Consider \(f(x) = 6x + \frac{4}{x} \).

1. There are three numbers \(A < B < C \) that are either critical or not in the domain of the function. Find \(A, B, \) and \(C \).

\[
f'(x) = 6 - \frac{4}{x^2}, \quad \text{so} \quad f'(x) = 0 \quad \text{when} \quad 6 - \frac{4}{x^2} = 0
\]

\[
A = -\sqrt{\frac{2}{3}}, \quad B = 0, \quad C = +\sqrt{\frac{2}{3}}.
\]

2. For each of the following intervals, tell whether \(f'(x) \) is positive or negative.

(a) \((-\infty, A)\) +
(b) \((A, B)\) -
(c) \((B, C)\) -
(d) \((C, \infty)\) +

3. For each of \(A, B, \) and \(C \), describe the behaviour of the function (e.g., local maximum).

(a) \(A \) local max
(b) \(B \) vertical asymptote
(c) \(C \) local min