Residue Theorem

Mar. 11

References: Lecture notes on Residue calculus. Section 6.1 of the textbook.

Suppose z_0 is an isolated singularity, and around z_0

$$w(z) = \sum_{j=-\infty}^{+\infty} a_j (z - z_0)^j .$$

Define the residue of w at z_0 to be

$$\text{Res}(w, z_0) := a_{-1} .$$

The following residue theorem is a direct consequence of the Cauchy theorem for multiply connected domains.

Theorem 1 (Residue theorem): Suppose w has finitely many singularities $z_1, ..., z_n$ inside Γ. Then

$$\int_\Gamma w(z) \, dz = 2\pi i \sum_{j=1}^{n} \text{Res}(w, z_j) .$$

Residue calculus:
Suppose z_0 is a pole of w of order m. Then

$$\text{Res}(w, z_0) = \lim_{z \to z_0} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} (w(z) (z - z_0)^m) . \tag{1}$$

Order of the pole:
In the special case that $w(z) = \frac{f(z)}{g(z)}$, where f, g are analytic. Assume z_0 is a zero of f of order n, and a zero of g of order p. Then z_0 is a pole of w of order $p - n$.

1
In the special case that \(p = 1, n = 0 \). Then by (1),

\[
\text{Res} (w, z_0) = \frac{f(z_0)}{g'(z_0)}.
\] (2)

Ex1. Compute \(\text{Res} \left((z + 1) e^{\frac{1}{z}}, 0 \right) \).
Observe that

\[
e^{\frac{1}{z}} = 1 + \frac{1}{z} + \frac{1}{2} \frac{1}{z^2} + \frac{1}{3!} \frac{1}{z^3} + ...\]

We get

\[
(z + 1) e^{\frac{1}{z}} = (z + 1) \left(1 + \frac{1}{z} + \frac{1}{2} \frac{1}{z^2} + \frac{1}{3!} \frac{1}{z^3} + ... \right).
\]

Expand it, we see that the coefficient before the term \(1/z \) will be

\[
\frac{1}{2} + 1 = \frac{3}{2}.
\]

Hence \(\text{Res} \left((z + 1) e^{\frac{1}{z}}, 0 \right) = \frac{3}{2} \).

Ex2. \(\text{Res} \left(\frac{e^z}{\sin z}, 0 \right) \)
Using formula (2), we get

\[
\text{Res} \left(\frac{e^z}{\sin z}, 0 \right) = \frac{e^z}{\cos z} \bigg|_{z=0} = 1.
\]