1. Let X be a r.v. taking values in $\{1, \ldots, 6\}$ with p.m.f. of the form

$$P(X = k) = ck.$$ (a) Find c.
(b) Find the c.d.f. of X.

Solution.
(a) Since $\sum_{i=1}^{6} p(i) = 1$, we find $c = \frac{1}{21}$.
(b) One way to write this:

$$F(t) = \begin{cases}
0 & t < 1, \\
\frac{1}{21} & 1 \leq t < 2, \\
\frac{3}{21} & 2 \leq t < 3, \\
\frac{6}{21} & 3 \leq t < 4, \\
\frac{10}{21} & 4 \leq t < 5, \\
\frac{15}{21} & 5 \leq t < 6, \\
1 & 6 \leq t.
\end{cases}$$

For $0 \leq t < 7$ this can also be written as $F(t) = \lceil t \rceil (\lceil t \rceil - 1)/21$, where $\lceil t \rceil$ is the integer part of t.

2. Suppose that the continuous RV X has c.d.f. given by

$$F(x) = \begin{cases}
0 & x < \frac{1}{\sqrt{2}} \\
5 - 12\sqrt{2}x + 18x^2 - 4\sqrt{2}x^3 & \frac{1}{\sqrt{2}} \leq x < \sqrt{2} \\
1 & \sqrt{2} \leq x
\end{cases}$$

(a) Find the smallest interval $[a, b]$ such that $P(a \leq X \leq b) = 1$.
(b) Find $P(0 < X < \frac{1}{2})$.
(c) Find $P(X = 1)$.
(d) Find $P(1 \leq X \leq \frac{3}{2})$.
(e) Find the p.d.f. of X.

Solution.
(a) $a = 1/\sqrt{2}$ and $b = \sqrt{2}$.
(b) This is $F(1/2) - F(0) = 0 - 0$.
(c) $P(X = a) = 0$ for every a.
(d) This is $F(3/2) - F(1) = 1 - F(1) = -22 + 16\sqrt{2}$.
(e) $f(x) = F'(x) = -12\sqrt{2} + 36x - 12\sqrt{2}x^2$ on $[1/\sqrt{2}, \sqrt{2}]$ and 0 outside this interval.

3. Let X be a random variable with p.d.f.

$$f(x) = \begin{cases}
2x^{-2} & x > 2 \\
0 & \text{otherwise}
\end{cases}$$

(a) Compute the c.d.f. of X.
(b) Find $P(X > 3)$.
(c) Find $P(X > 3 | X < 5)$.

Solution.

(a) \[F(b) = \int_{-\infty}^{-b} f(x) \, dx = \begin{cases} 0 & b < 2 \\ \int_{2}^{b} 2x^{-2} & b \geq 2 \end{cases} = \begin{cases} 0 & b < 2 \\ 1 - 2b^{-1} & b \geq 2 \end{cases} \]

(b) \[P(X > 3) = 1 - F(3) = \frac{2}{3} \]

(c) \[P(X > 3 \mid X < 5) = P(\{X > 3\} \cap \{X < 5\}) = \frac{P(X \in (3, 5))}{P(X < 5)} = \frac{F(5) - F(3)}{F(5)} = \frac{4}{9} \]

4. Define the function
\[f(x) = \begin{cases} 9x^2 - 4x^3 + b & x \in [0, 1] \\ 0 & \text{otherwise} \end{cases} \]
Show that there is no value of \(b \) for which this is the p.d.f. of some continuous RV.

Solution. We must have \(\int_{-\infty}^{\infty} f(x) \, dx = 1 \). This is \(\int_{0}^{1} 9x^2 - 4x^3 + b \, dx = 2 + b \), so \(b = -1 \). However, this means that \(f(x) < 0 \) for some values of \(x \) (any \(x \in [0, 1/3] \) for example.).

5. A stick of length \(\ell \) is broken into two pieces at a position \(X \sim \text{Unif}[0, \ell] \). Let \(Y \) denote the length of the smaller piece.
 (a) Calculate the c.d.f. of \(Y \), that is, calculate \(P(Y \leq b) \).
 (b) Calculate the p.d.f. of \(Y \). Can you identify what kind of random variable \(Y \) is?

Solution.

(a) The smaller segment can be anything from 0 to \(\ell/2 \). In order to get \(Y \leq b \) the uniform point \(X \) must be within \(\ell \) of either end of the stick, so \(F(b) = P(Y \leq b) = 2b/\ell \) for \(0 \leq b \leq \ell \). It is 0 or 1 elsewhere.

(b) The pdf is \(F'(b) = \begin{cases} 2/\ell & 0 \leq b \leq \ell/2 \\ 0 & \text{otherwise} \end{cases} \). This means \(Y \) is uniform on \([0, \ell/2] \).

6. Let \(X \) be an Exp(4) random variable. Find a number \(a \) such that \(\{X \in [0, 1]\} \) is independent of \(\{X \in [a, 2]\} \)

Solution. If \(a < 0 \) then all probabilities are the same as in the case \(a = 0 \), so we may assume that \(a \geq 0 \). If \(a > 1 \) then the events are disjoint (and hence not independent), so we may further assume that \(0 \leq a \leq 1 \). We have
\[P(X \in [0, 1]) = F_X(1) - F_X(0) = 1 - e^{-4}, \]
and
\[P(X \in [a, 2]) = F_X(2) - F_X(a) = e^{-4a} - e^{-8}. \]
The probability of intersection is
\[P(X \in [0, 1], X \in [a, 2]) = P(X \in [a, 1]) = F_X(1) - F_X(a) = e^{-4a} - e^{-4}. \]
The definition of independence gives the equation
\[e^{-4a} - e^{-4} = (1 - e^{-4})(e^{-4a} - e^{-8}), \]
so
\[e^{-4a} = 1 - e^{-4}(1 - e^{-4}), \]
that is,
\[a = -\frac{1}{4} \ln(1 - e^{-4}(1 - e^{-4})) \approx 0.0045. \]

7. Let \(X \sim \mathcal{N}(0, 1) \). Find \(c \) such that \(P(X > c) \approx \frac{1}{3} \).
You can find the \(\Phi \)-table here: https://en.wikipedia.org/wiki/Standard_normal_table#Cumulative

Solution. We have to solve
\[P(X > c) = 1 - \Phi(c) = \frac{1}{3}, \]
or, in other words, \(\Phi(c) = \frac{2}{3} \). Looking at the table, we see that \(\Phi(0.43) = 0.66640 \), so \(c \approx 0.43 \).