MATH 302 Introduction to Probability

Yinan Spinka
yinan@math.ubc.ca
www.math.ubc.ca/~yinan/math302

Office hours:
M 15-16
W 16-17
F 15-16 LSK 300C

Grading:
HW 9 out of 10 20%
Mid-term 30%
Final exam 50%
Book: "Introduction to Probability"
by Anderson, Seppäläinen, Valkó

Examples of real/conceptual experiments whose understanding involves prob. theory:

1) Toss 2 dice
2) Deal a poker hand
3) Spin a roulette wheel
4) Lifetime of a radioactive isotope
5) Position of a particle undergoing diffusion
6) # of accidents per year at a busy intersection.
7) 130 million votes are cast in an election. "Determine" the winner before the evening news.
In this course, we will:

1. Learn how to formalize randomness in the language of math.
2. Prove/investigate some important features of random systems.
3. Get to know some widely used models for random systems.

Example: Toss 2 "fair" dice. What is the probability that the total is 7?

Sol: Let's write out all possible outcomes. Suppose one die is red and one blue. We write first the value of the red die and then the blue.
red is 1 → (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
red is 2 → (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
red is 6 → (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

blue is 1

blue is 2

blue is 6

36 possible outcomes
6 outcomes have total 7

\[\frac{6}{36} = \frac{1}{6} \]
Terminology: The set of all possible outcomes is called the **sample space**. We usually denote it by S.

In the example, $S = \{(a,b) : a, b \in \{1, 2, \ldots, 6\}\}$

The phrase "the total is 7" serves to single-out some outcomes in S.

Terminology: A subset E of S is called an **event**.

In the example, "the total is 7" = $E = \{(1,6), (2,5), \ldots, (6,1)\}$
More examples:

(*) Toss a coin 3 times.

Sample space $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$

$|S| = 8$

(*) $E = \text{"the event that the third toss is tails"} = \{HHT, HTT, THT, TTT\}$

(*) $F = \text{"the event that there is exactly one \textit{head}s"} = \{HTT, THT, TTH\}$
(4) \(G = \{ \text{the event that the third toss is tails and there is exactly one heads} \} = \{ \text{HHT, THT} \} \)

(4) \(H = \{ \text{the event that the third toss is tails or there is exactly one heads} \} = \{ \dot{\ldots}, 3 \} \)

(4) Somebody else tosses a coin 3 times and tells you the number of heads:

sample space \(S = \{0, 1, 2, 3\} \)

(4) Observe the lifetime of a light bulb (in days):

sample space \(S = [0, \infty) \cup \{0\} = [0, \infty] \)

\(E = \{ \text{burns out within a year} \} = [0, 365) \).
\([0, \infty) \neq [0, \infty]\)

"Operations" of events:

1. \(E \subset F\): if \(E\) occurs, then so does \(F\).

2. \(E \cap F\): both \(E\) and \(F\) occur.

3. \(E \cup F\): either \(E\) or \(F\) occurs.

\(S = (0, \infty)\)
\(S = [0, \infty]\)
Last time: sample space S
events E, subset of S

(4) $E \subseteq F$: if E occurs, then F occurs

(4) $E \cap F$: both E and F occur

(4) $E \cup F$: either E or F occurs

(4) $E \cap F = \emptyset$: E and F cannot simultaneously occur

(4) E^c: E does not occur

Today: "arithmetical laws" of events

define probability - we would to assign probabilities $P(E)$ to all events E.
"Arithmetic laws" of events:

(i) \((E \cup F) \cap G = (E \cap G) \cup (F \cap G)\)

(ii) \((E \cup F) \cap G = (E \cap G) \cup (F \cap G)\)

(iii) \((E^c)^c = E\), \(S^c = \emptyset\), \(\emptyset^c = S\)

(iv) De Morgan's laws:

\((E \cap F)^c = E^c \cup F^c\)

\((E \cup F)^c = E^c \cap F^c\)

\((\bigcap_{i=1}^n E_i)^c = \bigcup_{i=1}^n E_i^c\)
We would like to assign a number $P(E)$ to each event E in a consistent manner.

Example: a fair coin toss

$S = \{ H, T \}$

events: $\{H, T, \emptyset, \{H, T\}\}$

$P(\{H\}) = \frac{1}{2} = P(\{T\})$

$P(\emptyset) = 0$, $P(\{H, T\}) = 1$

Definition: a probability (probability measure or distribution) is a way of assigning numbers $P(E)$ to each event E in such a way that the following "axioms" hold:
(I) For any event \(E \), \(0 \leq P(E) \leq 1 \).

(II) \(P(S) = 1 \)

(III) For any sequence \(E_1, E_2, \ldots \) of pairwise disjoint events, \(E_i \cap E_j = \emptyset \) for all \(i \neq j \)

\[
P(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} P(E_n)
\]

Important example: uniform probability

Suppose \(S \) is finite.

Set \(P(E) = \frac{|E|}{|S|} \) for any \(E \). \(|E| = \#E \) = number of elements in \(E \)

Let's check that the axioms are satisfied.
Axiom (I): for any \(E \), \(0 \leq |E| \leq |S| \).

Therefore, \(0 \leq P(E) = \frac{|E|}{|S|} \leq 1 \).

Axiom (II): \(P(\emptyset) = \frac{|\emptyset|}{|S|} = 0 \).

Axiom (III): Suppose \(E_1, E_2, \ldots \) are pairwise disjoint events.

\[
P(\bigcup_{n=1}^{\infty} E_n) = \frac{\bigcup_{n=1}^{\infty} |E_n|}{|S|} = \frac{\sum_{n=1}^{\infty} |E_n|}{|S|} = \frac{n}{|S|} \]

Particular example: fair die roll

\(S = \{1, 2, \ldots, 6\} \)

\(P(E) = \frac{|E|}{6} \)

\(P(1 \text{ or } 6) = \frac{3}{6} = \frac{1}{2} \)
Remarks about definition:

(1) One interpretation of probability is that if we conduct the same experiment again and again, the percentage of times that \(E \) occurs is "close" to \(P(E) \).

(2) When \(S \) is finite, say \(S=\{1,2,...,n\} \), the numbers \(p_i = P(\{i\}) \), \(i=1,...,n \), are sufficient to compute \(P(E) \) for any \(E \). Indeed:

\[
 P(E) = \sum_{i \in E} p_i
\]

Explanation: \(E = \bigcup_{i \in E} \{i\} \) and use axiom (III).
(x) When S is infinite (uncountable), complications may arise:

1. it may happen that $\mathbb{P}(\{s\}) = 0$ for all $s \in S$, but still $\mathbb{P}(E) > 0$ for some E.
2. there may be subsets $E \subset S$ that do not have a well-defined prob.