Non-uniform probabilities and introduction to random variables

Uniform prob : \(P(E) = \frac{|E|}{|S|} \)

Example: Sample space \(S = \{1, 2, 3, 4, \ldots, \infty\} \)

Toss a coin until the first time you get Heads, and record the number of flips.

\[P(\text{first H is on } n\text{'th toss}) = \]
\[= P(\text{when tossing } n \text{ coins, get } TTT\ldots TT H) = \frac{1}{2^n} \]

\[\Rightarrow P(\{n\}) = 2^{-n} \text{ for } n=1, 2, 3, \ldots \]

\[P(\{oo3\}) = ? \]
\[P(N) = \sum_{n=1}^{\infty} P(3n) = \sum_{n=1}^{\infty} 2^{-n} = ? \]

\[\text{e.g. } P(\{1,2,3\}) = P(\{13\}) + P(\{23\}) + P(\{53\}) \]

\textbf{Claim:} \[\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \text{ for } |x|<1 \]

\[y \equiv 1 + x + x^2 + x^3 + \ldots \]

\[xy = x + x^2 + x^3 + \ldots = y - 1 \]

\[1 = y(1-x) \]

\[y = \frac{1}{1-x} \]

\[P(N) = \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{1}{2} \right)^n = \frac{1}{2} \cdot \frac{\frac{1}{2}}{1-\frac{1}{2}} = 1 \]
\[P(S) = P(N \cup \{oo3\}) = P(N) + P(\{oo3\}) \]

But \[P(N) = 1 = P(S) \]

So \[P(\{oo3\}) = 0. \]

Example: uniform letter from this sentence.

Sample space \(S = \{ u, n, i, t, o, r, m, l, e, t, h, s, c \} \).

\[|S| = 13 \]

\[P(\{it3\}) = \frac{4}{29} \]

\[P(\{oo3\}) = \frac{1}{29} \]

\[P(\{ro,i,e,ug\}) = \frac{10}{29} \]
Random variables - intro:

Def: A random variable (r.v.) is a function from the sample space to the real numbers \mathbb{R}. That is, we associate to each outcome a number.

E.g. In the uniform letter example, let X be the "value" of the letter in Scrabble.

Here: $M, C \Rightarrow 3$
$H, F \Rightarrow 4$
rest \Rightarrow 1$

This gives a new sample space $S = \{1, 3, 4, 8\}$
Notation: For r.v.'s, we use letters like X, Y, Z, \ldots instead of f, g, h, \ldots

So $X: S \rightarrow \mathbb{R}$.

We think of X as the random number $X(s)$, where s is the outcome of the experiment.

(4) Discrete r.v.: having its values in a sequence x_1, x_2, x_3, \ldots.

(5) Continuous r.v.: continuum possible values e.g. $[0, 1]$.
We write \(\{ X \in A \} = \{ s \in S : X(s) \in A \} \)

\[\text{e.g. } \mathbb{P}(X = s) = \mathbb{P}(\{ s \in S : X(s) = s \}) \]

Discrete r.v.: If the values are \(x_1, x_2, x_3, \ldots \),
then \(\mathbb{P}(X = x_i) \) is some number.

Denote \(p_a = \mathbb{P}(X = a) \)

\[\sum_a p_a = 1 \]

\[\mathbb{P}(X \in \{ x_1, x_2, x_3, \ldots \}) = 1 \]

\[p_{x_1} + p_{x_2} + p_{x_3} + \ldots \]
Recall the example of tossing a coin until first heads.

\[X = \{1, 2, 3, \ldots \} \]

\[P(X = n) = 2^{-n} \]

\[p_n = \sum_{n=1}^{\infty} P(X = n) = 1 - \frac{1}{2} - \frac{1}{4} - \frac{1}{8} - \frac{1}{16} - \frac{1}{32} - \frac{1}{64} - \frac{1}{128} - \frac{1}{256} - \ldots \]

\[p_n = 2(1 - \frac{1}{2}) = 1 - \frac{1}{2} \]

Time to get first 6 when tossing a die.

\[X = \{1, 2, 3, 4, 5, 6\} \]

\[P(X = n) = \frac{1}{6} \]

\[p_n = \sum_{n=1}^{6} P(X = n) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = 1 \]

Example:

\[p_n = 2 \]