Math 267 Midterm II
Mar 26, 2010
Duration: 50 minutes

Name: \qquad Student Number: \qquad

This exam should have 8 pages. No textbooks, calculators, or other aids are allowed. One page of notes (two-sided) is allowed. There are 4 questions in this exam, each worth 10 points.

Problem 1 (10 points)
Consider the system with input $x(t)$ and output $y(t)$ characterized by the equation

$$
y^{\prime \prime}(t)+5 y^{\prime}(t)+6 y(t)=x(t)
$$

(a) Find the transfer function $\hat{H}(\omega)$ and the impulse response $H(t)$.
(b) Find $y(t)$ when $x(t)=\delta(t-3)$.
(c) Find $y(t)$ when $x(t)=e^{-t} u(t+4)$.

Solution
(a) Take the Fourier transform of both sides:

$$
\begin{aligned}
& {\left[(i \omega)^{2}+5 i \omega+6\right] \hat{y}(\omega)=\hat{x}(\omega)} \\
& \Rightarrow \hat{H}(\omega)=\frac{1}{\hat{y}(\omega)}=\frac{1}{(i \omega)^{2}+5 i \omega+6}
\end{aligned}
$$

Use partial fractions to calculate $H(t)$, the inverse F.T. of

$$
\begin{aligned}
& \hat{H}(\omega)=\frac{1}{(i \omega+2)(i \omega+3)}=\frac{1}{i \omega+2}-\frac{1}{i \omega+3} \\
\Rightarrow & \left.H(t)=e^{-2 t} u(t)-e^{-3 t} u(t)=\left[e^{-2 t}-e^{-3 t}\right] u(t)\right]
\end{aligned}
$$

(b) Calculate $y(t)$ in time-domain:

$$
\left.y(t)=(x * H)(t)=H(t-3)=\left[e^{-2(t-3)}-e^{-3(t-3)}\right] u(t-3)\right]
$$

(c) This time, we first find $\hat{y}(w)$:

$$
\hat{y}(\omega)=\hat{x}(\omega) \hat{H}(\omega)
$$

Note that: $x(t)=e^{-t} \cdot u(t+4)=e^{4} \cdot e^{-(t+4)} u(t+4)$

$$
\Rightarrow \hat{x}(\omega)=e^{4} \cdot e^{i \omega \cdot 4} \frac{1}{i \omega+1}
$$

So: $\hat{y}(\omega)=e^{4} \cdot e^{i \omega \cdot 4} \cdot \frac{1}{(i \omega+1)(i \omega+2)(i \omega+3)}$

$$
\begin{aligned}
& =e^{4} \cdot e^{i \omega 4}\left[\frac{1 / 2}{i \omega+1}-\frac{1}{i \omega+2}+\frac{1 / 2}{i \omega+3}\right] \\
\Rightarrow y(t) & =e^{4} \cdot\left[\frac{1}{2} e^{-(t+4)}-e^{-2(t+4)}+\frac{1}{2} e^{-3(t+4)}\right] u(t+4)
\end{aligned}
$$

Problem 2 (10 points)
(a) Find $h(t)=($ rect $* \cos)(t)$. [Hint: Calculate the convolution directly.]
(b) Find the Fourier transform of $f(t)=e^{-|t|}$. [Show your work.]
(c) Use part (b) to compute the Fourier transform of $f_{\mathrm{AM}}(t)=e^{-|t|} \cos (t)$.

Solution:
(a)

$$
\begin{aligned}
& \text { Then: } h(t)=\int_{t-1 / 2}^{t+1 / 2} 1 \cdot \cos \tau d \tau=\left.\sin \tau\right|_{t-1 / 2} ^{t+1 / 2} \\
& \Rightarrow \frac{h(t)=\sin (t+1 / 2)-\sin (t-1 / 2)}{\hat{f}(\omega)=\int_{-\infty}^{\infty} e^{-|t|} \cdot e^{-i \omega t} d t=\underbrace{\int_{-\infty}^{0} e^{t} e^{-i \omega t}}_{I_{1}} d t}+\underbrace{\int_{0}^{\infty} e^{-t} e^{-i \omega t} d t}_{I_{2}} \\
& I_{2}=\frac{1}{i \omega+1} \text { (this is the F.T. of } e^{-t} u(t) \text {). }
\end{aligned}
$$

$$
\begin{aligned}
I_{1} & =\int_{-\infty}^{0} e^{t(1-i \omega)} d t=\left.\lim _{A \rightarrow-\infty} \frac{e^{t(1-i \omega)}}{1-i \omega}\right|_{A} ^{0} \\
& \left.=\frac{1}{1-i \omega} \quad \text { (since } \lim _{A \rightarrow-\infty} \frac{e^{A(1-i \omega)}}{1-i \omega}=0\right)
\end{aligned}
$$

So: $\hat{f}(\omega)=\operatorname{Mt} I_{1}+I_{2}=\frac{1}{1-i \omega}+\frac{1}{1+i \omega}=\frac{2}{1+\omega^{2}}$

$$
\Rightarrow \quad \hat{f}(w)=\frac{2}{1+w^{2}}
$$

(c) Recall that $(i) f \cdot g \stackrel{F \cdot T}{\rightleftarrows}(\hat{f} * \hat{g}) \cdot \frac{1}{2 \pi}$
(ii) $\cos t \longleftrightarrow \pi[\delta(\omega+1)+\delta(\omega-1)]$.

Then, setting ran

$$
\begin{aligned}
\hat{f}_{A M}(\omega) & =\operatorname{axtan}[\hat{f} *[\delta(\omega+1)+\delta(\omega-1)]] \cdot \frac{1}{2 \pi} \\
& =\frac{1}{2} \hat{f}(\omega+1)+\frac{1}{2} \hat{f}(\omega-1) \\
& =\frac{1}{2} \frac{2}{1+(\omega+1)^{2}}+\frac{1}{2} \cdot \frac{2}{1+(\omega-1)^{2}} \\
\hat{f}_{A M}(\omega) & =\frac{1}{1+(\omega+1)^{2}}+\frac{1}{1+(\omega-1)^{2}}
\end{aligned}
$$

Problem 3 (10 points)
Find the inverse Fourier transform of the following functions.
(a) $\widehat{f}(\omega)=\frac{1}{(2+i \omega)(5+i \omega)(6+i \omega)}$,
(b) $\widehat{g}(\omega)=\cos (5 \omega+\pi / 2)$.

Partial traction exp.
(a) $\frac{1}{(2+i \omega)(s+i \omega)(6+i \omega)}=\frac{1}{12} \frac{1}{2+i \omega}-\frac{1}{3} \cdot \frac{1}{5+i \omega}+\frac{1}{4} \frac{1}{6+i \omega}$

$$
\Rightarrow f(t)=\left[\frac{1}{12} e^{-2 t}-\frac{1}{3} e^{-5 t}+\frac{1}{4} e^{-6 t}\right] u(t)
$$

(b) (Very similar to a homework question):

$$
\begin{aligned}
& \hat{g}(\omega)=\cos (5 \omega+\pi / 2)=\frac{e^{i(5 \omega+\pi / 2)}+e^{-i(5 \omega+\pi / 2)}}{2} \\
&=\frac{1}{2} e^{i \pi / 2} \cdot e^{i s \omega}+\frac{1}{2} e^{-i \pi / 2} \cdot e^{-i s \omega} \\
& \Rightarrow \hat{g}(\omega)=\frac{1}{2} i e^{i s \omega}-\frac{1}{2} i e^{-i s \omega} \\
& \text { Using } \quad \delta(t+a) \longleftrightarrow e^{i a \omega}, \text { we then get } \\
& g(t)=\frac{1}{2} i \delta(t+5)-\frac{1}{2} i \delta(t-5)
\end{aligned}
$$

Note: This question can also be solved wing several properties of Fourier transform, such as time-shifting, scaling, and duality. If solved this way, one gets

$$
g(t)=\frac{1}{2} e^{-i \frac{\pi}{10} t}[\delta(t+5)+\delta(t-5)]
$$

Note that $e^{-i \frac{\pi}{10} t} \cdot \delta(t+5)=e^{-i \frac{\pi}{10}(-5)} \delta(t+5)=\frac{1}{2} i \delta(t+5)$
and $e^{-i \frac{\pi}{10} t} \delta(t-5)=e^{-i \frac{\pi}{10} \cdot 5} \delta(t-5)=-\frac{1}{2} i \delta(t-5)$ that is, both solutions agree.

Problem 4 (10 points)
Use properties of Fourier transforms to calculate the following integrals. Show your work.
(a) $\int_{-\infty}^{\infty} \frac{e^{i 2 \omega}}{5+i w} d \omega,=I_{1}$
(b) $\int_{-\infty}^{\infty}[\operatorname{sinc}(\omega)]^{2} d \omega,=I_{2}$
(c) $\int_{-\infty}^{\infty}[\operatorname{sinc}(\omega)]^{2} e^{i 10 \omega} d \omega=I_{3}$
(a) Set $\hat{f}(\omega)=\frac{1}{5+i \omega}$. Then

$$
I_{1}=\int \frac{e^{i 2 \omega}}{5+i \omega} d \omega=\int \hat{f}(\omega) e^{i 2 \omega} d \omega=2 \pi f(2)
$$

Since we know $f(t)=e^{-5 t} u(t)$, we conclude

$$
I_{1}=2 \pi f(2)=2 \pi \cdot e^{-10}
$$

(b) Here we will use Parseval's identity. Recall that $\operatorname{rect}(t) \longleftrightarrow \operatorname{sinc}(\omega / 2)$ which implies $\frac{1}{2} \operatorname{rect}\left(\frac{t}{2}\right) \longleftrightarrow \operatorname{sinc}(\omega) \quad$ (time-scaling).
So: $\quad \int_{-\infty}^{\infty}\left|\frac{1}{2} \operatorname{rect}\left(\frac{t}{2}\right)\right|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|\operatorname{sinc}(\omega)|^{2} d \omega$

So,

$$
\begin{aligned}
I_{2} & =2 \pi \int_{-\infty}^{\infty}\left[\frac{1}{2} \operatorname{rect}\left(\frac{t}{2}\right)\right]^{2} d t \\
& =2 \pi \int_{-1}^{1} \frac{1}{4} d t=2 \pi \cdot \frac{1}{2}=\pi
\end{aligned}
$$

$$
\leadsto I_{2}=\pi
$$

(c) From (b), we know

$$
f(t)=\frac{1}{2} \operatorname{rect}\left(\frac{t}{2}\right) \longleftrightarrow \operatorname{sinc}(\omega)=\hat{f}(\omega)
$$

Then using convolution the, we know that

$$
\begin{aligned}
& h(t):=(f * f)(t) \longleftrightarrow[\sin c(\omega)]^{2}=\hat{h}(\omega) \\
& I_{3}=\int_{-\infty}^{\infty} \hat{h}(\omega) e^{i / 10 \omega} d \omega=2 \pi \cdot h(10)
\end{aligned}
$$

But $h=f^{*} f$. So, $h(10)=\int f(\tau) f(10-\tau) d \tau$

$$
\Rightarrow \quad f(\tau) \cdot f(10-\tau)=0 \Rightarrow \quad \Rightarrow \quad I_{3}=0
$$

