MULTI-VALUED FUNCTIONS

There are many functions whose inverse function is multi-valued. For instance:

\[z = e^w, \quad z = w^2, \quad z = \cos w, \quad z = \sin w. \]

For each of these functions, a given value of \(z \) corresponds to more than one value of \(w \).

\[f^{-1}(z) \text{ is multi-valued} \]
\[f(w) \text{ is single valued. Given a } w, \text{ there is a unique value of } z \]

Goals:
(i) Determine all possible values of the inverse function \(w \).
(ii) Construct an inverse function that is single valued in some region of the complex plane.

LOGARITHM FUNCTION

Define the inverse function for \(z = e^w \).

For a given \(z = re^{i\varphi} \) with \(\varphi = \arg(z) \) we write \(w = u + iv \) where \(u, v \) to be found.

\[re^{i\varphi} = e^{u+iv} \]

Taking the modulus we get \[|re^{i\varphi}| = |e^{u+iv}| \rightarrow r = e^u \text{ so } u = \log r. \]

Then \[v = \varphi + 2K\pi \quad K = 0, \pm 1, \pm 2, \ldots \]

Hence \[w = \log r + i[\arg(z) + 2K\pi] \quad K = 0, \pm 1, \pm 2, \ldots \]

This is \[w = \log |z| + i[\arg(z) + 2K\pi] \quad -\pi < \arg(z) < \pi \quad K = 0, \pm 1, \pm 2, \ldots \]
We define the multi-valued $\log z$ by

$$ w = \log z = \ln |z| + i(\arg z + 2k\pi) \quad k = 0, \pm 1, \pm 2, \ldots $$

It gives all the solutions w to $z = e^w$.

Equivalently, we can define it as

$$ w = \log z = \ln |z| + i(\arg z) $$

since $\arg z$ is multi-valued.

We define the principal value of $\log z$ by

$$ w = \log z = \ln |z| + i\arg(z). $$

Since $-\pi < \arg(z) < \pi$ we notice that w is not continuous at any point on the negative real axis.

A: As $z = x + iy$ with $y \to 0^+$ with $x < 0$ then

$$ \log z \to \ln |x| + i\pi. $$

B: As $z = x + iy$ with $y \to 0^-$ with $x < 0$ then

$$ \log z \to \ln |x| - i\pi. $$

Thus, $\log z$ is discontinuous on negative real axis.

Remark

(i) $\log z$ is called a "branch" of the multi-valued function $\log z$.

(ii) $\log z$ is continuous in the cut plane $\mathbb{C} \setminus \{\infty, 0\}$.

(iii) The point $z = 0$ is called a "branch point" of $\log z$, since if we encircle $z = 0$ by
A closed contour then \(\log z \) changes by an amount proportional to \(2\pi i \).

Change in \(\log z \) around path \(C \) is \(2\pi i \).

In the cut plane \(\log z \) is analytic and \(\frac{d}{dz} \log z = \frac{1}{z} \).

Proof

\[
\tilde{f}(z) = \log z = \frac{1}{2} \ln (x^2 + y^2) + i \tan^{-1} \left(\frac{y}{x} \right)
\]

with \(-\pi < \tan^{-1}(y/x) < \pi\).

Then

\[
\begin{align*}
U & = \frac{1}{2} \ln (x^2 + y^2) \\
V & = \tan^{-1} \left(\frac{y}{x} \right)
\end{align*}
\]

\[
\begin{align*}
U_x & = \frac{X}{X^2 + y^2} \\
V_x & = -\frac{y}{X^2} \\
U_y & = \frac{Y}{X^2 + Y^2} \\
V_y & = \frac{X}{X^2 + Y^2}
\end{align*}
\]

so \(U_x = V_y, \ U_y = -V_x \) provided \((x, y) \neq (0, 0)\).

And

\[
\tilde{f}'(z) = U_x + i V_x = \frac{X}{X^2 + Y^2} - \frac{i Y}{(X^2 + Y^2)} = \frac{\overline{z}}{|z|^2} = \frac{\overline{z}}{z \overline{z}} = \frac{1}{z}
\]

so \(\tilde{f}'(z) = 1/z \).

Example Calculate the following:

(i) \(\log (2i) \)
(ii) \(\log \left(1 + i\sqrt{3} \right) \)
(iii) \(\log (-i) \)

Solution

(i) \(\log (2i) \): let \(z = 2i \). Then \(\arg(z) = \pi/2 \).

so \(\log (2i) = \ln 2 + i \left[\frac{\pi}{2} + 2k\pi \right] \quad k = 0, \pm 1, \pm 2, \ldots \)
(ii) \[1 + i \sqrt{3} = 2 e^{\pi i/3}. \quad \text{Arg}(1 + i \sqrt{3}) = \pi/3 \]

so \[\log(1 + i \sqrt{3}) = \ln 2 + i \pi/3 \]

(iii) \[\log(-i). \text{ Let } z = -i. \quad |z| = 1, \quad \text{Arg} z = -\pi/2. \]

so \[\log(-i) = \ln 1 + i (-\pi/2). \quad \text{so } \log(-i) = -\pi i/2. \]

One must be careful with identities involving \(\log z, \log z \).

The following results, as shown in HW, hold:

(i) \(\log(z_1 z_2) \neq \log(z_1) + \log(z_2) \)

(ii) \(\log(z_1 z_2) = \log z_1 + \log z_2 \)

(iii) \(\log(e^z) \neq z \)

(iv) \(\log(e^z) = z \) \text{ if and only if } -\pi < \text{Im}(z) \leq \pi.

(v) \(\log z = -\log(1/z) \)

(vi) \(z = e^{\log z} \)

(vii) \(\log(z^{1/p}) = \frac{1}{p} \log z \quad p: \text{positive integer} \)

(viii) \(\log(z^n) \neq n \log z \quad \text{in general } (n: \text{positive integer}) \)

We now give a proof for a few of these. You are asked to prove the others in the homework.
\[\log z = \ln |z| + i [\arg z + 2k\pi]. \]

So
\[e^{\log z} = e^{\ln |z| + i [\arg z + 2k\pi]} = |z|e^{i\arg(z)} = z. \]

Proof (VII) We will show that the sets of values of
\[\log (z^D) \quad \text{and} \quad n \log z \quad \text{do not coincide} \]

Let
\[z = \rho e^{i\varphi} \quad \text{with} \quad \varphi = \arg z. \]
We get
\[z^D = \rho^D e^{iD\varphi}. \]

Then
\[\log (z^D) = \frac{\ln (\rho^D) + i [n \varphi + 2k\pi]}{n = 0, \pm 1, \pm 2,...} \]

\[\log (z^n) = n \ln \rho + i [n \varphi + 2k\pi]. \]

But
\[n \log z = n \left[\ln \rho + i (\varphi + 2m\pi) \right] = n \ln \rho + i [n \varphi + 2m\pi]. \]

Comparing these two sets is equivalent to comparing
\[\{ 2k\pi \} \quad \text{and} \quad \{ 2m\pi \} \]
\[n = 0, \pm 1, \pm 2,... \quad \text{and} \quad m = 0, \pm 1, \pm 2,... \quad (n > 0 \text{ integer fixed}) \]

These are not in general the same. In particular if \(D = 2 \) then
\[\{ 2k\pi \} = \{ 0, \pm 2\pi, \pm 4\pi, \ldots \} \]
\[\{ 2m\pi \} = \{ 4\pi, 8\pi, \ldots \} \]

Proof (VIII) Show \(\log (e^z) \neq z \). Notice left-hand-side is multivalued, but right-hand-side is single valued.

Put
\[z = x + iy. \]

\[e^z = e^x e^{iy} \quad \text{arg} \quad e^z = \text{arg} \quad e^{iy} = y, \quad \text{if} \quad -\pi < y \leq \pi \]

so
\[\log (e^z) = \ln |e^z| + i [\arg + 2k\pi i] = \ln e^x + i (y + 2k\pi). \]

Thus
\[\log (e^z) = z + i(2k\pi + y), \quad \text{if} \quad -\pi < y \leq \pi. \]
Proof (vii) show that the sets \(\log \left(z^{1/n} \right) \) and \(\frac{1}{n} \log z \) are the same where \(n \) is a positive integer.

Write \(z = re^{\theta i} \) with \(\theta = \arg(z) \). Then \(z^{1/n} = r^{1/n} e^{\left(\frac{\theta + 2k\pi}{n} \right)} \) \(k = 0, \ldots, n-1 \).

Thus \(\log \left(z^{1/n} \right) = \frac{1}{n} \log r + i \left[\frac{\theta + 2k\pi}{n} \right] \) \(k = 0, 1, \ldots, n-1 \); \(p = 0, 1, 2, \ldots \).

Now \(\frac{1}{n} \log z = \frac{1}{n} \log r + i \left[\frac{\theta}{n} + \frac{2p\pi}{n} \right] \) \(q = 0, 1, 2, \ldots \).

The set of values of \(\log \left(z^{1/n} \right) \) and \(\frac{1}{n} \log z \) are the same if the two sets \(\frac{1}{n} \left(k + pn \right) \) \(k = 0, \ldots, n-1 \); \(p = 0, 1, 2 \) coincide with the set \(\frac{1}{n} q \) \(q = 0, 1, 2 \).

Thus it true that for any \(k \) and \(p \) we get a \(q \) dividing \(k \) by \(n \) we get an integer and a remainder \(k \) in \(\{0, \ldots, n-1\} \).

Example of mapping involving \(\log z \)

Ex: Find the image of \(S = \{ z \mid \, \text{im} z \geq 0 \} \) under the mapping

\(W = 2 \log z \)

To parametrize \(z \)-plane let \(z = re^{\theta i} \). Then

\(W = 2 \left[\log r + i \theta \right] \) with \(0 \leq \theta \leq \pi \). Write \(W = U + iV \).

Hence \(U = 2 \log r \) \(V = 2 \theta \).

- Fix a ray with \(\theta \) fixed (line \(L \) in \(z \)-plane above). Then since \(0 \leq r < \infty \) we get \(U \) in \([-\infty, 0) \) and \(V \) fixed.

The image line \(L' \) is shown in \(w \)-plane above.

- Since \(0 \leq \theta \leq \pi \) we get \(U \) in \([-\infty, 0) \) and \(V \) in \((0, 2\pi) \).

Hence \(S' = \{ W \mid 0 \leq \text{im} W \leq 2\pi \} \).
If a is a complex number and $z \neq 0$ then we define \(z^a = e^{a \log z} \) (multi-valued).

Thus, \(z^a = e^{a [\ln |z| + i \arg(z) + 2k\pi i]} \) \(k = 0, \pm 1, \pm 2, \ldots \).

This yields that \(z^a = |z|^a e^{i [a \arg(z) + 2k\pi]} \) \(k = 0, \pm 1, \pm 2, \ldots \).

There will be a finite number of values of z^a only if a is the ratio of two integers (i.e., is rational). In such a case a/k is integer for some k.

The principal value of z^a is defined by
\[
z^a = e^{a \log(z)} = e^{a [\ln |z| + i \arg(z)]}
\]

Since $\log(z)$ is analytic in the slit domain $C \setminus (-\infty, 0)$ and e^w is analytic, then z^a is analytic in $C \setminus (-\infty, 0)$ and
\[
\frac{d}{dz} z^a = a z^{a-1} \quad \text{in} \quad C \setminus (-\infty, 0).
\]

Example: Find all solutions to $z^{1+i} = 4$. We write
\[
z^{1+i} = e^{(1+i)\log z} = e^{\ln 4}.
\]

Thus, \((1+i) \log z = \ln 4 + 2\pi ni\), \(n = 0, \pm 1, \pm 2\)

Thus \(2 \log z = (1-i) [\ln 4 + 2\pi ni] \Rightarrow \log z = (1-i) [\ln 2 + \pi n i] \).

Hence \(\log z = \ln 2 + \pi n + i(\ln 2 - \ln 2)\). Now exponentiating gives \(z = 2 e^{\pi n i} \left[e^{i \ln 2} \right] = 2 e^{\pi n i} \left[e^{i \frac{\pi}{2}} \right] = 2 e^{\pi n i} \left[e^{i \frac{\pi}{2}} \right]
\]

Since \(e^{i \pi n} = (-1)^n\).
\(f(z) \) is a branch of the multi-valued function \(F(z) \) in a domain \(D \) if \(f(z) \) is single-valued and continuous in \(D \) and has the property that for each \(z \in D \) the value \(f(z) \) is one of the values of \(F(z) \).

To construct \(f(z) \) we introduce a curve emanating from a point (called the branch point) to ensure that \(f(z) \) is single-valued in the cut plane. A branch point is a point for which if we encircle it with an arbitrary sufficiently small curve the function \(F(z) \) changes discontinuously.

Although a deeper understanding of these issues requires more advanced topics (i.e. Riemann surface), we can still illustrate the idea with some examples.

Example 1 Let \(F(z) = \log z \) (multi-valued).

The point \(z = 0 \) is a branch point since if we take a path \(C \) as shown below, then \(\log z \) does not return \(z \)-plane to its original value. The change \([\log z]_C \)

\[
[\log z]_C = 2\pi i.
\]

Note: if we encircle any other point \(z \neq 0 \) with a small closed curve \(C \) (as shown)

\[
[\log z]_{C_1} = 0 \text{ thus } z \neq 0 \text{ is not a branch point.} \]
We must insert a curve, called the branch cut, to prevent complete circuits about the branch point, thus rendering the function single-valued. These cuts can be lines, curves, etc.

We then choose a range of argument to unambiguously define the function at each point in the cut plane.

Construct a branch of $f = \log z$ that is analytic except on the negative real axis and is real-valued on positive real axis.

This is

$$\tilde{f}(z) = \log z$$

for when $-\pi < \arg z \leq \pi$ and so for $z = x$ with $x > 0$ real,

$$\text{Im}[\tilde{f}(z)] = 0.$$

Example Consider the single-valued function

$$\tilde{f}(z) = \log (1 - z^2)$$

where is the function discontinuous?

Solution Since $\log (5)$ is analytic except on $\text{Im}(5) = 0$ and $\text{Re}(5) < 0$, we have that $\log (1 - z^2)$ is discontinuous only when $\text{Im}(1 - z^2) = 0$ and $\text{Re}(1 - z^2) < 0$.
Let \(z = x + iy \),

set \(\text{IM}(1-z^2) = -2xy = 0 \)

\[\text{RE}(1-z^2) = 1 - x^2 + y^2 < 0 \]

Hence either \(x = 0 \) or \(y = 0 \). But if \(x = 0 \) then \(1 + y^2 < 0 \) is impossible. Hence \(y = 0 \) and \(1 - x^2 + y^2 = 1 - x^2 < 0 \) implies \(|x| > 1 \).

Therefore the branch cuts are as shown.

\[\text{in the cut plane as shown.} \]

Example

Let \(\Phi(z) = \log \left(\frac{z-1}{z-2} \right) \), where \(\log \) denotes the principal branch of multi-valued \(\log \) function.

Where is \(\Phi(z) \) analytic?

Solution

The only possible place where \(\Phi \) is not analytic is when

\[\text{IM} \left(\frac{z-1}{z-2} \right) = 0 \ \text{and} \ \text{RE} \left(\frac{z-1}{z-2} \right) < 0. \]

Hence

\[\frac{(z-1)}{(z-2)} = \frac{1}{(z-2)^2} \left[z \bar{z} - z - 2z + 2 \right] = \frac{1}{|z-2|^2} \left[x^2 + y^2 - (x+iy)(2-x-iy) \right] \]

so \(\text{IM} \left(\frac{z-1}{z-2} \right) < 0 \rightarrow y = 0 \)

\[\text{RE} \left(\frac{z-1}{z-2} \right) < 0 \ \text{when} \ y = 0 \ \text{yield} \ x^2 - 3x + 2 = (x-2)(x-1) \leq 0. \]

Thus \(\Phi(z) \) is not analytic on branch cuts as shown.

\[\text{in the cut plane as shown.} \]
MULTI-VALUED FUNCTIONS

Consider the function \(w = \frac{1}{z} \). (Multi-valued)

The point \(z = 0 \) is a branch point since if we encircle \(z = 0 \) by a simple closed curve \(C \), the change in \(z^{1/2} \), denoted by \([z^{1/2}]_C \), is for \(C \) counterclockwise

\[
[z^{1/2}]_C = |z|e^{i\phi/2} \neq 0 \quad (\phi \to \phi + 2\pi)
\]

For any other point \(z_1 \), we have \([z^{1/2}]_{C_1} = 0 \) where \(C_1 \) is a simple closed curve surrounding \(z_1 \) and not the origin.

Thus \(z_1 \neq 0 \) is not a branch point.

We must introduce a branch-cut emanating from \(z = 0 \) and extending to \(\infty \) to prevent encircling the origin, and hence rendering \(z^{1/2} \) analytic in the cut plane. Then, we choose a range of values for the argument of \(z \) to make it uniquely defined in cut plane.

Possible branch cuts for \(z^{1/2} \)
Example

Construct a branch of \(F(z) = z^{1/2} \) for which \(z^{1/2} \) is analytic in the cut plane \(C \setminus (-\infty, 0) \) and for which \(\text{Re}(\sqrt{z}) > 0 \).

Solution

We must have the cut as shown.

\[z = |z| e^{i\varphi} \]

Hence, either \(-\pi < \varphi < 0 \)

or \(\pi < \varphi < 2\pi \).

Which range of angles works?

We calculate

\[z^{1/2} = |z|^{1/2} e^{i\varphi/2} \]

Then \(\text{Re}(z^{1/2}) = |z|^{1/2} \cos(\varphi/2) \).

Hence, if \(-\pi < \varphi < 0 \), then \(\cos(\varphi/2) > 0 \) \(\Rightarrow \) \(\text{Re}(\sqrt{z}) > 0 \).

We then write (i)

\[z^{1/2} = |z|^{1/2} e^{i\varphi/2} \quad \text{with} \quad -\pi < \varphi < 0. \]

Remark

(i) \((i) \) is the principal branch of \(\sqrt{z} \).

It coincides precisely with the choice of branch

\[z^{1/2} = e^{\frac{1}{2} \text{Log}(z)} = e^{\frac{1}{2} [\text{Log}|z| + i \text{Arg}z]} \quad -\pi < \text{Arg}z < \pi. \]

(ii) Calculate the principal value of \((1 + i)^{1/2} \).

Solution

\[\text{Arg}z = \pi/4 \quad |z| = \sqrt{2}. \quad \text{so} \]

\[(1 + i)^{1/2} = (\sqrt{2})^{1/2} e^{i\pi/8}. \]

(iii) Construct a branch of \(z^{1/2} \) that is analytic in \(C \setminus (-\infty, 0) \) but has \(\text{Re}(z^{1/2}) < 0 \).

By repeating analysis above,

\[z^{1/2} = |z|^{1/2} e^{i\varphi/2}, \quad -\pi < \varphi < 3\pi. \]
EXAMPLE SUPPOSE THAT $z^{1/2}$ DENOTE THE PRINCIPAL VALUE OF THE SQUARE ROOT. FIND ALL SOLUTIONS TO

$$(v) \quad z^{1/2} + z - i = 0. $$

Solution The principal value of $z^{1/2}$ is such that it is analytic in $C \setminus (-\infty, 0)$ and has $\operatorname{Re}(z^{1/2}) \geq 0$.

By taking $\operatorname{Re}(\)$ of both sides in (v) we obtain that $\operatorname{Re}(z^{1/2}) + 2 = 0 \implies \operatorname{Re}(z^{1/2}) = -2 < 0$ \implies contradiction.

Thus, with the principal value of $z^{1/2}$ (v) has no solution.

Remark It is tempting but wrong to calculate as

$$z^{1/2} = i - 2$$

$$\implies (z^{1/2})^2 = (i - 2)^2 = 4 - 4i - 1 = 3 - 4i$$

so $z = 3 - 4i$.

EXAMPLE Construct a branch of $F(z) = (z^2 + 1)^{1/2}$ that is analytic in $|z| > 1$ and takes the value $F(2) = \sqrt{3}$.

Solution We use $z, z_1, z_2^{1/2} = (z, z_1)^{1/2}$ (multi-valued sets same) to write

$$F(z) = (z - 1)^{1/2} (z + 1)^{1/2}.$$

The only points in finite complex plane that are branch points are $z = -1$ and $z = 1$. We must have no branch cuts outside $|z| > 1$, so the easiest construction is to have
Method I (Range of Angles)

We write \((z^2 - 1)^{1/2} = (z - 1)^{1/2} (z + 1)^{1/2} = (\Gamma_1 e^{i\Phi_1})^{1/2} (\Gamma_2 e^{i\Phi_2})^{1/2} \).

Hence \(f(z) = (z^2 - 1)^{1/2} = (\Gamma_1 \Gamma_2)^{1/2} e^{i(\Phi_1 + \Phi_2)/2} \) (X).

Specifying a branch is equivalent to choosing a range of angles.

Try \(-\pi < \Phi_1 < \pi, \quad -\pi < \Phi_2 < \pi \)

- Must check that discontinuity in \(f \) occurs between \(-1 < x < 1\).
- Must check that (X) gives \(f(2) = \sqrt{3} \).

<table>
<thead>
<tr>
<th>Point</th>
<th>(\Phi_1)</th>
<th>(\Phi_2)</th>
<th>(e^{i(\Phi_1 + \Phi_2)/2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>(e^{i0} = 1)</td>
</tr>
<tr>
<td>C'</td>
<td>0</td>
<td>0</td>
<td>(e^{i0} = 1)</td>
</tr>
<tr>
<td>B</td>
<td>(-\pi)</td>
<td>0</td>
<td>(e^{-i\pi/2} = i)</td>
</tr>
<tr>
<td>B'</td>
<td>(-\pi)</td>
<td>0</td>
<td>(e^{-i\pi/2} = i)</td>
</tr>
<tr>
<td>D</td>
<td>(-\pi)</td>
<td>(-\pi)</td>
<td>(e^{-i\pi} = -1)</td>
</tr>
<tr>
<td>D'</td>
<td>(-\pi)</td>
<td>(-\pi)</td>
<td>(e^{-i\pi} = -1)</td>
</tr>
</tbody>
</table>

Thus the choice \(f(z) = (\Gamma_1 \Gamma_2)^{1/2} e^{i(\Phi_1 + \Phi_2)/2} \) with \(-\pi < \Phi_1 < \pi\)

And \(-\pi < \Phi_2 < \pi\) has a branch cut from \(-1 < x < 1\) as desired.

Now calculate \(f(2) \):

For \(z = 2 \) then \(\Gamma_1 = |z - 1| = 1, \Gamma_2 = |z + 1| = 3 \)

And \(\Phi_1 = \Phi_2 = 0 \) hence \(f(2) = \sqrt{1 \cdot 3} e^{i0} = \sqrt{3} \) as desired.
To calculate \(F(i) \) we draw

\[\begin{align*}
&\quad \theta_1 = \theta_2 = \sqrt{2} , \\
&\phi_1 = 3\pi/4 , \quad \phi_2 = \pi/4 \quad \text{so} \quad F(i) = \left(\sqrt{2} \sqrt{2} \right)^{\frac{1}{2}} e^{i \left(3\pi/4 + \pi/4 \right)/2} \\
&\quad \rightarrow F(i) = \sqrt{2} i.
\end{align*} \]

Method 2 (Choosing a Branch of \(\log \))

This method is less intuitive as it is not clear apriori which branch of \(\log \) to take.

For instance, consider several possible choices:

\begin{align*}
&\quad (A) \quad (z^2 - 1)^{\frac{1}{2}} = e^{\frac{1}{2} \log(z^2 - 1)} \quad \rightarrow \quad F(z) = e^{\frac{1}{2} \log |z - 1|} \\
&\quad (B) \quad (z^2 - 1)^{\frac{1}{2}} = \left[-1 - z^2 \right]^{\frac{1}{2}} \quad \rightarrow \quad F(z) = \pm i e^{\frac{1}{2} \log |1 - z^2|} \\
&\quad (C) \quad (z^2 - 1)^{\frac{1}{2}} = \left[z^2 (1 - 1/z^2) \right]^{\frac{1}{2}} \quad \rightarrow \quad F(z) = \pm z e^{\frac{1}{2} \log |1/z^2|} \\
&\quad (D) \quad (z^2 - 1)^{\frac{1}{2}} = \left[-z^2 (-1 + 1/z^2) \right]^{\frac{1}{2}} \quad \rightarrow \quad F(z) = \pm i z e^{\frac{1}{2} \log |1 + 1/z^2|}
\end{align*}

Which one will give \(F(z) \) analytic in \(|z| > 1\) with \(F(z) = \sqrt{3} \)?

This is not clear without considerable extra effort.

Consider the obvious choice (A): \(F(z) = e^{\frac{1}{2} \log |z^2 - 1|} \).

To see if it works,

then \(F(z) \) is analytic except when

\[\text{IM} (z^2 - 1) = 0 \quad \text{and} \quad \text{RE} (z^2 - 1) < 0. \]
Let $z = x + iy$

$\text{IM}(z^2 - 1) = 0 \rightarrow xy = 0 \rightarrow \text{either } x = 0 \text{ or } y = 0.$

$\text{RE}(z^2 - 1) = \text{RE} \left[x^2 - y^2 + 2ixy - 1 \right] = x^2 - y^2 - 1 \leq 0.$

If $x = 0 \rightarrow \text{RE}(z^2 - 1) = -y^2 - 1 \leq 0 \text{ for all } y$

If $y = 0 \rightarrow \text{RE}(z^2 - 1) = x^2 - 1 \leq 0 \rightarrow |x| \leq 1.$

Thus, the choice has branch cut $\frac{1}{2} \log |1 - 1/z^2|.$

This is not what we want.

Hence choice A fails.

Consider choice (C) try $f(z) = \text{sgn } z \frac{1}{2} \log (|1 - 1/z^2|).$

Thus analytic except when $\text{IM} \left(1 - \frac{1}{z^2} \right) = 0$

$\text{RE} \left(1 - \frac{1}{z^2} \right) \leq 0.$

Thus

$\text{IM} \left(\frac{1}{z^2} \right) = \text{IM} \left(\frac{z}{|z|^4} \right) = \text{IM} \left(\frac{(x+iy)^2}{|z|^4} \right) = 0 \rightarrow xy = 0$

$\text{RE} \left(1 - \frac{1}{z^2} \right) = 1 - \text{RE} \left(\frac{(x+iy)^2}{|z|^4} \right) \leq 0.$

Set $y = 0 \rightarrow \text{RE} \left(1 - \frac{1}{z^2} \right) \leq 0 \rightarrow 1 - \frac{x^2}{x^4} \leq 0 \rightarrow |x| \leq 1.$

Set $x = 0 \rightarrow \text{RE} \left(1 - \frac{1}{z^2} \right) \leq 0 \rightarrow \text{RE} \left(1 - \frac{1}{(iy)^4} \right) = 1 + \frac{1}{y^4} \leq 0$

Impossible.

Thus $f(z) = \text{sgn } z \frac{1}{2} \log (|1 - 1/z^2|)$ has desired branch cut $\frac{1}{2} \log |1 - 1/z^2|.$
Now we must take a sign consistent with $F(2) = \sqrt{3}$.

Try a sign $\rightarrow F(2) = 2 e^{\frac{\pi}{2} \log (1 - \frac{3}{4})}$

\[= 2 e^{\frac{1}{2} \left(\log \left(\frac{3}{4} \right) + i \arg \left(\frac{3}{4} \right) \right)} , \quad \arg \left(\frac{3}{4} \right) = 0 \]

\[= 2 \left(e^{\frac{1}{2} \left(\log \left(\frac{3}{4} \right) \right)} \right) = 2 (\sqrt{\frac{3}{4}}) = \sqrt{3} \checkmark \]

Thus, the desired branch is

$$F(z) = z e^{\frac{\pi}{2} \log (1 - \frac{1}{z^2})}$$

This was not terribly clear in advance that this choice
would work. Notice $F(i) = i e^{\frac{\pi}{2} \log (2)} = i e^{\frac{\pi}{2} (\log 2)} = \sqrt{2} i$.

Example

Construct a branch of $F(z) = (z^2 - 1)^{\frac{1}{2}}$ that is analytic
in $|z| < 1$ and that takes the value $F(0) = i$.

Solution

Method 1 (Range of Angle Method)

We write $F(z) = (\Gamma_1 \Gamma_2)^{\frac{1}{2}} e^{i \left(\phi_1 + \phi_2 \right)/2}$

We try now the range $0 \leq \phi_1 < 2\pi$, $-\pi < \phi_2 \leq \pi$.

<table>
<thead>
<tr>
<th>POINT</th>
<th>ϕ_1</th>
<th>ϕ_2</th>
<th>$e^{i(\phi_1 + \phi_2)/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>$e^{i0} = 1$</td>
</tr>
<tr>
<td>C'</td>
<td>2π</td>
<td>0</td>
<td>$e^{i2\pi} = 1$</td>
</tr>
<tr>
<td>B</td>
<td>π</td>
<td>0</td>
<td>$e^{i\pi} = -1$</td>
</tr>
<tr>
<td>B'</td>
<td>π</td>
<td>0</td>
<td>$e^{i\pi} = -1$</td>
</tr>
<tr>
<td>D</td>
<td>θ</td>
<td>θ</td>
<td>$e^{i\theta} = -1$</td>
</tr>
<tr>
<td>D'</td>
<td>π</td>
<td>θ</td>
<td>$e^{i\pi} = -1$</td>
</tr>
</tbody>
</table>

\[\rightarrow \text{This yields the branch cut as shown (what we want}) \]

\[z\text{-plane} \quad \begin{array}{c|c|c}
-1 & -1 & \\
\end{array} \]
Hence, \(f(z) \) is analytic in \(|z| < 1 \).

Now at \(z = 0 \) we calculate \(\Phi = \Phi_1 + i \Phi_2 \), \(\Phi_1, \Phi_2 \in \mathbb{R} \), so that

\[
\Phi_1 = (z^2 - 1)^{1/2} = (1, 1)^{1/2} e^{i \pi/2} = (1, 1)^{1/2} e^{i \pi/2} = i,
\]

as required.

Method 2

We write

\[
(z^2 - 1)^{1/2} = [-(1 - z^2)]^{1/2} = \pm i (1 - z^2)^{1/2}.
\]

We now choose the principal value \((1 - z^2)^{1/2} = e^{1/2 \log (1 - z^2)}\).

Then,

\[
(z^2 - 1)^{1/2} = (\pm i) e^{1/2 \log (1 - z^2)}\]

This is choice B on page (M14.5).

Choose \(+i \) since at \(z = 0 \) \(\log (1) = 0 + 0 = 0 \).

Then \(F(0) = i \) as required.

Then \(F(0) = i \) as required.

We obtain

\[
(z^2 - 1)^{1/2} = i e^{1/2 \log (1 - z^2)}.
\]

By the example at bottom of page (M9) \(\log (1 - z^2) \) has branch cut as shown.

Hence \((z^2 - 1)^{1/2} = i e^{1/2 \log (1 - z^2)} \) satisfies the requirement.

In particular if \(F(z) = (z^2 - 1)^{1/2} = i e^{1/2 \log (1 - z^2)} \).

Then \(F(i) = i e^{1/2 \log (1 - i^2)} = i e^{1/2 \log (2)} = i e^{1/2 \ln 2} = i e^{\ln \sqrt{2}} \).

Recall \(\log (1 - z^2) \) is analytic except for point \(z \) where

\[
\text{Im}(1 - z^2) = 0 \rightarrow xy = 0 \rightarrow \text{either } x = 0 \text{ or } y = 0.
\]

\[
\text{Re}(1 - z^2) < 0 \rightarrow 1 - (x^2 - y^2) < 0 \rightarrow \text{if } x = 0 \rightarrow 1 - y^2 < 0 \rightarrow \text{impossible}
\]

\[
\text{Re}(1 - z^2) < 0 \rightarrow 1 - (x^2 - y^2) < 0 \rightarrow \text{if } y = 0 \rightarrow 1 - x^2 < 0 \rightarrow |x| > 1.
\]
EXAMPLE

Construct a branch of \(f(z) = (z^2 + 1)^{\frac{1}{2}} \) that is analytic in \(|z| > 1\) and for which \(f(2i) = \sqrt{3}i\).

Solution

Method 1

\[f(z) = (z + i)^{\frac{1}{2}}(z - i)^{\frac{1}{2}} = (\Gamma, \Gamma_1) \cdot e^{i(\Phi_1 + \Phi_2)/2} \]

We want a branch cut between \(-i\) and \(i\) as shown.

If we choose \(-\frac{\pi}{2} < \Phi_1 < \frac{3\pi}{2}, -\frac{\pi}{2} < \Phi_2 < \frac{3\pi}{2}\) then we get the desired branch cut. For then we have continuity at \(B'B\) and \(D'D'\).

For \(z = 2i\) we get \(\Phi_1 = \Phi_2 = \frac{3\pi}{2}\), \(\Gamma_1 = 1\), \(\Gamma_2 = 3\). Hence

\[f(2i) = (1.3)^{\frac{1}{2}} e^{i(\frac{3\pi}{2} + \frac{3\pi}{2})/2} = i\sqrt{3} \]

Method 2

The choice \((z^2 + 1)^{\frac{1}{2}} = e^{\frac{1}{2} \log(z^2 + 1)} \) clearly does not work since \(\log(z^2 + 1) \) is not analytic on \(z = iy\) with \(|y| > 1\).

Instead write \((z^2 + 1)^{\frac{1}{2}} = (z^2 \left[1 + \frac{1}{z^2} \right])^{\frac{1}{2}} = z^{\frac{1}{2}} \log(1 + \frac{1}{z^2}) \).

Then choose \((z^2 + 1)^{\frac{1}{2}} = z e^{\frac{1}{2} \log(1 + \frac{1}{z^2})} \).

Now \(z e^{\frac{1}{2} \log(1 + \frac{1}{z^2})} \) is analytic except on the segment for which

\[\text{IM} \left(1 + \frac{1}{z^2} \right) = 0 \text{ and RE} \left(1 + \frac{1}{z^2} \right) < 0. \]

If we put \(z = x + iy\) then \(\text{IM} \left(1 + \frac{1}{z^2} \right) = \text{IM} \left(\frac{z^2}{|z|^4} \right) = \frac{1}{|z|^4} (-2xy) = 0 \)

Hence either \(x = 0\) or \(y = 0\). But \(\text{RE} \left(1 + \frac{1}{z^2} \right) = \text{RE} \left(\frac{z^2}{|z|^4} \right) + 1 = \frac{x^2 - y^2}{(x^2 + y^2)^2} + 1 < 0 \).

Clearly \(y = 0\) impossible. So \(x = 0\) yield \(-y^2 + 1 < 0 \to |y| < 1 \).

We conclude that \((z^2 + 1)^{\frac{1}{2}} = z e^{\frac{1}{2} \log(1 + \frac{1}{z^2})} \) is analytic in \(|z| > 1\).

We calculate \(f(2i) = 2i e^{\frac{1}{2} \log(1 + \frac{1}{z^2})} = 2i e^{\frac{1}{2} \log(i^2)} = 2i \sqrt{\frac{1}{2}} = i\sqrt{3} \).
EXAMPLE

Construct a branch of \(f(z) = (z^3 + z^2 - 2z)^{1/2} \) that has a branch cut from \((0,1)\) and from \((-\infty, -2)\) along the real axis and for which \(f(z) = \sqrt{8} \).

Solution

\[
f(z) = \sqrt{z(z+2)(z-1)} = (\Gamma_1, \Gamma_2, \Gamma_3)^{1/2} e^{i(\Phi_1 + \Phi_2 + \Phi_3)/2}
\]

If we then choose

\[-\pi < \Phi_1 < \pi\]
\[-\pi < \Phi_2 < \pi\]
\[-\pi < \Phi_3 < \pi,\]

we will obtain the branch cut structure

\[\text{z-plane}\]

\[
\begin{array}{c}
-2 \\
\hline
\end{array}
\]

When \(z = 2 \) then \(\Phi_1 : \Phi_2 : \Phi_3 = 0 \), \(\Gamma_1 = 1 \), \(\Gamma_2 = 2 \), \(\Gamma_3 = 4 \).

Hence

\[
f(2) = (4 - 2i) e^{i0} = \sqrt{8}.
\]

Finally, we make a few additional miscellaneous comments.

Remark

Not everything with \(\sqrt{z} \) has a branch point at \(z = 0 \).

For which of the following is \(z = 0 \) a branch point?

(i) \(f(z) = \sin(\sqrt{z}) \) (ii) \(f(z) = \sqrt{z} \sin(\sqrt{z}) \)

(iii) \(f(z) = (\arctan(\sqrt{z}) \).

In (ii) we use same choice of branch of \(\sqrt{z} \).
SOLUTION

Only \(\sin(\sqrt{z}) \) has a branch point at \(z = 0 \).

Let's check, in each case we encircle \(z = 0 \) by a simple closed counterclockwise curve and we calculate \(\left[\frac{dF(z)}{dz} \right]_c \) (the change in \(F \) around the curve).

\[
\begin{align*}
(i) \quad \left[\sin(\sqrt{z}) \right]_c &= \left[\sin(\sqrt{r} e^{i\phi/2}) \right]_c \\
&= \sin(\sqrt{r} e^{i\pi/2}) - \sin(\sqrt{r} e^{i0}) \\
&= \sin(-\sqrt{r}) - \sin(\sqrt{r}) = -2 \sin(\sqrt{r}) \neq 0.
\end{align*}
\]

\[
\begin{align*}
(ii) \quad \left[\sqrt{z} \sin(\sqrt{z}) \right]_c &= \left[\sqrt{r} e^{i\phi/2} \sin(\sqrt{r} e^{i\phi/2}) \right]_c \\
&= -\sqrt{r} e^{i\pi/2} \sin(-\sqrt{r}) - \sqrt{r} e^{i0} \sin(\sqrt{r} e^{i3}) \\
&= -\sqrt{r} \sin(-\sqrt{r}) - \sqrt{r} \sin(\sqrt{r}) = 0.
\end{align*}
\]

\[
\begin{align*}
(iii) \quad \left[\cos(\sqrt{z}) \right]_c &= \left[\cos(\sqrt{r} e^{i\phi/2}) \right]_c \\
&= \cos(\sqrt{r} e^{i\pi/2}) - \cos(\sqrt{r} e^{i0}) = \cos(-\sqrt{r}) - \cos(\sqrt{r}) \\
&= 0 \quad \text{since} \quad \cos(0) = \cos(-0).
\end{align*}
\]

Remark 2: To classify whether \(z = 0 \) is a branch point of \(F(z) \) we must take a very large circle \(|z| = R \quad R \gg 1 \) and see if \(F(z) \) returns to its original value as we traverse the circle.

Equivalently, \(z = 0 \) is a branch point of \(F(z) \) iff \(z = 0 \) is a branch point of \(F(1/z) \) (i.e., let \(z = 1/z \)).
EXAMPLE 11 Z = \infty A BRANCH POINT FOR

(i) \(F(z) = \sqrt{(z+1)(z+2)(z-3)} \)

(ii) \(F(z) = \log \left(\frac{z+1}{z-1} \right) \)

(iii) \(F(z) = (z^3 - z)^{1/3} \)

SOLUTION

(i) \(\text{LET } s = \frac{1}{z} \text{ TO } F\left(\frac{1}{s}\right) = \sqrt{(1 + \frac{1}{s})(2 + \frac{1}{s})(-3 + \frac{1}{s})} = \frac{-3}{s}\sqrt{(1 + s)(1 + 2s)(1 - 3s)} \)

for \(|s| < 1 \), \(F\left(\frac{1}{s}\right) = s^{-3/2} \) SO THAT \(\left[F\left(\frac{1}{s}\right) \right]_C \neq 0 \) WHERE C IS THE SMALL CIRCLE \(|s| = \delta \) \(\delta < 1 \).

SO \(Z = \infty \) IS A BP FOR \(F(z) \)

(ii) \(F(z) = \frac{1}{z} \log(1 + z) - \log(z - 1) \)

LET \(z = \frac{1}{s} \), THEN \(F\left(\frac{1}{s}\right) = \log(1 + \frac{1}{s}) - \log\left(\frac{1}{s} - 1\right) \)

\(= \log\left(\frac{1 + s}{s}\right) - \log\left(\frac{1 - s}{s}\right) \)

\(= \log(1 + s) - \log(1 - s) \).

LET \(C: |s| = \delta \) WITH \(\delta < 1 \). THEN \(\left[F\left(\frac{1}{s}\right) \right]_C = 0 \).

\(s = 0 \) IS NOT A BP OF \(F\left(\frac{1}{s}\right) \rightarrow Z = \infty \) IS NOT A BP OF \(F(z) \).

(iii) \(\text{LET } z = \frac{1}{s} \), \(F\left(\frac{1}{s}\right) = \left(\frac{1}{s} - \frac{1}{s}\right)^{1/3} = \left(\frac{1 - s^2}{s^3}\right)^{1/3} = \left(\frac{1 - s^2}{s}\right)^{1/3} \)

NOW LET \(C: |s| = \delta \) WITH \(\delta < 1 \),

THEN \(\left[F\left(\frac{1}{s}\right) \right]_C = 0 \). HENCE \(s = 0 \) IS NOT A BP OF \(F\left(\frac{1}{s}\right) \rightarrow Z = \infty \) IS NOT A BP OF \(F(z) \).
EXAMPLE

FIND ALL POSSIBLE VALUES OF

(i) \(\cos W = 2i \),
(ii) \(\sin W = i \)

SOLUTION

(i) Let \(z = \cos W \) = \(\frac{e^{iW} + e^{-iW}}{2} \) so \(e^{iW} + e^{-iW} = 2z \).

Hence \(e^{iW} + e^{-iW} = 4i \) \(\Rightarrow e^{iW} - 4i e^{-iW} + 1 = 0 \).

Let \(\Lambda = e^{iW} \) \(\Rightarrow \Lambda^2 - 4i\Lambda + 1 = 0 \).

Thus \(\Lambda = \frac{4i \pm \sqrt{-16 - 4}}{2} = 2i \pm i\sqrt{5} \).

Now \(e^{iW} = (2 \pm \sqrt{5})i \).

+ sign \(e^{iW} = (2 + \sqrt{5})i \) \(\Rightarrow iW = \log((2 + \sqrt{5})i) = \log(2 + \sqrt{5}) + i\left(\frac{\pi}{2} + 2\pi K\right) \quad K = 0, \pm 1, \pm 2, \ldots \).

Thus \(W = -i \log(2 + \sqrt{5}) + \frac{\pi}{2} + 2\pi K \quad K = 0, \pm 1, \pm 2, \ldots \).

- sign \(e^{iW} = (2 - \sqrt{5})i \) \(\Rightarrow iW = \log((2 - \sqrt{5})i) = \log(\sqrt{5} - 2) + i\left(\frac{3\pi}{2} + 2\pi K\right) \).

Thus \(W = -i \log(\sqrt{5} - 2) - \frac{3\pi}{2} + 2\pi K \quad K = 0, \pm 1, \pm 2, \ldots \).

Since \(\log(\sqrt{5} - 2) = \log((\sqrt{5} - 2)(\sqrt{5} + 2)/(\sqrt{5} + 2)) = \log(\sqrt{5} + 2) \).

Then we can write + sign and - sign together as

(i) \(W = \pm i \log(\sqrt{5} + 2) + \frac{\pi}{2} + 2\pi K \quad K = 0, \pm 1, \ldots \).

The symmetry in (i) follows from identity that

\(\cos W = \cos(-W) \).

(0) \(W_0 = (0) (-W_0) \).
(ii) For the \(\sin w \cdot i \) we put

\[
\frac{e^{iw} - e^{-iw}}{2i} = i \rightarrow e^{iw} - e^{-iw} = 2i.
\]

Thus \(e^{2iw} + 2e^{iw} - 1 = 0 \rightarrow \Lambda^2 + 2\Lambda - 1 = 0 \) with \(\Lambda = e^{iw} \).

So \(\Lambda = \frac{-2 \pm \sqrt{4 + 4}}{2} = -1 \pm \sqrt{2} \).

\(\sqrt{2} \) sign \(e^{iw} = -1 + \sqrt{2} \) \(\rightarrow \): \(iw = \log(\sqrt{2} - 1) = i\log(\sqrt{2} - 1) + 2k\pi i \). \(\therefore \) \(w = -i \log(\sqrt{2} - 1) + 2k\pi \), \(k = 0, \pm 1, \pm 2, \ldots \).

- \(-\sqrt{2} \) sign \(e^{iw} = -1 - \sqrt{2} \) \(\rightarrow \): \(iw = \log(-1 - \sqrt{2}) = i\log(\sqrt{2} + 1) + i(-\pi + 2k\pi) \).

So \(w = -i \log(\sqrt{2} + 1) + (-\pi + 2k\pi) \). \(k = 0, \pm 1, \pm 2, \ldots \).

Since \(\log(\sqrt{2} + 1) = -\log(\sqrt{2} - 1) \) it is clearly that the symmetry in the two results follow from the fact that if \(w = w_0 \) is a root of \(\sin(w) = z \) then

\(w = \pi - w_0 \).