ANNOUNCEMENTS

1. Final Exam - Dec 8 3:30-6:00 in Math 100.
 - Office Hours in Math Annex 1102
 Dec 4, 5, 6, 10:00-12:00
 - Exam Hardship, A&D.

 - PreCalculus Algebra: Do this Webwork.
 (not for Markus)
 - Q9 questions: 1, 3, 6, 9, 12

Today

• Quiz
• Linear Approximations
LINEAR APPROXIMATIONS

SMALL-ANGLE APPROXIMATION

\[\sin(\theta) \approx \theta \text{ for tiny/small values of } \theta. \]

approximate a line

a function

(c.f. pendulum in dynamics).

BTW, Have you seen the Foucault Pendulum in the Physics Building?
SMALL-ANGLE APPROXIMATION

1. SKETCH $y = \sin \Theta$ and $y = \Theta$.

For small Θ, $\sin \Theta \approx \Theta$.
SMALL-ANGLE APPROXIMATION

Why is this true?

1. \[\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \] (HW 4...)

say:

for small \(\theta \):

\[\frac{\sin \theta}{\theta} \approx 1 \]

\[\sin \theta \approx \theta \]

\[\to \text{Non-rigorous argument based on limit approximation.} \]
2. Look at the derivative of \(y = \sin \theta \) at \(\theta = 0 \).

\[y' = \cos \theta \implies y'(0) = \cos 0 = 1. \]

Note that if \(y = \theta \), \(y' = 1 \).

- \(\sin \theta \) and \(\theta \) are both 0 when \(\theta = 0 \).
- The derivatives of \(\sin \theta \) and \(\theta \) are both 1 when \(\theta = 0 \).
LINEAR APPROXIMATION

- If $f(x) = \sin x$, then the linear approximation of $f(x)$ near at $x = 0$ is

 \[y - f(0) = f'(0)(x - 0) \]
 \[y - \sin(0) = \cos(0)(x - 0) \]
 \[y = 0 = 1(x - 0) \]
 \[y = x. \]

DEFINITION The linear approximation of $f(x)$ at $x = a$ is

\[f(x) \approx f(a) + f'(a)(x - a) \]

- tangent to the function at $x = a$.
LINEAR APPROX

\[L(x) = f(a) + f'(a)(x-a) \]

- \[L(a) = f(a) + f'(a)(a-a) \]
 \[= f(a) + f'(a) \cdot 0 \]
 \[= f(a) \] \(\text{Linear approx matches the y-value at } x=a\)

- \[L'(x) = 0 + f'(a) \]
 \[\Rightarrow L'(a) = f'(a) \] \(\text{Linear approx matches the derivative of } f(x) \text{ at } x=a\)
Check-in

Suppose \(f(x) \) is a function, and its linear approximation near \(x = 5 \) is

\[L(x) = 3x - 9. \]

(a) What is \(f(5) \)?

\[f(5) = L(5) = 3 \cdot 5 - 9 = 15 - 9 = 6. \]

(b) What is \(f'(5) \)?

\[f'(5) = L'(5) = 3 \]

(c) What is \(f(4) \)?

\[f(4) \approx L(4) = 3 \cdot 4 - 9 = 12 - 9 = 3. \]
- Linear approx is valid for approximations only "close" to $x = a$.

- Error in our approximations & Taylor Remainder Theorem.

Ex. Estimate $\sqrt{4.1}$.

$f(x) = \sqrt{x}$. $f'(x) = \frac{1}{2\sqrt{x}}$

$L(x) = f(4) + f'(4)(x - 4)$

$= 2 + \frac{1}{4} (x - 4)$
\[f(4.1) = \sqrt{4.1} \]

\[\approx L \left(4.1 \right) = 2 + \frac{1}{4} (4.1 - 4) \]

\[= 2 + \frac{1}{4} (0.1) \]

\[= 2 + \frac{1}{4} \cdot \frac{1}{10} = 2 + \frac{1}{40} \]

\[\sqrt{4.1} = 2.0248456731 \ldots \text{ computer } = 2.025 \]

\[\approx \text{ Close!} \]

\[\text{Our approximation is an over-estimate} \]
OVER/UNDER-ESTIMATE?

- Concavity!

C. U.

C. D.

overestimate

underestimate

\[\alpha \]
Reflection

Write a two sentence summary of what the key points of today's class are.