1. A die is rolled until the first time the result is 6. Let X be the number of rolls. Next, we choose a sample, with replacement, of size X from an urn with 9 red and 3 green balls. Let Y be the number of green balls in the sample.
 (a) Compute the conditional p.m.f. $P_{Y|X}(y|x)$.
 (b) Compute $E[Y|X]$.
 (c) Use your answer from part (b) to compute $E(Y)$.

2. Suppose that the random variables X, Y have joint density function
 \[f(x, y) = \begin{cases} \frac{x+4y}{2} & \text{if } 0 \leq x \leq 2 \text{ and } 0 \leq y \leq \frac{1}{2}, \\ 0 & \text{otherwise}. \end{cases} \]
 (a) What is the conditional p.d.f. of Y given that $X = 1$?
 (b) Find the conditional expectation $E(Y \mid X = 1)$.

3. Let X and Y be two independent uniform random variables on $(0, 1)$.
 (a) Using the convolution formula, find the p.d.f. of the random variable $Z = X + Y$, and graph it.
 (b) What is the moment generating function of Z?

4. Suppose that X has moment generating function
 \[M_X(t) = \frac{1}{3} + \frac{1}{2} e^{-t} + \frac{1}{6} e^{2t}. \]
 (a) Find the mean and variance of X by differentiating the m.g.f. above.
 (b) Find the p.m.f. of X. Use your expression for the p.m.f. to check your answers from part (a).

5. Let $X_n \sim \text{Bin}(n, \frac{\lambda}{n})$ for some $\lambda > 0$. Show that the moment generating function $M_{X_n}(t)$ converges as $n \to \infty$, and show that the limit is the m.g.f. of the Poisson(λ) random variable.