Cauchy Theorem—Multiply connected case; Cauchy integral formula

Feb. 11, 2019

References: Lecture Notes on Cauchy formula and its consequences; Sec. 4.4, 4.5 of the textbook.

Cauchy Theorem for multiply connected domain:
Assume D has outer boundary Γ and inner boundaries C_1, \ldots, C_n, with counterclockwise direction. Suppose f is analytic in D. Then:

$$\int_{\Gamma} f(z) = \int_{C_1} f(z) \, dz + \ldots + \int_{C_n} f(z) \, dz.$$

Ex1. $\int_{\Gamma} \frac{dz}{z^2 - \frac{1}{4}}$, Γ is $|z| = 2$ with counter-clockwise orientation.

Let C_1 be $\left| z + \frac{1}{2} \right| = \frac{1}{4}$, C_2 be $\left| z - \frac{1}{2} \right| = \frac{1}{4}$, with counter-clockwise orientation.

Then

$$\int_{\Gamma} \frac{1}{z^2 - \frac{1}{4}} \, dz = \int_{C_1} \frac{1}{z^2 - \frac{1}{4}} \, dz + \int_{C_2} \frac{1}{z^2 - \frac{1}{4}} \, dz.$$

For C_1, we have

$$\int_{C_1} \frac{1}{z^2 - \frac{1}{4}} \, dz = \int_{C_1} \left(\frac{1}{z - \frac{1}{2}} - \frac{1}{z + \frac{1}{2}} \right) \, dz = \int_{C_1} \frac{1}{z - \frac{1}{2}} \, dz - \int_{C_1} \frac{1}{z + \frac{1}{2}} \, dz = 0 - 2\pi i = -2\pi i.$$

Similarly for C_2, we have

$$\int_{C_2} \frac{1}{z^2 - \frac{1}{4}} \, dz = \int_{C_2} \left(\frac{1}{z - \frac{1}{2}} - \frac{1}{z + \frac{1}{2}} \right) \, dz = \int_{C_2} \frac{1}{z - \frac{1}{2}} \, dz - \int_{C_2} \frac{1}{z + \frac{1}{2}} \, dz = 2\pi i.$$

1
Hence

\[\int_{\Gamma} \frac{1}{z^2 - \frac{1}{4}} \, dz = 2\pi i - 2\pi i = 0. \]

Cauchy integral formula:

Let \(\Gamma \) be a simple closed curve (with counter-clockwise direction) and \(z_0 \) is inside \(\Gamma \). Suppose \(f \) is analytic inside \(\Gamma \). Then

\[\int_{\Gamma} \frac{f(z)}{z - z_0} \, dz = 2\pi i f(z_0). \]

Sketch of the proof: Let \(C_r \) be the circle \(|z - z_0| = r \). By Cauchy Theorem, we have

\[\int_{\Gamma} \frac{f(z)}{z - z_0} \, dz = \int_{C_r} \frac{f(z)}{z - z_0} \, dz. \]

As \(r \to 0 \), \(f(r) = f(z_0) + f'(z_0) (z - z_0) + O\left(|z - z_0|^2\right) \). (To be more precise, the last term, denoted by \(I \), will satisfy

\[\frac{I}{|z - z_0|} \to 0, \text{ as } |z - z_0| \to 0. \]

Hence, as \(r \to 0 \),

\[\int_{C_r} \frac{f(z)}{z - z_0} \, dz \to f(z_0) \int_{C_r} \frac{1}{z - z_0} \, dz = 2\pi i f(z_0). \]

Remark: To prove that \(\int_{C_r} \frac{f(z)}{z - z_0} \, dz \) tends to \(2\pi i \) as \(r \to 0 \), we actually only need to assume that \(f \) is continuous at \(z_0 \).

Ex2. \(\int_{\Gamma} \frac{e^z}{z} \, dz \), where \(\Gamma \) is \(|z| = 2 \) with counter-clockwise direction.

Applying the Cauchy integral formula (Taking \(f(z) = e^z, z_0 = 1 \), we get

\[\int_{\Gamma} \frac{e^z}{z - 1} \, dz = 2\pi i e^1 \]

\[= 2\pi i. \]