1
5

log(4/5)

So, the differential equation is

dT

dt
(t) =

1

5
log(4/5)[T (t)− 30]

b Since T (t) = 30− 25ekt, the temperature of the tea is 20◦ when

30− 25ekt = 20

ekt =
10

25

kt = log

(
10

25

)
t =

1

k
log

2

5

=
5 log(2/5)

log(4/5)

≈ 20.53 min

3.3.4.9. Solution. As time goes on, temperatures that follow Newton’s Law of
Cooling get closer and closer to the ambient temperature. So, lim

t→∞
T (t) exists. In

particular, lim
t→∞

0.8kt exists.

• If k < 0, then lim
t→∞

0.8kt =∞, since 0.8 < 1. So, k ≥ 0.

• If k = 0, then T (t) = 16 for all values of t. But, in the statement of the
question, the object is changing temperature. So, k > 0.

Therefore, k is positive.
Remark: contrast this to Question 3.3.4.3. The reason we get a different answer is
that our base in this question (0.8) is less than one, while the base in Question 3.3.4.3
(e) is greater than one.
Although the given equation T (t) does not exactly look like the Newton’s Law
equations we’re used to, it is equivalent. Remembering elog(0.8) = 0.8:

T (t) = 0.8kt + 15
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=
(
elog 0.8

)kt
+ 15

= e(k log 0.8)t + 15

= [16− 15]e(k log 0.8)t + 15

= [16− 15]eKt + 15

with K = k log 0.8. This is now the more familiar form for Newton’s Law of Cooling
(with A = 15 and T (0) = 16).
Since 0.8 < 1, log(0.8) is negative, so k and K have opposite signs.

· Exercises for § 3.3.3

Exercises — Stage 1
3.3.4.1. Solution. Since b is a positive constant, lim

t→∞
ebt =∞. Therefore:

lim
t→∞

P (t) = lim
t→∞

P (0)ebt =

{
0 if P (0) = 0

∞ if P (0) > 0

If P (0) = 0, then the model simply says “a population that starts with no individ-
uals continues to have no individuals indefinitely,” which certainly makes sense. If
P (0) 6= 0, then (since we can’t have a negative population) P (0) > 0, and the model
says “a population that starts out with some individuals will end up with any gigan-
tically huge number you can think of, given enough time.” This one doesn’t make
so much sense. Populations only grow to a certain finite amount, due to scarcity of
resources and such. In the derivation of the Malthusian model, we assume a con-
stant net birth rate–that the birth and death rates (per individual) don’t depend
on the population, which is not a reasonable assumption long-term.

Exercises — Stage 2
3.3.4.2. Solution. The assumption that the animals grow according to the
Malthusian model tells us that their population t years after 2015 is given by
P (t) = 121ebt for some constant b, since 121 = P (0), the population 0 years af-
ter 2015. The information about 2016 tells us

136 = P (1) = 121eb

136

121
= eb

This gives us a better idea of P (t):

P (t) = 121ebt = 121

(
136

121

)t
2020 is 5 years after 2015, so in 2020 (assuming the population keeps growing
according to the Malthusian model) the population will be

P (5) = 121

(
136

121

)5

≈ 217
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In 2020, the Malthusian model predicts the herd will number 217 individuals.

3.3.4.3. Solution. Since the initial population of bacteria is 1000 individuals, the
Malthusian model says that the population of bacteria t hours after being placed in
the dish will be P (t) = 1000ebt for some constant b. Since P (1) = 2000,

2000 = P (1) = 1000eb

2 = eb

So, the population at time t is

P (t) = 1000 · 2t

We want to know at what time the population triples, to 3,000 individuals.

3000 = 1000 · 2t
3 = 2t

log(3) = log
(
2t
)

= t log(2)

t =
log(3)

log(2)
≈ 1.6

The population triples in about 1.6 hours. Note that the tripling time depends only
on the constant b. In particular, it does not depend on the initial condition P (0).

3.3.4.4. Solution. According to the Malthusian Model, if the ship wrecked at
year t = 0 and 2 rats washed up on the island, then t years after the wreck, the
population of rats will be

P (t) = 2ebt

for some constant b. We want to get rid of this extraneous variable b, so we use the
given information. If 1928 is a years after the wreck:

1000 = P (a) = 2eba

1500 = P (a+ 1) = 2eb(a+1) = 2ebaeb

So,

(1000)
(
eb
)

=
(
2eba

) (
eb
)

= 1500

Which tells us

eb =
1500

1000
= 1.5

Now, our model is complete:

P (t) = 2
(
eb
)t

= 2 · 1.5t

Since P (a) = 1000, we can find a:

1000 = P (a) = 2 · 1.5a
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500 = 1.5a

log(500) = log (1.5a) = a log(1.5)

a =
log(500)

log(1.5)
≈ 15.3

So, the year 1928 was about 15.3 years after the shipwreck. Since we aren’t given
a month when the rats reached exactly 1000 in number, that puts the shipwreck at
the year 1912 or 1913.

3.3.4.5. Solution. The Malthusian model suggests that, if we start with P (0)
cochineals, their population after 3 months will be

P (t) = P (0)ebt

for some constant b. The constant b is the net birthrate per population member
per unit time. Assuming that the net birthrate for a larger population will be the
same as the test population, we can use the data from the test to find eb. Let Q(t)
be the number of individuals in the test population at time t.

Q(t) = Q(0)ebt = 200ebt

1000 = Q(3) = 200e3b

5 = e3b

eb = 51/3

Now that we have an idea of the birthrate, we predict

P (t) = P (0)
(
eb
)t

= P (0) · 5
t
3

We want P (12) = 106 + P (0).

106 + P (0) = P (12) = P (0) · 5
12
3 = P (0) · 54

106 = P (0) · 54 − P (0) = P (0)
[
54 − 1

]
P (0) =

106

54 − 1
≈ 1603

The farmer should use an initial population of (at least) about 1603 individuals.
Remark: if we hadn’t specified that we need to save P (0) individuals to start next
year’s population, the number of individual cochineals we would want to start with
to get a million in a year would be 1600–almost the same!

Exercises — Stage 3
3.3.4.6. Solution.

• [(a)] Since f(t) gives the amount of the radioactive isotope in the sample at
time t, the amount of the radioactive isotope in the sample when t = 0 is
f(0) = 100e0 = 100 units. Since the sample is decaying, f(t) is decreasing,
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so f ′(t) is negative. Differentiating, f ′(t) = k(100ekt). Since 100ekt is positive
and f ′(t) is negative, k is negative.

• [(b)] Since f(t) gives the size of the population at time t, the number of
individuals in the population when t = 0 is f(0) = 100e0 = 100. Since the
population is growing, f(t) is increasing, so f ′(t) is positive. Differentiating,
f ′(t) = k(100ekt). Since 100ekt is positive and f ′(t) is positive, k is also
positive.

• [(c)] Newton’s Law of Cooling gives the temperature of an object at time t as
f(t) = [f(0) − A]ekt + A, where A is the ambient temperature surrounding
the object. In our case, the ambient temperature is 0 degrees. In an object
whose temperature is being modelled by Newton’s Law of Cooling, it doesn’t
matter whether the object is heating or cooling, k is negative. We saw this in
Question 3.3.4.3 of Section 3.3.2, but it bears repeating. Since f(t) approaches
the ambient temperature (in this case, 0) as t goes to infinty:

lim
t→∞

100ekt = 0

so k is negative.

· Further problems for § 3.3

3.3.4.1. ∗. Solution. The first piece of information given tells us
df

dx
= πf(x). Then

by Theorem 3.3.2,

f(x) = Ceπx

for some constant C. The second piece of given information tells us f(0) = 2. Using
this, we can solve for C:

2 = f(0) = Ce0 = C

Now, we know f(x) entirely:

f(x) = 2eπt

So, we can evaluate f(2)

f(2) = 2e2π

3.3.4.2. Solution. To use Corollary 3.3.8, we re-write the differential equation as

dT

dt
= 7

[
T −

(
−9

7

)]
.

Now, A = −9

7
and K = 7, so we see that the solutions to the differential equation have
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the form
T (t) =

[
T (0) +

9

7

]
e7t − 9

7

for some constant T (0).

We can check that this is reasonable: if

T (t) =

[
T (0) +

9

7

]
e7t − 9

7

then

dT

dt
= 7

[
T (0) +

9

7

]
e7t

= 7

[
T +

9

7

]
= 7T + 9.

3.3.4.3. ∗. Solution. Let Q(t) denote the amount of radioactive material after t
days. Then Q(t) = Q(0)ekt. We are told

Q(8) = 0.8Q(0)

So,

Q(0)e8k = 0.8Q(0)

e8k = 0.8

ek = 0.8
1
8

If Q(0) = 100, the time t at which Q(t) = 40 is determined by

40 = Q(t) = Q(0)ekt = 100ekt = 100

(
0.8

1
8

)t
= 100 · 0.8

t
8

Solving for t:

40

100
= 0.8

t
8

log (0.4) = log

(
0.8

t
8

)
=
t

8
log(0.8)

t =
8 log(0.4)

log(0.8)
≈ 32.85 days

100 grams will decay to 40 grams in about 32.85 days.
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3.3.4.4. Solution. Let t = 0 be the time the boiling water is left in the room, and let
T (t) be the temperature of the water t minutes later, so T (0) = 100. Using Newton’s
Law of Cooling, we model the temperature of the water at time t as

T (t) = [100− A]eKt + A

where A is the room temperature, and K is some constant. We are told that T (15) = 85
and T (30) = 73, so:

85 = T (15) = [100− A]e15K + A

73 = T (30) = [100− A]e30K + A

Rearranging both equations:

85− A
100− A = e15K

73− A
100− A = e30K =

(
e15K

)2

Using these equations:(
85− A
100− A

)2

=
(
e15K

)2
= e30K =

73− A
100− A

(85− A)2

100− A = 73− A

(85− A)2 = (73− A)(100− A)

852 − 170A+ A2 = 7300− 173A+ A2

173A− 170A = 7300− 852

3A = 75

A = 25

The room temperature is 25◦ C.

3.3.4.5. ∗. Solution.

a The amount of money at time t obeys
dA

dt
= 0.05A+ 2,000 = 0.05[A− (−40,000)]

Using Corollary 3.3.8

A(t) = [A(0) + 40,000]e0.05t − 40,000

= 90,000 · e0.05t − 40,000

where t = 0 corresponds to the year when the graduate is 25.

When the graduate is 65 years old, t = 40, so

A(40) = 90,000 e0.05×40 − 40, 000 ≈ 625, 015.05
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b When the graduate stops depositing money and instead starts withdrawing money
at a rate W , the equation for A becomes

dA

dt
= 0.05A−W = 0.05[A(t)− 20W ]

Using Corollary 3.3.8 and assuming that the interest rate remains 5%

A(t) = [A(0)− 20W ]e0.05t + 20W

= [625, 015.05− 20W ]e0.05t + 20W

Note that, for part (b), we only care about what happens when the graduate
starts withdrawing money. We take t = 0 to correspond to the year when the
graduate is 65–so we’re using a different t from part (a). Then from part (a),
A(0) = 625, 025.05.

We want the account to be depleted when the graduate is 85. So, we want

0 = A(20)

0 = 20W + e0.05×20(625, 015.05− 20W )

0 = 20W + e(625, 015.05− 20W )

20(e− 1)W = 625, 015.05e

W =
625, 015.05e

20(e− 1)
≈ $49, 437.96

3.3.4.6. ∗. Solution. 3.3.4.6.a The amount of money at time t obeys

dA

dt
= 0.06A− 9,000 = 0.06[A− 150,000]

Using Corollary 3.3.8

A(t) = [A(0)− 150,000]e0.06t + 150,000

= [120,000− 150,000]e0.06t + 150,000

= −30,000e0.06t + 150,000

3.3.4.6.b The money runs out when A(t) = 0.

A(t) = 0

150,000− 30,000 e0.06t = 0

30,000 e0.06t = 150,000

e0.06t = 5

0.06t = log 5

t =
log 5

0.06
≈ 26.8 yrs
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The money runs out in about 26.8 years.
Remark: without earning any interest, the money would have run out in about 13.3
years.

3.3.4.7. ∗. Solution. Let Q(t) denote the number of bacteria at time t. We are
told that Q′(t) = kQ(t) for some constant of proportionality k. Consequently, Q(t) =
Q(0)ekt (Corollary 3.3.2). We are also told

Q(9) = 3Q(0)

So, Q(0)e9k = 3Q(0)

e9k = 3

ek = 3
1
9

The doubling time t obeys:

Q(t) = 2Q(0)

So, Q(0)ekt = 2Q(0)

ekt = 2

3
t
9 = 2

t

9
log 3 = log 2

t = 9
log 2

log 3
≈ 5.68 hr

3.3.4.8. ∗. Solution. (a) We want our differential equation to have the format of
the equation in Corollary 3.3.8:

dv

dt
(t) = −g − kv(t)

= −k
(
v(t) +

g

k

)
= −k

(
v(t)−

(
−g
k

))
So, we can use the corollary, with K = −k, T = v, and A = −g

k
.

v(t) =
(
v(0)−

(
−g
k

))
e−kt − g

k

=
(
v0 +

g

k

)
e−kt − g

k

(b)

lim
t→∞

v(t) = lim
t→∞

[(
v0 +

g

k

)
e−kt − g

k

]
=
(
v0 +

g

k

)(
lim
t→∞

e−kt
)
− g

k
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Since k is positive:

=
(
v0 +

g

k

)
(0)− g

k

= −g
k

Remark: This means, as the object falls, instead of accelerating without bound, it
approaches some maximum speed. The velocity is negative because the object is moving
in the negative direction–downwards.

3.4 · Approximating Functions Near a Specified Point
— Taylor Polynomials
3.4.11 · Exercises
· Exercises for § 3.4.1

Exercises — Stage 1
3.4.11.1. Solution. Since f(0) is closer to g(0) than it is to h(0), you would
probably want to estimate f(0) ≈ g(0) = 1 + 2 sin(1) if you had the means to
efficiently figure out what sin(1) is, and if you were concerned with accuracy. If you
had a calculator, you could use this estimation. Also, later in this chapter we will
learn methods of approximating sin(1) that do not require a calculator, but they
do require time.
Without a calculator, or without a lot of time, using f(0) ≈ h(0) = 0.7 probably
makes the most sense. It isn’t as accurate as f(0) ≈ g(0), but you get an estimate
very quickly, without worrying about figuring out what sin(1) is.
Remark: when you’re approximating something in real life, there probably won’t
be an obvious “correct” way to do it. There’s usually a trade-off between accuracy
and ease.

Exercises — Stage 2
3.4.11.2. Solution. 0.93 is pretty close to 1, and we know log(1) = 0, so we
estimate log(0.93) ≈ log(1) = 0.

x

y

y = f(x)

y = 0

0.93

1

3.4.11.3. Solution. We don’t know arcsin(0.1), but 0.1 is reasonably close to 0,
and arcsin(0) = 0. So, we estimate arcsin(0.1) ≈ 0.
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3.4.11.4. Solution. We don’t know tan(1), but we do know tan
(π

3

)
=
√

3. Since
π

3
≈ 1.047 is pretty close to 1, we estimate

√
3 tan(1) ≈

√
3 tan

(π
3

)
=
(√

3
)2

= 3.

Exercises — Stage 3
3.4.11.5. Solution. Since 10.1 is pretty close to 10, we estimate 10.13 ≈ 103 =
1000.
Remark: these kinds of approximations are very useful when you are doing compu-
tations. It’s easy to make a mistake in your work, and having in mind that 10.13

should be about a thousand is a good way to check that whatever answer you have
makes sense.

· Exercises for § 3.4.2

Exercises — Stage 1
3.4.11.1. Solution. The linear approximation is L(x) = 3x − 9. Since we’re
approximating at x = 5, f(5) = L(5), and f ′(5) = L′(5). However, there is no
guarantee that f(x) and L(x) have the same value when x 6= 5. So:
(a) f(5) = L(5) = 6
(b) f ′(5) = L′(5) = 3
(c) there is not enough information to find f(0).

3.4.11.2. Solution. The linear approximation is a line, passing through (2, f(2)),
with slope f ′(2). That is, the linear approximation to f(x) about x = 2 is the
tangent line to f(x) at x = 2. It is shown below in red.

x

y

y = f(x)

2

3.4.11.3. Solution. For any constant a, f(a) = (2a + 5), and f ′(a) = 2, so our
approximation gives us

f(x) ≈ (2a+ 5) + 2(x− a) = 2x+ 5

Since f(x) itself is a linear function, the linear approximation is actually just f(x)
itself. As a consequence, the linear approximation is perfectly accurate for all values
of x.

861



Solutions to Exercises

Exercises — Stage 2
3.4.11.4. Solution. We have no idea what f(0.93) is, but 0.93 is pretty close to
1, and we definitely know f(1). The linear approximation of f(x) about x = 1 is
given by

f(x) ≈ f(1) + f ′(1)(x− 1)

So, we calculate:

f(1) = log(1) = 0

f ′(x) =
1

x

f ′(1) =
1

1
= 1

Therefore,

f(x) ≈ 0 + 1(x− 1) = x− 1

When x = 0.93:

f(0.93) ≈ 0.93− 1 = −0.07

x

y

y = f(x)

y = x− 1

1

3.4.11.5. Solution. We approximate the function f(x) =
√
x about x = 4, since

4 is a perfect square and it is close to 5.

f(4) =
√

4 = 2

f ′(x) =
1

2
√
x

⇒ f ′(4) =
1

2
√

4
=

1

4

f(x) ≈ f(4) + f ′(4)(x− 4) = 2 +
1

4
(x− 4)

f(5) ≈ 2 +
1

4
(5− 4) =

9

4

We estimate
√

5 ≈ 9

4
.

Remark:
(

9

4

)2

=
81

16
, which is pretty close to

80

16
= 5. Our approximation seems

pretty good.
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3.4.11.6. Solution. We approximate the function f(x) = 5
√
x. We need to centre

the approximation about some value x = a such that we know f(a) and f ′(a), and
a is not too far from 30.

f(x) = 5
√
x = x

1
5

f ′(x) =
1

5
x−

4
5 =

1

5 5
√
x

4

a needs to be a number whose fifth root we know. Since 5
√

32 = 2, and 32 is
reasonably close to 30, a = 32 is a great choice.

f(32) =
5
√

32 = 2

f ′(32) =
1

5 · 24
=

1

80

The linear approximation of f(x) about x = 32 is

f(x) ≈ 2 +
1

80
(x− 32)

When x = 30:

f(30) ≈ 2 +
1

80
(30− 32) = 2− 1

40
=

79

40

We estimate 5
√

30 ≈ 79

40
.

Remark:
79

40
= 1.975, while 5

√
30 ≈ 1.97435. This is a decent estimation.

Exercises — Stage 3
3.4.11.7. Solution. If f(x) = x3, then f(10.1) = 10.13, which is the value we
want to estimate. Let’s take the linear approximation of f(x) about x = 10:

f(10) = 103 = 1000

f ′(x) = 3x2

f ′(10) = 3(102) = 300

f(a) ≈ f(10) + f ′(10)(x− 10)

= 1000 + 300(x− 10)

f(10.1) ≈ 1000 + 300(10.1− 10) = 1030

We estimate 10.13 ≈ 1030. If we calculate 10.13 exactly (which is certainly possible
to do by hand), we get 1030.301.
Remark: in the previous subsection, we used a constant approximation to estimate
10.13 ≈ 1000. That approximation was easy to do in your head, in a matter of
seconds. The linear approximation is more accurate, but not much faster than
simply calculating 10.13.
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3.4.11.8. Solution. There are many possible answers. One is:

f(x) = sin x a = 0 b = π

We know that f(π) = 0 and f(0) = 0. Using a constant approximation of f(x)
about x = 0, our estimation is f(π) ≈ f(0) = 0, which is exactly the correct value.
However, is we make a linear approximation of f(x) about x = 0, we get

f(π) ≈ f(0) + f ′(0)(π − 0) = sin(0) + cos(0)π = π

which is not exactly the correct value.

x

y

π y = f(x)

const

linear

Remark: in reality, we wouldn’t estimate sin(π), because we know its value exactly.
The purpose of this problem is to demonstrate that fancier approximations are not
always more accurate. At the of this section, we’ll talk about how to bound the
error of your estimations, to make sure that you are finding something sufficiently
accurate.

3.4.11.9. Solution. The linear approximation L(x) of f(x) about x = a is chosen
so that L(a) = f(a) and L′(a) = f ′(a). So,

L′(a) = f ′(a) =
1

1 + a2

1

4
=

1

1 + a2

a = ±
√

3

We’ve narrowed down a to
√

3 or −
√

3. Recall the linear approximation of f(x)
about x = a is f(a)+f ′(a)(x−a), so its constant term is f(a)−af ′(a) = arctan(a)−
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a

1 + a2
. We compute this for a =

√
3 and a = −

√
3.

a =
√

3 : arctan (a)− a

1 + a2
= arctan

(√
3
)
−

√
3

1 +
(√

3
)2

=
π

3
−
√

3

4
=

4π −
√

27

12

a = −
√

3 : arctan (a)− a

1 + a2
= arctan

(
−
√

3
)
− −

√
3

1 +
(
−
√

3
)2

= −π
3

+

√
3

4
=
−4π +

√
27

12

So, when a =
√

3,

L(x) =
1

4
x+

4π −
√

27

12

and this does not hold when a = −
√

3. We conclude a =
√

3.

· Exercises for § 3.4.3

Exercises — Stage 1
3.4.11.1. Solution. If Q(x) is the quadratic approximation of f about 3, then
Q(3) = f(3), Q′(3) = f ′(3), andQ′′(3) = f ′′(3). There is no guarantee that f(x) and
Q(x) share the same third derivative, though, so we do not have enough information
to know f ′′′(3).

f(3) = −32 + 6(3) = 9

f ′(3) =
d

dx

{
−x2 + 6x

}∣∣∣∣
x=3

= −2x+ 6|x=3 = 0

f ′′(3) =
d2

dx2

{
−x2 + 6x

}∣∣∣∣
x=3

=
d

dx
{−2x+ 6}

∣∣∣∣
x=3

= −2

3.4.11.2. Solution. The quadratic approximation of f(x) about x = a is

f(x) ≈ f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)2

We subsitute f(a) = 2a+ 5, f ′(a) = 2, and f ′′(a) = 0:

f(x) ≈ (2a+ 5) + 2(x− a) = 2x+ 5

So, our approximation is f(x) ≈ 2x+ 5.
Remark: Our approximation is exact for every value of x. This will always happen
with a quadratic approximation of a function that is quadratic, linear, or constant.
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Exercises — Stage 2
3.4.11.3. Solution. We approximate the function f(x) = log x about the point
x = 1. We choose 1 because it is close to 0.93, and we can evaluate f(x) and its
first two derivatives at x = 1.

f(1) = 0

f ′(x) =
1

x
⇒ f ′(1) = 1

f ′′(x) =
−1

x2
⇒ f ′′(1) = −1

So,

f(x) ≈ f(1) + f ′(1)(x− 1) +
1

2
f ′′(1)(x− 1)2

= 0 + (x− 1)− 1

2
(x− 1)2

When x = 0.93:

f(0.93) ≈ (0.93− 1)− 1

2
(0.93− 1)2 = −0.07− 1

2
(0.0049)

= −0.07245

We estimate log(0.93) ≈ −0.07245.
Remark: a calculator approximates log(0.93) ≈ −0.07257. We’re pretty close.

3.4.11.4. Solution. We approximate the function f(x) = cos x. We can easily
evaluate cosx and sinx (sinx will appear in the first derivative) at x = 0, and 0 is

quite close to
1

15
, so we centre our approximation about x = 0.

f(0) = 1

f ′(x) = − sinx

f ′(0) = − sin(0) = 0

f ′′(x) = − cosx

f ′′(0) = − cos(0) = −1

Using the quadratic approximation f(x) ≈ f(0) + f ′(0)(x− 0) + 1
2
f ′′(0)(x− 0)2:

f(x) ≈ 1− 1

2
x2

f

(
1

15

)
≈ 1− 1

2 · 152
=

449

450

We approximate cos

(
1

15

)
≈ 449

450
.

Remark:
449

450
= 0.9977, while a calculator gives cos

(
1
15

)
≈ 0.9977786. Our approx-

imation has an error of about 0.000001.
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3.4.11.5. Solution. The quadratic approximation of a function f(x) about x = a
is

f(x) ≈ f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)2

We compute derivatives.

f(0) = e0 = 1

f ′(x) = 2e2x

f ′(0) = 2e0 = 2

f ′′(x) = 4e2x

f ′′(0) = 4e0 = 4

Substituting:

f(x) ≈ 1 + 2(x− 0) +
4

2
(x− 0)2

f(x) ≈ 1 + 2x+ 2x2

3.4.11.6. Solution. There are a few functions we could choose to approximate.
For example:

• f(x) = x4/3. In this case, we would probably choose to approximate f(x)
about x = 8 (since 8 is a cube, 84/3 = 24 = 16 is something we can evaluate)
or x = 1.

• f(x) = 5x. We can easily figure out f(x) when x is a whole number, so we
would want to centre our approximation around some whole number x = a,
but then f ′(a) = 5a log(5) gives us a problem: without a calculator, it’s hard
to know what log(5) is.

• Since 54/3 = 5 3
√

5, we can use f(x) = 5 3
√
x. As in the first bullet, we would

centre about x = 8, or x = 1.

There isn’t much difference between the first and third bullets. We’ll go with f(x) =
5 3
√
x, centred about x = 8.

f(x) = 5x
1
3 ⇒ f(8) = 5 · 2 = 10

f ′(x) =
5

3
x−

2
3 ⇒ f ′(8) =

5

3

(
2−2
)

=
5

12

f ′′(x) =
5

3

(
−2

3

)
x−

5
3 = −10

9
x−

5
3 ⇒ f ′′(8) = −10

9

(
2−5
)

= − 5

144

Using the quadratic approximation f(x) ≈ f(a) + f ′(a)(x− a) + 1
2
f ′′(a)(x− a)2:

f(x) ≈ 10 +
5

12
(x− 8)− 5

288
(x− 8)2

f(5) ≈ 10 +
5

12
(−3)− 5

288
(9) =

275

32
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We estimate 54/3 ≈ 275

32

Remark:
275

32
= 8.59375, and a calculator gives 54/3 ≈ 8.5499. Although 5 and 8

are somewhat far apart, our estimate is only off by about 0.04.

3.4.11.7. Solution.

• [3.4.11.7.a] For every value of n, the term being added is simply the constant

1. So,
30∑
n=5

1 = 1+1+ · · ·+1. The trick is figuring out how many 1s are added.

Our index n takes on all integers from 5 to 30, including 5 and 30, which is

26 numbers. So,
30∑
n=5

= 26.

If you’re having a hard time seeing why the sum is 26, instead of 25, think of it
this way: there are thirty numbers in the collection {1, 2, 3, 4, 5, 6, . . . , 29, 30}.
If we remove the first four, we get 30 − 4 = 26 numbers in the collection
{5, 6, . . . , 30}.

• [3.4.11.7.b]

3∑
n=1

[
2(n+ 3)− n2

]
= 2(1 + 3)− 12︸ ︷︷ ︸

n=1

+ 2(2 + 3)− 22︸ ︷︷ ︸
n=2

+ 2(3 + 3)− 32︸ ︷︷ ︸
n=3

= 8− 1 + 10− 4 + 12− 9 = 16

• [3.4.11.7.c]

10∑
n=1

[
1

n
− 1

n+ 1

]
=

1

1
− 1

1 + 1︸ ︷︷ ︸
n=1

+
1

2
− 1

2 + 1︸ ︷︷ ︸
n=2

+
1

3
− 1

3 + 1︸ ︷︷ ︸
n=3

+
1

4
− 1

4 + 1︸ ︷︷ ︸
n=4

+
1

5
− 1

5 + 1︸ ︷︷ ︸
n=5

+
1

6
− 1

6 + 1︸ ︷︷ ︸
n=6

+
1

7
− 1

7 + 1︸ ︷︷ ︸
n=7

+
1

8
− 1

8 + 1︸ ︷︷ ︸
n=8

+
1

9
− 1

9 + 1︸ ︷︷ ︸
n=9

+
1

10
− 1

10 + 1︸ ︷︷ ︸
n=10

Most of these cancel!

=
1

1
−1

2
+

1

2︸ ︷︷ ︸
0

−1

3
+

1

3︸ ︷︷ ︸
0

−1

4
+

1

4︸ ︷︷ ︸
0

−1

5
+

1

5︸ ︷︷ ︸
0

−1

6
+

1

6︸ ︷︷ ︸
0
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−1

7
+

1

7︸ ︷︷ ︸
0

−1

8
+

1

8︸ ︷︷ ︸
0

−1

9
+

1

9︸ ︷︷ ︸
0

− 1

10
+

1

10︸ ︷︷ ︸
0

− 1

11

= 1− 1

11
=

10

11

• [3.4.11.7.d]

4∑
n=1

5 · 2n
4n+1

= 5
4∑

n=1

2n

4 · 4n =
5

4

4∑
n=1

2n

4n
=

5

4

4∑
n=1

1

2n

=
5

4

 1

2︸︷︷︸
n=1

+
1

4︸︷︷︸
n=2

+
1

8︸︷︷︸
n=3

+
1

16︸︷︷︸
n=4

 =
75

64

3.4.11.8. Solution. For each of these, there are many solutions. We provide
some below.

a 1 + 2 + 3 + 4 + 5 =
5∑

n=1

n

b 2 + 4 + 6 + 8 =
4∑

n=1

2n

c 3 + 5 + 7 + 9 + 11 =
5∑

n=1

(2n+ 1)

d 9 + 16 + 25 + 36 + 49 =
7∑

n=3

n2

e 9 + 4 + 16 + 5 + 25 + 6 + 36 + 7 + 49 + 8 =
7∑

n=3

(n2 + n+ 1)

f 8 + 15 + 24 + 35 + 48 =
7∑

n=3

(n2 − 1)

g 3− 6 + 9− 12 + 15− 18 =
6∑

n=1

(−1)n+13n

Remark: if we had written (−1)n instead of (−1)n+1, with everything else the
same, the signs would have been reversed.

Exercises — Stage 3
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3.4.11.9. Solution. Let’s start by taking the first two derivative of f(x).

f(x) = 2 arcsinx ⇒ f(0) = 2(0) = 0

f ′(x) =
2√

1− x2
⇒ f ′(0) =

2

1
= 2

f ′′(x) =
d

dx

{
2(1− x2)−

1
2

}
= 2

(
−1

2

)
(1− x2)−

3
2 (−2x) (chain rule)

=
2x(√

1− x2
)3 ⇒ f ′′(0) = 0

Now, we can find the quadratic approximation about x = 0.

f(x) ≈ f(0) + f ′(0)x+
1

2
f ′′(0)x2

= 2x

f(1) ≈ 2

Our quadratic approximation gives 2 arcsin(1) ≈ 2. However, 2 arcsin(1) is exactly
equal to 2

(π
2

)
= π. We’ve just made the rather unfortunate approximation π ≈ 2.

3.4.11.10. Solution. From the text, the quadratic approximation of ex about
x = 0 is

ex ≈ 1 + x+
1

2
x2

So,

e = e1 ≈ 1 + 1 +
1

2
= 2.5

We estimate e ≈ 2.5.
Remark: actually, e ≈ 2.718.

3.4.11.11. Solution.

• First, we’ll show that 3.4.11.11.a,3.4.11.11.d, 3.4.11.11.e are equivalent:

3.4.11.11.d = 2
10∑
n=1

n = 2(1 + 2 + · · ·+ 10)

= 2(1) + 2(2) + · · ·+ 2(10) =
10∑
n=1

2n

= 3.4.11.11.a

So 3.4.11.11.a and 3.4.11.11.d are equivalent.

3.4.11.11.e = 2
11∑
n=2

(n− 1) = 2(1 + 2 + · · ·+ 10) = 3.4.11.11.d

So 3.4.11.11.e and 3.4.11.11.d are equivalent.

870



Solutions to Exercises

• Second, we’ll show that 3.4.11.11.b and 3.4.11.11.g are equivalent.

3.4.11.11.g =
1

4

10∑
n=1

(
4n+1

2n

)
=

1

4

10∑
n=1

(
4 · 4n

2n

)

=
4

4

10∑
n=1

(
4n

2n

)
=

10∑
n=1

(
4

2

)n
=

10∑
n=1

2n = 3.4.11.11.b

• Third, we’ll show that 3.4.11.11.c and 3.4.11.11.f are equivalent.

3.4.11.11.f =
14∑
n=5

(n− 4)2 = 12 + 22 + · · ·+ 102 =
10∑
n=1

n2

= 3.4.11.11.c

• Now, we have three groups, where each group consists of equivalent expres-
sions. To be quite thorough, we should show that no two of these groups
contain expressions that are secretly equivalent. They would be hard to eval-
uate, but we can bound them and show that no two expressions in two separate
groups could possibly be equivalent. Notice that

10∑
n=1

2n = 21 + 22 + · · ·+ 210 > 210 = 1024

10∑
n=1

n2 <
10∑
n=1

102 = 10(100) = 1000

10∑
n=1

n2 = 12 + 22 + · · · 82 + 92 + 102 > 82 + 92 + 102 = 245

10∑
n=1

2n <
10∑
n=1

20 = 200

The expressions in the blue group add to less than 200, but the expressions in
the green group add to more than 245, and the expressions in the red group
add to more than 1024, so the blue groups expressions can’t possibly simplify
to the same number as the red and green group expressions.
The expressions in the green group add to less than 1000. Since the expressions
in the red group add to more than 1024, the expressions in the green and red
groups can’t possibly simplify to the same numbers.

We group our expressions in to collections of equivalent expressions as follows:

• [3.4.11.11.a=3.4.11.11.d=3.4.11.11.e] and

• [3.4.11.11.b=3.4.11.11.g], and

• [3.4.11.11.c=3.4.11.11.f].
· Exercises for § 3.4.4
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Exercises — Stage 1
3.4.11.1. Solution. Since T3(x) is the third-degree Taylor polynomial for f(x)
about x = 1:

• T3(1) = f(1)

• T ′3(1) = f ′(1)

• T ′′3 (1) = f ′′(1)

• T ′′′3 (1) = f ′′′(1)

In particular, f ′′(1) = T ′′3 (1).

T ′3(x) = 3x2 − 10x+ 9

T ′′3 (x) = 6x− 10

T ′′3 (1) = 6− 10 = −4

So, f ′′(1) = −4.

3.4.11.2. Solution. In Question 3.4.11.1, we differentiated the Taylor polynomial
to find its derivative. We don’t really want to differentiate this ten times, though, so
let’s look for another way. Unlike Question 3.4.11.1, our Taylor polynomial is given
to us in a form very similar to its definition. The nth degree Taylor polynomial for
f(x) about x = 5 is

Tn(x) =
n∑
k=0

f (k)(5)

k!
(x− 5)k

So,

n∑
k=0

f (k)(5)

k!
(x− 5)k =

n∑
k=0

2k + 1

3k − 9
(x− 5)k

For any k from 0 to n,

f (k)(5)

k!
=

2k + 1

3k − 9

In particular, when k = 10,

f (10)(5)

10!
=

20 + 1

30− 9
= 1

f (10)(5) = 10!

Exercises — Stage 3

872



Solutions to Exercises

3.4.11.3. Solution. The fourth-degree Maclaurin polynomial for f(x) is

T4(x) = f(0) + f ′(0)x+
1

2
f ′′(0)x2 +

1

3!
f ′′′(0)x3 +

1

4!
f (4)(0)x4

while the third-degree Maclaurin polynomial for f(x) is

T3(x) = f(0) + f ′(0)x+
1

2
f ′′(0)x2 +

1

3!
f ′′′(0)x3

So, we simply “chop off” the part of T4(x) that includes x4:

T3(x) = −x3 + x2 − x+ 1

3.4.11.4. Solution. We saw this kind of problem in Question 3.4.11.3. The
fourth-degree Taylor polynomial for f(x) about x = 1 is

T4(x) = f(1) + f ′(1)(x− 1) +
1

2
f ′′(1)(x− 1)2 +

1

3!
f ′′′(1)(x− 1)3

+
1

4!
f (4)(1)(x− 1)4

while the third-degree Taylor polynomial for f(x) about x = 1 is

T3(x) = f(1) + f ′(1)(x− 1) +
1

2
f ′′(1)(x− 1)2 +

1

3!
f ′′′(1)(x− 1)3

In in Question 3.4.11.3 we “chopped off” the term of degree 4 to get T3(x). However,
our polynomial is not in this form. It’s not clear, right away, what the term f (4)(x−
1)4 is in our given T4(x). So, we will use a different method from Question 3.4.11.3.
One option is to do some fancy algebra to get T4(x) into the standard form of a
Taylor polynomial. Another option (which we will use) is to recover f(1), f ′(1),
f ′′(1), and f ′′′(1) from T4(x).

Recall that T4(x) and f(x) have the same values at x = 1 (although maybe not any-
where else!), and they also have the same first, second, third, and fourth derivatives
at x = 1 (but again, maybe not anywhere else, and maybe their fifth derivatives
don’t agree). This tells us the following:

T4(x) = x4 + x3 − 9 ⇒ f(1) = T4(1) = −7

T ′4(x) = 4x3 + 3x2 ⇒ f ′(1) = T ′4(1) = 7

T ′′4 (x) = 12x2 + 6x ⇒ f ′′(1) = T ′′4 (1) = 18

T ′′′4 (x) = 24x+ 6 ⇒ f ′′′(1) = T ′′′4 (1) = 30

Now, we can write the third-degree Taylor polynomial for f(x) about x = 1:

T3(x) = −7 + 7(x− 1) +
1

2
(18)(x− 1)2 +

1

3!
(30)(x− 1)3
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= −7 + 7(x− 1) + 9(x− 1)2 + 5(x− 1)3

Remark: expanding the expression above, we get the equivalent polynomial T3(x) =
5x3 − 6x2 + 4x − 10. From this, it is clear that we can’t just “chop off” the term
with x4 to change T4(x) into T3(x) when the Taylor polynomial is not centred about
x = 0.
3.4.11.5. Solution. The nth degree Taylor polynomial for f(x) about x = 5 is

Tn(x) =
n∑
k=0

1

k!
f (k)(5)(x− 5)k

We expand this somewhat:

Tn(x) = f(5) + f ′(x− 5) + · · ·+ 1

10!
f (10)(5)(x− 5)10 + · · ·

+
1

n!
f (n)(5)(x− 1)n

So, the coefficient of (x−5)10 is
1

10!
f (10)(5). Expanding the given form of the Taylor

polynomial:

Tn(x) =

n/2∑
k=0

2k + 1

3k − 9
(x− 5)2k

=
1

−9︸︷︷︸
k=0

+
3

−6
(x− 5)2︸ ︷︷ ︸
k=1

+ · · ·+ 11

6
(x− 5)10︸ ︷︷ ︸
k=5

+ · · ·

+
n+ 1

(3/2)n− 9
(x− 5)n︸ ︷︷ ︸

k=n/2

Equating the coefficients of (x− 5)10 in the two expressions:

1

10!
f (10)(5) =

11

6

f (10)(5) =
11 · 10!

6

3.4.11.6. Solution. Since T3(x) is the third-degree Taylor polynomial for f(x)
about x = a, we know the following things to be true:

• f(a) = T3(a)

• f ′(a) = T ′3(a)

• f ′′(a) = T ′′3 (a)

• f ′′′(a) = T ′′′3 (a)
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But, some of these don’t look super useful. For instance, if we try to use the first
bullet, we get this equation:

a3

[
2 log a− 11

3

]
= −2

3

√
e3 + 3ea− 6

√
ea2 + a3

Solving this would be terrible. Instead, let’s think about how the equations look
when we move further down the list. Since T3(x) is a cubic equation, T ′′′3 (x) is a
constant (and so T ′′′3 (a) does not depend on a). That sounds like it’s probably the
simplest option. Let’s start differentiating. We’ll need to know both f ′′′(a) and
T ′′′3 (a).

f(x) = x3

[
2 log x− 11

3

]
f ′(x) = x3

[
2

x

]
+ 3x2

[
2 log x− 11

3

]
= 6x2 log x− 9x2

f ′′(x) = 6x2 · 1

x
+ 12x log x− 18x = 12x log x− 12x

f ′′′(x) = 12x · 1

x
+ 12 log x− 12 = 12 log x

f ′′′(a)= 12 log a

Now, let’s move to the Taylor polynomial. Remember that e is a constant.

T3(x) = −2

3

√
e3 + 3ex− 6

√
ex2 + x3

T ′3(x) = 3e− 12
√
ex+ 3x2

T ′′3 (x) = −12
√
e+ 6x

T ′′′3 (x) = 6

T ′′′3 (a)= 6

The final bullet point gives us the equation:

f ′′′(a) = T ′′′3 (a)

12 log a = 6

log a =
1

2

a = e
1
2

So, a =
√
e.

· Exercises for § 3.4.5

Exercises — Stage 1
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3.4.11.1. Solution. If we were to find the 16th degree Maclaurin polynomial for
a generic function, we might expect to have to differentiate 16 times (ugh). But, we
know that the derivatives of sines and cosines repeat themselves. So, it’s enough to
figure out the pattern:

f(x) = sin x+ cosx f(0) = 1

f ′(x) = cos x− sinx f ′(0) = 1

f ′′(x) = − sinx− cosx f ′′(0) = −1

f ′′′(x) = − cosx+ sinx f ′′′(0) = −1

f (4) = sinx+ cosx f (4)(0) = 1

Since f (4)(x) = f(x), our derivatives repeat from here. They follow the pattern:
+1, +1, −1, −1.

T16(x) = 1+x−1

2
x2− 1

3!
x3+

1

4!
x4+

1

5!
x5− 1

6!
x6− 1

7!
x7+

1

8!
x8+

1

9!
x9

− 1

10!
x10− 1

11!
x11+

1

12!
x12+

1

13!
x13− 1

14!
x14− 1

15!
x15

+
1

16!
x16

3.4.11.2. Solution. A Taylor polynomial gives a polynomial approximation for
a function s(t). Since s(t) is itself a polynomial, any nth-degree Taylor polynomial,
with n greater than or equal to the degree of s(t), will simply give s(t). So, in our
case, T100(t) = s(t) = 4.9t2 − t+ 10.
If that isn’t satisfying, you can go through the normal method of calculating T100(t).

s(t) = 4.9t2 − t+ 10 s(5) = 4.9(25)− 5 + 10 = 127.5

s′(t) = 9.8t− 1 s′(5) = 9.8(5)− 1 = 48

s′′(t) = 9.8 s′′(5) = 9.8

The rest of the derivatives of s(t) are identically zero, so they are (in particular)
zero when t = 5. Therefore,

T100(t) = 127.5 + 48(t− 5) +
1

2
9.8(t− 5)2

= 127.5 + 48(t− 5) + 4.9(t− 5)2

We can now check that T100(t) really is the same as s(t).

T100(t) = 127.5 + 48(t− 5) + 4.9(t− 5)2

= 127.5 + 48(t− 5) + 4.9(t2 − 10t+ 25)

= [127.5 + 48(−5) + 4.9(25)] + [48− 4.9(10)]t+ 4.9t2

= 10− t+ 4.9t2 = s(t)

3.4.11.3. Solution. Let’s start by differentiating f(x) and looking for a pattern.
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Remember that log 2 = loge 2 is a constant number.

f(x) = 2x

f ′(x) = 2x log 2

f ′′(x) = 2x (log 2)2

f (3)(x) = 2x (log 2)3

f (4)(x) = 2x (log 2)4

f (5)(x) = 2x (log 2)5

So, in general,

f (k)(x) = 2x (log 2)k

We notice that this formula works even when k = 0 and k = 1. When x = 1,

f (k)(1) = 2 (log 2)k

The nth degree Taylor polynomial of f(x) about x = 1 is

Tn(x) =
n∑
k=0

f (k)(1)

k!
(x− 1)k

=
n∑
k=0

2(log 2)k

k!
(x− 1)k

3.4.11.4. Solution. We need to know the first six derivatives of f(x) at x = 1.
Let’s get started.

f(x) = x2 log x+ 2x2 + 5 f(1)= 7

f ′(x) = (x2)
1

x
+ (2x) log x+ 4x

= 2x log x+ 5x f ′(1)= 5

f ′′(x) = (2x)
1

x
+ (2) log x+ 5

= 2 log x+ 7 f ′′(1)= 7

f ′′′(x) = 2x−1 f ′′′(1)= 2

f (4) = −2x−2 f (4)(1)= −2

f (5) = 4x−3 f (5)(1)= 4

f (6) = −12x−4 f (6)(1)= −12

Now, we can plug in.

T6(x) = f(1) + f ′(1)(x− 1) +
1

2
f ′′(1)(x− 1)2 +

1

3!
f ′′′(1)(x− 1)3

+
1

4!
f (4)(1)(x− 1)4 +

1

5!
f (5)(1)(x− 1)5 +

1

6!
f (6)(1)(x− 1)6
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= 7 + 5(x− 1) +
1

2
(7)(x− 1)2 +

1

3!
(2)(x− 1)3

+
1

4!
(−2)(x− 1)4 +

1

5!
(4)(x− 1)5 +

1

6!
(−12)(x− 1)6

= 7 + 5(x− 1) +
7

2
(x− 1)2 +

1

3
(x− 1)3 − 1

12
(x− 1)4

+
1

30
(x− 1)5 − 1

60
(x− 1)6

3.4.11.5. Solution. We’ll start by differentiating and looking for a pattern.

f(x) =
1

1− x = (1− x)−1

Using the chain rule,

f ′(x) = (−1)(1− x)−2(−1) = (1− x)−2

f ′′(x) = (−2)(1− x)−3(−1) = 2(1− x)−3

f (3)(x) = (−3)(2)(1− x)−4(−1) = 2(3)(1− x)−4

f (4)(x) = (−4)(2)(3)(1− x)−5(−1) = 2(3)(4)(1− x)−5

f (5)(x) = (−5)(2)(3)(4)(1− x)−6(−1) = 2(3)(4)(5)(1− x)−6

Recognizing the pattern,

f (k)(x) = k!(1− x)−(k+1)

f (k)(0) = k!(1)−(k+1) = k!

The nth degree Maclaurin polynomial for f(x) is

Tn(x) =
n∑
k=0

f (k)(0)

k!
xk

=
n∑
k=0

k!

k!
xk

=
n∑
k=0

xk

Exercises — Stage 3
3.4.11.6. Solution. We’ll need to know the first three derivatives of xx at x = 1.
This is a good review of logarithmic differentiation, covered in Section 2.10.

f(x) = xx

=⇒ f(1)= 1

log(f(x)) = log (xx) = x log x

d

dx
{log(f(x))} =

d

dx
{x log x}
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f ′(x)

f(x)
= x · 1

x
+ log x = 1 + log x

So

f ′(x) = xx [1 + log x]

=⇒ f ′(1)= 1

f ′′(x) =
d

dx
{xx} [1 + log x] + xx

d

dx
{1 + log x}

= (xx [1 + log x]) [1 + log x] + xx · 1

x

= xx
(

(1 + log x)2 +
1

x

)
=⇒ f ′′(1)= 2

f ′′′(x) =
d

dx
{xx}

(
(1 + log x)2 +

1

x

)
+ xx

d

dx

{
(1 + log x)2 +

1

x

}
= xx [1 + log x]

(
(1 + log x)2 +

1

x

)
+ xx

[
2

x
(1 + log x)− 1

x2

]
= xx

(
(1 + log x)3 +

3

x
(1 + log x)− 1

x2

)
=⇒ f ′′′(1)= 3

Now, we can plug in:

T3(x) = f(1) + f ′(1)(x− 1) +
1

2
f ′′(1)(x− 1)2 +

1

3!
f ′′′(1)(x− 1)3

= 1 + 1(x− 1) +
1

2
(2)(x− 1)2 +

1

6
(3)(x− 1)3

= 1 + (x− 1) + (x− 1)2 +
1

2
(x− 1)3

3.4.11.7. Solution. We note that 6 arctan

(
1√
3

)
= 6

(π
6

)
= π. We will find the

5th-degree Maclaurin polynomial T5(x) for f(x) = 6 arctanx. Then π = f

(
1√
3

)
≈

T5

(
1√
3

)
. Let’s begin by finding the first five derivatives of f(x) = 6 arctanx.

f(x) = 6 arctanx

=⇒ f(0) = 0

f ′(x) = 6

(
1

1 + x2

)
=⇒ f ′(0) = 6

f ′′(x) = 6

(
0− 2x

(1 + x2)2

)
= −12

(
x

(1 + x2)2

)
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=⇒ f ′′(0) = 0

f ′′′(x) = −12

(
(1 + x2)2 − x · 2(1 + x2)(2x)

(1 + x2)4

)
= −12

(
(1 + x2)− 4x2

(1 + x2)3

)
= −12

(
1− 3x2

(1 + x2)3

)
=⇒ f ′′′(0) = −12

f (4)(x) = −12

(
(1 + x2)3(−6x)− (1− 3x2) · 3(1 + x2)2(2x)

(1 + x2)6

)
= −12

(−6x(1 + x2)− 6x(1− 3x2)

(1 + x2)4

)
= 144

(
x− x3

(1 + x2)4

)
=⇒ f (4)(0) = 0

f (5)(x) = 144

(
(1 + x2)4(1− 3x2)− (x− x3) · 4(1 + x2)3(2x)

(1 + x2)8

)
= 144

(
(1 + x2)(1− 3x2)− 8x(x− x3)

(1 + x2)5

)
= 144

5x4 − 10x2 + 1

(1 + x2)5

=⇒ f (5)(0) = 144

We now use these values to compute the 5th-degree Maclaurin polynomial for f(x).

T5(x) = f(0) + f ′(0)x+
1

2
f ′′(0)x2 +

1

3!
f ′′′(0)x3 +

1

4!
f (4)(0)x4

+
1

5!
f (5)(0)x5

= 6x− 12

6
x3 +

144

120
x5

= 6x− 2x3 +
6

5
x5

Now, if we want to approximate f
(

1√
3

)
= 6 arctan

(
1√
3

)
= π:

π = f

(
1√
3

)
≈ T5

(
1√
3

)
=

6√
3
− 2
√

3
3 +

6

5
√

3
5

= 2
√

3

(
1− 1

3 · 3 +
1

5 · 9

)
≈ 3.156

Remark: There are numerous methods for computing π to any desired degree of
accuracy. Many of them use the Maclaurin expansion of arctanx. In 1706 John
Machin computed π to 100 decimal digits by using the Maclaurin expansion together
with π = 16 arctan 1

5
− 4 arctan 1

239
.

880



Solutions to Exercises

3.4.11.8. Solution. Let’s start by differentiating, and looking for a pattern.

f(x) = x(log x− 1) f(1) = −1

f ′(x) = x

(
1

x

)
+ log x− 1 = log x f ′(1) = 0

f ′′(x) =
1

x
= x−1 f ′′(1) = 1

f (3)(x) = (−1)x−2 f (3)(1) = −1

f (4)(x) = (−2)(−1)x−3 = 2!x−3 f (4)(1) = 2!

f (5)(x) = (−3)(−2)(−1)x−4 = −3!x−4 f (4)(1) = −3!

f (6)(x) = (−4)(−3)(−2)(−1)x−5 = 4!x−5 f (4)(1) = 4!

f (7)(x) = (−5)(−4)(−3)(−2)(−1)x−6 = −5!x−6 f (7)(1) = −5!

f (8)(x) = (−6)(−5)(−4)(−3)(−2)(−1)x−7 = 6!x−7 f (8)(1) = 6!

When k ≥ 2, making use of the fact that 0! = 1 and (−1)k−2 = (−1)k:

f (k)(x) = (−1)k−2(k − 2)!x−(k−1) f (k)(1) = (−1)k(k − 2)!

Now we use the standard form of a Taylor polynomial. Since the first two terms
don’t fit the pattern, we add those outside of the sigma.

T100(x) =
100∑
k=0

f (k)(1)

k!
(x− 1)k

= f(1) + f ′(1)(x− 1) +
100∑
k=2

f (k)(1)

k!
(x− 1)k

= −1 + 0(x− 1) +
100∑
k=2

(−1)k(k − 2)!

k!
(x− 1)k

= −1 +
100∑
k=2

(−1)k

k(k − 1)
(x− 1)k

3.4.11.9. Solution. Recall that

T2n(x) =
2n∑
k=0

f (k)
(
π
4

)
k!

(
x− π

4

)k
Let’s start by taking some derivatives. Of course, since we’re differentiating sine,
the derivatives will repeat every four iterations.

f(x) = sinx f
(π

4

)
=

1√
2

f ′(x) = cos x f ′
(π

4

)
=

1√
2

f ′′(x) = − sinx f ′′
(π

4

)
= − 1√

2
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Solutions to Exercises

f ′′′(x) = − cosx f ′′′
(π

4

)
= − 1√

2

So, the pattern of derivatives is
1√
2
,

1√
2
, − 1√

2
, − 1√

2
,

1√
2
,

1√
2
, − 1√

2
, − 1√

2
, etc.

This is a little tricky to write in sigma notation. We can deal with the “doubles” by
separating the even and odd powers. The first few terms of T2n that contain even
powers of

(
x− π

4

)
are

1√
2︸︷︷︸

k=0

− 1

2!
√

2

(
x− π

4

)2

︸ ︷︷ ︸
k=2

+
1

4!
√

2

(
x− π

4

)4

︸ ︷︷ ︸
k=4

Observe that the signs alternate between successive terms. So if we rename k to 2`
these terms are

1√
2︸︷︷︸

`=0

− 1

2!
√

2

(
x− π

4

)2

︸ ︷︷ ︸
`=1

+
1

4!
√

2

(
x− π

4

)4

︸ ︷︷ ︸
`=2

and the `th term here is (−1)`

(2`)!
√

2

(
x− π

4

)2`. To verify that this really is the `th term,
evaluate this for ` = 0, 1, 2 explicitly. When k = 2n, ` = n so that∑

0≤k≤2n
k even

f (k)
(
π
4

)
k!

(
x− π

4

)k
=

n∑
`=0

(−1)`

(2`)!
√

2

(
x− π

4

)2`

Now for the odd powers. The first few terms of T2n that contain odd powers of(
x− π

4

)
are

1√
2

(
x− π

4

)
︸ ︷︷ ︸

k=1

− 1

3!
√

2

(
x− π

4

)3

︸ ︷︷ ︸
k=3

+
1

5!
√

2

(
x− π

4

)5

︸ ︷︷ ︸
k=5

Observe that the signs again alternate between successive terms. So if we rename
k to 2`+ 1 these terms are

1√
2

(
x− π

4

)
︸ ︷︷ ︸

`=0

− 1

3!
√

2

(
x− π

4

)3

︸ ︷︷ ︸
`=1

+
1

5!
√

2

(
x− π

4

)5

︸ ︷︷ ︸
`=2

and the `th term here is (−1)`

(2`+1)!
√

2

(
x− π

4

)2`+1. To verify that this really is the `th

term, evaluate this for ` = 0, 1, 2 explicitly. The largest odd integer that is smaller
than 2n is 2n− 1 and when k = 2n− 1 = 2`+ 1, ` = n− 1 so that

∑
0≤k≤2n
k odd

f (k)
(
π
4

)
k!

(
x− π

4

)k
=

n−1∑
`=0

(−1)`

(2`+ 1)!
√

2

(
x− π

4

)2`+1

Putting the even and odd powers together

T2n(x) =
n∑
`=0

(−1)`

(2`)!
√

2

(
x− π

4

)2`

+
n−1∑
`=0

(−1)`

(2`+ 1)!
√

2

(
x− π

4

)2`+1
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Solutions to Exercises

3.4.11.10. Solution. From Example 3.4.12 in the text, we see that the nth
Maclaurin polynomial for f(x) = ex is

Tn(x) =
n∑
k=0

1

k!
xk = 1 + x+

x2

2
+
x3

3!
+
x4

4!
+ · · ·+ xn

n!

If n = 157 and x = 1,

T157(1) =
157∑
k=0

1

k!
= 1 + 1 +

1

2
+

1

3!
+

1

4!
+ · · ·+ 1

157!

Although we wouldn’t expect T157(1) to be exactly equal to e1, it’s probably pretty
close. So, we estimate

1 +
1

2
+

1

3!
+

1

4!
+ · · ·+ 1

157!
≈ e− 1

3.4.11.11. Solution. While you’re working with sums, it’s easy to mistake a
constant for a function. The sum given in this question is some number : π is a
constant, and k is an index– if you wrote out all 100 terms of this sum, there would
be no letter k. So, the sum given is indeed a number, but we don’t want to have to
add 100 terms to get a good idea of what number it is.
From Example 3.4.14
in the text, we see that the (2n)th-degree Maclaurin polynomial for f(x) = cos x is

T2n(x) =
n∑
k=0

(−1)k

(2k)!
· x2k

If n = 100 and x =
5π

4
, this equation becomes

T200

(
5π

4

)
=

100∑
k=0

(−1)k

(2k)!
·
(

5π

4

)2k

So, the sum corresponds to the 200th Maclaurin polynomial for f(x) = cos x eval-
uated at x = 5π

4
. We should be careful to understand that T200(x) is not equal to

f(x), in general. However, when x is reasonably close to 0, these two functions are
approximations of one another. So, we estimate

100∑
k=0

(−1)k

2k!

(
5π

4

)2k

= T200

(
5π

4

)
≈ cos

(
5π

4

)
= − 1√

2

· Exercises for § 3.4.6

Exercises — Stage 1
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Solutions to Exercises

3.4.11.1. Solution.

x

y

y = f(x)

x x+ ∆x

f(x)

f (x+ ∆x)

∆x

∆y

3.4.11.2. Solution. Let f(x) be the number of problems finished after x minutes
of work. The question tells us that 5∆y ≈ ∆x. So, if ∆x = 15, ∆y ≈ 3. That is, in
15 minutes more, you will finish about 3 more problems.
Remark: the math behind this problem is intended to be easy! Looking at symbols
like ∆y and f (x+ ∆x) can be confusing, but the basic idea is pretty simple.

Exercises — Stage 2
3.4.11.3. Solution. First, let’s find the first and second derivatives of f when
x = 5.

f ′(x) =
1

1 + x2
f ′(5) =

1

26

f ′′(x) =
−2x

(1 + x2)2 f ′′(5) =
−10

262

The linear approximation for ∆y when ∆x =
1

10
is

∆y ≈ f ′(5)∆x =
1

26
· 1

10
=

1

260
≈ 0.003846

The quadratic approximation for ∆y when ∆x =
1

10
is

∆y ≈ f ′(5)∆x+
1

2
f ′′(5) (∆x)2 =

1

26
· 1

10
+

1

2
· −10

262
· 1

102

=
51

13520
≈ 0.003772

Remark: ∆y = arctan(5.1)− arctan(5) ≈ 0.003774.
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3.4.11.4. Solution. (a) When x is near 4, the linear approximation of ∆y is

∆y ≈ s′(4)∆x

From the problem, ∆x = 5− 4 = 1. Differentiating,

s′(t) =
√

19.6 · 1

2
√
x

=

√
4.9

x
, so

s′(4) =

√
4.9

4

The linear approximation gives us

∆y ≈
√

4.9

4
(1) ≈ 1.1

So moving from 4 metres to 5 metres increases the speed with which you hit the
water by about 1.1 metres per second.
(b) Again, we’ll use the linear approximation

∆y ≈ s′(a)∆x

=

√
4.9

a
·∆x

The difference in height between the first two jumps and between the last two jumps
is the same, ∆x. The initial height of the first jump is smaller than the initial height
of the second jump. So, the value corresponding to a is smaller for the first jump
than for the second. Therefore, ∆y is larger between the first two jumps than it is
between the last two jumps. So, the increase in speed from the first jump to the
second is larger than the increase in speed from the second jump to the third.
To put that more symbolically, the change in terminal speed between the first two
jumps is

∆y ≈
√

4.9

x
·∆x

while the change in terminal speed between the next two jumps is

∆y ≈
√

4.9

x+ ∆x
·∆x

Since
√

4.9

x
· ∆x >

√
4.9

x+ ∆x
· ∆x (when x and ∆x are positive), the change in

terminal speed is greater between the first two jumps than between the next two
jumps.

· Exercises for § 3.4.7
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Exercises — Stage 1
3.4.11.1. Solution. False. The linear approximation is an approximation. It
tells us

∆y ≈ f ′(x0)∆x = f ′(2)(1) = 25

However, from our definition of ∆y,

∆y = f(x0 + ∆x)− f(x0) = f(2 + 1)− f(2) = 58− 26 = 32

Remark: this is to emphasize that the calculations in this subsection are estimations
of error bounds, rather than actual error bounds. All we can say is that we estimate
the error will be no more than some number–we don’t guarantee it.
In the next subsection, we will introduce an error bound that is guaranteed to be
accurate. It is usually harder to calculate than the estimations in this section.

3.4.11.2. Solution. When an exact value Q0 is measured as Q0 + ∆Q, Defini-
tion 3.4.25
gives us the absolute error as |∆Q|, and the percentage error as 100

|∆Q|
Q0

.

In our situation, Q0 = 5.83 and Q0 + ∆Q = 6, so ∆Q = 0.17. So, the absolute error
is 0.17, and the percentage error is

100
0.17

5.83
≈ 2.92%

3.4.11.3. Solution. Since f ′(x) = 6x, when x = 10, f ′(10) = 60. If ∆y =
f(11)− f(10), and ∆x = 11− 10, then the linear approximation tells us

∆y ≈ 60∆x = 60

So, the linear approximates estimates the error in f(x) to be about 60.
Since f ′′(x) = 6, the quadratic approximation (using f ′(10) = 60, f ′′(10) = 6, and
∆x = 1) tells us

∆y ≈ f ′(10)∆x+
1

2
f ′′(1) (∆x)2 = 60 · 1 +

1

2
(6)(1)2 = 63

So, the quadratic approximates estimates the error in f(x) to be about 63. (Indeed,
the exact value of f(11) − f(10) is 63. It is not a fluke that our estimated error,
using a quadratic approximation, is exactly the same as our actual error. It is a
consequence of the fact that f(x) is a quadratic function.)

Exercises — Stage 2
3.4.11.4. Solution. Let A be the area of a pen of radius r. Then

A(r) = πr2

Differentiating with respect to r,

A′(r) = 2πr
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The exact area desired is A0. Let the corresponding exact radius desired be r0.

Using the linear approximation formula, where ∆A is the change in A corresponding
to a change in r of ∆r,

∆A ≈ A′(r0)∆r = 2πr0∆r

∆r ≈ ∆A

2πr0

What we’re interested in is the percent error r can have. The percent error is:

100
∆r

r0

≈ 100
∆A

2πr0 · r0

= 100
∆A

2(πr2
0)

= 100
∆A

2 · A0

=

(
100

∆A

A0

)
1

2

≤ (2)
1

2
= 1

(To get the last line, we used the given information that the percent error in the

area, 100
∆A

A0

, must be less than 2%.)

We conclude the error in r cannot be more than 1%.

3.4.11.5. Solution. (a) The area removed represents a proportion of
θ

2π
of the

entire circle, whose area is π(32) = 9π. So, the area of the sector removed is

θ

2π
· 9π =

9

2
θ

(b) To find θ from d, we cut our triangle (with angle θ opposite side of length d)
into two equivalent right triangles, as shown below.

dθ

3 3 d

2
θ
2

Using the information that the radius of the circle (also the hypotenuse of the right
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triangle) is 3,

sin

(
θ

2

)
=

d
2

3
=
d

6

Since the question tells us the sector is no more than a quarter of the circle, we

know 0 ≤ θ ≤ π

2
, so 0 ≤ θ

2
≤ π

4
. This puts

θ

2
well within the range of arcsine.

θ = 2 arcsin

(
d

6

)
(c) First, let’s get an expression for the area of the sector in terms of d.

A =
9

2
θ =

9

2

(
2 arcsin

(
d

6

))
= 9 arcsin

(
d

6

)
Differentiating,

A′(d) =
9√

1−
(
d
6

)2
· 1

6

=
9√

36− d2

Let ∆A is the error in A corresponding to an error of ∆d in d. Since we measured
d to be 0.7 instead of 0.68, in the linear approximation we take ∆d = 0.02 and
d0 = 0.68.

∆A ≈ A′(d0) ·∆d
= A′ (0.68) · 0.02

=
9√

36− 0.682
· 0.02

≈ 0.03

So, the error in A is about 0.03.

3.4.11.6. Solution. Suppose we have a function V (h) that gives the volume of
water in the tank as a function of its height.
Let h0 = 0.5 metres, ∆h = −0.05, and ∆V = V (h0 + ∆h) − V (h0) = V (0.45) −
V (0.5). Then, by the linear approximation,

∆V ≈ V ′(0.5) ·∆h = −0.05V ′(0.5)

In order to solve the problem, we will find a function V (h) giving the volume of
water in terms of the height, then find V ′(0.5), and finally approximate that the
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change in the volume of the water is ∆V ≈ −0.05V ′(0.5).
The water in the tank forms a cone. The volume of a cone of height h and radius
r is

V =
1

3
πr2h

We need to get rid of the variable r. We can do this using similar triangles. The
diagram below shows the side view of the tank and the water.

1

2r
2

h

The side view of the tank forms a triangle that is similar to the triangle formed by
the side view of the water, so

1

2
=

2r

h

r =
h

4

Using this, we find our equation for the volume of the water in terms of h.

V (h) =
1

3
πr2h =

π

3

(
h

4

)2

h =
πh3

48

Differentiating,

V ′(h) =
πh2

16

V ′(0.5) =
0.25π

16
=

π

64

Finally, using the approximation ∆V ≈ −0.05V ′(0.5),

∆V ≈ −0.05π

64
= − π

1280
≈ −0.00245 m3

We estimate that the volume decreased by about 0.00245 cubic metres, or about
2450 cubic centimetres.

Exercises — Stage 3
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3.4.11.7. Solution. Let q be the measured amount of the isotope remaining
after 3 years. Let h(q) be the half-life of the isotope that we calculate using q. We
measured q = 0.9, but we want to know what the change in h is if q moves by
0.05. So, let ∆q = ±0.05, and let ∆h be the corresponding change in h. The linear
approximation tells us

∆h ≈ h′(0.9)∆q

So,

|∆h| ≈ |h′(0.9)| |∆q| = h′(0.9) · 0.05

This suggests a plan for solving the problem. We will find the equation h(q) giving
the calculated half-life of the isotope based on the measurement q. Then, we will
find h′(0.9). Finally, the equation |∆h| = h′(0.9) · 0.05 will tell us the change in h
that corresponds with a change of 0.05 in our measurement.
Let us find the half-life of the isotope, if after three years q µg is remaining. The
amount of the isotope present after t years is given by

Q(t) = Q(0)e−kt

for some constant k. Let’s take t = 0 to be the time when precisely one µg was
present. Then

Q(t) = e−kt

After three years, q is the amount of the isotope remaining, so

q = e−k·3

q
1
3 = e−k

Q(t) =
(
e−k
)t

= q
t
3

The half-life is the value of t for which Q(t) = 1
2
Q(0) = 1

2
.

1

2
= Q(t) = q

t
3

log

(
1

2

)
= log

(
q
t
3

)
− log 2 =

t

3
log q

t =
−3 log 2

log q

So, we calculate the half-life to be
−3 log 2

log q
. This gives us our first goal: a function

h(q) that tells us the calculated half-life of the element.

h(q) =
−3 log 2

log q
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Following our plan, we find h′(0.9).

h′(q) =
d

dq

{−3 log 2

log q

}
= −3 log 2 · d

dq

{
(log q)−1}

= −3 log 2 · (−1) (log q)−2 · 1

q

=
3 log 2

q log2 q

h′(0.9) =
3 log 2

0.9 log2(0.9)
≈ 208

Finally, as outlined in our plan,

|∆h| = h′(0.9) · 0.05

=
3 log 2

18 log2(0.9)
≈ 10.4

If our measurement changes by ±0.05 µg, then we estimate our calculated half-life
changes by about ±10.4 years. Since our measurement is accurate to within 0.05
µg, that means we estimate our calculated half-life to be accurate to within about
10.4 years.

Remark: since h(0.9) =
−3 log 2

log 0.9
≈ 19.7, an absolute error of 10.4 years corresponds

to a percentage error of 100
10.4

19.7
≈ 53%. The question did not specify absolute or

percentage error. Since both make sense, you can use either one.

· Exercises for § 3.4.8

Exercises — Stage 1
3.4.11.1. Solution. From the given information,

|R(10)| = |f(10)− F (10)| = | − 3− 5| = | − 8| = 8

So, (a) is false (since 8 is not less than or equal to 7), while (b), (c), and (d) are
true.
Remark: R(x) is the error in our approximation. As mentioned in the text, we
almost never know R exactly, but we can give a bound. We don’t need the tightest
bound–just a reasonable one that is easy to calculate. If we were dealing with real
functions and approximations, we might not know that |R(10)| = 8, but if we knew
it was at most 9, that would be a pretty decent approximation.
Often in this section, we will make simplifying assumptions to get a bound that is
easy to calculate. But, don’t go overboard! It is a true statement to say that our
absolute error is at most 100, but this statement would probably not be very helpful
as a bound.
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3.4.11.2. Solution. Equation 3.4.33 tells us that, when Tn(x) is the nth degree
Taylor polynomial for a function f(x) about x = a, then

|f(x)− Tn(x)| =
∣∣∣∣f (n+1)(c)

(n+ 1)!
(x− a)n+1

∣∣∣∣
for some c strictly between x and a. In our case, n = 3, a = 0, x = 2, and
f (4)(c) = ec, so

|f(2)− T3(2)| =
∣∣∣∣f (4)(c)

4!
(2− 0)4

∣∣∣∣
=

24

4!
ec =

2

3
ec

Since c is strictly between 0 and 2, ec < e2:

≤ 2

3
e2

but this isn’t a number we really know. Indeed: e2 is the very number we’re trying
to approximate. So, we use the estimation e < 3:

<
2

3
· 32 = 6

We conclude that the error |f(2)− T3(2)| is less than 6.
Now we’ll get a more exact idea of the error using a calculator. (Calculators will
also only give approximations of numbers like e, but they are generally very good
approximations.)

|f(2)− T3(2)| =
∣∣∣∣e2 −

(
1 + 2 +

1

2
· 22 +

1

3!
· 23

)∣∣∣∣
=

∣∣∣∣e2 −
(

1 + 2 + 2 +
4

3

)∣∣∣∣
=

∣∣∣∣e2 − 19

3

∣∣∣∣ ≈ 1.056

So, our actual answer was only off by about 1.
Remark: 1 < 6, so this does not in any way contradict our bound |f(2)−T3(2)| < 6.

3.4.11.3. Solution. Whenever you approximate a polynomial with a Taylor poly-
nomial of greater or equal degree, your Taylor polynomial is exactly the same as the
function you are approximating. So, the error is zero.

3.4.11.4. Solution. The constant approximation gives

sin(33) ≈ sin(0) = 0

while the linear approximation gives

f(x) ≈ f(0) + f ′(0)x
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sin(x) ≈ sin(0) + cos(0)x

= x

sin(33) ≈ 33

Since −1 ≤ sin(33) ≤ 1, the constant approximation is better. (But both are a
little silly.)

x

y

T0(x)

T1(x)

Exercises — Stage 2
3.4.11.5. Solution. Equation 3.4.33 tells us that, when Tn(x) is the nth degree
Taylor polynomial for a function f(x) about x = a, then

|f(x)− Tn(x)| =
∣∣∣∣f (n+1)(c)

(n+ 1)!
(x− a)n+1

∣∣∣∣
for some c strictly between x and a. In our case, n = 5, a = 11, x = 11.5, and

f (6)(c) =
6!(2c− 5)

c+ 3
.

|f(11.5)− T5(11.5)| =
∣∣∣∣ 1

6!

(
6!(2c− 5)

c+ 3

)
(11.5− 11)6

∣∣∣∣
=

∣∣∣∣2c− 5

c+ 3

∣∣∣∣ · 1

26

for some c in (11, 11.5). We don’t know exactly which c this is true for, but since
we know that c lies in (11, 11.5), we can provide bounds.

• 2c− 5 < 2(11.5)− 5 = 18
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• c+ 3 > 11 + 3 = 14

• Therefore,
∣∣∣∣2c− 5

c+ 3

∣∣∣∣ =
2c− 5

c+ 3
<

18

14
=

9

7
when c ∈ (11, 11.5).

With this bound, we see

|f(11.5)− T5(11.5)| =
∣∣∣∣2c− 5

c+ 3

∣∣∣∣ · 1

26

<

(
9

7

)(
1

26

)
≈ 0.0201

Our error is less than 0.02.
3.4.11.6. Solution. Equation 3.4.33 tells us that, when Tn(x) is the nth degree
Taylor polynomial for a function f(x) about x = a, then

|f(x)− Tn(x)| =
∣∣∣∣f (n+1)(c)

(n+ 1)!
(x− a)n+1

∣∣∣∣
for some c strictly between x and a. In our case, n = 2, a = 0, and x = 0.1, so

|f(0.1)− T2(0.1)| =
∣∣∣∣f (3)(c)

3!
(0.1− 0)3

∣∣∣∣
=
|f ′′′(c)|
6000

for some c in (0, 0.1).
We will find f ′′′(x), and use it to give an upper bound for

|f(0.1)− T2(0.1)| = |f
′′′(c)|

6000

when c is in (0, 0.1).

f(x) = tan x

f ′(x) = sec2 x

f ′′(x) = 2 secx · secx tanx

= 2 sec2 x tanx

f ′′′(x) =
(
2 sec2 x

)
sec2 x+ (4 secx · secx tanx) tanx

= 2 sec4 x+ 4 sec2 x tan2 x

When 0 < c <
1

10
, also 0 < c <

π

6
, so:

• tan c < tan
(π

6

)
=

1√
3

• cos c > cos
(π

6

)
=

√
3

2
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• sec c <
2√
3

With these bounds in mind for secant and tangent, we return to the expression we
found for our error.

|f(0.1)− T2(0.1)| = |f
′′′(c)|

6000
=
|2 sec4 x+ 4 sec2 x tan2 x|

6000

<
2
(

2√
3

)4

+ 4
(

2√
3

)2 (
1√
3

)2

6000

=
1

1125

The error is less than
1

1125
.

3.4.11.7. Solution. Equation 3.4.33 tells us that, when Tn(x) is the nth degree
Taylor polynomial for a function f(x) about x = a, then

|f(x)− Tn(x)| =
∣∣∣∣f (n+1)(c)

(n+ 1)!
(x− a)n+1

∣∣∣∣
for some c strictly between x and a. In our case, n = 5, a = 0, and x = −1

4
, so∣∣∣∣f (−1

4

)
− T5

(
−1

4

)∣∣∣∣ =

∣∣∣∣∣f (6)(c)

6!

(
−1

4
− 0

)6
∣∣∣∣∣

=

∣∣f (6)(c)
∣∣

6! · 46

for some c in
(
−1

4
, 0
)
. We’ll need to know the sixth derivative of f(x).

f(x) = log(1− x)

f ′(x) = −(1− x)−1

f ′′(x) = −(1− x)−2

f ′′′(x) = −2(1− x)−3

f (4)(x) = −3!(1− x)−4

f (5)(x) = −4!(1− x)−5

f (6)(x) = −5!(1− x)−6

Plugging in
∣∣f (6)(c)

∣∣ =
5!

(1− c)6
:∣∣∣∣f (−1

4

)
− T5

(
−1

4

)∣∣∣∣ =
5!

6! · 46 · (1− c)6
=

1

6 · 46 · (1− c)6

for some c in
(
−1

4
, 0
)
.

We’re interested in an upper bound for the error: we want to know the worst case
scenario, so we can say that the error is no worse than that. We need to know
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what the biggest possible value of
1

6 · 46 · (1− c)6
is, given −1

4
< c < 0. That

means we want to know the biggest possible value of
1

(1− c)6
. This corresponds to

the smallest possible value of (1 − c)6, which in turn corresponds to the smallest
absolute value of 1− c.

• Since −1

4
≤ c ≤ 0, the smallest absolute value of 1− c occurs when c = 0. In

other words, |1− c| ≤ 1.

• That means the smallest possible value of (1− c)6 is 16 = 1.

• Then the largest possible value of
1

(1− c)6
is 1.

• Then the largest possible value of
1

6 · 46
· 1

(1− c)6
is

1

6 · 46
≈ 0.0000407.

Finally, we conclude∣∣∣∣f (−1

4

)
− T5

(
−1

4

)∣∣∣∣ =
1

6 · 46 · (1− c)6
<

1

6 · 46
< 0.00004

3.4.11.8. Solution. Equation 3.4.33 tells us that, when Tn(x) is the nth degree
Taylor polynomial for a function f(x) about x = a, then

|f(x)− Tn(x)| =
∣∣∣∣f (n+1)(c)

(n+ 1)!
(x− a)n+1

∣∣∣∣
for some c strictly between x and a. In our case, n = 3, a = 30, and x = 32, so

|f(30)− T3(30)| =
∣∣∣∣f (4)(c)

4!
(30− 32)4

∣∣∣∣
=

2

3

∣∣f (4)(c)
∣∣

for some c in (30, 32).
We will now find f (4)(x). Then we can give an upper bound on |f(30)− T3(30)| =
2

3

∣∣f (4)(c)
∣∣ when c ∈ (30, 32).

f(x) = x
1
5

f ′(x) =
1

5
x−

4
5

f ′′(x) = − 4

52
x−

9
5

f ′′′(x) =
4 · 9
53

x−
14
5

f (4)(x) = −4 · 9 · 14

54
x−

19
5
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Using this,

|f(30)− T3(30)| = 2

3

∣∣f (4)(c)
∣∣

=
2

3

∣∣∣∣−4 · 9 · 14

54
c−

19
5

∣∣∣∣
=

336

54 · c
19
5

Since 30 < c < 32,

<
336

54 · 30
19
5

=
336

54 · 303 · 30
4
5

=
14

57 · 9 · 30
4
5

This isn’t a number we know. We’re trying to find the error in our estimation of
5
√

30, but 5
√

30 shows up in our error. From here, we have to be a little creative to
get a bound that actually makes sense to us. There are different ways to go about
it. You could simply use 30

4
5 > 1. We will be a little more careful, and use the

following estimation:

14

57 · 9 · 30
4
5

=
14 · 30

1
5

57 · 9 · 30

<
14 · 32

1
5

57 · 9 · 30

<
14 · 2

57 · 9 · 30

<
14

57 · 9 · 15
< 0.000002

We conclude |f(30)− T3(30)| < 0.000002.

3.4.11.9. Solution. Equation 3.4.33 tells us that, when Tn(x) is the nth degree
Taylor polynomial for a function f(x) about x = a, then

|f(x)− Tn(x)| =
∣∣∣∣f (n+1)(c)

(n+ 1)!
(x− a)n+1

∣∣∣∣
for some c strictly between x and a. In our case, n = 1, a =

1

π
, and x = 0.01, so

|f(0.01)− T1(0.01)| =
∣∣∣∣∣f ′′(c)2

(
0.01− 1

π

)2
∣∣∣∣∣

=
1

2

(
100− π

100π

)2

· |f ′′(c)|
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for some c in
(

1
100
, 1
π

)
.

Let’s find f ′′(x).

f(x) = sin

(
1

x

)
f ′(x) = cos

(
1

x

)
· −1

x2
=
− cos

(
1
x

)
x2

f ′′(x) =
x2 sin

(
1
x

)
(−x−2) + cos

(
1
x

)
(2x)

x4

=
2x cos

(
1
x

)
− sin

(
1
x

)
x4

Now we can plug in a better expression for f ′′(c):

|f(0.01)− T1(0.01)| = 1

2

(
100− π

200π

)2

· |f ′′(c)|

=
1

2

(
100− π

100π

)2

·
∣∣2c cos

(
1
c

)
− sin

(
1
c

)∣∣
c4

for some c in
(

1
100
, 1
π

)
.

What we want to do now is find an upper bound on this expression containing c,
1

2

(
100− π

100π

)2

·
∣∣2c cos

(
1
c

)
− sin

(
1
c

)∣∣
c4

.

• Since c ≥ 1

100
, it follows that c4 ≥ 1

1004
, so

1

c4
≤ 1004.

• For any value of x, | cosx| and | sinx| are at most 1. Since |c| < 1, also
|c cos

(
1
c

)
| < | cos

(
1
c

)
| ≤ 1. So,

∣∣2c cos
(

1
c

)
− sin

(
1
c

)∣∣ < 3

• Therefore,

|f(0.01)− Tn(0.01)|

=
1

2

(
100− π

100π

)2

· 1

c4
·
∣∣∣∣2c cos

(
1

c

)
− sin

(
1

c

)∣∣∣∣
<

1

2

(
100− π

100π

)2

· 1004 · 3

=
3 · 1002

2

(
100

π
− 1

)2

Equation 3.4.33 gives the bound |f(0.01)− T1(0.01)| ≤ 3·1002

2

(
100
π
− 1
)2.

The bound above works out to approximately fourteen million. One way to un-
derstand why the bound is so high is that sin

(
1
x

)
moves about crazily when x is
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near zero–it moves up and down incredibly fast, so a straight line isn’t going to
approximate it very well at all.
That being said, because sin

(
1
x

)
is still “sine of something”, we know −1 ≤

f (0.01) ≤ 1. To get a better bound on the error, let’s find T1(x).

f(x) = sin

(
1

x

)
f

(
1

π

)
= sin(π) = 0

f ′(x) =
− cos

(
1
x

)
x2

f ′
(

1

π

)
= −π2 cos(π) = π2

T1(x) = f

(
1

π

)
+ f ′

(
1

π

)(
x− 1

π

)
= 0 + π2

(
x− 1

π

)
= π2x− π

T1 (0.01) =
π2

100
− π

Now that we know T1(0.01), and we know −1 ≤ f(0.01) ≤ 1, we can give the bound

|f(0.01)− T1(0.01)| ≤ |f(0.01)|+ |T1(0.01)|

≤ 1 +

∣∣∣∣ π2

100
− π

∣∣∣∣
= 1 + π

∣∣∣1− π

100

∣∣∣
< 1 + π

< 1 + 4 = 5

A more reasonable bound on the error is that it is less than 5.
Still more reasonably, we would not use T1(x) to evaluate sin(100) approximately.
We would write sin(100) = sin(100 − 32π) and approximate the right hand side,
which is roughly sin(−π/6).

3.4.11.10. Solution. Equation 3.4.33 tells us that, when Tn(x) is the nth degree
Taylor polynomial for a function f(x) about x = a, then

|f(x)− Tn(x)| =
∣∣∣∣f (n+1)(c)

(n+ 1)!
(x− a)n+1

∣∣∣∣
for some c strictly between x and a. In our case, n = 2, a = 0, and x =

1

2
, so∣∣∣∣f (1

2

)
− T2

(
1

2

)∣∣∣∣ =

∣∣∣∣∣f (3)(c)

3!

(
1

2
− 0

)3
∣∣∣∣∣

=

∣∣f (3)(c)
∣∣

3! · 23
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for some c in
(
0, 1

2

)
. The next task that suggests itself is finding f (3)(x).

f(x) = arcsin x

f ′(x) =
1√

1− x2
= (1− x2)−

1
2

f ′′(x) = −1

2
(1− x2)−

3
2 (−2x)

= x(1− x2)−
3
2

f ′′′(x) = x

(
−3

2

)
(1− x2)−

5
2 (−2x) + (1− x2)−

3
2

= 3x2(1− x2)−
5
2 + (1− x2)−

5
2

+1

= (1− x2)−
5
2
(
3x2 + (1− x2)

)
= (1− x2)−

5
2
(
2x2 + 1

)
Since

∣∣f (1
2

)
− T2

(
1
2

)∣∣ =

∣∣f (3)(c)
∣∣

3! · 23
for some c in

(
0, 1

2

)
,

∣∣∣∣f (1

2

)
− T2

(
1

2

)∣∣∣∣ =

∣∣∣∣∣ 1 + 2c2(√
1− c2

)5

∣∣∣∣∣
3! · 23

=
1 + 2c2

48
(√

1− c2
)5

for some c in
(
0, 1

2

)
.

We want to know what is the worst case scenario-what’s the biggest this expression

can be. So, now we find an upper bound on
1 + 2c2

48
(√

1− c2
)5 when 0 ≤ c ≤ 1

2
.

Remember that our bound doesn’t have to be exact, but it should be relatively easy
to calculate.

• When 0 ≤ c ≤ 1

2
, the biggest 1 + 2c2 can be is 1 + 2

(
1

2

)2

=
3

2
.

So, the numerator of
1 + 2c2

48
(√

1− c2
)5 is at most

3

2
.

• The smallest 1− c2 can be is 1−
(

1

2

)2

=
3

4
.

• So, the smallest
(√

1− c2
)5

can be is

(√
3

4

)5

=

(√
3

2

)5

.

• Then smallest possible value for the denominator of
1 + 2c2

48
(√

1− c2
)5 is

48

(√
3

2

)5
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• Then

1 + 2c2

48
(√

1− c2
)5 ≤

3

2

48

(√
3

2

)5

=
1
√

3
5 =

1

9
√

3

<
1

10

Let’s put together these pieces. We found that∣∣∣∣f (1

2

)
− T2

(
1

2

)∣∣∣∣ =
1 + 2c2

48
(√

1− c2
)5

for some c in
(
0, 1

2

)
. We also found that

1 + 2c2

48
(√

1− c2
)5 <

1

10

when c is in
(
0, 1

2

)
. We conclude∣∣∣∣f (1

2

)
− T2

(
1

2

)∣∣∣∣ < 1

10
.

For the second part of the question, we need to find f
(

1
2

)
and T2

(
1
2

)
. Finding

f
(

1
2

)
is not difficult.

f(x) = arcsin x

f

(
1

2

)
= arcsin

(
1

2

)
=
π

6

In order to find T2

(
1
2

)
, we need to find T2(x).

T2(x) = f(0) + f ′(0)x+
1

2
f ′′(0)x2

Conveniently, we’ve already found the first few derivatives of f(x).

T2(x) = arcsin(0) +

(
1√

1− 02

)
x+

1

2

(
0(√

1− 02
)3

)
x2

= 0 + x+ 0

= x

T2

(
1

2

)
=

1

2

So, the actual error is∣∣∣∣f (1

2

)
− T2

(
1

2

)∣∣∣∣ =

∣∣∣∣π6 − 1

2

∣∣∣∣ =
π

6
− 1

2

A calculator tells us that this is about 0.02.

Exercises — Stage 3

3.4.11.11. Solution. Our error will have the form
f (n+1)(c)

(n+ 1)!
(x− 1)n+1 for some

constant c, so let’s find an equation for f (n)(x). This has been done before in
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the text, but we’ll do it again here: we’ll take several derivatives, then notice the
pattern.

f(x) = log x

f ′(x) = x−1

f ′′(x) = −x−2

f ′′′(x) = 2! x−3

f (4)(x) = −3!x−4

f (5)(x) = 4! x−5

So, when n ≥ 1,

f (n)(x) = (−1)n−1(n− 1)! · x−n

Now that we know the derivative of f(x), we have a better idea what the error in
our approximation looks like.

|f(1.1)− Tn(1.1)| =
∣∣∣∣f (n+1)(c)

(n+ 1)!
(1.1− 1)n+1

∣∣∣∣
=
∣∣f (n+1)(c)

∣∣ 0.1n+1

(n+ 1)!

=

∣∣∣∣ n!

cn+1

∣∣∣∣ 1

10n+1(n+ 1)!

=
1

|c|n+1 · 10n+1 · (n+ 1)

for some c in (1, 1.1)

<
1

(n+ 1)10n+1 · 1n+1

=
1

(n+ 1)10n+1

What we’ve shown so far is

|f(1.1)− Tn(1.1)| < 1

(n+ 1)10n+1

If we can show that
1

(n+ 1)10n+1
≤ 10−4, then we’ll be able to conclude

|f(1.1)− Tn(1.1)| < 1

(n+ 1)10n+1
≤ 10−4

That is, our error is less than 10−4.

So, our goal for the problem is to find a value of n that makes
1

(n+ 1)10n+1
≤ 10−4.

Certainly, n = 3 is such a number. Therefore, any n greater than or equal to 3 is
an acceptable value.
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3.4.11.12. Solution. We will approximate f(x) = x
1
7 using a Taylor polynomial.

Since 37 = 2187, we will use x = 2187 as our centre.
We need to figure out which degree Taylor polynomial will result in a small-enough
error.
If we use the nth Taylor polynomial, our error will be

|f(2200)− Tn(2200)| =
∣∣∣∣f (n+1)(c)

(n+ 1)!
(2200− 2187)n+1

∣∣∣∣
=
∣∣f (n+1)(c)

∣∣ · 13n+1

(n+ 1)!

for some c in (2187, 2200). In order for this to be less than 0.001, we need

∣∣f (n+1)(c)
∣∣ · 13n+1

(n+ 1)!
< 0.001∣∣f (n+1)(c)
∣∣ < (n+ 1)!

1000 · 13n+1

It’s a tricky thing to figure out which n makes this true. Let’s make a table. We
won’t show all the work of filling it in, but the work is standard.

n
(n+ 1)!

1000 · 13n+1

∣∣f (n+1)(c)
∣∣ (n+ 1)!

1000 · 13n+1

0
1

1000 · 13
|f ′(c)| = 1

7c6/7
<

1

7 · 36

1

1000 · 131

1
2

1000 · 132
|f ′′(c)| = 6

72 · c
13
7

<
6

72 · 313

(2)!

1000 · 132

Since
72 · 313

3
= 26, 040, 609 > 169, 000 = 1000 · 132

we have
∣∣f (n+1)(c)

∣∣ < (n+1)!
1000·13n+1 when n = 1.

That is: if we use the first-degree Taylor polynomial, then for some c between 2187
and 2200,

|f(2200)− T1(2200)| = |f ′′(c)| · 132

2!

=
6

72 · c
13
7

· 132

2

<
6

72 · 313
· 132

2

=
3 · 132

72 · 313
≈ 0.0000065
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So, actually, the linear Taylor polynomial (or any higher-degree Taylor polynomial)
will result in an approximation that is much more accurate than required. (We
don’t know, however, that the constant approximation will be accurate enough–so
we’d better stick with n ≥ 1.)
Now that we know we can take the first-degree Taylor polynomial, let’s compute
T1(x). Recall we are taking the Taylor polynomial for f(x) = x

1
7 about x = 2187.

f(2187) = 2187
1
7 = 3

f ′(x) =
1

7
x−

6
7

f ′(2187) =
1

7 7
√

2187
6 =

1

7 · 36

T1(x) = f(2187) + f ′(2187)(x− 2187)

= 3 +
x− 2187

7 · 36

T1(2200) = 3 +
2200− 2187

7 · 36

= 3 +
13

7 · 36

≈ 3.00255

We conclude 7
√

2200 ≈ 3.00255.

3.4.11.13. Solution. If we’re going to use Equation 3.4.33, then we’ll probably
be taking a Taylor polynomial. Using Example 3.4.16, the 6th-degree Maclaurin
polynomial for sinx is

T6(x) = T5(x) = x− x3

3!
+
x5

5!
so let’s play with this a bit. Equation 3.4.33 tells us that the error will depend on
the seventh derivative of f(x), which is − cosx:

f(1)− T6(1) = f (7)(c)
17

7!

sin(1)−
(

1− 1

3!
+

1

5!

)
=
− cos c

7!

sin(1)− 101

5!
=
− cos c

7!

sin(1) =
4242− cos c

7!

for some c between 0 and 1. Since −1 ≤ cos c ≤ 1,
4242− 1

7!
≤ sin(1) ≤ 4242 + 1

7!
4241

7!
≤ sin(1) ≤ 4243

7!
4241

5040
≤ sin(1) ≤ 4243

5040
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Remark: there are lots of ways to play with this idea to get better estimates. One
way is to take a higher-degree Maclaurin polynomial. Another is to note that, since

0 < c < 1 <
π

3
, then

1

2
< cos c < 1, so

4242− 1

7!
< sin(1) <

4242− 1
2

7!
4241

5040
< sin(1) <

8483

10080
<

4243

5040

If you got tighter bounds than asked for in the problem, congratulations!

3.4.11.14. Solution. 3.4.11.14.a For every whole number n, the nth derivative
of ex is ex. So:

T4(x) =
4∑

n=0

e0

n!
xn =

4∑
n=0

xn

n!

3.4.11.14.b

T4(1) =
4∑

n=0

1n

n!
=

4∑
n=0

1

n!

=
1

0!
+

1

1!
+

1

2!
+

1

3!
+

1

4!

=
1

1
+

1

1
+

1

2
+

1

6
+

1

24

=
65

24

3.4.11.14.c Using Equation 3.4.33,

e1 − T4(1) =
1

5!
ec for some strictly between 0 and 1. So,

e− 65

24
=

ec

120

e =
65

24
+

ec

120

Since ex is a strictly increasing function, and 0 < c < 1, we conclude e0 < ec < e1:

65

24
+

1

120
< e <

65

24
+

e

120

Simplifying the left inequality, we see

326

120
< e

From the right inequality, we see

e <
65

24
+

e

120
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e− e

120
<

65

24

e · 119

120
<

65

24

e <
65

24
· 120

119
=

325

119

So, we conclude

326

120
< e <

325

119
,

as desired.
Remark:

326

120
≈ 2.717, and

325

119
≈ 2.731.

· Further problems for § 3.4

Exercises — Stage 1
3.4.11.1. ∗. Solution. The third Maclaurin polynomial for f(x) is

f(0) + f ′(0)x+
f ′′(0)

2
· x2 +

f ′′′(0)

6
· x3 = 4 + 3x2 +

1

2
x3.

The coefficient of x is f ′(0) on one side, and 0 on the other, so f ′(0) = 0.

The coefficient of x2 is
1

2
f ′′(0) on one side, and 3 on the other, so f ′′(0) = 6.

3.4.11.2. ∗. Solution. The third Maclaurin polynomial for h(x) is

h(0) + h′(0)x+
h′′(0)

2
· x2 +

h(3)(0)

3!
· x3 = 1 + 4x− 1

3
x2 +

2

3
x3

The coefficient of x3 is
1

3!
h(3)(0) on one side, and

2

3
on the other. Thus

h(3)(0)

6
=

2

3
,

so h(3)(0) = 6 · 2

3
= 4.

3.4.11.3. ∗. Solution. The third-degree Taylor polynomial for h(x) about x = 2
is

h(2) + h′(2)(x− 2) +
h′′(2)

2
· (x− 2)2 +

h′′′(2)

6
· (x− 2)3

The coefficient of (x− 2) is h′(2) in the definition, and
1

2
in the given function, so

h′(2) =
1

2
.

The coefficient of (x − 2)2 is
1

2
h′′(2) in the definition, and 0 in the given function,

so h′(2) = 0.
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Exercises — Stage 2
3.4.11.4. ∗. Solution.

a For x near 3,

f(x) ≈ f(3) + f ′(3)(x− 3) = 2 + 4(x− 3)

In particular

f(2.98) ≈ 2 + 4(2.98− 3) = 2− 0.08 = 1.92

b For x near 3,

f(x) ≈ f(3) + f ′(3)(x− 3) +
1

2
f ′′(3)(x− 3)2

= 2 + 4(x− 3)− 1

2
10(x− 3)2

In particular

f(2.98) ≈ 2 + 4(2.98− 3)− 5(2.98− 3)2

= 2− 0.08− 0.002 = 1.918

3.4.11.5. ∗. Solution. Let’s name g(x) = x1/3. Then g′(x) =
1

3
x−2/3 and

g′′(x) = −2

9
x−5/3. In particular, g(8) = 2, g′(8) =

1

12
, and g′′(x) < 0 for all x > 0.

The tangent line approximation to 101/3 is

g(10) ≈ g(8) + g′(8)(10− 8)

= 2 +
1

12
(2) =

13

6

Using the error formula:

g(10) = g(8) + g′(8)(10− 8) +
1

2
g′′(c)(10− 8)2

for some 8 < c < 10. Since g′′(c) = − 2

9c5/3
, g′′(c) is negative, so g(10) is

13

6
plus

some negative quantity. So, the tangent line approximation is too big.

3.4.11.6. ∗. Solution. We use the function f(x) =
√
x and point a = 1 as the

centre of our approximation, since we can easily calculate

f(a) = f(1) =
√

1 = 1.

We compute f ′(x) =
1

2
√
x
, so

f ′(1) =
1

2
√

1
=

1

2
.
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So, a linear approximation of
√

2 = f(2) is
√

2 ≈ T1(2) = f(1) + f ′(1) · (2− 1)

= 1 +
1

2
=

3

2
.

3.4.11.7. ∗. Solution. We use the function f(x) = x1/3 and point a = 27 as the
centre of our approximation since we can easily compute

f(27) = 3

We compute f ′(x) =
1

3
x−2/3, so

f ′(27) =
1

3
· (27)−2/3 =

1

27

So, the linear approximation of 261/3 = f(26) is

261/3 ≈ T1 (26) = f(27) + f ′(27) · (26− 27)

= 3− 1

27
=

80

27

3.4.11.8. ∗. Solution. We use the function f(x) = x5 and point a = 10 as the
centre of our approximation since we know that f(a) = f(10) = 105.
Since f ′(x) = 5x4 we have f ′(10) = 50, 000.
So, a linear approximation of 10.15 is

T1(10.1) = f(10) + f ′(10) · (10.1− 10)

= 100, 000 + 50, 000 · 0.1 = 105, 000 .

3.4.11.9. ∗. Solution. We use the function f(x) = sin(x) and point a = π as
the centre of our approximation since we know that

sin(a) = f(π) = sin π = 0.

and π is reasonably close to
101π

100
. We compute f ′(x) = cos(x), so

f ′(π) = cos(π) = −1.

So, the linear approximation of sin
(

101π
100

)
is

f

(
101π

100

)
≈ T1

(
101π

100

)
= f(π) + f ′(π) ·

(
101π

100
− π

)
= 0 + (−1) · π

100
= − π

100
.
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3.4.11.10. ∗. Solution. Set f(x) = arctan(x). Then f ′(x) =
1

1 + x2
, so f ′(1) =

1

2
and

f(1.1) ≈ f(1) + f ′(1)(1.1− 1) =
π

4
+

1

20

3.4.11.11. ∗. Solution. Set f(x) = (2 + x)3, so we are approximating f(0.001).
The obvious choice of a is a = 0.
Then f ′(x) = 3(2 + x)2, so

(2.001)3 = f(0.001) ≈ f(0) + f ′(0)(0.001− 0) = 8 +
12

1000
=

8012

1000

Remark: if we had chosen f(x) = x3 and a = 2, the result would have been exactly
the same.

3.4.11.12. ∗. Solution. We set f(x) = (8 + x)2/3, and choose a = 0 as our

centre. Then f ′(x) =
2

3
(8 + x)−1/3, so that

(8.06)2/3 = f(0.06) ≈ f(0) + f ′(0) · 0.06

= 82/3 +
2

3
8−1/3 · 0.06

=
3
√

8
2

+
2

3 3
√

8
· 0.06

= 22 +
2

3 · 2 · 0.06

= 4 +
1

3
· 0.06

= 4.02 =
402

100

3.4.11.13. ∗. Solution. We begin by finding the derivatives of f at x = 0.

f(x) = (1− 3x)−1/3 f(0) = 1

f ′(x) = (−3)
−1

3
(1− 3x)−4/3 = (1− 3x)−4/3 f ′(0) = 1

f ′′(x) = (−3)
−4

3
(1− 3x)−7/3 = 4(1− 3x)−7/3 f ′′(0) = 4

f (3)(x) = (−3)(4)
−7

3
(1− 3x)−10/3 = 28(1− 3x)−10/3 f (3)(0) = 28

Plugging these into the definition of a Taylor Polynomial, we find that the third–
order Taylor polynomial for f around x = 0 is

T3(x) = 1 + x+
4

2!
x2 +

28

3!
x3

= 1 + x+ 2x2 +
14

3
x3
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3.4.11.14. ∗. Solution.

• By Equation 3.4.33, the absolute value of the error is∣∣∣∣f ′′′(c)3!
· (2− 1)3

∣∣∣∣ =

∣∣∣∣ c

6(22− c2)

∣∣∣∣
for some c ∈ (1, 2).

• When 1 ≤ c ≤ 2, we know that 18 ≤ 22 − c2 ≤ 21, and that numerator and
denominator are non-negative, so∣∣∣∣ c

6(22− c2)

∣∣∣∣ =
c

6(22− c2)
≤ 2

6(22− c2)
≤ 2

6 · 18

=
1

54
≤ 1

50

as required.

• Alternatively, notice that c is an increasing function of c, while 22 − c2 is a
decreasing function of c. Hence the fraction is an increasing function of c and
takes its largest value at c = 2. Hence∣∣∣∣ c

6(22− c2)

∣∣∣∣ ≤ 2

6× 18
=

1

54
≤ 1

50
.

3.4.11.15. ∗. Solution.

• By Equation 3.4.33, there is c ∈ (0, 0.5) such that the error is

R4 =
f (4)(c)

4!
(0.5− 0)4

=
1

24 · 16
· cos(c2)

3− c

• For any c we have | cos(c2)| ≤ 1, and for c < 0.5 we have 3− c > 2.5, so that∣∣∣∣cos(c2)

3− c

∣∣∣∣ ≤ 1

2.5
.

• We conclude that

|R4| ≤
1

2.5 · 24 · 16
=

1

60 · 16
<

1

60 · 10
=

1

600
<

1

500

3.4.11.16. ∗. Solution.

• By Equation 3.4.33, there is c ∈ (0, 1) such that the error is∣∣∣∣f ′′′(c)3!
· (1− 0)3

∣∣∣∣ =

∣∣∣∣ e−c

6(8 + c2)

∣∣∣∣ .
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• When 0 < c < 1, we know that 1 > e−c > e−1 and 8 ≤ 8 + c2 < 9, so∣∣∣∣ e−c

6(8 + c2)

∣∣∣∣ =
e−c

6(8 + c2)

<
1

6|8 + c2|
<

1

6× 8
=

1

48
<

1

40

as required.

• Alternatively, notice that e−c is a decreasing function of c, while for 0 < c 8+c2

is an increasing function of c. Hence the fraction is a decreasing function of c
and takes its largest value at c = 0. Hence∣∣∣∣ ec

6(8 + c2)

∣∣∣∣ ≤ 1

6× 8
=

1

48
<

1

40
.

3.4.11.17. ∗. Solution. 3.4.11.17.a, 3.4.11.17.b:
Let f(x) = x1/3 and x0 = 27. Then

f(x) = x1/3 f ′(x) =
1

3
x−2/3 f ′′(x) = −2

9
x−5/3

f(27) = 271/3 = 3 f ′(27) =
1

3
· 1

32
=

1

27
f ′′(27) = −2

9
· 1

35

= − 2

2187

so that, with x = 25,

52/3 = f(25) ≈ f(27) + f ′(27)(25− 27) = 3− 2

27
≈ 2.9259 (linear approx)

52/3 = f(25) ≈ f(27) + f ′(27)(25− 27) +
1

2
f ′′(27)(25− 27)2

= 3− 2

27
− 1

2
· 2 · 4

2187
≈ 2.9241 (quadratic app)

3.4.11.17.c To obtain an error estimate for the linear approximation, we use that

52/3 = f(25) = f(27) + f ′(27)(25− 27) +
1

2
f ′′(z)(25− 27)2

for some z between 25 and 27. The error is exactly∣∣∣∣12f ′′(z)(25− 27)2

∣∣∣∣ =

∣∣∣∣12
(
−2

9
x−5/3

)
(−2)2

∣∣∣∣ =
4

9
z−5/3.

For z between 25 and 27, z−5/3 is between 25−5/3 and 27−5/3. The biggest this can

be is 25−5/3, so the maximum possible error is {
4

9
25−5/3}.

To get a better idea of what this number is, we note 2.93 < 25, so 4
9
25−5/3 <

4
9
2.9−5 = 0.0022.

911



Solutions to Exercises

Exercises — Stage 3
3.4.11.18. Solution. The fourth-degree Maclaurin polynomial for f(x) is

T4(x) = f(0) + f ′(0)x+
1

2
f ′′(0)x2 +

1

3!
f ′′′(0)x3 +

1

4!
f (4)(0)x4

while the third-degree Maclaurin polynomial for f(x) is

T3(x) = f(0) + f ′(0)x+
1

2
f ′′(0)x2 +

1

3!
f ′′′(0)x3

So, we simply “chop off” the part of T4(x) that includes x4. Since that’s already 0,
in this case T3(x) = T4(x).

T3(x) = 5x2 − 9

3.4.11.19. ∗. Solution. y is a function of x that obeys

y(x)4 + xy(x) = x2 − 1

By implicit differentiation (and then subbing in x = 2, y(2) = 1)

4y(x)3y′(x) + y(x) + xy′(x) = 2x

4y′(2) + 1 + 2y′(2) = 4

y′(2) =
1

2

Differentiating with respect to x a second time and then subbing in x = 2, y(2) = 1,
y′(2) = 1

2
:

12y(x)2y′(x)2 + 4y(x)3y′′(x) + y′(x) + y′(x) + xy′′(x) = 2

12× 1× 1

4
+ 4y′′(2) +

1

2
+

1

2
+ 2y′′(2) = 2

6y′′(2) = −2

y′′(2) = −1

3

The tangent line approximation to y(x) at x = 2 is

y(x) ≈ y(2) + y′(2)(x− 2) = 1 +
1

2
(x− 2)

In particular,

y(2.1) ≈ y(2) + y′(2)(2.1− 2) = 1 +
1

2
(.1) = 1.05

The quadratic approximation to y(x) at x = 2 is

y(x) ≈ y(2) + y′(2)(x− 2) +
1

2
y′′(2)(x− 2)2
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= 1 +
1

2
(x− 2)− 1

6
(x− 2)2

In particular,

y(2.1) ≈ y(2) + y′(2)(2.1− 2) +
1

2
y′′(2)(2.1− 2)2

= 1 +
1

2
(.1)− 1

6
(.1)2 = 1.0483

At x = 2, y = 1 and y′ = 1
2
. So the tangent line passes through (2, 1) and has

slope 1
2
. At x = 2, y′′ = −1

3
, so the graph y = f(x) (locally!) looks like a parabola

pointing down near x = 2. This gives the graph fragment below.
Alternatively, we could observe that, near x = 2, y(x) will be quite close to its
quadratic approximation, 1 + 1

2
(x− 2)− 1

6
(x− 2)2.

3.4.11.20. ∗. Solution. 3.4.11.20.a y is a function of x that obeys

1 = x4 + y(x) + xy(x)4

By implicit differentiation (and then subbing in x = −1, y(−1) = 1)

0 = 4x3 + y′(x) + y(x)4 + 4xy(x)3y′(x)

0 = −4 + y′(−1) + 1− 4y′(−1)

−1 = y′(−1)

Differentiating with respect to x a second time and then subbing in x = −1, y(−1) =
1, and y′(−1) = −1:

0 = 12x2 + y′′(x) + 4y(x)3y′(x) + 4y(x)3y′(x) + 12xy(x)2y′(x)2

+ 4xy(x)3y′′(x)

0 = 12 + y′′(−1)− 4− 4− 12− 4y′′(−1)

−8 = 3y′′(−1)

y′′(−1) = −8

3

The tangent line approximation to y(x) at x = −1 is

y(x) ≈ y(−1) + y′(−1)(x+ 1) = 1− (x+ 1) = −x
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In particular,

y(−0.9) ≈ 0.9

3.4.11.20.b The quadratic approximation to y(x) at x = −1 is

y(x) ≈ y(−1) + y′(−1)(x+ 1) +
1

2
y′′(−1)(x+ 1)2

= 1− (x+ 1)− 4

3
(x+ 1)2

In particular,

y(−0.9) ≈ 1− (.1)− 4

3
(.1)2 ≈ 0.8867

3.4.11.20.c At x = −1, the slope of the curve is y′(−1) = −1. Its tangent line is
falling at 45◦. At x = −1, y′′(−1) = −8

3
, so the slope of the curve is decreasing as x

passes through −1. Zoomed in very close, the curve looks like a parabola opening
downwards. This gives the figure

3.4.11.21. ∗. Solution. Let f(x) = log x and x0 = 10. Then

f(x) = log x f ′(x) =
1

x
f ′′(x) = − 1

x2

f(10) = log 10 ≈ 2.30259 f ′(10) =
1

10
f ′′(10) = − 1

100

so that, with x = 10.3,

log 10.3 = f(10.3) ≈ f(10) + f ′(10)(10.3− 10) = 2.30259 +
0.3

10
= 2.33259

The error in this approximation (excluding the error in the given data log 10 ≈
2.30259) is

1

2
f ′′(z)(10.3 − 10)2 for some z between 10 and 10.3. Because f ′′(z) =

− 1

z2
increases as z increases, it must be between − 1

102
and − 1

10.32
. This forces

1

2
f ′′(z)(10.3−10)2 to be between −1

2
· 1

102
(0.3)2 = −0.00045 and −1

2
· 1

10.32
(0.3)2 <

−0.00042.
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3.4.11.22. ∗. Solution. We begin by finding the values of the derivatives of f
at x = 0. We can use the chain rule, or the formula we found in Question 2.14.2.19,
Section 2.14.

f(x) = ee
x

f(0) = e

f ′(x) = exee
x

f ′(0) = e

f ′′(x) =
(
ex + e2x

)
ee
x

f ′′(0) = 2e

f ′′′(x) =
(
ex + 3e2x + e3x

)
ee
x

(a) L(x) = f(0) + f ′(0)(x− 0) = e+ ex

(b) Q(x) = f(0) + f ′(0)(x− 0) +
1

2
f ′′(0)(x− 0)2 = e+ ex+ ex2

(c) Since ex2 > 0 for all x > 0, L(x) < Q(x) for all x > 0.
From the error formula, we know that

f(x) = f(0) + f ′(0)x+
1

2
f ′′(0)x2 +

1

3!
f ′′′(c)x3

= Q(x) +
1

6

(
ec + 3e2c + e3c

)
ee
c

x3

for some c between 0 and x. Since 1
6

(ec + 3e2c + e3c) ee
c is positive for any c, for all

x > 0, 1
6

(ec + 3e2c + e3c) ee
c
x3 > 0, so Q(x) < f(x).

(d) Write g(x) = ex = 1 + x+
1

2!
ecx2, for some c between 0 and x. For x = 0.1 we

have 0 < c < 0.1 and 1 < ec < e0.1 < e < 3. So

e0.1=f(0.1)=1 + 0.1 +
1

2
ec(0.1)2>1 + 0.1 +

1

2
(1)(0.1)2=1.105

e0.1=f(0.1)=1 + 0.1 +
1

2
ec(0.1)2<1 + 0.1 +

1

2
(3)(0.1)2=1.115

That is, 1.105 < e0.1 < 1.115.

3.5 · Optimisation
3.5.4 · Exercises
· Exercises for § 3.5.1

Exercises — Stage 1
3.5.4.1. Solution.
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x

y

y = f(x)

a

When x = 0, the curve y = f(x) appears to have a flat tangent line, so the x = 0 is
a critical point. However, it is not a local extremum: it is not true that f(0) ≥ f(x)
for all x near 0, and it is not true that f(0) ≤ f(x) for all x near 0.
To the right of the x-axis, there is a spike where the derivative of f(x) does not
exist. The x-value corresponding to this spike (call it a) is a singular point, and
f(x) has a local maximum at x = a.

3.5.4.2. Solution.

x

y

y = f(x)

a b

The x-coordinate corresponding to the blue dot (let’s call it a) is a critical point,
because the tangent line to f(x) at x = a is horizontal. There is no lower point
nearby, and actually no lower point on the whole interval shown, so f(x) has both
a local minimum and a global minimum at x = a.
If a function is not continuous at a point, then it is not differentiable at that point.
So, the x-coordinate corresponding to the discontinuity (let’s call it b) is a singular
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point. Values of f(x) immediately to the right of b are lower, and values immediately
to the left of b are higher, so f(x) has no local (or global) extremum at x = b.

3.5.4.3. Solution. One possible answer is shown below.

x

y

2

For every x in the red interval shown below, f(2) ≥ f(x), so f(2) is a local maximum.
However, the point marked with a blue dot shows that f(x) > f(2) for some x, so
f(2) is not a global maximum.

x

y

2

Exercises — Stage 2
3.5.4.4. Solution. Critical points are those values of x for which f ′(x) = 0, and
singular points are those values of x for which f(x) is not differentiable. So, we
ought to find f ′(x). Using the quotient rule,

f ′(x) =
(1)(x2 + 3)− (x− 1)(2x)

(x2 + 3)2
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=
−x2 + 2x+ 3

(x2 + 3)2

= −(x− 3)(x+ 1)

(x2 + 3)2

(a) The derivative f ′(x) is zero when x = 3 and when x = −1, so those are the
critical points.
(b) The denominator of f ′(x) is never zero, so the derivative f ′(x) exists for all x
and f(x) has no singular points.
(c) Theorem 3.5.4 tells us that local extrema of f(x) can only occur at critical points
and singular points. So, the possible points where extrema of f(x) may exist are
x = 3 and x = −1.

Exercises — Stage 3
3.5.4.5. Solution.

x

y

2

local max

x

y

2

neither

x

y

2

neither

x

y

2

local max

For the first curve, the function’s value at x = 2 (that is, the y-value of the solid
dot) is higher than anything around it. So, it’s a local maximum.
For the second curve, the function’s value at x = 2 (that is, the y-value of the solid
dot) is higher than everything to the left, but lower than values immediately to the
right. (On the graph reproduced below, f(x) is higher than everything in the red
section, and lower than everything in the blue section.) So, it is neither a local max
nor a local min.

x

y

2

Similarly, for the third curve, f(2) is lower than the values to the right of it, and
higher than values to the left of it, so it is neither a local minimum nor a local
maximum.
In the final curve, f(2) (remember–this is the y-value of the solid dot) is higher
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than everything immediately to the left or right of it (for instance, over the interval
marked in red below), so it is a local maximum.

x

y

2

3.5.4.6. Solution. The question specifies that x = 2 must not be an endpoint.
By Theorem 3.5.4, if x = 2 not a critical point, then it must be a singular point.
That is, f(x) is not differentiable at x = 2. Two possibilities are shown below, but
there are infinitely many possible answers.

x

y

2
x

y

2

3.5.4.7. Solution. Critical points are those values of x for which f ′(x) = 0, and
singular points are those values of x for which f(x) is not differentiable. So, we
ought to find f ′(x). Since f(x) has an absolute value sign, let’s re-write it in a
version that is friendlier to differentiation. Remember that |X| = X when X ≥ 0,
and |X| = −X when X < 0.

f(x) =
√
|(x− 5)(x+ 7)|

=

{ √
(x− 5)(x+ 7) if (x− 5)(x+ 7) ≥ 0√
−(x− 5)(x+ 7) if (x− 5)(x+ 7) < 0

The product (x− 5)(x+ 7) is positive when (x− 5) and (x+ 7) have the same sign,
and negative when they have opposite signs, so

f(x) =

{ √
(x− 5)(x+ 7) if x ∈ (−∞,−7] ∪ [5,∞)√
−(x− 5)(x+ 7) if x ∈ (−7, 5)
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Now, when x 6= −7, 5, we can differentiate, using the chain rule.

f ′(x) =


d
dx
{(x−5)(x+7)}

2
√

(x−5)(x+7)
if x ∈ (−∞,−7) ∪ (5,∞)

d
dx
{−(x−5)(x+7)}

2
√
−(x−5)(x+7)

if x ∈ (−7, 5)

?? if x = −7, x = 5

=


2x+2

2
√

(x−5)(x+7)
if x ∈ (−∞,−7) ∪ (5,∞)

−2x−2

2
√
−(x−5)(x+7)

if x ∈ (−7, 5)

?? if x = −7, x = 5

We are tempted to say that the derivative doesn’t exist when x = −7 and x = 5,
but be careful– we don’t actually know that yet. The formulas we have for the f ′(x)
are only good when x is not −7 or 5.

The middle formula
−2x− 2

2
√
−(x− 5)(x+ 7)

tells us x = −1 is a critical point: when

x = −1, f ′(x) is given by the middle line, and it is 0. Note that x = −1 also makes
the top formula 0, but f ′(−1) is not given by the top formula, so that doesn’t
matter.
What we’ve concluded so far is that x = −1 is a critical point of f(x), and f(x)
has no other critical points or singular points when x 6= −7, 5. It remains to figure
out what’s going on at −7 and 5. One way to do this is to use the definition of the
derivative to figure out what f ′(−7) and f ′(5) are, if they exist. This is somewhat
laborious. Let’s look for a better way.

• First, let’s notice that f(x) is defined for all values of x, thanks to that handy
absolute value sign.

• Next, notice f(x) ≥ 0 for all x, since square roots never give a negative value.

• Then if there is some value of x that gives f(x) = 0, that x gives a global
minimum, and therefore a local minimum.

• f(x) = 0 exactly when (x− 5)(x+ 7) = 0, which occurs at x = −7 and x = 5

• Therefore, f(x) has global and local minima at x = −7 and x = 5

• So, x = −7 and x = 5 are critical points or singular points by Theorem 3.5.4.

So, all together:
x = −1 is a critical point, and x = −7 and x = 5 are critical points or singular
points (but we don’t know which).
Remark: if you would like a review of how to use the definition of the derivative,
below we show that f(x) is not differentiable at x = −7. (In fact, x = −7 and
x = 5 are both singular points.)

f ′(−7) = lim
h→0

f(−7 + h)− f(−7)

h
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= lim
h→0

√
|(−13 + h)(h)| −

√
|0|

h

= lim
h→0

√
|(−13 + h)(h)|

h

Let’s first consider the case h > 0.

lim
h→0+

√
|(−13 + h)(h)|

h
= lim

h→0+

√
(13− h)(h)

h

= lim
h→0+

√
13h− h2

√
h2

= lim
h→0+

√
13h− h2

h2

= lim
h→0+

√
13

h
− 1

=∞

Since one side of the limit doesn’t exist,

lim
h→0

f(−7 + h)− (−7)

h
= DNE

so f ′(x) is not differentiable at x = −7. Therefore, x = −7 is a singular point.

3.5.4.8. Solution. For any real number c, c is in the domain of f(x) and f ′(c)
exists and is equal to zero. So, following Definition 3.5.6, every real number is a
critical point of f(x), and f(x) has no singular points.
For every number c, let a = c− 1 and b = c+ 1, so a < c < b. Then f(x) is defined
for every x in the interval [a, b], and f(x) = f(c) for every a ≤ x ≤ b. That means
f(x) ≤ f(c) and f(x) ≥ f(c). So, comparing with Definition 3.5.3, we see that f(x)
has a global and local maximum AND minimum at every real number x = c.

· Exercises for § 3.5.2

Exercises — Stage 1
3.5.4.1. Solution. Two examples are given below, but many are possible.
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x

y

y = −x2

x

y

y = −
√
|x|

If f(x) = −x2 or f(x) = −
√
|x|, then f(x) has a global maximum at x = 0. Since

f(x) keeps getting more and more strongly negative as x gets farther and farther
from 0, f(x) has no global minimum.

3.5.4.2. Solution. Two examples are given below, but many are possible.

x

y

y = ex

If f(x) = ex, then f(x) > 0 for all x. As we move left along the x-axis, f(x) gets
smaller and smaller, approaching 0 but never reaching it. Since f(x) gets smaller
and smaller as we move left, there is no global minimum. Likewise, f(x) increases
more and more as we move right, so there is no maximum.
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x

y

y = arctanx+ 2

If f(x) = arctan(x) + 2, then f(x) >
(
−π

2

)
+ 2 > 0 for all x.

As we move left along the x-axis, f(x) gets smaller and smaller, approaching(
−π

2
+ 2
)
but never reaching it. Since f(x) gets smaller and smaller as we move

left, there is no global minimum.
Likewise, as we move right along the x-axis, f(x) gets bigger and bigger, approaching(
π
2

+ 2
)
but never reaching it. Since f(x) gets bigger and bigger as we move right,

there is no global maximum.

3.5.4.3. Solution. Since f(5) is a global minimum, f(5) ≤ f(x) for all x, and so
in particular f(5) ≤ f(−5).
Similarly, f(−5) ≤ f(x) for all x, so in particular f(−5) ≤ f(5).
Since f(−5) ≤ f(5) AND f(5) ≤ f(−5), it must be true that f(−5) = f(5).
A sketch of one such graph is below.

x

y

y = f(x)

−5 5

Exercises — Stage 2
3.5.4.4. Solution. Global extrema will occur at critical or singular points in the
interval (−5, 5) or at the endpoints x = 5, x = −5.
f ′(x) = 2x + 6. Since this is defined for all real numbers, there are no singular
points. The only time f ′(x) = 0 is when x = −3. This is inside the interval [−5, 5].
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So, our points to check are x = −3, x = −5, and x = 5.

c −3 −5 5

type critical point endpoint endpoint
f(c) −19 −15 45

The global maximum is 45 at x = 5 and the global minimum is −19 at x = −3.

3.5.4.5. Solution. Global extrema will occur at the endpoints of the interval,
x = −4 and x = 0, or at singular or critical points inside the interval. Since f(x)
is a polynomial, it is differentiable everywhere, so there are no singular points. To
find the critical points, we set the derivative equal to zero.

f ′(x) = 2x2 − 4x− 30

0 = 2x2 − 4x− 30 = (2x− 10)(x+ 3)

x = 5, −3

The only critical point inside the interval is x = −3.

c −3 −4 0

type critical point endpoint endpoint
f(c) 61 157

3
= 52 + 1

3
7

The global maximum over the interval is 61 at x = −3, and the global minimum is
7 at x = 0.

· Exercises for § 3.5.3

Exercises — Stage 1
3.5.4.1. ∗. Solution. We compute f ′(x) = 5 x4 − 5, which means that f(x) has
no singular points (i.e., it is differentiable for all values of x), but it has two critical
points:

0 = 5x4 − 5

0 = x4 − 1 = (x2 + 1)(x2 − 1)

0 = x2 − 1

x = ±1

Note, however, that 1 is not in the interval [−2, 0].
The global maximum and the global minimum for f(x) on the interval [−2, 0] will
occur at x = −2, x = 0, or x = −1.

c −2 0 −1

type endpoint endpoint critical point
f(c) −20 2 6

So, the global maximum is f(−1) = 6 while the global minimum is f(−2) = −20.
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3.5.4.2. ∗. Solution. We compute f ′(x) = 5x4 − 5, which means that f(x) has
no singular points (i.e., it is differentiable for all values of x), but it has two critical
points:

0 = 5x4 − 5

0 = x4 − 1 = (x2 + 1)(x2 − 1)

0 = x2 − 1

x = ±1

Note, however, that −1 is not in the interval [0, 2].
The global maximum and the global minimum for f(x) on the interval [0, 2] will
occur at x = 2, x = 0, or x = 1.

c 2 0 1

type endpoint endpoint critical point
f(c) 12 −10 −14

So, the global maximum is f(2) = 12 while the global minimum is f(1) = −14.

3.5.4.3. ∗. Solution. We compute f ′(x) = 6x2 − 12x = 6x(x− 2), which means
that f(x) has no singular points (i.e., it is differentiable for all values of x), but it
has the two critical points: x = 0 and x = 2. Note, however, 0 is not in the interval
[1, 4].

c 1 4 2

type endpoint endpoint critical point
f(c) −6 30 −10

So, the global maximum is f(4) = 30 while the global minimum is f(2) = −10.

3.5.4.4. ∗. Solution. Since h(x) is a polynomial, it has no singular points. We
compute its critical points:

h′(x) = 3x2 − 12

0 = 3x2 − 12

x = ±2

Notice as x → ∞, h(x) → ∞, and as x → −∞ h(x) → −∞. So Theorem 3.5.17
doesn’t exactly apply. Instead, let’s consider the signs of h′(x).

x (−∞,−2) (−2, 2) (2,∞)

h′(x) > 0 < 0 > 0

h(x) increasing decreasing increasing

So, h(x) increases until x = −2, then decreases. That means h(x) has a local
maximum at x = −2. The function decreases from −2 until 2, after which is
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increases, so h(x) has a local minimum at x = 2. We compute f(−2) = 20 and
f(2) = −12.

3.5.4.5. ∗. Solution. Since h(x) is a polynomial, it has no singular points. We
compute its critical points:

h′(x) = 6x2 − 24

0 = 6x2 − 24

x = ±2

Notice as x → ∞, h(x) → ∞, and as x → −∞ h(x) → −∞. So Theorem 3.5.17
doesn’t exactly apply. Instead, let’s consider the signs of h′(x).

x (−∞,−2) (−2, 2) (2,∞)

h′(x) > 0 < 0 > 0

h(x) increasing decreasing increasing

So, h(x) increases until x = −2, then decreases. That means h(x) has a local
maximum at x = −2. The function decreases from −2 until 2, after which is
increases, so h(x) has a local minimum at x = 2.
We compute f(−2) = 33 and f(2) = −31.

3.5.4.6. ∗. Solution. Suppose that Q is a distance of x from A. Then it is a
distance of 18− x from B.

A Q B

P

12 km

x 18− x

Using the Pythagorean Theorem, the distance from P to Q is
√

122 + x2 kilometres,
and the buggy travels 15 kph over this off-road stretch. The travel time from P to

Q is
√

122 + x2

15
hours.

The distance from Q to B is 18− x kilometres, and the dune buggy travels 30 kph

along this road. The travel time from Q to B is
18− x

30
hours. So, the total travel

time is

f(x) =

√
122 + x2

15
+

18− x
30

.

We wish to minimize this for 0 ≤ x ≤ 18. We will test all singular points, critical
points, and endpoints to find which yields the smallest value of f(x). Since there
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are no singular points, we begin by locating the critical points.

0 = f ′(x) =
1

15
· 1

2
(144 + x2)−1/2(2x)− 1

30
1

15
· x√

144 + x2
=

1

30
x√

144 + x2
=

1

2

x2

144 + x2
=

1

4

4x2 = 144 + x2

x =
12√

3
= 4
√

3

So the minimum travel times must be one of f(0), f(18), and f
(
4
√

3
)
.

f(0) =
12

15
+

18

30
= 1.4

f(18) =

√
122 + 182

15
≈ 1.44

f
(

4
√

3
)

=

√
144 + 144/3

15
+

18− 12/
√

3

30
≈ 1.29

So Q should be 4
√

3 km from A.

3.5.4.7. ∗. Solution. Let `, w and h denote the length, width and height of
the box respectively. We are told that `wh = 4500 and that ` = 3w. Hence

h =
4500

`w
=

4500

3w2
=

1500

w2
. The surface area of the box is

A = 2`w + 2`h+ 2wh = 2

(
3w2 + 3w

1500

w2
+ w

1500

w2

)
= 2

(
3w2 +

6000

w

)
= 6

(
w2 +

2000

w

)

w

h

`

wh

`w

`h

As w tends to zero or to infinity, the surface area approaches infinity. By Theo-
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rem 3.5.17 the minimum surface area must occur at a critical point of w2 +
2000

w
.

0 =
d

dw

{
w2 +

2000

w

}
= 2w − 2000

w2

2w =
2000

w2

w3 = 1000

w = 10

Therefore,

` = 3w = 30

h =
1500

w2
= 15.

The dimensions of the box with minimum surface area are 10× 30× 15.
3.5.4.8. ∗. Solution. Let the length of the sides of the square base be b metres
and let the height be h metres. The area of the base is b2, the area of the top is b2

and the area of each of the remaining four sides is bh so the total cost is

5(b2)︸︷︷︸
cost of base

+ 1(b2 + 4bh)︸ ︷︷ ︸
cost of 5 sides

= 6b2 + 4bh = 72

Solving for h

h =
72− 6b2

4b

=
6

4

(
12− b2

b

)
=

3

2

(
12− b2

b

)
The volume is

V = b2h = b2 · 3

2

(
12− b2

b

)
= 18b− 3

2
b3.

This is the function we want to maximize. Since volume is never negative, the
endpoints of the functions are the values of b that make the volume 0. So, the
maximum volume will not occur at an endpoint, it will occur at a critical point.
The only critical point is b = 2:

0 =
d

db

{
18b− 3

2
b3

}
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= 18− 9

2
b2

b2 = 4

b = 2, h =
3

2

(
12− 4

2

)
= 6

The desired dimensions are 2× 2× 6.
3.5.4.9. ∗. Solution. It suffices to consider X and Y such that the line XY
is tangent to the circle. Otherwise we could reduce the area of the triangle by,
for example, holding X fixed and reducing Y . So let X and Y be the x– and y–

intercepts of the line tangent to the circle at (cos θ, sin θ). Then
1

X
= cos θ and

1

Y
= cos

(π
2
− θ
)

= sin θ. The area of the triangle is

1

2
XY =

1

2 cos θ sin θ
=

1

sin(2θ)

This is a minimum when sin(2θ) is a maximum. That is when 2θ =
π

2
. Hence

X =
1

cos(π/4)
and Y =

1

sin(π/4)
. That is, X = Y =

√
2.

3.5.4.10. ∗. Solution. For ease of notation, we place the semicircle on a Carte-
sian plane with diameter along the x-axis and centre at the origin.

x

y

x

R

If x is the point where the rectangle touches the diameter to the right of the y-axis,
then 2x is the width of the rectangle. The origin and the two right corners of the
rectangle form a right triangle with hypotenuse R, so by the Pythagorean Theorem,
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the upper right hand corner of the rectangle is at
(
x,
√
R2 − x2

)
. The perimeter of

the rectangle is given by the function:

P (x) = 4x+ 2
√
R2 − x2

So, this is what we optimize. The endpoints of the domain for this function are
x = 0 and x = R. To find the critical points, we differentiate:

P ′(x) = 4− 2x√
R2 − x2

P ′(x) = 0 ⇐⇒ 4 =
2x√

R2 − x2

x = 2
√
R2 − x2

x2 = 4(R2 − x2)

5x2 = 4R2

x =
2√
5
R

Note that since our perimeter formula was defined to work only for x in [0, R], we

neglect the negative square root, − 2√
5
R.

Now, we find the size of the perimeter at the critical point and the endpoints:

c 0 R 2√
5
R

type endpoint endpoint critical point
P (c) 2R 4R 2

√
5R

So, the largest possible perimeter is 2
√

5R and the smallest possible perimeter is
2R.
Remark: as a check on the correctness of our formula for P (x), when x = 0 the
rectangle degenerates to the line segment from (0, 0) to (0, R). The perimeter of
this “width zero rectangle” is 2R, agreeing with P (0). Similarly, when x = R the
rectangle degenerates to the line segment from (R, 0) to (−R, 0). The perimeter of
this “width zero rectangle” is 4R, agreeing with P (R).

3.5.4.11. ∗. Solution. Let the cylinder have radius r and height h. If we imagine
popping off the ends, they are two circular disks, each with surface area πr2. Then
we imagine unrolling the remaining tube. It has height h, and its other dimension is
given by the circumference of the disks, which is 2πr. Then the area of the “unrolled
tube” is 2πrh.
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h

r

r

h(2πr)h

πr2

So, the surface area is 2πr2 + 2πrh. Since the area is given as A, we can solve for h:

A = 2πr2 + 2πrh

2πrh = A− 2πr2

h =
A− 2πr2

2πr
.

Then we can write the volume as a function of the variable r and the constant A:

V (r) = πr2h

= πr2

(
A− 2πr2

2πr

)
=

1

2

(
Ar − 2πr3

)
This is the function we want to maximize. Let’s find its critical points.

V ′(r) =
1

2

(
A− 6πr2

)
V ′(r) = 0 ⇐⇒ A = 6πr2 ⇐⇒ r =

√
A

6π

since negative values of r don’t make sense. At this critical point,

V

(√
A

6π

)
=

1

2

A(√ A

6π

)
− 2π

(√
A

6π

)3


=
1

2

[
A3/2

√
6π
− 2πA3/2

6π
√

6π

]
=

1

2

[
A3/2

√
6π
− A3/2

3
√

6π

]
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=
A3/2

3
√

6π
.

We should also check the volume of the cylinder at the endpoints of the function.
Since r ≥ 0, one endpoint is r = 0. Since h ≥ 0, and r grows as h shrinks, the other
endpoint is whatever value of r causes h to be 0. We could find this value of r, but
it’s not strictly necessary: when r = 0, the volume of the cylinder is zero, and when
h = 0, the volume of the cylinder is still zero. So, the maximum volume does not
occur at the endpoints.
Therefore, the maximum volume is achieved at the critical point, where

Vmax =
A3/2

3
√

6π
.

Remark: as a check, A has units m2 and, because of the A3/2, our answer has units
m3, which are the correct units for a volume.

3.5.4.12. ∗. Solution. Denote by r the radius of the semicircle, and let h be the
height of the recangle.

r

h

πr

2r

h h

Since the perimeter is required to be P , the height, h, of the rectangle must obey

P = πr + 2r + 2h

h =
1

2
(P − πr − 2r)

So the area is

A(r) =
1

2
πr2 + 2rh

=
1

2
πr2 + r(P − πr − 2r)
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= rP − 1

2
(π + 4)r2

Finding all critical points:

0 = A′(r) = P − (π + 4)r

r =
P

π + 4

Now we want to know what radius yields the maximum area. We notice that

A′(r) > 0 for r <
P

π + 4
and A′(r) < 0 for r >

P

π + 4
. So, A(r) is increasing until

the critical point, then decreasing after it. That means the global maximum occurs

at the critical point, r =
P

π + 4
. The maximum area is

rP − 1

2
(π + 4)r2 =

P 2

π + 4
− 1

2
(π + 4)

P 2

(π + 4)2

=
P 2

2(π + 4)

Remark: another way to see that the global maximum occurs at the critical point
is to compare the area at the critical point to the areas at the endpoints of the

function. The smallest value of r is 0, while the biggest is
P

π + 2
(when the shape

is simply a half-circle). Comparing A(0), A
(

P

π + 2

)
, and A

(
P

π + 4

)
is somewhat

laborious, but certainly possible.

3.5.4.13. ∗. Solution.

y = px
x

z

a The surface area of the pan is

xy + 2xz + 2yz = px2 + 2xz + 2pxz

= px2 + 2(1 + p)xz

and the volume of the pan is xyz = px2z. Assuming that all A cm2 is used,
we have the constraint

px2 + 2(1 + p)xz = A or z =
A− px2

2(1 + p)x
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So

V (x) = xyz = x(px)

(
A− px2

2(1 + p)x

)
=

p

2(1 + p)
x(A− px2)

Using the product rule,

V ′(x) =
p

2(1 + p)

[
x(−2px) + (A− px2)

]
=

p

2(1 + p)

[
A− 3px2

]
The derivative V ′(x) is 0 when x =

√
A

3p
. The derivative is positive (i.e.

V (x) is increasing) for x <

√
A

3p
and is negative (i.e. V (x) is decreasing)

for x >

√
A

3p
. So the pan of maximum volume has dimensions x =

√
A

3p
,

y = p

√
A

3p
=

√
Ap

3
and z =

2A/3

2(1 + p)
√
A/(3p)

=

√
Ap√

3(1 + p)
.

b The volume of the pan from part (a) is

V (p) =

(√
A

3p

)(
p

√
A

3p

) √
Ap√

3(1 + p)
=

(
A

3

)3/2 √p
1 + p

Since

d

dp

{ √
p

1 + p

}
=

1
2
(1 + p)/

√
p−√p

(1 + p)2
=

√
p

(
1

p
− 1

)
2(1 + p)2

the volume is increasing with p for p < 1 and decreasing with p for p > 1. So
the maximum volume is achieved for p = 1 (a square base).

Exercises — Stage 3
3.5.4.14. ∗. Solution. 3.5.4.14.a We use logarithmic differentiation.

f(x) = xx

log f(x) = log (xx) = x log x

d

dx
{log f(x)} =

d

dx
{x log x}

f ′(x)

f(x)
= x

(
1

x

)
+ log x = 1 + log x

f ′(x) = f(x) (1 + log x) = xx(1 + log x)
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3.5.4.14.b Since x > 0, xx > 0. Therefore,

f ′(x) = 0 ⇐⇒ 1 + log x = 0 ⇐⇒ log x = −1 ⇐⇒ x =
1

e

3.5.4.14.c Since x > 0, xx > 0. So, the sign of f ′(x) is the same as the sign of
1 + log x.

For x <
1

e
, log x < −1 and f ′(x) < 0. That is, f(x) decreases as x increases, when

x <
1

e
. For x >

1

e
, log x > −1 and f ′(x) > 0. That is, f(x) increases as x increases,

when x >
1

e
. Hence f(x) is a {local minimum} at x =

1

e
.

3.5.4.15. ∗. Solution. Call the length of the wire L units and suppose that it
is cut ` units from one end. Make the square from the piece of length `, and make
the circle from the remaining piece of length L− `.
The square has perimeter `, so its side length is `/4 and its area is

(
`

4

)2

. The circle

has circumference L−`, so its radius is L− `
2π

and its area is π
(
L− `

2π

)2

=
(L− `)2

4π
.

The area enclosed by the shapes, when the square is made from a length of size `,
is

A(`) =
`2

16
+

(L− `)2

4π

We want to find the global max and min for this function, given the constraint
0 ≤ ` ≤ L, so we find its derivative:

A′(`) =
`

8
− L− `

2π
=
π + 4

8π
`− L

2π

Now, we find the critical point.

A′(`) = 0

π + 4

8π
` =

L

2π

` =
4L

π + 4

` 0 L
..

.
4L
π+4

type endpoint endpoint critical point
A(`)

..

.
L2

4π
L2

16
A
(

4L
π+4

)
It seems obnoxious to evaluate A

(
4L
π+4

)
, and the problem doesn’t ask for it–but we

still have to figure out whether it is a global max or min.
When ` < 4L

π+4
, A′(`) < 0, and when ` > 4L

π+4
, A′(`) > 0. So, A(`) is decreasing
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until ` = 4L
π+4

, then increasing. That means our critical point ` = 4L
π+4

is a local
minimum.
So, the minimum occurs at the only critical point, which is ` =

(
4

4 + π

)
L. This

corresponds to
`

L
=

4

4 + π
: the proportion of the wire that is cut is

4

4 + π
.

The maximum has to be either at ` = 0 or at ` = L. As A(0) =
L2

4π
> A(L) =

L2

16
,

the maximum has ` = 0 (that is, no square).

3.6 · Sketching Graphs
3.6.7 · Exercises
· Exercises for § 3.6.1

Exercises — Stage 1
3.6.7.1. Solution. In general, this is false. For example, the function f(x) =
x2 − 9

x2 − 9
has no vertical asymptotes, because it is equal to 1 in every point in its

domain (and is undefined when x = ±3).
However, it is certainly possible that f(x) has a vertical asymptote at x = −3. For

example, f(x) =
1

x2 − 9
has a vertical asymptote at x = −3. More generally, if

g(x) is continuous and g(−3) 6= 0, then f(x) has a vertical asympotote at x = −3.

Exercises — Stage 2
3.6.7.2. Solution. Since x2 + 1 and x2 + 4 are always positive, f(x) and h(x)
are defined over all real numbers. So, f(x) and h(x) correspond to A(x) and B(x).
Which is which? A(0) = 1 = f(0) while B(0) = 2 = h(0), so A(x) = f(x) and
B(x) = h(x).
That leaves g(x) and k(x) matching to C(x) and D(x). The domain of g(x) is all x
such that x2 − 1 ≥ 0. That is, |x| ≥ 1, like C(x). The domain of k(x) is all x such
that x2 − 4 ≥ 0. That is, |x| ≥ 2, like D(x). So, C(x) = g(x) and D(x) = k(x).

3.6.7.3. Solution. (a) Since f(0) = 2, we solve

2 =

√
log2(0 + p)

=

√
log2 p

= |log p|
log p = ±2

p = e±2

p = e2 or p =
1

e2

We know that p is e2 or
1

e2
, but we have to decide between the two. In both cases,
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f(0) = 2. Let’s consider the domain of f(x). Since log2(x+p) is never negative, the
square root does not restrict our domain. However, we can only take the logarithm
of positive numbers. Therefore, the domain is

x such that x+ p > 0

x such that x > −p

If p =
1

e2
, then the domain of f(x) is

(
− 1

e2
,∞
)
. In particular, since − 1

e2
> −1,

the domain of f(x) does not include x = −1. However, it is clear from the graph
that f(−1) exists. So, p = e2.
(b) Now, we need to figure out what b is. Notice that b is the end of the domain of
f(x), which we already found to be (−p,∞). So, b = −p = −e2.
(As a quick check, if we take e ≈ 2.7, then −e2 = −7.29, and this looks about right
on the graph.)
(c) The x-intercept is the value of x for which f(x) = 0:

0 =

√
log2(x+ p)

0 = log(x+ p)

1 = x+ p

x = 1− p = 1− e2

The x-intercept is 1− e2.
(As another quick check, the x-intercept we found is a distance of 1 from the vertical
asymptote, and this looks about right on the graph.)

3.6.7.4. Solution. Vertical asymptotes occur where the function blows up. In
rational functions, this can only happen when the denominator goes to 0. In our
case, the denominator is 0 when x = 3, and in this case the numerator is 147. That
means that as x gets closer and closer to 3, the numerator gets closer and closer
to 147 while the denominator gets closer and closer to 0, so |f(x)| grows without
bound. That is, there is a vertical asymptote at x = 3.
The horizontal asymptotes are found by taking the limits as x goes to infinity and
negative infinity. In our case, they are the same, so we condense our work.

lim
x→±∞

x(2x+ 1)(x− 7)

3x3 − 81
= lim

x→±∞
2x3 + ax2 + bx+ c

3x3 − 81

where a, b, ad c are some constants. Remember, for rational functions, you can
figure out the end behaviour by looking only at the terms with the highest degree–
the others won’t matter, so we don’t bother finding them. From here, we divide the
numerator and denominator by the highest power of x in the denominator, x3.

= lim
x→±∞

2x3 + ax2 + bx+ c

3x3 − 81

( 1
x3

1
x3

)
= lim

x→±∞

2 + a
x

+ b
x2

+ c
x3

3− 81
x3
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=
2 + 0 + 0 + 0

3− 0
=

2

3

So there is a horizontal asymptote of y =
2

3
both as x→∞ and as x→ −∞.

3.6.7.5. Solution. Since f(x) is continuous over all real numbers, it has no
vertical asymptote.
To find the horizontal asymptotes, we evaluate lim

x→±∞
f(x).

lim
x→∞

103x−7 = lim
X→∞

10X︸ ︷︷ ︸
let X=3x−7

=∞

So, there’s no horizontal asymptote as x→∞.

lim
x→−∞

103x−7 = lim
X→−∞

10X︸ ︷︷ ︸
let X=3x−7

= lim
X′→∞

10−X
′︸ ︷︷ ︸

let X′=−X

= lim
X′→∞

1

10X′

= 0

That is, y = 0 is a horizontal asymptote as x→ −∞.

· Exercises for § 3.6.2

Exercises — Stage 1
3.6.7.1. Solution. Functions A(x) and B(x) share something in common that
sets them apart from the others: they have a horizontal tangent line only once. In
particular, A′(−2) 6= 0 and B′(2) 6= 0. The only listed functions that do not have
two distinct roots are l(x) and p(x). Since l(−2) 6= 0 and p(2) 6= 0, we conclude

A′(x) = l(x) B′(x) = p(x)

Function C(x) is never decreasing. Its tangent line is horizontal when x = ±2, but
the curve never decreases, so C ′(x) ≥ 0 for all x and C ′(2) = C ′(−2) = 0. The only
function that matches this is n(x) = (x − 2)2(x + 2)2. Since its linear terms have
even powers, it is never negative, and its roots are precisely x = ±2.

C ′(x) = n(x)

For the functions D(x) and E(x) we consider their behaviour near x = 0. D(x) is
decreasing near x = 0, so D′(0) < 0, which matches with o(0) < 0. Contrastingly,
E(x) is increasing near zero, so E ′(0) > 0, which matches with m(0) > 0.

D′(x) = o(x) E ′(x) = m(x)
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Exercises — Stage 2
3.6.7.2. ∗. Solution. The domain of f(x) is all real numbers except −3 (because
when x = −3 the denominator is zero). For x 6= −3, we differentiate using the
quotient rule:

f ′(x) =
ex(x+ 3)− ex(1)

(x+ 3)2
=

ex

(x+ 3)2
(x+ 2)

Since ex and (x + 3)2 are positive for every x in the domain of f(x), the sign of
f ′(x) is the same as the sign of x+ 2. We conclude that f(x) is increasing for every
x in its domain with x+ 2 > 0. That is, over the open interval (−2,∞).

3.6.7.3. ∗. Solution. Since we can’t take the square root of a negative number,
f(x) is only defined when x ≥ 1. Furthermore, since we can’t have zero as a
denominator, x = −2 is not in the domain — but as long as x ≥ 1, we also have
x 6= −2. So, the domain of the function is [1,∞).
In order to find where f(x) is increasing, we find where f ′(x) is positive.

f ′(x) =

2x+4
2
√
x−1
− 2
√
x− 1

(2x+ 4)2
=

(x+ 2)− 2(x− 1)√
x− 1(2x+ 4)2

=
−x+ 4√

x− 1(2x+ 4)2

The denominator is never negative, so f(x) is increasing when the numerator of
f ′(x) is positive, i.e. when 4 − x > 0, or x < 4. Recalling that the domain of
definition for f(x) is [1,+∞), we conclude that f(x) is increasing on the open
interval (1, 4).

3.6.7.4. ∗. Solution. The domain of arctangent is all real numbers. The domain
of the logarithm function is all positive numbers, and 1 + x2 is positive for all x.
So, the domain of f(x) is all real numbers.
In order to find where f(x) is increasing, we find where f ′(x) is positive.

f ′(x) =
2

1 + x2
− 2x

1 + x2
=

2− 2x

1 + x2

Since the denominator is always positive, f(x) is increasing when when 2− 2x > 0.
We conclude that f(x) is increasing on the open interval (−∞, 1).

· Exercises for § 3.6.3

Exercises — Stage 1
3.6.7.1. Solution.
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x

y

concave up concave down concave up

concave down

In the graph above, the concave-up sections are marked in red. These are where
the graph has an increasing derivative; equivalently, where the graph lies above its
tangent lines; more descriptively, where it curves like a smiley face.
Concave-down sections are marked in blue. These are where the graph has a de-
creasing derivative; equivalently, where the graph lies below its tangent lines; more
descriptively, where it curves like a frowney face.

3.6.7.2. Solution. The most basic shape of the graph is given by the last two
bullet points:

x

y

−5 5

The curve is concave down over the interval (−5, 5), so let’s give it a frowney-face
curvature there.
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x

y

−5 5

Finally, when x > 5 or x < −5, our curve should be concave up, so let’s give it
smiley-face curvature there, without changing its basic increasing/decreasing shape.

x

y

−5 5

This finishes our sketch.
3.6.7.3. Solution. An inflection point is where the concavity of a function
changes. It is possible that x = 3 is an inflection point, but it is also possible
that is not. So, the statement is false, in general.
For example, let f(x) = (x − 3)4. Since f(x) is a polynomial, all its derivatives
exist and are continuous. f ′′(x) = 12(x− 3)2, so f ′′(3) = 0. However, since f ′′(x) is
something squared, it is never negative, so f(x) is never concave down. Since f(x)
is never concave down, it never changes concavity, so it has no inflection points.
Remark: finding inflection points is somewhat reminiscent of finding local extrema.
To find local extrema, we first find all critical and singular points, since local extrema
can only occur there or at endpoints. Then, we have to figure out which critical and
singular points are actually local extrema. Similarly, if you want to find inflection
points, start by finding where f ′′(x) is zero or non-existant, because inflection points
can only occur there (see Question 3.6.7.7). Then, you still have to check whether
those points are actually inflection points.
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Exercises — Stage 2
3.6.7.4. ∗. Solution. Inflection points occur where f ′′(x) changes sign. Since
f(x) is a polynomial, its first and second derivatives exist everywhere, and are
themselves polynomials. In particular,

f(x) = 3x5 − 5x4 + 13x

f ′(x) = 15x4 − 20x3 + 13

f ′′(x) = 60x3 − 60x2 = 60x2(x− 1)

The second derivative is negative for x < 1 and positive for x > 1. Thus the
concavity changes between concave up and concave down at {x = 1, y = 11}.
This is the only inflection point. It is true that f ′′(0) = 0, but for values of x both
a little larger than and a little smaller than 0, f ′′(x) < 0, so the concavity does not
change at x = 0.

Exercises — Stage 3
3.6.7.5. ∗. Solution. In order to show that f(x) has exactly one inflection point,
we will show that is has at least one, and no more than one.
Let

g(x) = f ′′(x) = x3 + 5x− 20.

Then g′(x) = 3x2+5, which is always positive. That means g(x) is strictly increasing
for all x. So, g(x) can change signs once, from negative to positive, but it can never
change back to negative. An inflection point of f(x) occurs when g(x) changes
signs. So, f(x) has at most one inflection point. (At this point, we don’t know that
f(x) has any inflection points: maybe g(x) is always positive.)
Since g(x) is continuous, we can apply the Intermediate Value Theorem to it. Notice
g(3) > 0 while g(0) < 0. By the IVT, g(x) = 0 for at least one x ∈ (0, 3). Since
g(x) is strictly increasing, at the point where g(x) = 0, g(x) changes from negative
to positive. So, the concavity of f(x) changes. Therefore, f(x) has at least one
inflection point.
Now that we’ve shown that f(x) has at most one inflection point, and at least one
inflection point, we conclude it has exactly one inflection point.

3.6.7.6. ∗. Solution. 3.6.7.6.a Let

g(x) = f ′(x)

Then f ′′(x) is the derivative of g(x). Since f ′′(x) > 0 for all x, g(x) = f ′(x) is
strictly increasing for all x. In other words, if y > x then g(y) > g(x).
Suppose g(x) = 0. Then for every y that is larger than x, g(y) > g(x), so g(y) 6= 0.
Similarly, for every y that is smaller than x, g(y) < g(x), so g(y) 6= 0. Therefore,
g(x) can only be zero for at most one value of x. Since g(x) = f ′(x), that means
f(x) can have at most one critical point.
Suppose f ′(c) = 0. Since f ′(x) is a strictly increasing function, f ′(x) < 0 for all
x < c and f ′(x) > 0 for all x > c.
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c

x < c, so
f ′(x) < f ′(c) = 0

x > c, so
f ′(x) > f ′(c) = 0

Then f(x) is decreasing for x < c and increasing for x > c. So f(x) > f(c) for all
x < c and f(x) > f(c) for all x > c.

c

f(x) decreasing, so
f(x) > f(c)

f(x) increasing, so
f(x) > f(c)

y = f(x)

x < c x > c

We have concluded that f(x) > f(c) for all x 6= c, so c is an absolute minimum for
f(x).
3.6.7.6.b We know that the maximum over an interval occurs at an endpoint, at a
critical point, or at a singular point.

• Since f ′(x) exists everywhere, there are no singular points.

• If the maximum were achieved at a critical point, that critical point would
have to provide both the absolute maximum and the absolute minimum (by
part a). So, the function would have to be a constant and consequently could
not have a nonzero second derivative. So the maximum is not at a critical
point.

That leaves only the endpoints of the interval.

3.6.7.7. Solution. If x = 3 is an inflection point, then the concavity of f(x)
changes at x = 3. That is, there is some interval strictly containing 3, with endpoints
a and b, such that

• f ′′(a) < 0 and f ′′(x) < 0 for every x between a and 3, and

• f ′′(b) > 0 and f ′′(x) > 0 for every x between b and 3.

Remark: we are leaving unknown whether a < 3 < b or b < 3 < a. Since we don’t
know whether f(x) changes from concave up to concave down, or from concave
down to concave up, by remaining vague we cover both cases.
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3a b

concave down concave up

OR

3b a

concave up concave down

Since f ′′(a) < 0 and f ′′(b) > 0, and since f ′′(x) is continuous, the Intermediate
Value Theorem tells us that there exists some x strictly between a and b with
f ′′(x) = 0. So, we know f ′′(x) = 0 somewhere between a and b. The question is,
where exactly could that be?

• f ′′(x) < 0 (and hence f ′′(x) 6= 0) for all x between a and 3

• f ′′(x) > 0 (and hence f ′′(x) 6= 0) for all x between b and 3

• So, any number between a and b that is not 3 has f ′′(x) 6= 0.

So, x = 3 is the only possible place between a and b where f ′′(x) could be zero.
Therefore, f ′′(3) = 0.
Remark: this is why, in general, we set f ′′(x) = 0 to find inflection points. (They
can also occur where f ′′(x) does not exist.)

· Exercises for § 3.6.4

Exercises — Stage 1
3.6.7.1. Solution. This function is symmetric across the y-axis, so it is even.

3.6.7.2. Solution. The function is not even, because it is not mirrored across
the y-axis.
Assuming it continues as shown, the function is periodic, because the unit shown
below is repeated:
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x

y

y = f(x)

Additionally, f(x) is odd. In a function with odd symmetry, if we mirror the right-
hand portion of the curve (the portion to the right of the y-axis) across both the
y-axis and the x-axis, it lines up with the left-hand portion of the curve.

x

y

y = f(x)

reflected across y-axis
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x

y

y = f(x)

reflected across both axes

Since reflecting the right-hand portion of the graph across the y-axis, then the
x-axis, gives us f(x), we conclude f(x) is odd.

3.6.7.3. Solution. Since the function is even, we simply reflect the portion shown
across the y-axis to complete the sketch.

x

y

3.6.7.4. Solution. Since the function is odd, to complete the sketch, we reflect
the portion shown across the y-axis (shown dashed), then the x-axis (shown in red).
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x

y

Exercises — Stage 2
3.6.7.5. Solution. A function is even if f(−x) = f(x).

f(−x) =
(−x)4 − (−x)6

e(−x)2

=
x4 − x6

ex2

= f(x)

So, f(x) is even.

3.6.7.6. Solution. For any real number x, we will show that f(x) = f(x+ 4π).

f(x+ 4π) = sin(x+ 4π) + cos

(
x+ 4π

2

)
= sin(x+ 4π) + cos

(x
2

+ 2π
)

= sin(x) + cos
(x

2

)
= f(x)

So, f(x) is periodic.

3.6.7.7. Solution. f(x) is not periodic. (You don’t really have to justify this,
but if you wanted to, you could say something like this. Notice f(0) = 1. Whenever
x > 10, f(x) > 1. Then the value of f(0) is not repeated indefinitely, so f(x) is not
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periodic.)
To decide whether f(x) is even, odd, or neither, simplify f(−x):

f(−x) = (−x)4 + 5(−x)2 + cos
(
(−x)3

)
= x4 + 5x3 + cos(−x)

= x4 + 5x3 + cos(x)

= f(x)

Since f(−x) = f(x), our function is even.

3.6.7.8. Solution. It should be clear that f(x) is not periodic. (If you wanted
to justify this, you could note that f(x) = 0 has exactly two solutions, x = 0, −5.
Since the value of f(0) is repeated only twice, and not indefinitely, f(x) is not
periodic.)
To decide whether f(x) is odd, even, or neither, we simplify f(−x).

f(−x) = (−x)5 + 5(−x)4

= −x5 + 5x4

We see that f(−x) is not equal to f(x) or to −f(x). For instance, when x = 1:

• f(−x) = f(−1) = 4,

• f(x) = f(1) = 6, and

• −f(x) = −f(1) = −6.

Since f(−x) is not equal to f(x) or to −f(x), f(x) is neither even nor odd.

3.6.7.9. Solution. Recall the period of g(X) = tanX is π.

tan(X + π) = tan(X) for any X in the domain of tanX

Replacing X with πx:

tan(πx+ π) = tan(πx) for any x in the domain of tan(πx)

tan(π(x+ 1)) = tan(πx) for any x in the domain of tan(πx)

f(x+ 1) = f(x) for any x in the domain of tan(πx)

The period of f(x) is 1.

Exercises — Stage 3
3.6.7.10. Solution. Let’s consider g(x) = tan(3x) and h(x) = sin(4x) separately.
Recall that π is the period of tangent.

tanX = tan(X + π) for every X in the domain of tanX
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Replacing X with 3x:

tan(3x) = tan(3x+ π) for every x in the domain of tan 3x

tan(3x) = tan
(

3
(
x+

π

3

))
for every x in the domain of tan 3x

g(x) = g
(
x+

π

3

)
for every x in the domain of tan 3x

So, the period of g(x) = tan(3x) is
π

3
.

Similarly, 2π is the period of sine.

sin(X) = sin(X + 2π) for every X in the domain of sin(X)

Replacing X with 4x:

sin(4x) = sin(4x+ 2π) for every x in the domain of sin(4x)

sin(4x) = sin
(

4
(
x+

π

2

))
for every x in the domain of sin(4x)

h(x) = h
(
x+

π

2

)
for every x in the domain of sin(4x)

So, the period of h(x) = sin(4x) is
π

2
.

All together, f(x) = g(x) + h(x) will repeat when both g(x) and h(x) repeat. The
least common integer multiple of

π

3
and

π

2
is π. Since g(x) repeats every

π

3
units,

and h(x) repeats every
π

2
units, they will not both repeat until we move π units.

So, the period of f(x) is π.

· Exercises for § 3.6.6

Exercises — Stage 1
3.6.7.1. ∗. Solution. 3.6.7.1.a Since we must have 3−x ≥ 0, this tells us x ≤ 3.
So, the domain is (−∞, 3].
3.6.7.1.b

f ′(x) =
√

3− x− x

2
√

3− x = 3
2− x

2
√

3− x
For every x in the domain of f ′(x), the denominator is positive, so the sign of f ′(x)
depends only on the numerator.

x (−∞, 2) 2 (2, 3) 3

f ′(x) positive 0 negative DNE
f(x) increasing maximum decreasing endpoint

So, f is increasing for x < 2, has a local (in fact global) maximum at x = 2, is
decreasing for 2 < x < 3, and has a local minimum at x = 3.
Remark: this shows us the basic skeleton of the graph. It consists of a single hump.

949



Solutions to Exercises

x
2 3

3.6.7.1.c When x < 3,

f ′′(x) =
1

4
(3x− 12)(3− x)−3/2 < 0

The domain of f ′′(x) is (−∞,−3), and over its domain it is always negative (the
factor (3x − 12) is negative for all x < 4 and the factor (3 − x)−3/2 is positive for
all x < 3). So, f(x) has no inflection points and is concave down everywhere.
3.6.7.1.d We already found

f ′(x) = 3
2− x

2
√

3− x.

This is undefined at x = 3. Indeed,

lim
x→3−

3
2− x

2
√

3− x = −∞,

so f(x) has a vertical tangent line at (3, 0).
3.6.7.1.e To sketch the curve y = f(x), we already know its intervals of increase and
decrease, and its concavity. We also note its intercepts are (0, 0) and (3, 0).

x

y

(3, 0)

(2.2)

increasing decreasing

concave down

3.6.7.2. ∗. Solution.

• Asymptotes:

lim
x→±∞

f(x) = lim
x→±∞

1

x
− 2

x4
= 0
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So y = 0 is a horizontal asymptote both at x =∞ and x = −∞.

lim
x→0

f(x) = lim
x→0

x3 − 2

x4
= −∞

So there is a vertical asymptote at x = 0, where the function plunges down-
wards from both the right and the left.

• Intervals of increase and decrease:

f ′(x) = − 1

x2
+

8

x5
=

8− x3

x5

The only place where f ′(x) is zero only at x = 2. So f(x) has a horizontal
tangent at x = 2, y = 3

8
. This is a critical point.

The derivative is undefined at x = 0, as is the function.

x (−∞, 0) 0 (0, 2) 2 (2,∞)

f ′(x) negative DNE positive 0 negative
f(x) decreasing vertical asymptote increasing local max decreasing

Since the function changes from increasing to decreasing at x = 2, the only
local maximum is at x = 2.

At this point, we get a rough sketch of f(x).

x

y

2

horizontal asymptotes y = 0

decreasing decreasingincreasing

(
2, 3

8

)
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• Concavity:

f ′′(x) =
2

x3
− 40

x6
=

2x3 − 40

x6

The second derivative of f(x) is positive for x > 3
√

20 and negative for x <
3
√

20. So the curve is concave up for x > 3
√

20 and concave down for x < 3
√

20.
There is an inflection point at x = 3

√
20 ≈ 2.7, y = 18

204/3
≈ 0.3.

• Intercepts:

Since f(x) is not defined at x = 0, there is no y-intercept. The only x-intercept
is x = 3

√
2 ≈ 1.3.

• Sketch:

We can add concavity to our skeleton sketched above, and label our intercept
and inflection point (the open dot).

x

y
(
2, 3

8

)

2 3
√

203
√

2

decreasing decreasingincreasing

concave down concave up

3.6.7.3. ∗. Solution.

• Asymptotes:

When x = −1, the denominator 1 + x3 of f(x) is zero while the numerator is
1, so x = −1 is a vertical asymptote. More precisely,

lim
x→−1−

f(x) = −∞ lim
x→−1+

f(x) =∞

There are no horizontal asymptotes, because

lim
x→∞

x4

1 + x3
=∞ lim

x→−∞
x4

1 + x3
= −∞
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• Intervals of increase and decrease:

We note that f ′(x) is defined for all x 6= −1 and is not defined for x = −1.
Therefore, the only singular point for f(x) is x = −1.

To find critical points, we set

f ′(x) = 0

4x3 + x6 = 0

x3(4 + x3) = 0

x3 = 0 or 4 + x3 = 0

x = 0 or x = − 3
√

4 ≈ −1.6

At these critical points, f(0) = 0 and f(− 3
√

4) = 4 3√4
−3

< 0. The denominator
of f ′(x) is never negative, so the sign of f ′(x) is the same as the sign of its
numerator, x3(4 + x3).

x (−∞,− 3
√

4) − 3
√

4 (− 3
√

4,−1) −1 (−1, 0) 0 (0,∞)

f ′(x) positive 0 negative DNE negative 0 positive
f(x) increasing l. max decreasing VA decreasing l. min increasing

Now, we have enough information to make a skeleton of our graph.

x

y

−1− 3
√

4

increasing decr decr increasing
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• Concavity:

The second derivative is undefined when x = −1. It is zero when 12x2−6x5 =
6x2(2− x3) = 0. That is, at x = 3

√
2 ≈ 1.3 and x = 0. Notice that the sign of

f ′′(x) does not change at x = 0, so x = 0 is not an inflection point.

x (−∞,−1) −1 (−1, 0) 0 (0, 3
√

2) 3
√

2 ( 3
√

2,∞)

f ′′(x) negative DNE positive 0 positive 0 negative
f(x) concave down VA concave up concave up IP concave down

Now we can refine our skeleton by adding concavity.

x

y

−1− 3
√

4 3
√

2

increasing decr decr increasing

concave down concave up concave down

3.6.7.4. ∗. Solution.

• Asymptotes:

lim
x→−∞

x3

1− x2
=∞ lim

x→∞
x3

1− x2
= −∞

So, f(x) has no horizontal asymptotes.

On the other hand f(x) blows up at both x = 1 and x = −1, so there are
vertical asymptotes at x = 1 and x = −1. More precisely,

lim
x→−1−

x3

1− x2
=∞ lim

x→−1+

x3

1− x2
= −∞
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lim
x→1−

x3

1− x2
=∞ lim

x→1+

x3

1− x2
= −∞

• Symmetry:

f(x) is an odd function, because

f(−x) =
(−x)3

1− (−x)2
=
−x3

1− x2
= −f(x)

• Intercepts:

The only intercept of f(x) is the origin. In particular, that means that out
of the three intervals where it is continuous, namely (−∞,−1), (−1, 1) and
(1,∞), in two of them f(x) is always positive or always negative.

◦ When x < −1: 1− x2 < 0 and x3 < 0, so f(x) > 0.
◦ When x > 1: 1− x2 < 0 and x3 > 0, so f(x) < 0.
◦ When −1 < x < 0, 1− x2 > 0 and x3 < 0 so f(x) < 0.
◦ When 0 < x < 1, 1− x2 > 0 and x3 > 0 so f(x) > 0.

• Intervals of increase and decrease:

f ′(x) =
3x2 − x4

(1− x2)2
=
x2(3− x2)

(1− x2)2

The only singular points are x = ±1, where f(x), and hence f ′(x), is not
defined. The critical points are:

f ′(x) = 0

x2 = 0 or 3− x2 = 0

x = 0 or x = ±
√

3 ≈ ±1.7

The values of f at its critical points are f(0) = 0, f(
√

3) = −3
√

3

2
≈ −2.6

and f(−
√

3) =
3
√

3

2
≈ 2.6.

Notice the sign of f ′(x) is the same as the sign of 3− x2.

x (−∞,−
√

3) −
√

3 (−
√

3,−1) −1

f ′(x) negative 0 positive DNE
f(x) decreasing local min increasing VA

x (−1, 0) 0 (0,
√

3)
√

3 (
√

3,∞)

f ′(x) positive 0 positive 0 negative
f(x) increasing increasing local max decreasing
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Now we have enough information to sketch a skeleton of f(x).

x

y

−1 1−
√

3
√

3

3
√

3
2

−3
√

3
2

decreasing incr increasing incr decreasing

• Concavity:

f ′′(x) =
2x(3 + x2)

(1− x2)3

The second derivative is zero when x = 0, and is undefined when x = ±1.

x (−∞,−1) (−1, 0) 0 (0, 1) (1,∞)

f ′′(x) positive negative 0 positive negative
f(x) concave up concave down inflection point concave up concave down

Now, we can refine our skeleton.
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x

y

−1 1−
√

3
√

3

3
√

3
2

−3
√

3
2

decreasing incr increasing incr decreasing

concave up cc down concave up concave down

3.6.7.5. ∗. Solution. 3.6.7.5.a One branch of the function, the exponential
function ex, is continuous everywhere. So f(x) is continuous for x < 0. When

x ≥ 0, f(x) =
x2 + 3

3(x+ 1)
, which is continuous whenever x 6= 1 (so it’s continuous

for all x > 0). So, f(x) is continuous for x > 0. To see that f(x) is continuous at
x = 0, we see:

lim
x→0−

f(x) = lim
x→0−

ex = 1

lim
x→0+

f(x) = lim
x→0+

x2 + 3

3(x+ 1)
= 1

So, lim
x→0

f(x) = 1 = f(0)

Hence f(x) is continuous at x = 0, so f(x) is continuous everywhere.
3.6.7.5.b We differentiate the function twice. Notice

d

dx

{
x2 + 3

3(x+ 1)

}
=

3(x+ 1)(2x)− (x2 + 3)(3)

9(x+ 1)2

=
x2 + 2x− 3

3(x+ 1)2

=
(x− 1)(x+ 3)

3(x+ 1)2
where x 6= −1
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Then lim
x→0+

f ′(x) =
(0− 1)(0 + 3)

3(0 + 1)2
= −1 6= 1 = e0 = lim

x→0−
f ′(x)

so f ′(x) =


ex x < 0

DNE x = 0
(x−1)(x+3)

3(x+1)2
x > 0

Differentiating again,

d2

dx2

{
x2 + 3

3(x+ 1)

}
=

d

dx

{
x2 + 2x− 3

3(x+ 1)2

}
=

3(x+ 1)2(2x+ 2)− (x2 + 2x− 3)(6)(x+ 1)

9(x+ 1)4 (÷3(x+ 1)

÷3(x+ 1)

)
=

(x+ 1)(2x+ 2)− 2(x2 + 2x− 3)

3(x+ 1)3

=
8

3(x+ 1)3
where x 6= −1

so f ′′(x) =


ex x < 0

DNE x = 0
8

3(x+1)3
x > 0

i. The only singular point is x = 0, and the only critical point is x = 1. (When
you’re reading off the expression for f ′(x), remember that the bottom line only
applies when x > 0.)

x (−∞, 0) 0 (0, 1) 1 (1,∞)

f ′(x) positive DNE negative 0 positive
f(x) increasing local max decreasing local min increasing

The coordinates of the local maximum are (0, 1) and the coordinates of the local
minimum are

(
1, 2

3

)
.

ii. When x 6= 0, f ′′(x) is always positive, so f(x) is concave up.
iii.

lim
x→∞

f(x) = lim
x→∞

x2 + 3

3x+ 3

= lim
x→∞

x+ 3
x

1 + 3
x

=∞

So, there is no horizontal asymptote to the right.

lim
x→−∞

f(x) = lim
x→−∞

ex = 0

958



Solutions to Exercises

So, y = 0 is a horizontal asymptote to the left.
Since f(x) is continuous everywhere, there are no vertical asymptotes.
3.6.7.5.c

x

y

(0, 1)
(1, 2

3
)

increasing decr increasing

concave up concave up

3.6.7.6. ∗. Solution.

• Asymptotes: In the problem statement, we are told:

lim
x→±∞

1 + 2x

ex2
= 0

So, y = 0 is a horizontal asymptote both at x =∞ and at x = −∞.

Since f(x) is continuous, it has no vertical asymptotes.

• Intervals of increase and decrease:

The critical points are the zeroes of 1 − x − 2x2 = (1 − 2x)(1 + x). That is,
x = 1

2
, −1.

x (−∞,−1) −1 (−1, 1
2
) 1

2
(1

2
,∞)

f ′(x) negative 0 positive 0 negative
f(x) decreasing local min increasing local max decreasing

At these critical points, f
(

1
2

)
= 2e−1/4 > 0 and f(−1) = −e−1 < 0.

From here, we can sketch a skeleton of the graph.
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x

y

−1 1
2

decreasing increasing decr increasing

• Concavity:

We are told that we don’t have to actually solve for the inflection points. We
just need to know enough to get a basic idea. So, we’ll turn the skeleton of
the graph into smooth curve.

Inflection points are points where the convexity changes from up to down or
vice versa. It looks like our graph is convex down for x from −∞ to about
−1.8, convex up from about x = −1.8 to about x = −0.1, convex down from
about x = −0.1 to about x = 1.4 and convex up from about x = 1.4 to
infinity. So there are three inflection points at roughly x = −1.8, −0.1, 1.4.

3.6.7.7. ∗. Solution. 3.6.7.7.a We need to know the first and second derivative
of f(x). Using the product and chain rules, f ′(x) = e−x

2/2(1 − x2). Given to us is
f ′′(x) = (x3 − 3x)e−x

2/2. (These derivatives are also easy to find using the formula
developed in Question 2.14.2.19, Section 2.14.)
Since e−x2/2 is always positive, the sign of f ′(x) is the same as the sign of 1 − x2.
f(x) has no singular points and its only critical points are x = ±1. At these critical

points, f(−1) = − 1√
e
and f(1) =

1√
e
.
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x (−∞,−1) −1 (−1, 1) 1 (1,∞)

f ′(x) negative 0 positive 0 negative
f(x) decreasing local min increasing local max decreasing

This, together with the observations that f(x) < 0 for x < 0, f(0) = 0 and f(x) > 0
for x > 0 (in fact f is an odd function), is enough to sketch a skeleton of our graph.

x

y

−1 1
− 1√

e

1√
e

We can factor f ′′(x) = (x3 − 3x)e−x
2/2 = x(x +

√
3)(x−

√
3)e−x

2/2. Since e−x2/2 is
always positive, the sign of f ′′(x) is the same as the sign of x(x+

√
3)(x−

√
3).

x (−∞,−
√

3) −
√

3 (−
√

3, 0) 0 (0,
√

3)
√

3 (
√

3,∞)

f ′′(x) negative 0 positive 0 negative 0 positive
f(x) concave down IP concave up IP concave down IP concave up

3.6.7.7.b We’ve already seen that f(x) has a local min at x = −1 and a local max
at x = 1.
As x tends to negative infinity, f(x) tends to 0, and f(x) is decreasing on (−∞,−1).
Then f(x) is between 0 and f(−1) = −1√

e
on (−∞,−1). Then f(x) is increasing on

(−1, 1) from f(−1) = −1√
e
to f(1) = 1√

e
. Finally, for x > 1, f(x) is decreasing from

f(1) = 1√
e
and tending to 0. So when x > 1, f(x) is between 1√

e
and 0.

So, over its entire domain, f(x) is between −1√
e
and 1√

e
, and it only achieves those

values at x = −1 and x = 1, respectively. Therefore, the local and global min of
f(x) is at (−1, −1√

e
), and the local and global max of f(x) is at (1, 1√

e
).

3.6.7.7.c In the graph below, open dots are inflection points, and solid dots are
extrema.
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x

y

−1 1−
√

3 √
3

−1√
e

1√
e

3.6.7.8. Solution.

• Symmetry:

f(−x) = −x+ 2 sin(−x) = −x− 2 sinx = −f(x)

So, f(x) is an odd function. If we can sketch y = f(x) for nonnegative x, we
can use symmetry to complete the curve for all x.

• Asymptotes:

Since f(x) is continuous, it has no vertical asymptotes. It also has no hori-
zontal asymptotes, since

lim
x→−∞

f(x) = −∞ lim
x→∞

f(x) =∞

• Intervals of increase and decrease:

Since f(x) is differentiable everywhere, there are no singular points.

f ′(x) = 1 + 2 cosx

So, the critical points of f(x) occur when

cosx = −1

2

x = 2πn± 2π

3
for any integer n

For instance, f(x) has critical points at x =
2π

3
, x =

4π

3
, x =

8π

3
, and

x =
10π

3
.

From the unit circle, or the graph of y = 1 + 2 cosx, we see:
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x
(
−2π

3
, 2π

3

)
2π
3

(
2π
3
, 4π

3

)
4π
3

(
4π
3
, 8π

3

)
8π
3

(
8π
3
, 10π

3

)
f ′(x) positive 0 negative 0 positive 0 negative
f(x) increasing l. max decreasing l. min increasing l. max decreasing

We have enough information to sketch a skeleton of the curve y = f(x). We
use the pattern above for the graph to the right of the y-axis, and use odd
symmetry for the graph to the left of the y-axis.

x

y

2π
3

4π
3

8π
3

10π
3

14π
3

−8π
3

−10π
3

−14π
3

• Concavity:
f ′′(x) = −2 sinx

So, f ′′(x) exists everywhere, and is zero for x = π + πn for every integer n.

x (0, π) π (π, 2π) 2π (2π, 3π) 3π (3π, 4π)

f ′′(x) negative 0 positive 0 negative 0 positive
f(x) concave down IP concave up IP concave down IP concave up
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Using these values, and the odd symmetry of f(x), we can refine our skeleton.
The closed dots are local extrema, and the open dots are inflection points
occurring at every integer multiple of π.

x

y

2π
3

4π
3

8π
3

10π
3

14π
3

−2π
3

−4π
3

−8π
3

−10π
3

−14π
3

3.6.7.9. ∗. Solution. We first compute the derivatives f ′(x) and f ′′(x).

f ′(x) = 4 cosx+ 4 sin 2x = 4 cos x+ 8 sinx cosx

= 4 cos x(1 + 2 sinx)

f ′′(x) = −4 sinx+ 8 cos 2x = −4 sinx+ 8− 16 sin2 x

= −4(4 sin2 x+ sinx− 2)

The graph has the following features.

• Symmetry: f(x) is periodic of period 2π. We’ll consider only −π ≤ x ≤ π.
(Any interval of length 2π will do.)

• y-intercept: f(0) = −2

• Intervals of increase and decrease: f ′(x) = 0 when cosx = 0, i.e. x = ±π
2
,

and when sinx = −1

2
, i.e. x = −π

6
,−5π

6
.
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x (−π,−5π
6

)
(
−5π

6
,−π

2

) (
−π

2
,−π

6

) (
−π

6
, π

2

) (
π
2
, π
)

f ′(x) negative positive negative positive negative
f(x) decreasing increasing decreasing increasing decreasing

This tells us local maxima occur at x = ±π
2

and local minima occur at

x = −5π

6
and x = −π

6
.

Here is a table giving the value of f at each of its critical points.

x −5

6
π −π

2

π

2

5

6
π

sin(x) −1
2

−1 −1
2

1

cos(2x) 1
2

−1 1
2

−1

f(x) −3 −2 −3 6

From here, we can graph a skeleton of of f(x):

x

y

π−π π
2

−π
2 −π

6−5π
6

6

−3

−2

• Concavity: To find the points where f ′′(x) = 0, set y = sin x, so f ′′(x) =
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−4(4y2 + y − 2). Then we really need to solve

4y2 + y − 2 = 0 which gives us

y =
−1±

√
33

8

These two y-values map to the following two x-values, which we’ll name a and
b for convenience:

a = arcsin

(
−1 +

√
33

8

)
≈ 0.635

b = arcsin

(
−1−

√
33

8

)
≈ −1.003

However, these are not the only values of x in [−π, π] with sinx = −1±
√

33
8

.
The analysis above misses the others because the arcsine function only returns
numbers in the range

[
−π

2
, π

2

]
. The graph below shows that there should be

other values of x with sinx = −1±
√

33
8

, and hence f ′′(x) = 0.

x

y

y = sinx

−1+
√

33
8

−1−
√

33
8

b a

We can recover the other solutions in [−π, π] by recalling that

sin(x) = sin(π − x)

(see CLP appendix A7). So, if we choose x = arcsin
(
−1+

√
33

8

)
≈ 0.635 to

make sin(x) = −1+
√

33
8

so that f ′′(x) = 0, then setting

x = π − a = π − arcsin

(
−1 +

√
33

8

)
≈ 2.507

will also give us sin(x) = −1+
√

33
8

and f ′′(x) = 0. Similarly, setting

x = π − b = π − arcsin

(
−1−

√
33

8

)
≈ 4.145
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would give us f ′′(x) = 0. However, this value is outside [−π, π]. To find
another solution inside [−π, π] we use the identity

sin(x) = sin(−π − x)

(which we can obtain from the identity we used above and the fact that
sin(θ) = sin(θ ± 2π) for any angle θ). Using this, we can show that

x = −π − b = −π − arcsin

(
−1−

√
33

8

)
≈ −2.139

also gives f ′′(x) = 0.
So, all together, f ′′(x) = 0 when x = −π − b, x = b, x = a, and x = π − a.
Now, we should compute the sign of f ′′(x) while x is between −π and π.
Recall that, if y = sin x, then f ′′(x) = −4(4y2 + y − 2). So, in terms of y, f ′′

is a parabola pointing down, with intercepts y = −1±
√

33
8

. Then f ′′ is positive

when y is in the interval
(
−1−

√
33

8
, −1+

√
33

8

)
, and f ′′ is negative otherwise. From

the graph of sine, we see that y is between −1−
√

33
8

and −1+
√

33
8

precisely on
the intervals (−π,−π − b), (b, a), and (π − a, π).
Therefore, f(x) is concave up on the intervals (−π,−π − b), (b, a), and (π −
a, π), and f(x) is concave down on the intervals (−π− b, b) and (a, π−a). So,
the inflection points of f occur at x = −π − b, x = b, x = a, and x = π − a.

x

y

π−π π
2

−π
2 −π

6−5π
6

ab π − a−π − b

6

−3

−2
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To find the maximum and minimum values of f(x) on [0, π], we compare the values
of f(x) at its critical points in this interval (only x = π

2
) with the values of f(x) at

its endpoints x = 0, x = π.
Since f(0) = f(π) = −2, the minimum value of f on [0, π] is −2, achieved at
x = 0, π and the maximum value of f on [0, π] is 6, achieved at x =

π

2
.

3.6.7.10. Solution. Let f(x) = 3

√
x+ 1

x2
.

• Asymptotes: Since lim
x→0

f(x) = ∞, f(x) has a vertical asymptote at x = 0

where the curve reaches steeply upward from both the left and the right.

lim
x→±∞

f(x) = 0, so y = 0 is a horizontal asymptote for x→ ±∞.

• Intercepts: f(−1) = 0.

• Intervals of increase and decrease:

f ′(x) =
−(x+ 2)

3x5/3(x+ 1)2/3

There is a singular point at x = −1 and a critical point at x = −2, in addition
to a discontinuity at x = 0. Note that (x+ 1)2/3 =

(
3
√
x+ 1

)2, which is never
negative. Note also that lim

x→−1
f ′(x) = ∞, so f(x) has a vertical tangent line

at x = −1.

x (−∞,−2) −2 (−2,−1) −1 (−1, 0) 0 (0,∞)

f ′(x) negative 0 positive DNE positive DNE negative
f(x) decreasing l. min increasing vertical increasing VA decreasing

This gives us enough information to sketch a skeleton of the curve.

x

y

−2 −1

• Concavity:

f ′′(x) =
4x2 + 16x+ 10

9x8/3(x+ 1)5/3
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We still have a discontinuity at x = 0, and f ′′(x) does not exist at x = −1. The
second derivative is zero when 4x2+16x+10 = 0. Using the quadratic formula,
we find this occurs when x = −2±

√
1.5 ≈ −0.8,−3.2. Note x8/3 = ( 3

√
x)

8 is
never negative.

x
(
−∞,−2−

√
1.5
)
−2−

√
1.5 (−2−

√
1.5,−1) −1

f ′′(x) negative 0 positive DNE
f(x) concave down IP concave up IP

x (−1,−2 +
√

1.5) −2 +
√

1.5 (−2 +
√

1.5, 0) (0,∞)

f ′′(x) negative 0 positive positive
f(x) concave down IP concave up concave up

Now, we can refine our skeleton. The closed dot is the local minimum, and
the open dots are inflection points.

x

y

−1−2

−1

1

Exercises — Stage 3
3.6.7.11. ∗. Solution. The parts of the question are just scaffolding to lead you
through sketching the curve. Their answers are given explicitly, in an organized
manner, in the “answers” section. In this solution, they are scattered throughout.

• Asymptotes:

Since the function has a derivative at every real number, the function is con-
tinuous for every real number, so it has no vertical asymptotes. In the problem
statement, you are told lim

x→∞
f(x) = 0, so y = 0 is a horizontal asymptote as

x goes to infinity. It remains to evaluate lim
x→−∞

f(x). Let’s consider the limit
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of f ′(x) instead. Recall K is a positive constant.

lim
x→−∞

e−x = lim
x→∞

ex =∞

lim
x→−∞

K(2x− x2) = −∞

So,

lim
x→−∞

K(2x− x2)e−x = −∞

That is, as x becomes a hugely negative number, f ′(x) also becomes a hugely
negative number. As we move left along the x-axis, f(x) is decreasing with a
steeper and steeper slope, as in the sketch below. That means lim

x→−∞
f(x) =∞.

x

y

Sketch: various tangent lines to f(x),
their slopes getting more strongly negative

as x gets more strongly negative.

• Intervals of increase and decrease:

We are given f ′(x) (although we don’t know f(x)):

f ′(x) = Kx(2− x)e−x

The critical points of f(x) are x = 0 and x = 2, and there are no singular
points. Recall e−x is always positive, and K is a positive constant.
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x (−∞, 0) 0 (0, 2) 2 (2,∞)

f ′(x) negative 0 positive 0 negative
f(x) decreasing local min increasing local max decreasing

So, f(0) = 0 is a local minimum, and f(2) = 2 is a local maximum.

Looking ahead to part 3.6.7.11.d, we have a skeleton of the curve.

x

y

decreasing increasing decreasing

2

• Concavity:

Since we’re given f ′(x), we can find f ′′(x).

f ′′(x) = K(2− 2x− 2x+ x2)e−x

= K(2− 4x+ x2)e−x

= K
(
x− 2−

√
2
)(
x− 2 +

√
2
)
e−x

where the last line can be found using the quadratic equation. So, f ′′(x) = 0
for x = 2±

√
2, and f ′′(x) exists everywhere.

x (−∞, 2−
√

2) 2−
√

2 (2−
√

2, 2 +
√

2) 2 +
√

2 (2 +
√

2,∞)

f ′(x) positive 0 negative 0 positive
f(x) concave up IP concave down IP concave up

Now, we can add concavity to our sketch.
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x

y

22−
√

2 2 +
√

2

decr increasing decreasing

cc up concave down concave up

3.6.7.12. ∗. Solution. 3.6.7.12.a You should be familiar with the graph of
y = ex. You can construct the graph of y = e−x just by reflecting the graph of
y = ex across the y–axis. To see why this is the case, imagine swapping each value
of x with its negative: for example, swapping the point at x = −1 with the point at
x = 1, etc. Alternatively, you can graph y = f(x) = e−x, x ≥ 0, using the methods
of this section: at x = 0, y = f(0) = 1; as x increases, y = f(x) = e−x decreases,
with no local extrema; and as x→ +∞, y = f(x)→ 0.
There are no inflection points or extrema, except the endpoint (0, 1).
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x

y

y = f(x)

1

1

3.6.7.12.b
Recall that, to graph the inverse of a function, we reflect the original function across
the line y = x. To see why this is true, consider the following. By definition, the
inverse function g of f is obtained by solving y = f(x) for x as a function of y. So,
for any pair of numbers x and y, we have

f(x) = y if and only g(y) = x

That is, g is the function that swaps the input and output of f . Now the point
(x, y) lies on the graph of f if and only if y = f(x). Similarly, the point (X, Y ) lies
on the graph of g if and only if Y = g(X). Choosing Y = x and X = y, we see
that the point (X, Y ) = (y, x) lies on the graph of g if and only if x = g(y), which
in turn is the case if and only if y = f(x). So

(y, x) is on the graph of g if and only if (x, y) is on the graph of f .

To get from the point(x, y) to the point (y, x) we have to exchange x ↔ y, which
we can do by reflecting over the line y = x. Thus we can construct the graph of g
by reflecting the curve y = f(x) over the line y = x.
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x

y

y = f(x)

y = x

y = g(x)

1

1

3.6.7.12.c The domain of g is the range of f , which is (0, 1]. The range of g is the
domain of f , which is [0,∞).
3.6.7.12.d Since g and f are inverses,

g(f(x)) = x

Using the chain rule,

g′(f(x)) · f ′(x) = 1

Since f ′(x) = −e−x = −f(x):

g′(f(x)) · f(x) = −1

We plug in f(x) = 1
2
.

g′
(

1

2

)
· 1

2
= −1

g′
(

1

2

)
= −2

3.6.7.13. ∗. Solution. (a) First, we differentiate.

f(x) = x5 − x f ′(x) = 5x4 − 1 f ′′(x) = 20x3

The function and its first derivative tells us the following:

• lim
x→∞

f(x) =∞, lim
x→−∞

f(x) = −∞
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• f ′(x) > 0 (i.e. f is increasing) for |x| > 1
4
√

5

• f ′(x) = 0 (i.e. f has critical points) for x = ± 1
4
√

5
≈ ±0.67

• f ′(x) < 0 (i.e. f is decreasing) for |x| < 1
4
√

5

• f

(
± 1

4
√

5

)
= ∓ 4

5 4
√

5
≈ ∓0.53

This gives us a first idea of the shape of the graph.

x

y

−1
4√5

1
4√5

4

5 4√5

−4

5 4√5

We refine this skeleton using information from the second derivative.

• f ′′(x) > 0 (i.e. f is concave up) for x > 0,

• f ′′(x) = 0 (i.e. f has an inflection point) for x = 0, and

• f ′′(x) < 0 (i.e. f is concave down) for x < 0

Thus

• f has no asymptotes

• f has a local maximum at x = − 1
4
√

5
and a local minimum at x =

1
4
√

5

• f has an inflection point at x = 0

• f is concave down for x < 0 and concave up for x > 0
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x

y

−1
4√5

1
4√5

4

5 4√5

−4

5 4√5

(b) The function x5−x+k has a root at x = x0 if and only if x5−x = −k at x = x0.
So the number of distinct real roots of x5 − x+ k is the number of times the curve
y = x5− x crosses the horizontal line y = −k. The local maximum of x5− x (when

x = − 1
4
√

5
) is

4

5 4
√

5
, and the local minimum of x5−x (when x =

1
4
√

5
) is − 4

5 4
√

5
. So,

looking at the graph of x5 − x above, we see that the number of distinct real roots
of x5 − x+ k is

• 1 when |k| > 4

5 4
√

5

• 2 when |k| = 4

5 4
√

5

• 3 when |k| < 4

5 4
√

5

3.6.7.14. ∗. Solution. (a) You might not be familiar with hyperbolic sine and
cosine, but you don’t need to be. We can graph them using the same methods as
the other curves in this section. The derivatives are given to us:

d

dx
{sinhx} = coshx =

ex + e−x

2
d

dx
{coshx} = sinhx =

ex − e−x
2(

d

dx

)2

{sinhx} = sinhx =
ex − e−x

2
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d

dx

)2

{coshx} = coshx =
ex + e−x

2

Observe that:

• sinh(x) has a derivative that is always positive, so sinh(x) is always increasing.
The second derivative of sinh(x) is negative to the left of x = 0 and positive
to the right of x = 0, so sinh(x) is concave down to the left of the y-axis and
concave up to its right, with an inflection point at x = 0.

• cosh(x) has a derivative that is positive when x > 0 and negative when x < 0.
The second derivative of cosh(x) is always positive, so it is always concave up.

• cosh(0) = 1 and sinh(0) = 0.

• lim
x→∞

sinhx = lim
x→∞

coshx = lim
x→∞

ex

2
=∞, since lim

x→∞
e−x = 0

•
lim

x→−∞
sinhx = lim

x→−∞

(
ex

2
− e−x

2

)
= lim

x→∞

(
e−x

2
− ex

2

)
= −∞

and
lim

x→−∞
coshx = lim

x→−∞

(
ex

2
+
e−x

2

)
= lim

x→∞

(
e−x

2
+
ex

2

)
=∞

• cosh(x) is even, since

cosh(−x) =
e−x + e−(−x)

2
=
e−x + ex

2
= cosh(x)

and sinh(x) is odd, since

sinh(−x) =
e−x − e−(−x)

2
=
e−x − ex

2
=
− (ex − e−x)

2
= − sinh(x)

x

y
y = sinhx

x

y
y = coshx

1

(b)
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• As y runs over (−∞,∞) the function sinh(y) takes every real value exactly
once. So, for each x ∈ (−∞,∞), define sinh−1(x) to be the unique solution
of sinh(y) = x.

• As y runs over [0,∞) the function cosh(y) takes every real value in [1,∞)
exactly once. In particular, the smallest value of cosh(y) is cosh(0) = 1. So,
for each x ∈ [1,∞), define cosh−1(x) to be the unique y ∈ [0,∞) that obeys
cosh(y) = x.

To graph the inverse of a (one-to-one) function, we reflect the original function over
the line y = x. Using this method to graph y = sinh−1(x) is straightforward. To
graph y = cosh(x), we need to be careful of the domains: we are restricting cosh(x)
to values of x in [0,∞). The graphs are

x

y

y = sinhx

y = sinh−1 x

x

y

y = sinh−1 x

x

y
y = coshx

y = cosh−1 x

x

y

y = cosh−1 x

(c) Let y(x) = cosh−1(x). Then, using the definition of cosh−1,

cosh y(x) = x

We differentiate with respect to x using the chain rule.

d

dx
{cosh y(x)} =

d

dx
{x}

y′(x) sinh y(x) = 1

We solve for y′(x).

y′(x) =
1

sinh y(x)
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We want to have our answer in terms of x, not y. We know that cosh y = x, so if
we can convert hyperbolic sine into hyperbolic cosine, we can get rid of y. Our tool
for this is the identity, given in the question statement, cosh2(x) − sinh2(x) = 1.
This tells us sinh2(y) = 1 − cosh2(y). Now we have to decide whether sinh(y) is
the positive or negative square root of 1− cosh2(y) in our context. Looking at the
graph of y(x) = cosh−1(x), we see y′(x) > 0. So we use the positive square root:

y′(x) =
1√

cosh2 y(x)− 1
=

1√
x2 − 1

Remark:
d

dx
{arccos(x)} =

−1√
1− x2

, so again the hyperbolic trigonometric function

has properties similar to (but not exactly the same as) its trigonometric counterpart.

3.7 · L’Hôpital’s Rule, Indeterminate Forms
3.7.4 · Exercises

Exercises — Stage 1
3.7.4.1. Solution. There are many possible answers. Consider these: f(x) = 5x,

g(x) = 2x. Then lim
x→∞

f(x) = lim
x→∞

g(x) = ∞, and lim
x→∞

f(x)

g(x)
= lim

x→∞
5x

2x
= lim

x→∞
5

2
=

5

2
= 2.5.

3.7.4.2. Solution. There are many possible answers. Consider these: f(x) = x,

g(x) = x2. Then lim
x→∞

f(x) = lim
x→∞

g(x) = ∞, and lim
x→∞

f(x)

g(x)
= lim

x→∞
x

x2
= lim

x→∞
1

x
=

0.

3.7.4.3. Solution. From Example 3.7.20, we know that lim
x→0

(1 + x)
a
x = ea, so

lim
x→0

(1 + x)
log 5
x = elog 5 = 5. However, this is the limit as x goes to 0, which is not

what we were asked. So, we modify the functions by replacing x with 1
x
. If x→ 0+,

then 1
x
→∞.

Taking f(x) = 1 + 1
x
and g(x) = x log 5, we see:

• 3.7.4.3.i lim
x→∞

f(x) = lim
x→∞

(
1 +

1

x

)
= 1

• 3.7.4.3.ii lim
x→∞

g(x) = lim
x→∞

x log 5 =∞

• 3.7.4.3.iii Let us name
1

x
= X. Then as x→∞, X → 0+, so:

lim
x→∞

[f(x)]g(x) = lim
x→∞

[
1 +

1

x

]x log 5

= lim
x→∞

[
1 +

1

x

] log 5
1
x

= lim
X→0+

[1 +X]
log 5
X = elog 5 = 5,

where in the penultimate step, we used the result of Example 3.7.20.
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Exercises — Stage 2
3.7.4.4. ∗. Solution. If we plug in x = 1 to the numerator and the denominator,
we find they are both zero. So, we have an indeterminate form appropriate for
L’Hôpital’s Rule.

lim
x→1

x3 − ex−1

sin(πx)︸ ︷︷ ︸
num→0
den→0

= lim
x→1

3x2 − ex−1

π cos(πx)
= − 2

π

3.7.4.5. ∗. Solution. Be careful– this is not an indeterminate form!
As x → 0+, the numerator log x → −∞. That is, the numerator is becoming
an increasingly huge, negative number. As x → 0+, the denominator x → 0+,
which only serves to make the total fraction even larger, and still negative. So,

lim
x→0+

log x

x
= −∞.

Remark: if we had tried to use l’Hôpital’s Rule here, we would have come up with the
wrong answer. If we differentiate the numerator and the denominator, the fraction

becomes
1
x

1
= 1

x
, and lim

x→0+

1

x
= ∞. The reason we cannot apply l’Hôpital’s Rule is

that we do not have an indeterminate form, like both numerator and denominator
going to infinity, or both numerator and denominator going to zero.

3.7.4.6. ∗. Solution. We rearrange the expression to a more natural form:

lim
x→∞

(log x)2e−x = lim
x→∞

(log x)2

ex︸ ︷︷ ︸
num→∞
den→∞

Both the numerator and denominator go to infinity as x goes to infinity. So, we can
apply l’Hôpital’s Rule. In fact, we end up applying it twice.

lim
x→∞

(log x)2e−x = lim
x→∞

2 log x

xex︸ ︷︷ ︸
num→∞
den→∞

= lim
x→∞

2/x

xex + ex

The numerator gets smaller and smaller while the denominator gets larger and
larger, so:

lim
x→∞

(log x)2e−x = 0

3.7.4.7. ∗. Solution.

lim
x→∞

x2e−x = lim
x→∞

x2

ex︸︷︷︸
num→∞
den→∞

= lim
x→∞

2x

ex︸︷︷︸
num→∞
den→∞

= lim
x→∞

2

ex︸︷︷︸
num→∞
den→∞

= 0
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3.7.4.8. ∗. Solution.

lim
x→0

x− x cosx

x− sinx︸ ︷︷ ︸
num→0
den→0

= lim
x→0

1− cosx+ x sinx

1− cosx︸ ︷︷ ︸
num→0
den→0

= lim
x→0

sinx+ sinx+ x cosx

sinx︸ ︷︷ ︸
num→0
den→0

= lim
x→0

2 cosx+ cosx− x sinx

cosx
= 3

3.7.4.9. Solution. If we plug in x = 0 to the numerator and denominator, both
are zero, so this is a candidate for l’Hôpital’s Rule. However, an easier way to
evaluate the limit is to factor x2 from the numerator and denominator, and cancel.

lim
x→0

√
x6 + 4x4

x2 cosx
= lim

x→0

√
x4
√
x2 + 4

x2 cosx

= lim
x→0

x2
√
x2 + 4

x2 cosx

= lim
x→0

√
x2 + 4

cosx

=

√
02 + 4

cos(0)
= 2

3.7.4.10. ∗. Solution.

lim
x→∞

(log x)2

x︸ ︷︷ ︸
num→∞
den→∞

= lim
x→∞

2(log x) 1
x

1
= 2 lim

x→∞
log x

x︸ ︷︷ ︸
num→∞
den→∞

= 2 lim
x→∞

1
x

1
= 0

3.7.4.11. ∗. Solution.

lim
x→0

1− cosx

sin2 x︸ ︷︷ ︸
num→0
den→0

= lim
x→0

sinx

2 sinx cosx
= lim

x→0

1

2 cosx
=

1

2

3.7.4.12. Solution. If we plug in x = 0, the numerator is zero, and the denomi-

nator is sec 0 =
1

cos 0
=

1

1
= 1. So the limit is

0

1
= 0.

Be careful: you cannot use l’Hôpital’s Rule here, because the fraction does not give
an indeterminate form. If you try to differentiate the numerator and the denomi-
nator, you get an expression whose limit does not exist:

lim
x→0

1

secx tanx
= lim

x→0
cosx · cosx

sinx
= DNE.

3.7.4.13. Solution. If we plug x = 0 into the denominator, we get 1. However,
the numerator is an indeterminate form: tan 0 = 0, while lim

x→0+
cscx = ∞ and
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lim
x→0−

cscx = −∞. If we use cscx = 1
sinx

, our expression becomes

lim
x→0

tanx · (x2 + 5)

sinx · ex

Since plugging in x = 0 makes both the numerator and the denominator equal to
zero, this is a candidate for l’Hôspital’s Rule. However, a much easier way is to
simplify the trig first.

lim
x→0

tanx · (x2 + 5)

sinx · ex = lim
x→0

sinx · (x2 + 5)

cosx · sinx · ex

= lim
x→0

x2 + 5

cosx · ex

=
02 + 5

cos(0) · e0
= 5

3.7.4.14. Solution. lim
x→∞

√
2x2 + 1−

√
x2 + x has the indeterminate form∞−∞.

To get a better idea of what’s going on, let’s rationalize.

lim
x→∞

√
2x2 + 1−

√
x2 + x

= lim
x→∞

(√
2x2 + 1−

√
x2 + x

)(√2x2 + 1 +
√
x2 + x√

2x2 + 1 +
√
x2 + x

)

= lim
x→∞

(2x2 + 1)− (x2 + x)√
2x2 + 1 +

√
x2 + x

= lim
x→∞

x2 − x+ 1√
2x2 + 1 +

√
x2 + x

Here, we have the indeterminate form ∞
∞ , so l’Hôpital’s Rule applies. However, if we

try to use it here, we quickly get a huge mess. Instead, remember how we dealt with
these kinds of limits in the past: factor out the highest power of the denominator,
which is x.

= lim
x→∞

x
(
x− 1 + 1

x

)√
x2(2 + 1

x2
) +

√
x2(1 + 1

x
)

= lim
x→∞

x
(
x− 1 + 1

x

)
x
(√

2 + 1
x2

+
√

1 + 1
x

)
= lim

x→∞

x− 1 + 1
x√

2 + 1
x2

+
√

1 + 1
x︸ ︷︷ ︸

num→∞
den→

√
2+1

=∞

982



Solutions to Exercises

3.7.4.15. ∗. Solution. If we plug in x = 0, both numerator and denominator
become zero. So, we have exactly one of the indeterminate forms that l’Hôpital’s
Rule applies to.

lim
x→0

sin(x3 + 3x2)

sin2 x︸ ︷︷ ︸
num→0
den→0

= lim
x→0

(3x2 + 6x) cos(x3 + 3x2)

2 sinx cosx

If we plug in x = 0, still we find that both the numerator and the denominator go
to zero. We could jump in with another iteration of l’Hôpital’s Rule. However, the
derivatives would be a little messy, so we use limit laws and break up the fraction
into the product of two fractions. If both limits exist:

lim
x→0

(3x2 + 6x) cos(x3 + 3x2)

2 sinx cosx

=

(
lim
x→0

x2 + 2x

sinx

)
·
(

lim
x→0

3 cos(x3 + 3x2)

2 cosx

)
We can evaluate the right-hand limit by simply plugging in x = 0:

lim
x→0

(3x2 + 6x) cos(x3 + 3x2)

2 sinx cosx
=

3

2
lim
x→0

x2 + 2x

sinx︸ ︷︷ ︸
num→0
den→0

=
3

2
lim
x→0

2x+ 2

cosx

=
3

2

(
2

1

)
= 3

3.7.4.16. ∗. Solution.

lim
x→1

log(x3)

x2 − 1
= lim

x→1

3 log(x)

x2 − 1︸ ︷︷ ︸
num→0
den→0

= lim
x→1

3/x

2x
=

3

2

3.7.4.17. ∗. Solution.

• Solution 1.

lim
x→0

e−1/x2

x4
= lim

x→0

1
x4

e1/x2︸ ︷︷ ︸
num→∞
den→∞

= lim
x→0

−4
x5

−2
x3
e1/x2

= lim
x→0

2
x2

e1/x2︸ ︷︷ ︸
num→∞
den→∞

= lim
x→0

−4
x3

−2
x3
e1/x2

= lim
x→0

2

e1/x2
= 0

since, as x→ 0, the exponent 1
x2
→∞ so that e1/x2 →∞ and e−1/x2 → 0.
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• Solution 2.

lim
x→0

e−1/x2

x4
= lim

t= 1
x2
→∞

e−t

t−2
= lim

t→∞
t2

et︸︷︷︸
num→∞
den→∞

= lim
t→∞

2t

et︸︷︷︸
num→∞
den→∞

= lim
t→∞

2

et
= 0

3.7.4.18. ∗. Solution.

lim
x→0

xex

tan(3x)︸ ︷︷ ︸
num→0
den→0

= lim
x→0

ex + xex

3 sec2(3x)
=

1

3

3.7.4.19. Solution. lim
x→0

sin2 x = 0, and lim
x→0

1

x2
= ∞, so we have the form 0∞.

(Note that sin2 x is positive, so our root is defined.) This is not an indeterminate
form: lim

x→0

x2
√

sin2 x = 0.

3.7.4.20. Solution. lim
x→0

cosx = 1 and lim
x→0

1

x2
= ∞, so lim

x→0
(cosx)

1
x2 has the

indeterminate form 1∞. We want to use l’Hôpital, but we need to get our function
into a fractional indeterminate form. So, we’ll use a logarithm.

y : = (cos x)
1
x2

log y = log
(

(cosx)
1
x2

)
=

1

x2
log(cos x) =

log cosx

x2

lim
x→0

log y = lim
x→0

log cosx

x2︸ ︷︷ ︸
num→0
den→0

= lim
x→0

− sinx
cosx

2x
= lim

x→0

− tanx

2x︸ ︷︷ ︸
num→0
den→0

= lim
x→0

− sec2 x

2
= lim

x→0

−1

2 cos2 x
= −1

2

Therefore, lim
x→0

y = lim
x→0

elog y = e−1/2 =
1√
e

3.7.4.21. Solution.

• Solution 1

y : = ex log x = (ex)log x

lim
x→0+

y = lim
x→0+

(ex)log x

This has the form 1−∞ = 1
1∞ , and 1∞ is an indeterminate form. We want to

use l’Hôpital, but we need to get a different indeterminate form. So, we’ll use
logarithms.

lim
x→0+

log y = lim
x→0+

log
(
(ex)log x

)
= lim

x→0+
log x log (ex)

= lim
x→0+

(log x) · x
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This has the indeterminate form 0 ·∞, so we need one last adjustment before
we can use l’Hôpital’s Rule.

lim
x→0+

(log x) · x = lim
x→0+

log x
1
x︸ ︷︷ ︸

num→−∞
den→∞

= lim
x→0+

1
x
−1
x2

= lim
x→0+

−x = 0

Now, we can figure out what happens to our original function, y:

lim
x→0+

y = lim
x→0+

elog y = e0 = 1

• Solution 2

y : = ex log x =
(
elog x

)x
= xx

lim
x→0+

y = lim
x→0+

xx

We have the indeterminate form 00. We want to use l’Hôpital, but we need a
different indeterminate form. So, we’ll use logarithms.

lim
x→0+

log y = lim
x→0+

log(xx) = lim
x→0+

x log x

Now we have the indeterminate form 0 · ∞, so we need one last adjustment
before we can use l’Hôpital’s Rule.

lim
x→0+

y = lim
x→0+

log x
1
x︸ ︷︷ ︸

num→0
den→−∞

= lim
x→0+

1
x
−1
x2

= lim
x→0+

−x = 0

Now, we can figure out what happens to our original function, y:

lim
x→0+

y = lim
x→0+

elog y = e0 = 1

3.7.4.22. Solution. First, note that the function exists near 0: x2 is positive,
so log(x2) exists; near 0, log x2 is negative, so − log(x2) is positive, so [− log(x2)]

x

exists even when x is negative.
Since lim

x→0
− log(x2) = ∞ and lim

x→0
x = 0, we have the indeterminate form ∞0. We

need l’Hôpital, but we need to manipulate our function into an appropriate form.
We do this using logarithms.

y : =
[
− log(x2)

]x
log y = log

([
− log(x2)

]x)
= x︸︷︷︸
→0

· log

− log(x2)︸ ︷︷ ︸
→∞


︸ ︷︷ ︸

→∞
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=
log (− log(x2))

1
x

lim
x→0

log y = lim
x→0

log (− log(x2))
1
x︸ ︷︷ ︸

num→∞
den→±∞

= lim
x→0

− 2
x

− log(x2)

−1
x2

= lim
x→0

−2x

log(x2)︸ ︷︷ ︸
num→0

den→−∞

= 0

Now, we’re ready to figure out our original limit.

lim
x→0

y = lim
x→0

elog y = e0 = 1

3.7.4.23. ∗. Solution. Both the numerator and denominator converge to 0 as
x→ 0. So, by l’Hôpital,

lim
x→0

1 + cx− cosx

ex2 − 1︸ ︷︷ ︸
num→0
den→0

= lim
x→0

c+ sinx

2xex2

The new denominator still converges to 0 as x→ 0. For the limit to exist, the same
must be true for the new numerator. This tells us that if c 6= 0, the limit does not
exist. We should check whether the limit exists when c = 0. Using l’Hôpital:

lim
x→0

sinx

2xex2︸ ︷︷ ︸
num→0
den→0

= lim
x→0

cosx

ex2(4x2 + 2)
=

1

1(0 + 2)
=

1

2
.

So, the limit exists when c = 0.

3.7.4.24. ∗. Solution. The first thing we notice is, regardless of k, when we
plug in x = 0 both numerator and denominator become zero. Let’s use this fact,
and apply l’Hôpital’s Rule.

lim
x→0

ek sin(x2) − (1 + 2x2)

x4︸ ︷︷ ︸
num→0
den→0

= lim
x→0

2kx cos(x2)ek sin(x2) − 4x

4x3

= lim
x→0

2k cos(x2)ek sin(x2) − 4

4x2

When we plug in x = 0, the denominator becomes 0, and the numerator becomes
2k− 4. So, we’ll need some cases, because the behaviour of the limit depends on k.
For k = 2:

lim
x→0

2k cos(x2)ek sin(x2) − 4

4x2
= lim

x→0

4 cos(x2)e2 sin(x2) − 4

4x2︸ ︷︷ ︸
num→0
den→0

= lim
x→0

−8x sin(x2)e2 sin(x2) + 16x cos2(x2)e2 sin(x2)

8x
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= lim
x→0

[
− sin(x2)e2 sin(x2) + 2 cos2(x2)e2 sin(x2)

]
= 2

For k > 2, the numerator goes to 2k − 4, which is a positive constant, while the
denominator goes to 0 from the right, so:

lim
x→0

2k cos(x2)ek sin(x2) − 4

4x2
=∞

For k < 2, the numerator goes to 2k − 4, which is a negative constant, while the
denominator goes to 0 from the right, so:

lim
x→0

2k cos(x2)ek sin(x2) − 4

4x2
= −∞

Exercises — Stage 3
3.7.4.25. Solution.

• We want to find the limit as n goes to infinity of the percentage error,

lim
n→∞

100
|S(n)− A(n)|
|S(n)| . Since A(n) is a nicer function than S(n), let’s simplify:

lim
n→∞

100
|S(n)− A(n)|
|S(n)| = 100

∣∣∣∣1− lim
n→∞

A(n)

S(n)

∣∣∣∣.
We figure out this limit the natural way:

100

∣∣∣∣1− lim
n→∞

A(n)

S(n)

∣∣∣∣ = 100

∣∣∣∣∣∣∣∣∣1− lim
n→∞

5n4

5n4 − 13n3 − 4n+ log(n)︸ ︷︷ ︸
num→∞
den→∞

∣∣∣∣∣∣∣∣∣
= 100

∣∣∣∣1− lim
n→∞

20n3

20n3 − 39n2 − 4 + 1
n

∣∣∣∣
= 100

∣∣∣∣1− lim
n→∞

n3

n3
· 20

20− 39
n
− 4

n3 + 1
n4

∣∣∣∣
= 100|1− 1| = 0

So, as n gets larger and larger, the relative error in the approximation gets
closer and closer to 0.

• Now, let’s look at the absolute error.

lim
n→∞

|S(n)− A(n)| = lim
n→∞

| − 13n3 − 4n+ log n| =∞

So although the error gets small relative to the giant numbers we’re talking
about, the absolute error grows without bound.
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4 · Towards Integral Calculus
4.1 · Introduction to Antiderivatives
4.1.2 · Exercises

Exercises — Stage 1
4.1.2.1. Solution. An antiderivative of f ′(x) is a function whose derivative is
f ′(x). Our original function f(x) has this property, so f(x) is an antiderivative
of f ′(x), but it’s not the most general. We can add a constant to f(x) without
affecting its derivative. The most general antiderivative of f ′(x) is f(x) +C, where
C is any constant.

4.1.2.2. Solution. Notice f(x) is nonnegative for an interval covering the left
part of the graph, and negative on the right part of the graph. That means its
antiderivative is increasing for the left interval, then decreasing for the right interval.
This applies to A(x) and C(x), but not B(x).
There are only three points where A(x) has a horizontal tangent line: at its global
maximum and the endpoints of the interval shown. By contrast, C(x) has a hor-
izontal tangent line in four places: at its global maximum, at its inflection point,
and at the endpoints of the interval shown. Since f(x) = 0 four times (and these
line up with the horizontal portions of C(x)) we conclude C(x) is the antiderivative
of f(x).

Exercises — Stage 2
4.1.2.3. Solution. For any constant n 6= −1, an antiderivative of xn is 1

n+1
xn+1.

F ′(x) = 3x2 + 5x4 + 10x− 9

F (x) = 3

(
1

3

)
x3 + 5

(
1

5

)
x5 + 10

(
1

2

)
x2 − 9

(
1

1

)
x1 + C

= x3 + x5 + 5x2 − 9x+ C

Remark: we can always check by differentiating:

F ′(x) =
d

dx

{
x3 + x5 + 5x2 − 9x+ C

}
= 3x2 + 5x4 + 10x− 9

= f(x)

so F (x) is indeed an antiderivative of f(x).

4.1.2.4. Solution.

F ′(x) =
3

5
x7 − 18x4 + x

F (x) =

(
3

5

)(
1

8

)
x8 − 18

(
1

5

)
x5 +

1

2
x2 + C
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=
3

40
x8 − 18

5
x5 +

1

2
x2 + C

4.1.2.5. Solution. For any constant n 6= 1, an antiderivative of xn is 1
n+1

xn+1.
The constant n does not have to be an integer.

F ′(x) = 4 3
√
x− 9

2x2.7

= 4x
1
3 − 9

2
x−2.7

F (x) = 4

(
1

1
3

+ 1

)
x

(
1
3

+1
)
−
(

9

2

)(
1

−2.7 + 1

)
x(−2.7+1) + C

= 4

(
3

4

)
x

4
3 −

(
9

2

)(
10

−17

)
x−1.7 + C

= 3x
4
3 +

45

17x1.7
+ C

4.1.2.6. Solution.

• Solution 1: We can re-write f(x) to make it a power of x.

F ′(x) =
1

7
x−

1
2

F (x) =

(
1

7

)(
1

−1
2

+ 1

)
x

(
−1

2
+1

)
+ C

=

(
1

7

)
(2)x

1
2 + C

=
2

7

√
x+ C

• Solution 2: We notice that
1

7
√
x
looks a lot like

1

2
√
x
, which is the derivative

of
√
x. So:

d

dx

{√
x
}

=
1

2
√
x

d

dx

{
2

7

√
x

}
=

(
2

7

)
1

2
√
x

= f(x)

So, an antiderivative of f(x) is
2

7

√
x. Then the most general antiderivative is

F (x) =
2

7

√
x+ C.

4.1.2.7. Solution. We recall
d

dx
ex = ex. That is, ex is its own antiderivative.
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So, a first guess for the antiderivative of f(x) might be itself.

d

dx

{
e5x+11

}
= 5e5x+11

This isn’t exactly right, so we modify it by multiplying by a constant.

d

dx

{
1

5
e5x+11

}
= e5x+11

This tells us that
1

5
e5x+11 is an antiderivative of e5x+11. Therefore, the most general

antiderivative of e5x+11 is F (x) =
1

5
e5x+11 + C.

4.1.2.8. Solution. We know the derivatives of sine and cosine. We’ll work from
there to build a function whose derivative is f(x). We’ll start by finding an an-
tiderivative of 7 cos(13x).

d

dx
{sinx} = cosx

d

dx
{sin(13x)} = 13 cos(13x)

d

dx

{
1

13
sin(13x)

}
=

13

13
cos(13x) = cos(13x)

d

dx

{
7

13
sin(13x)

}
= 7 cos(13x)

So, an antiderivative of 7 cos(13x) is
7

13
sin(13x).

d

dx
{cosx} = − sinx

d

dx
{− cosx} = sinx

d

dx
{− cos(5x)} = 5 sin(5x)

d

dx

{
−3

5
cos(5x)

}
=

(
3

5

)
5 sin(5x) = 3 sin(5x)

So, an antiderivative of 3 sin(5x) is −3

5
cos(5x).

The most general antiderivative of 3 sin(5x) + 7 cos(13x) is

F (x) = −3

5
cos(5x) +

7

13
sin(13x) + C.

4.1.2.9. Solution. We know the derivative of tanx is sec2 x. Modifying this
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slightly, we see (using the chain rule)

d

dx
{tan(x+ 1)} = sec2(x+ 1) · d

dx
{x+ 1}

= sec2(x+ 1)

So, tan(x + 1) is an antiderivative of sec2(x + 1). Therefore, the most general
antiderivative of sec2(x+ 1) is F (x) = tan(x+ 1) + C.

4.1.2.10. Solution. We note that f(x) looks similar to
1

x
.

d

dx
{log |x|} =

1

x
d

dx
{log |x+ 2|} =

1

x+ 2

The most general antiderivative of f(x) is F (x) = log |x+ 2|+ C.

4.1.2.11. Solution. Our function f(x) bears some resemblance to the derivative

of arcsine,
1√

1− x2
:

f(x) =
7√

3− 3x2
=

7√
3

(
1√

1− x2

)
d

dx

{
7√
3

arcsin(x)

}
=

7√
3

(
1√

1− x2

)
= f(x)

So, the most general antiderivative of f(x) is F (x) =
7√
3

arcsin(x) + C.

4.1.2.12. Solution. We notice that f(x) looks similar to the derivative of the

arctangent function,
1

1 + x2
.

f(x) =
1

1 + 25x2
=

1

1 + (5x)2

This gives us a first guess for our antiderivative: perhaps arctan(5x) will work. We
test it by differentiating, making sure we don’t forget the chain rule.

d

dx
{arctan(5x)} =

1

1 + (5x)2 · 5

We’re close to f(x), but we’ve multiplied by 5. That’s easy to take care of: we can
divide our guess by 5.

d

dx

{
1

5
arctan(5x)

}
=

1

5

(
1

1 + (5x)2

)
· 5

=
1

1 + 25x2
= f(x)
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So, the most general antiderivative of f(x) is F (x) =
1

5
arctan(5x) + C.

4.1.2.13. Solution. First, let’s find the antiderivative of f ′(x). It’s a polynomial,
so we can use the observation from the text that an antiderivative of xn, for any
constant n 6= 1, is 1

n+1
xn+1. Remember that the most general antiderivative will

have an added constant.

f(x) =
3

3
x3 − 9

2
x2 + 4x+ C

= x3 − 9

2
x2 + 4x+ C

Use the fact that f(1) = 10 to solve for C.

10 = 1− 9

2
+ 4 + C

C =
19

2

All together,

f(x) = x3 − 9

2
x2 + 4x+

19

2
.

4.1.2.14. Solution. First, let’s find the antiderivative of f ′(x). We know that one
antiderivative of cos(x) is sinx. We might guess that an antiderivative of cos(2x) is
sin(2x). Check by differentiating:

d

dx
{sin(2x)} = 2 cos(2x)

This is close to f ′(x), but we need to divide by 2.

d

dx

{
1

2
sin(2x)

}
= cos(2x)

So, f(x) =
1

2
sin(2x) + C for some constant C. We can find C using the given

information f(π) = π.

π = f(π) =
1

2
sin(2π) + C

π = C

Therefore, f(x) =
1

2
sin(2x) + π.

4.1.2.15. Solution. Looking at the table in the notes, we see the antiderivative

of
1

x
is f(x) = log |x|+ C. The given information f(−1) = 0 lets us find C:

0 = f(−1) = log | − 1|+ C
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0 = log(1) + C

0 = C

So, f(x) = log |x|.
Remark: it is true that log x is an antiderivative of

1

x
, since the derivative of log x

is
1

x
. However, log x is only defined for positive values of x. Since the given infor-

mation tells you that f(x) is defined when x = −1, you need to use a more general

antiderivative of
1

x
: log |x|+ C.

4.1.2.16. Solution. An antiderivative of 1 is x, and an antiderivative of
1√

1− x2

is arcsin(x). So, f(x) = arcsin x+ x+ C. The given information lets us find C.

−π
2

= f(1) = arcsin(1) + 1 + C

−π
2

=
π

2
+ 1 + C

C = −π − 1

So, f(x) = arcsin x+ x− π − 1.

4.1.2.17. Solution. If P (t) is the population at time t, then the information given
in the problem is P ′(t) = 100e2t. Antidifferentiating, we see P (t) = 50e2t+C, where
C is some constant. We want to know for what value of t we get P (t) = P (0)+300.

P (t) = P (0) + 300

50e2t + C = 50e0 + C + 300

50e2t = 350

e2t = 7

2t = log(7)

t =
1

2
log(7)

It takes 1
2

log 7 hours (about 58 minutes) for the initial colony to increase by 300
individuals.
4.1.2.18. Solution. If A(t) is the amount of money in your account at time t,
then the given information is

A′(t) = 1500e
t

50

Antidifferentiating,

A(t) = 75000e
t

50 + C

for some constant C.
That is, at time t, the amount of money in your bank account is 75000e

t
50 + C

dollars, for some constant C.
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4.1.2.19. Solution. Let P (t) be the amount of power your house has used since
time t = 0. If t is measured in hours, and P (t) in kWh (kilowatt-hours), then P ′(t)
is the rate at which your house is consuming power, in kW. So, the given information
is that

P ′(t) = 0.5 sin
( π

24
t
)

+ 0.25

Antidifferentiating,

P (t) = −12

π
cos
( π

24
t
)

+ 0.25t+ C

Since P (0) is the amount of energy consumed after 0 hours, P (0) = 0, so

0 = P (0) = −12

π
+ C

C =
12

π

P (t) =
12

π

[
1− cos

( π
24
t
)]

+ 0.25t

After 24 hours, your energy consumed is

P (24) =
12

π
[1− cos (π)] + 0.25(24)

=
24

π
+ 6 ≈ 13.6 kWh

Exercises — Stage 3
4.1.2.20. ∗. Solution. We differentiate f(x) and g(x) using the chain rule.

Recall
d

dx
{arcsin(x)} =

1√
1− x2

.

f ′(x) =
2√

1−√x2
· d

dx

√
x

=
2√

1− x ·
1

2
√
x

=
1√

x− x2

g′(x) =
1√

1− (2x− 1)2
· d

dx
{2x− 1}

=
2√

1− 4x2 + 4x− 1

=
1√

x− x2

So, the derivative of f(x)− g(x) is 0, which implies that f(x) and g(x) differ by a
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constant–perhaps a surprising result!
Remark: we don’t need calculus to show that f(x) and g(x) only differ by a constant.
Define θ = sin−1√x, so that sin θ =

√
x and f(x) = 2θ , and then

sin
[
f(x)− π

2

]
= − cos f(x) = − cos 2θ = −[1− 2 sin2 θ]

= 2 sin2 θ − 1 = 2x− 1

Our goal is to take the arcsine of the first and last expressions and conclude f(x)−
π

2
= arcsin(2x− 1) = g(x). However, before we can say arcsin

(
sin
[
f(x)− π

2

])
=

f(x) − π

2
, we have to check that −π

2
≤ f(x) − π

2
≤ π

2
. That is, we need to show

that 0 ≤ f(x) ≤ π.
As 0 ≤ θ ≤ π

2
(since sin−1 always takes values between −π

2
and π

2
and since

√
x ≥ 0),

we have that 0 ≤ f(x) = 2θ ≤ π. So,

f(x)− π

2
= arcsin

(
sin
[
f(x)− π

2

])
= arcsin(2x+ 1) = g(x).

4.1.2.21. Solution. The derivative of sin(2x) (which occurs in the second term)
is 2 cos(2x) (which occurs in the first term). Similarly, the derivative of cos(3x)
(which occurs in the first term) is −3 sin(3x) (which occurs in the second term).
So, f(x) seems to have come from the product rule.

d

dx
{sin(2x) cos(3x)} = 2 cos(2x) cos(3x)− 3 sin(2x) sin(3x)

Then the antiderivative of f(x) is F (x) = sin(2x) cos(3x) + C.

4.1.2.22. Solution. The function f(x) looks like perhaps it came from the quo-
tient rule. Recall

d

dx

{
u(x)

v(x)

}
=
v(x)u′(x)− u(x)v′(x)

(v(x))2

Then, since the denominator of f(x) is (x2 + 1)2, we might guess v(x) = (x2 + 1).
That leaves u(x) = ex.

d

dx

{
ex

x2 + 1

}
=

(x2 + 1)ex − ex(2x)

(x2 + 1)2
= f(x)

So, the antiderivative of f(x) is F (x) =
ex

x2 + 1
+ C.

4.1.2.23. Solution. We know that ex is its own antiderivative. The derivative of
eg(x), for some function g(x), is g′(x)eg(x). Since 3x2 is the derivative of x3, f(x) fits
this pattern. We guess the antiderivative of f(x) is F (x) = ex

3
+ C.

We check by differentiating.

d

dx

{
ex

3

+ C
}

= 3x2ex
3

= f(x)
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Indeed, the antiderivative of f(x) is F (x) = ex
3

+ C.

4.1.2.24. Solution. We know the antiderivative of sinx is − cosx. Since sin(x2)
appears in our function, let’s investigate the derivative of − cos(x2).

d

dx

{
− cos

(
x2
)}

= sin
(
x2
)
· 2x

This differs from f(x) only by a constant multiple.

d

dx

{
−5

2
cos
(
x2
)}

=
5

2
sin
(
x2
)
· 2x = 5x sin(x2) = f(x)

So, the antiderivative of f(x) is F (x) = −5

2
cos (x2) + C

Remark: as in Question 4.1.2.23, our function f(x) involved some function g(x) as
well as g′(x). This pattern is the basis of an important method of antidifferentiation,
called the Substitution Rule.

4.1.2.25. Solution. For any x in the domain of log(x), elog x = x. So, f(x) = x

for every x in its domain. Then its antiderivative is F (x) =
1

2
x2 + C.

4.1.2.26. Solution. As in Question 4.1.2.11, we notice that our function is similar

to
1√

1− x2
, but in this case it doesn’t factor quite as nicely.

f(x) =
7√

3− x2
=

7√
3(1− x2

3
)

=
7√
3

 1√
1− x2

3


What we really want under that square root, instead of

x2

3
, is simply x2. We can

get close: we can get something squared.

f(x) =
7√
3

 1√
1−

(
x√
3

)2


Now, the thing that’s squared isn’t x, it’s

x√
3
. This gives us a first guess for an

antiderivative: perhaps F (x) =
7√
3

arcsin

(
x√
3

)
will work. Let’s try it! Remember

to use the chain rule when you differentiate.

d

dx

{
7√
3

arcsin

(
x√
3

)}
=

7√
3

 1√
1−

(
x√
3

)2

 · 1√
3
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We’re very close! We’re only off by a constant, and those are easy to fix. We’re
dividing by

√
3 when we differentiate, so let’s multiply our function by

√
3.

d

dx

{
7 arcsin

(
x√
3

)}
= 7

 1√
1−

(
x√
3

)2

 · 1√
3

=
7

√
3

√
1−

(
x√
3

)2

=
7√

3− x2
= f(x)

Therefore, the most general antiderivative of f(x) is F (x) = 7 arcsin

(
x√
3

)
+ C.

4.1.2.27. Solution. Following Example 4.1.7, let V (H) be the volume of the
solid formed by rotating the segment of the parabola from x = −H to x = H. Our

plan is to evaluate V ′(H) = lim
h→H

V (H)− V (h)

H − h and then antidifferentiate V ′(H) to

find V (H). Since we don’t know V (H) − V (h) (yet) we first find upper and lower
bounds on it when h < H.
For a constant h < H, V (H)−V (h) is the volume of the solid inside the larger object
(with length 2H) and outside the smaller object (with length 2h, shown below in
blue). There are two regions inside the larger object and outside the smaller.

y

x

H

h

One of the regions inside the larger object and outside the smaller (blue) object
looks like this:
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y = x2 + 1

H − h

x

h H

Remember we formed this solid by rotating the curve y = x2 + 1 about the x-axis.
So, the cross-section of this solid is a circle, and the radius of the circle when we
are x units from the origin is x2 + 1. So, the largest radius of the little shape shown
above, which occurs at the right end, is H2 + 1, and the smallest radius (at the left
end) is h2 + 1.
The volume of the shape shown above is less than a cylinder of radius H2 + 1 and
height H − h, and it is more than the volume of a cylinder of radius h2 + 1 and
height H−h. So, the volume of the shape shown above is between (H−h)π(h2 +1)2

and (H − h)π(H2 + 1)2 cubic units.
Recall that the volume inside the object of length 2H and outside the object of
length 2h consists of two copies of the shape shown above. Therefore:

2(H − h)π(h2 + 1)2 < V (H)− V (h) < 2(H − h)π(H2 + 1)2

Now that we have upper and lower bounds for V (H)− V (h), we can find V ′(H).

2(H − h)π(h2 + 1)2

H − h <
V (H)− V (h)

H − h <
2(H − h)π(H2 + 1)2

H − h
2π(h2 + 1)2<

V (H)− V (h)

H − h <2π(H2 + 1)2

lim
h→H

2π(h2 + 1)2≤ lim
h→H

V (H)− V (h)

H − h ≤ lim
h→H

2π(H2 + 1)2

Since the limits on both ends are simply 2π(H2 + 1)2, by the Squeeze Theorem,

V ′(H) = lim
h→H

V (H)− V (h)

H − h = 2π(H2 + 1)2

Now that we know V ′(H), we antidifferentiate to find V (H).

V ′(H) = 2π(H4 + 2H2 + 1)
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V (H) = 2π

(
1

5
H5 +

2

3
H3 +H

)
+ C

When H = 0, there is no solid, so V (0) = 0. Therefore,

V (H) = 2π

(
1

5
H5 +

2

3
H3 +H

)
.
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