MATH 305: MIDTERM 1: October 14th, 2011 (M. WARD)

Closed Book and Notes. 50 minutes. Total 50 points

PROBLEM 1: (12 Points) Find all solutions in the complex plane to the following:

(i) \(z^4 = 8iz \)

(ii) \(\sin z = \cosh 2 \)

(iii) \(e^{1/z} = e^{10}(1 + i) \)

(Hint: you will need the identity \(\sin(x + iy) = \sin(x) \cosh(y) + i \cos(x) \sinh(y) \))

PROBLEM 2: (8 Points)

Let \(f(z) = y^3 + 3x^2y - 3y + i(x^3 + 3xy^2 - 3x) \) where \(z = x + iy \). Where is \(f(z) \) differentiable in the complex plane? Where is \(f(z) \) analytic? Explain your reasoning carefully.

PROBLEM 3: (18 Points) Establish the validity of each of the following statements. If it is true, then provide a proof. If it is false, carefully explain why.

i) \(\text{Arg}(z^2) = 2 \text{Arg}(z) \) for all \(z \neq 0 \).

ii) \(\log(e^z) = z \) for all \(z \).

iii) \(|e^z| \leq |z|^2 \) for all \(z \).

iv) \(\text{Re}(i/\bar{z}) = -\text{Im}(z)/|z|^2 \) for all \(z \neq 0 \).

v) If \(f(z) = u(x, y) + iv(x, y) \) is an entire function of \(z = x + iy \), then \(e^u \cos v \) is a harmonic function.

vi) \(\text{Log}(z^3) \) is an analytic function everywhere in the complex \(z \)-plane except on the negative real axis.

PROBLEM 4: (12 Points) Find the image of the set \(S \) under the map \(w = f(z) \) for each of the following:

i) \(S = \{ z \mid |z - i| \leq 2 \} \) and \(f(z) = 2i(z + 1) \)

ii) \(S = \{ z \mid 1 \leq \text{Re}(z) \leq \frac{\pi}{2} + 1 \text{ with } \text{Im}(z) \geq 0 \} \) and \(f(z) = e^{2i(z-1)} \).
(i) \(z^4 = 8iz \)

One root if \(z = 0 \) so that

\[z^3 = 8i = 8e^{i\pi/2} \]

Now put \(z = r e^{i\phi} \) so that

\[r^3 e^{3i\phi} = 8 e^{i\pi/2} \]

Hence taking modules \(r = 2 \)

and \(3\phi = \pi/2 + 2k\pi \quad k = 0, 1, 2 \).

In summary root are

\[z = 0 \text{ and } z_k = 2e^{i(\pi/6 + 2k\pi/3)} \quad k = 0, 1, 2 \]

(ii) \(\sin z = \cosh 2 \)

We write

\[\sin(x + iy) = \sin x \cosh y + i \cos x \sinh y \]

\[\cosh 2 = \cos x \sinh y \]

Thus \(\cosh 2 = \sinh \cosh y \)

\[O = \cos x \sinh y \]

We must have \(y \neq 0 \) so

\[x_n = (2n+1)\pi/2 \quad n = 0, \pm 1, \pm 2, \ldots \]

But we need \(\sin(x_n) = 1 > 0 \).

Hence \(x_n = (2n+1)\pi/2 \quad n = 0, \pm 2, \pm 4, \ldots \)

and \(\cosh y = \cosh 2 \rightarrow y = \pm 2 \).

Hence

\[z = (2n+1)\pi/2 + 2i \]

\[n = 0, \pm 2, \pm 4, \ldots \]

(iii) \(e^{1/z} = e^{10(1+i)} = \sqrt{2} e^{i\pi/4} \)

Let \(w = 1/z \). Then

\[e^w = \sqrt{2} e^{10} e^{i\pi/4} \]

\[w = \log[\sqrt{2} e^{10} e^{i\pi/4}] \]

so \(w_k = ln(\sqrt{2} e^{10}) + i(\frac{\pi}{4} + 2k\pi) \)

\[k = 0, \pm 1, \pm 2, \ldots \]

Thus root are

\[z_k = \frac{1}{w_k} = \frac{1}{ln(\sqrt{2} e^{10}) + i(\frac{\pi}{4} + 2k\pi)} \]

Notice that \(|z_k| \rightarrow 0 \) at \(|k| \rightarrow \infty \).
PROBLEM 2

\[F = y^3 + 3x^2y - 3y + (x^3 + 3xy^2 - 3x). \]

\[U = y^3 + 3x^2y - 3y \quad \quad V = x^3 + 3xy^2 - 3x \]

\[U_x = 6xy \quad \quad V_y = 6xy \]

\[U_y = 3y^3 + 3x^2 - 3 \quad \quad V_x = 3x^2 + 3y^2 - 3 \]

Now \[U_x = V_y \quad \Rightarrow 6xy = 6xy \quad \text{always true} \]

\[U_y = -V_x \quad \Rightarrow 6x^2 + 6y^2 = 6 \quad \Rightarrow x^2 + y^2 = 1 \]

Thus the equation holds on circle \(x^2 + y^2 = 1 \).

- \(F \) is differentiable at each point on \(|z| = 1 \)
- BUT \(F \) is nowhere analytic since we cannot have any small disk centered at a point on \(|z| = 1 \) for which \(F \) is differentiable everywhere inside the disk.

Problem 3

(i) \(\text{ARG}(z^2) = 2 \text{ARG}(z) \) is FALSE.

Let \(z = e^{\frac{3\pi i}{4}} \). Then \(\text{ARG}(z^2) = \text{ARG}(e^{\frac{3\pi i}{2}}) = -\frac{\pi}{2} \)

\[2 \text{ARG}(z) = 2 \text{ARG}(e^{\frac{3\pi i}{4}}) = 2 \left(\frac{3\pi}{4} \right) = \frac{3\pi}{2}. \]

(ii) \(\log(e^z) = z \) is FALSE IN GENERAL.

Notice LHS is MULTI-VALUED, while RHS is SINGLE-VALUED.
In fact if \(z = x + iy \) then
\[
\log(e^z) = \log(e^{x+iy}) = \log(e^x e^{iy}) = \log(e^x) + i(y + 2\pi k) \\
\text{Hence} \quad \log(e^z) = z + 2\pi k
\]

(iii) \(|e^z| = e^{|z|^2} \) is true.

Let \(z = x + iy \), then \(|e^z| = |e^{x^2 - y^2 + 2ixy}| = e^{x^2 - y^2} \leq e^{x^2 + y^2} \).

Hence \(|e^z| = e^{x^2 + y^2} \leq e^{|z|^2} \).

(iv) \(\text{RE} \left(\frac{i}{z} \right) = \frac{-1 \text{IM}(z)}{|z|^2} \) for all \(z \neq 0 \) is true.

We write \(\text{RE} \left(\frac{i}{z} \right) = \text{RE} \left(\frac{iZ}{|z|^2} \right) = \frac{-1}{|z|^2} \text{RE} \left(i(x + iy) \right) = \frac{-y}{|z|^2} \).

Thus \(\text{RE} \left(\frac{i}{z} \right) = \frac{-y}{|z|^2} = \frac{-1 \text{IM}(z)}{|z|^2} \).

(vi) \(\log(z^5) \) is analytic except on paths for which \(\text{RE}(z^5) < 0 \) and \(\text{IM}(z^5) = 0 \).

If we let \(\text{IM}(z^5) = 0 \rightarrow \sin(5\varphi) = 0 \rightarrow \varphi = \frac{n\pi}{5}, \, n = 0, \ldots, 9 \).

Choose the path with \(n = 3 \). Then \(\varphi = 3\pi/5 \) as shown.

\[\text{On this path,} \]
\[\text{RE}(z^5) = |z|^5 \cos \left(\frac{3\pi}{5} \right) = -|z|^5 < 0. \]

This is a path other than \(z < 0, z \) real for which \(\log(z^5) \) is not analytic.

(vii) True if \(f(z) \) is analytic \(\rightarrow g(z) = e^{f(z)} = e^u \) is analytic.

\[\text{RE} \left[g(z) \right] = e^u \text{ is harmonic (since real part of analytic function)} \]
Problem 4

(i) Let \(F(z) = 2i(z+1) \)
\[S' = \{ z \mid |z - i| \leq 2 \} \]

Define \(w = 2i(z+1) \) so \(z = -1 + \frac{w}{2i} \), \(\rightarrow |z - i| \leq 2 \) yields \(|\frac{w}{2i} + i| \leq 2 \).

Hence \(S' = \{ w \mid |w/2i - 1 - i| \leq 2 \} \).

Now \(\left| \frac{w + 2i(-1-i)}{2i} \right| = \frac{1}{2} |w - (2i-2)| \leq 2 \) \(\rightarrow |w - (2i-2)| \leq 4 \).

Hence \(S' = \{ w \mid |w - (2i-2)| \leq 4 \} \).

Alternatively we can proceed by picture:

(ii) \(S = \{ z \mid |z - i| \leq 2 \} \) with \(\text{IM} z > 0 \)

Now let \(w = e^{\frac{z}{2i}} \) so \(u + iv = e^{\frac{x}{2i}} \cos y + i e^{\frac{x}{2i}} \sin y \)

This gives \(u = e^{\frac{x}{2i}} \cos y \) \(\quad 0 < y < \pi \)
\(v = e^{\frac{x}{2i}} \sin y \) \(\quad -\pi < x < 0 \)
\(\Rightarrow u^2 + v^2 = \left(e^{\frac{x}{2i}} \right)^2, \quad v > 0. \)

Now \(e^{\frac{x}{2i}} \) ranges from \((0, 1)\)
\(\Rightarrow -\pi < x \leq 0 \)
\(\Rightarrow S' = \{ w \mid |w| \leq 1 \text{ with } \text{IM} w > 0 \} \).