1. \(F(\theta) = \frac{\mu W}{\mu \sin \theta + \cos \theta} \), \(\mu, W > 0 \), \(\theta \) between \(0 \) and \(\frac{\pi}{2} \).

\[
F'(\theta) = \mu W (-1) \left(\mu \sin \theta + \cos \theta \right)^{-2} \left(\mu \cos \theta - \sin \theta \right)
\]

\[
= \frac{-\mu^2 W \cos \theta + \mu W \sin \theta}{(\mu \sin \theta + \cos \theta)^2}
\]

- So \(F'(\theta) = 0 \) when

\[
-\mu^2 W \cos \theta + \mu W \sin \theta = 0.
\]

\[
\sin \theta = \mu \cos \theta,
\]

\[
\tan \theta = \mu,
\]

\(\theta = \arctan \mu \).

- Note that \(F(\theta) = \frac{\mu W}{\mu \cos \theta + \cos \theta} = \mu W \).

- Note that when \(\mu \sin \theta + \cos \theta = 0 \),

i.e. \(\tan \theta = -\frac{1}{\mu} \), \(\theta = \arctan(-\frac{1}{\mu}) + \pi \) (if \(\theta < \frac{\pi}{2} \)).
is undefined. In fact, \(F(\Theta) \to +\infty \) as

\[\Theta \to \arctan \left(\frac{-1}{\mu} \right) + \pi. \]

- \(\Theta \) shouldn’t be bigger than \(\pi/2 \), anyway.

\[-F''(\Theta) = \text{Thus, if } F(\arctan \mu) \text{ is smaller} \]

\[\text{than } \mu W = F(0), \text{ } \Theta = \arctan \mu \text{ will be the global minimum:} \]

\[F(\arctan \mu) = \frac{\mu W}{\mu \sin(\arctan \mu) + \cos(\arctan \mu)} \]

\[\sqrt{\mu^2 + 1} \]

\[\mu \text{ and } \tan \Theta = \frac{\mu}{1} \]

\[\sin \Theta = \frac{\mu}{\sqrt{\mu^2 + 1}} \text{ and } \cos \Theta = \frac{1}{\sqrt{\mu^2 + 1}}. \]
Thus

$$F(\arctan \mu) = \frac{\mu W}{\frac{\mu^2}{\sqrt{\mu^2 + 1}} + \frac{1}{\sqrt{\mu^2 + 1}}}$$

$$= \frac{\mu W \sqrt{\mu^2 + 1}}{\mu^2 + 1}$$

$$= \frac{\mu W}{\sqrt{\mu^2 + 1}} < \mu W = F(0),$$

since $\sqrt{\mu^2 + 1} > 1$.

2. (a). If $H=0$, the graph of $\frac{dP}{dt}$ as a function of P is a parabola with intercepts at $P=0$ and $P=K$:

![Graph of dp/dt versus P](image)
(b) If \(0 < H < \frac{rk^2}{4} \), the graph above is shifted down by \(H \), but not so far as to not have roots:

\[
\frac{dp}{dt} = p
\]

The roots satisfy

\[
0 = rP(K - p) - H = -rP^2 + rkP - H
\]

which is quadratic in \(P \). The roots are

\[
P = K \pm \sqrt{K^2 - 4H} \quad \frac{r}{2}
\]

(c). \(P_1 = K - \sqrt{\frac{K^2 - 4H}{r}} \) is unstable

and \(P_2 = K + \sqrt{\frac{K^2 - 4H}{r}} \) is stable.
Both populations are said to be at equilibrium since $\frac{dp}{dt} = 0$ when the population is at one of these roots ($\text{no change in } P \text{ over time}$).

P_1 is unstable because if P starts close to P_1, P grows or shrinks. P_2 is stable because P tends toward P_2 over time.

\[
\begin{align*}
\text{Start here } \cdots \\
\frac{dp}{dt} < 0 \Rightarrow P \text{ shrinks } \Rightarrow P \text{ moves away from } P_1, \\
\text{start here, } \frac{dp}{dt} > 0, P \text{ tends to } P_2.
\end{align*}
\]

(d) If $K > \frac{rk^2}{4}$, the entire parabola is shifted below the axis, so $\frac{dp}{dt} < 0$ for all P, \Rightarrow extinction!