Suppose that \(f(z) \) is defined on a domain \(S \) (open connected set) in the complex plane. If \(z_0 \) is a point in \(S \), then \(f(z) \) is continuous at \(z_0 \) if

\[
\lim_{{z \to z_0}} f(z) = f(z_0)
\]

That is, \(f \) is continuous at \(z_0 \) if the values of \(f(z) \) get arbitrarily close to \(f(z_0) \), so long as \(z \in S \) and \(z \) is sufficiently close to \(z_0 \). The technical definition is for any \(\varepsilon > 0 \), \(\exists \delta > 0 \) such that \(|f(z) - f(z_0)| < \varepsilon \) whenever \(0 < |z - z_0| < \delta \).

The key point is:

\[
(\forall) \quad \text{For a function to be continuous at } z_0 \text{ we require that } f(z) \to f(z_0) \text{ as } z \to z_0 \text{ in any direction in the complex plane.}
\]

\(S \) \hspace{1cm} \text{let } C = \text{complex plane}

Ex 1 \(f(z) = |z|^2 \) is continuous at every point \(z \in C \)

Ex 2 \(f(z) = \frac{1}{4 - z} \) is continuous for \(z \in C \) except \(z = 4 \).

Ex 3 \(f(z) = \frac{(z^4 - 1)}{(z - 1)} \) is continuous for \(z \in C \) provided that we define \(f(i) = -4i \).

Ex 4 For \(f(z) = \frac{z}{z} \) then \(f(z) \) is not continuous at \(z = 0 \).

- Let \(z = x \) with \(x \to 0^+ \). Then \(\lim_{{z \to 0^+}} f(z) = 1 \), path 1
- Let \(z = iy \) with \(y \to 0^+ \). Then \(\lim_{{z \to 0^+}} f(z) = \lim_{{y \to 0^+}} \frac{iy}{y} = -1 \), path 2
Since the value of \(\lim_{z \to 0} f(z) \) is different on path 1 than on path 2, \(f(z) \) is not continuous at \(z = 0 \).

Example (HW) Identify any points of discontinuity of
\[
f(z) = \begin{cases}
 z, & \text{if } |z| < 1 \\
 |z|^2, & \text{if } |z| > 1.
\end{cases}
\]

Definition A function \(f(z) \) for \(z \) in a domain \(S \) is differentiable at a point \(z_0 \) in \(S \) if
\[
(x) \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}.
\]
Exits. If this limit exists we label it by \(f'(z_0) \).

Key Point 1: For \(f(z) \) to be differentiable at \(z = z_0 \) we require that the limit in \((x)\) give the same value for any path for which \(z \to z_0 \).

Example 1 Show that \(f(z) = \bar{z} \) is not differentiable at any point \(z_0 \).

Proof We write \(h = \Delta z \) complex, and calculate
\[
L = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \lim_{\Delta z \to 0} \frac{(z_0 + \Delta z) - z_0}{\Delta z} = \lim_{\Delta z \to 0} \frac{\Delta z}{\Delta z} = 1.
\]

- **Path 1** Let \(\Delta z = \Delta x \) with \(\Delta x \to 0 \). Then
 \[
 L = \lim_{\Delta x \to 0} \frac{\Delta x}{\Delta x} = \lim_{\Delta x \to 0} = 1.
 \]

- **Path 2** Let \(\Delta z = i \Delta y \) with \(\Delta y \to 0 \). Then
 \[
 L = \lim_{\Delta y \to 0} \frac{i \Delta y}{i \Delta y} = \lim_{\Delta y \to 0} = i \Delta y = -i.
 \]
Thus $f(z) = \overline{z}$ is not differentiable at any point z_0.

Example 2

Let $f(z) = iz^2$. $f(z)$ is continuous for all z_0.

However, we now show that $f(z)$ is not differentiable at any point $z_0 \neq 0$, but is differentiable at $z_0 = 0$.

Proof

Let z_0 be given. We calculate

$$L = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \lim_{\Delta z \to 0} \frac{|z_0 + \Delta z|^2 - |z_0|^2}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{[|z_0 + \Delta z|^2] - [z_0 \overline{z_0}]}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{[z_0 \overline{z_0} + \overline{z_0} \Delta z + z_0 \Delta z + |\Delta z|^2] - [z_0 \overline{z_0}]}{\Delta z}$$

So (7) $L = \overline{z_0} + z_0 \lim_{\Delta z \to 0} \frac{\Delta z}{\Delta z}$

From (7) we observe that if $z_0 = 0 \rightarrow L = 0$, i.e., differentiable.

But, if $z_0 \neq 0$, then since $\lim_{\Delta z \to 0} \frac{\Delta z}{\Delta z}$ depends on path, for which $\Delta z \to 0$ as in Example 1 it follows that L is not independent of the path for which $\Delta z \to 0$.

Thus $f(z) = iz^2$ is not differentiable for any $z \neq 0$.

Definition

A function $f(z)$ is **analytic** at a point z_0 if its derivative exists not only at z_0 but at any z in a small neighborhood of z_0.

Definition

A function $f(z)$ is **analytic in a domain** D if it has a derivative at every point in D.
REMARKS

(i) \(F(z) = |z|^2 \) is differentiable at \(z = 0 \) but is not analytic at \(z = 0 \). Why? Because, we can find no small neighborhood about \(z = 0 \) for which \(F \) has a derivative at each point in the neighborhood. (Recall \(F(z) = |z|^2 \) is not differentiable for any \(z \neq 0 \).)

DEFINITION

\(F(z) \) is an entire function if it is analytic at each point in the complex plane.

EXAMPLES

(i) Polynomial \(P(z) = q_N z^N + \ldots + q_0 \) are analytic for all \(z \), i.e., entire function.

(ii) \(F(z) = \frac{z}{z^2 + 1} \) is analytic for all \(z \) except at \(z = \pm i \). Such points are "singularities".

(iii) \(F(z) = 8z + i \) is not differentiable at any point \(z \). Hence, nowhere analytic.

NOTE

Analytic at \(z_0 \) \(\longrightarrow \) Differentiable at \(z_0 \) \(\longrightarrow \) Continuity at \(z_0 \).

(Mean differentiable at \(z_0 \) and in any small neighborhood of \(z_0 \))

NOTE

If \(F(z) \) is differentiable at a point then "usual" rules of calculus still hold and can be proved from definition.
REMARKS

If \(f(z) \) and \(g(z) \) are differentiable at \(z \) then

"usual" formulae still hold:

\[
(fg)'(z) = f'(z)g(z) + f(z)g'(z)
\]

Product rule

\[
(fg)'(z) = f'(z)g(z)
\]

Chain rule

If \(f(z) \) and \(g(z) \) are differentiable for all \(z \), then

\[
\frac{d}{dz} f(g(z)) = f'(g(z))g'(z)
\]

CAUCHY RIEMANN EQUATIONS (SECTION 2.4)

We write \(f(z) = u(x,y) + iv(x,y) \) \(u = \text{Re}(f), v = \text{Im}(f) \).

THEOREM I

Suppose that \(f(z) \) is differentiable at a point \(z_0 \). Then the Cauchy-Riemann equations

\[
\begin{cases}
\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \\
\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}
\end{cases}
\]

are satisfied at \(z_0 = x_0 + iy_0 \).

PROOF

Since \(f(z) = u(x,y) + iv(x,y) \) is differentiable at \(z_0 = x_0 + iy_0 \)

then the limit

\[
\frac{f'(z_0)}{\Delta z} = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}
\]

can be calculated by taking any path for which \(\Delta z \to 0 \).

PATH 1

Let \(\Delta z = \Delta x \to 0 \). Then

\[
\begin{align*}
\frac{f'(z_0)}{\Delta x} &= \lim_{\Delta x \to 0} \frac{u(x_0 + \Delta x, y_0) + iv(x_0 + \Delta x, y_0) - u(x_0, y_0) - iv(x_0, y_0)}{\Delta x} \\
&= \lim_{\Delta x \to 0} \frac{u(x_0 + \Delta x, y_0) - u(x_0, y_0)}{\Delta x} + iv \lim_{\Delta x \to 0} \frac{v(x_0 + \Delta x, y_0) - v(x_0, y_0)}{\Delta x}
\end{align*}
\]
\[f'(z_0) = \frac{\partial u}{\partial x}(x_0, y_0) + \frac{\partial v}{\partial x}(x_0, y_0), \quad (1) \]

Path 2

Let \(\Delta z = i \Delta y \) with \(\Delta y \to 0 \).

\[f'(z_0) = \lim_{\Delta y \to 0} \frac{u(x_0, y_0 + \Delta y) + iv(x_0, y_0 + \Delta y) - u(x_0, y_0) - iv(x_0, y_0)}{i \Delta y} \]

\[= -i \lim_{\Delta y \to 0} \left(\frac{u(x_0, y_0 + \Delta y) - u(x_0, y_0)}{\Delta y} \right) + \lim_{\Delta y \to 0} \left(\frac{v(x_0, y_0 + \Delta y) - v(x_0, y_0)}{\Delta y} \right) \]

Thus,

\[f'(z_0) = -i \frac{\partial u}{\partial y}(x_0, y_0) + \frac{\partial v}{\partial y}(x_0, y_0). \quad (2) \]

Since (1) and (2) must be the same, then

\[\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \text{ at } (x_0, y_0) \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \text{ at } (x_0, y_0) \end{cases} \]

(x) are called Cauchy-Riemann equations.

Remark

(i) If the CR equation do not hold at \((x_0, y_0) \) then \(f(z) \) is not differentiable at \(z_0 \).

(ii) Key point if \(f(z) \) is analytic on some domain \(D \), then CR equation must hold at every point in \(D \).

(iii) \(v \) is called the harmonic conjugate of \(u \) (explained later).
However, what is more useful is to determine for a given \(U(x,y) \) and \(V(x,y) \) whether \(F(z) = U(x,y) + iV(x,y) \) is an analytic function. For this we need:

Theorem 2 Let \(F(z) = U(x,y) + iV(x,y) \) be defined in a domain \(S \) and let \(z_0 \) be a point in \(S \) (i.e. \(z_0 \in S \)). Then, if

1. \(U_x, U_y, V_x, V_y \) exist in a neighborhood of \(z_0 \) and are continuous at \(z_0 \)

and

2. If CR equations are satisfied at \(z_0 = x_0 + i y_0 \)

i.e. \(U_x = V_y, V_x = -U_y \) at \((x_0, y_0) \)

then \(F \) is differentiable at \(z_0 \).

Thus if \(U_x, U_y, V_x, V_y \) exist and are continuous in \(S \) and CR hold in \(S \), then \(F(z) \) is analytic in \(S \). [\(\square \)]

Remark (i) The proof is technical (see p.75 of [55]).

(ii) Note that the continuity assumption in (i) is needed.

We can summarize Theorem 1 and 2 as the following:

Theorem 1 If \(F(z) \) is differentiable at any \(z \in S \) (i.e. analytic in \(S \))

\[\Rightarrow \text{CR equations are satisfied at each } z \text{ in } S. \]

Thus if CR not satisfied at some \(z_0 \in S \)

\[\Rightarrow F(z) \text{ is not differentiable at } z_0.\]
(TH 2) IF CR ARE SATISFIED AT ANY \(z \in S \),
AND \(u_x, u_y, v_x, v_y \) CONTINUOUS AT ANY \(z \in S \)
\[\Rightarrow f(z) \text{ IS ANALYTIC IN } S. \]

Example 1

Let \(f(z) = |z|^2 \), THEN WITH \(z = x + iy \)

\[f(z) = x^2 + y^2 + i0 \]

\[u = x^2 + y^2, \ v = 0 \Rightarrow u_x = v_y \Rightarrow 2x = 0 \]

\[u_y = -v_x \Rightarrow 2y = 0. \]

Thus CR satisfied only AT \(x = y = 0 \). ALSO \(u_x, u_y, v_x, v_y \)
ARE CONTINUOUS ALWAYS. THUS YIELD, \(f(z) \) IS DIFFERENTIABLE
ONLY AT \(z = 0 \). IT IS NOT ANALYTIC AT \(z = 0 \) SINCE \(f(z) \)
IS NOT DIFFERENTIABLE AT ANY POINT IN A SMALL NEIGHBORHOOD
OF \(z = 0 \).

Example 2

Let \(f(z) = x^3 + 3xy^2 - 3x + i(y^3 + 3x^2y - 3y) \).
SHOW THAT \(f(z) \) IS DIFFERENTIABLE ON COORDINATE AXES
BUT IS NOWHERE ANALYTIC.

Proof

\[u = x^3 + 3xy^2 - 3x \quad v = y^3 + 3x^2y - 3y \]

\[u_x = 3x^2 + 3y^2 - 3 \quad v_y = 3y^2 + 3x^2 - 3. \]

\[u_y = 6xy \quad v_x = 6xy \]

Note: \(u_x = v_y \) FOR ANY \(x, y \) BUT \(u_y = -v_x \Rightarrow 12xy = 0. \)

Thus we need either \(x = 0 \) OR \(y = 0 \) FOR CR TO BE
SATISFIED.
So, \(sr \) are satisfied only on \(x = 0 \) or \(y = 0 \) and \(u_x, u_y, v_x, v_y \) are continuous \(\rightarrow \) \(F(z) \) is differentiable on \(x = 0 \) and on \(y = 0 \). Note: \(F(z) \) is nowhere analytic since we can never insert a small neighborhood about a point on coordinate axis for which \(F \) is differentiable at each point in the neighborhood.

\[\text{Not differentiable in here, only on } x = 0. \]

Example 3: The function \(F(z) = \begin{cases} (\bar{z})^2/z & \text{if } z \neq 0 \\ 0 & \text{if } z = 0 \end{cases} \) is not differentiable at \(z = 0 \), but the CR equations are satisfied at \(z = 0 \). (See HW #2.)

Is this contradicting Theorem 2? No, one can show that if we write \(F(z) = u + iv \) then \(u_x, u_y, v_x, v_y \) are not all continuous at \(x = y = 0 \).

Example 4: Let \(u(x, y) \) be given, find the function \(v(x, y) \) (the harmonic conjugate) so that \(F = u + iv \) is analytic.

(i) Let \(u = x - 3xy^2 + y \). We will find \(v \) by CR equation.
\[u_x = 3x^2 - 3y^2; \quad v_y. \]

Thus
\[v = 3x^2 y - y^3 + \frac{h'(x)}{x}, \]
\[v_x = 6xy + \frac{h'(x)}{x} - [u_x] = -[6xy + 1] \]

Thus, \(h'(x) = -1 \) or \(h(x) = -x \). (Ignore constant wlog.)

This gives
\[v = 3x^2 y - y^3 - x. \]

So
\[f(z) = x^3 - 3xy^2 + y + i[3x^2 y - y^3 - x]. \]

(ii) Let \(u = x^2 - y^2 \). Find harmonic conjugate \(v \).

Now
\[u_x = v_y \quad \Rightarrow \quad 2x = v_y \quad \text{so} \quad v = 2xy + h(x) \]
\[u_y = -v_x \quad \Rightarrow \quad -2y = -[2y + h'(x)] \quad \rightarrow \quad h'(x) = 0. \]

Take \(h(x) = 0 \) wlog.

So \(v = 2xy \) and \(f(z) = x^2 - y^2 + 2ixy \) is analytic.

Notice also \(f(z) = z^2 \).

Remarks

(i) Cauchy-Riemann in "polar" coordinate

\[r^2 = x^2 + y^2 \]

Let \(f(z) = u(x, y) + iv(x, y) \)

\[\tan \phi = y/x \]

\[u(\Gamma, \phi) = u(\Gamma \cos \phi, \Gamma \sin \phi), \quad v(\Gamma, \phi) = v(\Gamma \cos \phi, \Gamma \sin \phi) \]

Now calculate \(\Gamma_x = x/\Gamma = \cos \phi, \quad \Gamma_y = \sin \phi, \quad \phi_x = -y/(x^2 + y^2) = -\sin \phi/\Gamma \)

\[u_x = u_{\Gamma} \Gamma_x + u_{\phi} \phi_x \]

\[\Rightarrow u_x = u_{\Gamma} \cos \phi + u_{\phi} \left(-\frac{\sin \phi}{\Gamma}\right) \]

\[u_y = u_{\Gamma} \Gamma_y + u_{\phi} \phi_y = u_{\Gamma} \sin \phi + u_{\phi} \cos \phi/\Gamma. \]

Similarly
\[v_x = v_{\Gamma} \cos \phi - \frac{1}{\Gamma} \sin \phi v_{\phi}, \quad v_y = v_{\Gamma} \sin \phi + \frac{1}{\Gamma} \cos \phi v_{\phi}. \]
Now set \(U_x = V_y \rightarrow (V_x - \frac{1}{r} V_q) \cos \phi - (V_y - \frac{1}{r} V_q) \sin \phi = 0 \)
\(U_y = -V_x \rightarrow (\frac{1}{r} V_q + V_x) \cos \phi + (V_y - \frac{1}{r} V_q) \sin \phi = 0 \).

This has the form
\[
\begin{pmatrix}
a & -b \\
b & a
\end{pmatrix}
\begin{pmatrix}
\cos \phi \\
\sin \phi
\end{pmatrix} = 0
\]
\(a = \frac{1}{r} V_q \quad b = \frac{1}{r} V_q \).

Thus taking the determinant and setting \(= 0 \) to ensure a nontrivial solution, we have:
\(a^2 + b^2 = 0 \)
\(\Rightarrow a = 0 \quad \text{and} \quad b = 0 \).

Thus
\[
\begin{align*}
\frac{1}{r} V_q &= U_x \\
\frac{1}{r} V_q &= V_x
\end{align*}
\]

are CR in polar form.

Example
(i) Show that \(U = \frac{\partial}{\partial \phi}, \ V = \frac{\partial}{\partial \phi} \sin \phi \), \(n > 0 \) an integer satisfy CR, and since they are smooth functions, it follows that \(f = U + i V \) is analytic.

(ii) Analytic functions must be in terms of \(z \).

Let \(f(x, y) = U(x, y) + i V(x, y) \). (1)

Suppose \(U, V \) are smooth functions and let
\[
\begin{align*}
(x) \quad & x = (z + \bar{z})/2 \\
y & = (z - \bar{z})/2i
\end{align*}
\]

Suppose that CR are satisfied. Show that if we substitute \((x)\) into \((1) \) then there is no \(z \)-dependence.

Derivation
Let \(\tilde{f}(z, \bar{z}) = f \left(\frac{z + \bar{z}}{2}, \frac{z - \bar{z}}{2i} \right) \)

We calculate:
\[\frac{d \hat{F}}{d \hat{Z}} = \frac{d \hat{F}}{d x} \frac{d x}{d \hat{Z}} + \frac{d \hat{F}}{d y} \frac{d y}{d \hat{Z}} = \frac{d \hat{F}}{d x} \frac{1}{2} - \frac{d \hat{F}}{d y} \frac{1}{2 i} \]

so \[\frac{d \hat{F}}{d \hat{Z}} = \frac{1}{2} \left(\frac{d \hat{F}}{d x} + i \frac{d \hat{F}}{d y} \right) = \frac{1}{2} \left((U_x + i V_x) + i (U_y + i V_y) \right) \]

thus \[\frac{d \hat{F}}{d \hat{Z}} = \frac{1}{2} \left((U_x - V_y) + i (V_x + U_y) \right) = 0 \text{ since } \]

\[U_x = V_y \text{ by CR } \]
\[U_y = -V_x \]

Hence \[\frac{d \hat{F}}{d \hat{Z}} = 0 \Rightarrow \hat{F} = \Phi(z) \]

If (i) is analytic in a domain S, then there will be no \(z \) dependence if we substitute (x, y) into (i).

(iii) Theorem 3: If \(F(z) \) is analytic in a domain S and if \(F(z) = 0 \) everywhere in S then \(F(z) \) is a constant in S. (Recall: Domain is open and connected)

Proof: We will give the idea in class (see p. 76 and section 1.6 p. 40 of Saff-Snider.

Example: Suppose that \(\text{Re}[F(z)] \) is constant inside a domain S and \(F(z) \) is analytic in S. Prove that \(F(z) \) is constant in S.

Proof: \(\text{Re}[F(z)]. \) Since \(F(z) \) is constant, then \(U_x = U_y = 0. \) But by CR, we get \(V_x = V_y = 0. \)

Recall \(F'(z) = U_x + i V_x. \) Hence \(F'(z) = 0. \)

By Theorem 3, \(F(z) = \text{constant in S}. \)
(iv) **JACOBIAN**

Suppose that \(F(z) = u + iv \) with \(u(x,y) = U, v(x,y) = V \), is analytic in \(S \). Suppose we think of changing coordinate \((x,y) \rightarrow (U,V) \) via

\[
U = U(x,y) \quad V = V(x,y).
\]

What is the Jacobián of the transformation?

\[
\begin{align*}
\Delta U &= U_x \Delta x + U_y \Delta y + \ldots \\
\Delta V &= V_x \Delta x + V_y \Delta y + \ldots
\end{align*}
\]

(from Taylor series in 2 variables)

Thus as a matrix

\[
\begin{pmatrix}
U_x & U_y \\
V_x & V_y
\end{pmatrix}
\begin{pmatrix}
\Delta x \\
\Delta y
\end{pmatrix} =
\begin{pmatrix}
\Delta U \\
\Delta V
\end{pmatrix}
\]

\(J = \begin{pmatrix}
U_x & U_y \\
V_x & V_y
\end{pmatrix} \) is Jacobián.

By Cauchy-Riemann equations,

\[
\det J = U_x V_y - V_x U_y = U_x^2 + V_y^2 = |F'(z)|^2.
\]

Thus

\[
\det J = |F'(z)|^2
\]

(v) **LEVEL CURVES**

If \(F(z) \) is analytic and we write

\[
F(z) = u(x,y) + iv(x,y)
\]

then we claim that the level curves

\[
u(x,y) = \text{constant} \quad \text{and} \quad v(x,y) = \text{constant}
\]

are orthogonal at every point where \(F'(z) = 0 \).

Example:

\[F(z) = \frac{z^2}{2}, \quad (x^2 - y^2) \]

Solid: level line for \(u = x^2 - y^2 = \text{constant} \)

Dotted: level line for \(v = 2xy = \text{constant} \)
Proof: The level lines are orthogonal if

\[\nabla u \cdot \nabla v = 0 \]
(recall \(\nabla u \perp \nabla v \) for constant).

\[(u_x, u_y) \cdot (v_x, v_y) = u_x v_x + u_y v_y = -u_x u_y + u_y u_x = 0 \]

By Cauchy-Riemann equation.

Thus \(\nabla u \cdot \nabla v = 0 \).

Consequently, it is easy to find level curves that are orthogonal. Simply take the real and imaginary part of a complex function.

\[\text{Ex.} \quad f(z) = z^2 = x^2 - y^2 + 2ixy \]

\[f(z) = e^z = e^x \cos y + ie^x \sin y \]

\((vi) \)

Harmonic functions

A harmonic function \(H(x,y) \) is one for which \(H \) satisfies Laplace's equation

\[H_{xx} + H_{yy} = 0. \]

Thus, \(H \) can be interpreted as a steady-state temperature distribution. Typically some boundary condition for \(H \) must be given.

We now show an important result. If \(f(z) = u(x,y) + iv(x,y) \) is analytic in a domain \(S \) then

\[\begin{cases} \quad U_{xx} + U_{yy} = 0 \quad \text{in } S \\ V_{xx} + V_{yy} = 0 \quad \text{in } S \end{cases} \]

i.e. both \(U \) and \(V \) satisfy Laplace's equation.
REMARK (i) One might think that extra condition to ensure that u_{xx}, u_{yy} etc. exist need to be imposed. We do not worry about this here. In fact we show later in course that if $f(z)$ is analytic then all higher derivatives f', f'', f''', etc. exist!

The little proof of (x) is easy.

We have by analyticity that $\partial u / \partial x$ are satisfied

$$u_x = v_y$$

$$u_y = -v_x$$

This if u, v smooth enough (not an extra condition by Remark 1)

Then

$$(u_x)_x = (v_y)_x = (v_x)_y = -u_y)_y$$.

Hence

$$u_{xx} + u_{yy} = 0$$

Similarly

$$v_{xx} + v_{yy} = 0$$.

We will give examples of solving Laplace's equation through elementary mappings in next section.