Cauchy integral formula and its applications

Feb. 13, 2019

References: Lecture Notes on Cauchy formula and its consequences; Sec. 4.5 of the textbook.

Keep in mind: Cauchy integral formula is

\[f(z) = \frac{1}{2\pi i} \int_\Gamma \frac{f(\zeta)}{\zeta - z} d\zeta. \]

Here \(\Gamma \) is a simple closed curve with positive orientation, \(z \) is inside \(\Gamma \) and \(f \) is analytic inside (and on) \(\Gamma \).

Ex2. Compute the integral:

\[\int_\Gamma \frac{z^4+2}{(z^2+1)(z-1)} \, dz, \]

where \(\Gamma : |z| = 5 \), with counter clockwise direction.

Step 1. Locate the singularities (inside the contour). 1, \(i \), \(-i \). Let \(C_1, C_2, C_3 \) be small circles (with radius \(< \frac{1}{2} \)) around these singularities, also with counter clockwise direction.

Step 2. We have, by Cauchy theorem for multiply connected domain:

\[\int_\Gamma \frac{z^4+2}{(z^2+1)(z-1)} \, dz = \int_{C_1} + \int_{C_2} + \int_{C_3} \frac{z^4+2}{(z^2+1)(z-1)} \, dz. \]

Step 3. For each \(C_j \), we apply Cauchy integral formula (with different \(f \) for different \(C_j \)):

\[\int_{C_1} \frac{z^4+2}{(z^2+1)(z-1)} \, dz = \int_{C_1} \frac{z^4+2}{z^2+1} \, dz \]

\[= \int_{C_1} \frac{z^4+2}{z+1} \, dz \]

\[= 2\pi i \frac{1^4+2}{1^2+1} = 2\pi i \frac{3}{2}. \]
\[\int_{C_1} \frac{z^4 + 2}{(z^2 + 1)(z - 1)} \, dz = \int_{C_2} \frac{\frac{z^4 + 2}{z + i}}{z - i} \, dz = 2\pi i \frac{i^4 + 2}{(i + i)(i - 1)} = 2\pi i \frac{3}{2i(i - 1)}. \]

\[\int_{C_3} \frac{z^4 + 2}{(z^2 + 1)(z - 1)} \, dz = \int_{C_3} \frac{\frac{z^4 + 2}{z + i}}{z - i} \, dz = 2\pi i \frac{i^4 + 2}{(-i - i)(-i - 1)} = 2\pi i \frac{3}{(-2i)(-i - 1)}. \]

Hence

\[\int_{\Gamma} \frac{z^4 + 2}{(z^2 + 1)(z - 1)} \, dz = 2\pi i \frac{3}{2} + 2\pi i \frac{3}{2i(i - 1)} + 2\pi i \frac{3}{(-2i)(-i - 1)} = 0. \]

Ex2. \[\int_0^{2\pi} e^{2\cos \theta} \cos (2 \sin \theta) \, d\theta. \]

The main idea to compute this real integral is transforming it into a complex integral and using Cauchy integral formula.

First, we compute, by Cauchy integral formula,

\[\int_{|z|=1} \frac{e^{2z}}{z} \, dz = 2\pi i, \text{ (positive orientation).} \quad (1) \]

Let us compute this integral using parametrization technique. Let \(z = e^{i\theta}. \) Then

\[\int_{|z|=1} \frac{e^{2z}}{z} \, dz = i \int_0^{2\pi} e^{2(\cos \theta + i \sin \theta)} \, d\theta = i \int_0^{2\pi} e^{2\cos \theta} (\cos (2 \sin \theta) + i \sin (2 \sin \theta)) \, d\theta. \]

Comparing this identity with (1), we obtain

\[\int_{0}^{2\pi} e^{2\cos \theta} (\cos (2 \sin \theta) + i \sin (2 \sin \theta)) \, d\theta = 2\pi. \]
That is,

\[\int_{0}^{2\pi} e^{2\cos \theta} \cos (2 \sin \theta) \, d\theta = 2\pi,\]
\[\int_{0}^{2\pi} e^{2\cos \theta} \sin (2 \sin \theta) \, d\theta = 0.\]

As a matter of fact, the same argument as above tells us, for any real number \(a\),

\[\int_{0}^{2\pi} e^{a\cos \theta} \cos (a \sin \theta) \, d\theta = 2\pi.\]

Note that for \(a = 0\), this is trivial.