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Institute of Applied Mathematics

University of British Columbia

® Faculty participation from many departments.

® |nterdisciplinary graduate programme.
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Overview of the Talk

Geometric Motion (2D Curvature Motion Example)

Numerical Methods (Formulations)

Sample of Generalized Problems

Gradient Flow Dynamics
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Geometric Motion - |

INFIER) Examples:
e V = k (curvature)
® V = —kgs (surface diffusion)
¢ Mullins-Sekerka (nonlocal)
Numerical Challenges:
® Topological changes
® Viscosity solutions
® Networks with junctions
e Stiff systems
Applications:
® Image processing
® Materials Science

e (Intrinsic Interest)

Summary
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Geometric Motion-I|

® “Geometric’ means that the dynamics only depends on the
curve shape.

® Only the normal velocity is needed to specify the dynamics.

® We will consider first 2D curvature motion of a simple, closed
curve, V = k.

® Gage, Hamilton, and Grayson: “every simple closed curve
shrinks to a round point,” (under curvature flow).

® Sethian movie

® Curvature flow arises as a sharp interface limit of the
Allen-Cahn phase field model from materials science.
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Derivation Allen-Cahn — Curvature Motion |

ur = Au— W'(u), W (u) =u®—u
Allen and Cahn 1979

® For discussion, consider e = 0

® A-C is then an autonomous ODE with fixed points v = +1
(stable) and u = 0 (unstable) at each space location

e Solutions tend to u = £1 in O(1) time

e With € > 0 there is an interface of width O(e) that is formed
between the two phases

® As ¢ — 0 the interface tends to a curve that moves with
curvature motion in O(1/€?) time scale.

e Studying the limiting problem directly gives insight.
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Allen-Cahn — Curvature Motion I

up = EAu— W'(u), Wi(u)=uv+u
Outer solution u = u(® + eu® + ..
® u(x(s,t),t) =0 describes the interface.
e 0O(1): u§°) = W' (u®) so u® — £1.
* O(e): ugl) = —W"(uO)u® = —240) so u() = 0.

outer u & +1 (s, )

inner u(s,z,7)

Ofe)

X= X(8,7) + €zn

Summary
o]



Geometric Motion Numerical Methods

zed Problems Gradient Flows
0000e00 000 00 00

Allen-Cahn — Curvature Motion Il

up = eAu— W'(u), Wi(u)=uv>+u

° T =€t
® uy=€eVou/dz+ ... (V =0x/0T- i)
® Au=0%u/0z® — ekOu/Oz + ...

Inner solution u = u(® + ey + .

* 0(1): &u® /92> — W (u®) = 0. To match outer solution

u©(z) = tanh(z/2).

Summary

e 0(e) : Vou® )9z = 02uM /922 — W (u®)u®) — £ou©®) /02

® Solvability condition V = —k.
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Gradient Flow - |

Allen-Cahn dynamics are a gradient flow on the energy functional

S(u):/<622|Vu]2+W(u)>.

This can be seen by calculating (integrate by parts)

Z—f = / us (—62Au + W' (u)) .

Taking the dynamics to be
uy = Au — W'(u)

makes
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Gradient Flow - 1l

e Curvature motion inherits a gradient flow nature from
Allen-Cahn.

® Energy £ = L (curve length).

e [,
E— /r‘/f/.

® Gradient flow
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I: Level Set Methods

Osher and Sethian 1988
I" described as the level set ¢)(x,t) =0
Extend V/(I') smoothly to V/(x)

e = —V|V1)| evolves all level sets with normal velocity V
(Hamilton Jacobi equation).

Curvature fits easily into this framework

- ()

Extensive literature on efficient implementations.

® V can come from other models (not limited to geometric
motion)
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lI: Convolution-Thresholding Methods.

Ruuth 1998

Let x(t) be the characteristic set inside I'(t)

Solve uy = Au with u(x,0) = x(t)

{x: u(x, k) > 1/2} approximates x(t + k)

Spectral approximation with adaptive quadrature and

nonuniform FFT to approximate the PDE problem to high
accuracy

Richard extrapolation in time stepping

Summary
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II: Curve tracking x formulation

® x(o,t), with x; - A=V
® Tangential velocity maintains scaled arc-length, impose this
directly:

]x0]2 Xo Xee =0 or |x;| =1L

200

® Fix arbitrary constant in tangential velocity:

1
/xt-?dazo
0

e Curvature Kk = Xyo - (X5)7/L3
e FD discretization, implicit time stepping (index-1 DAE
structure).

Summary
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Junctions - |
Crystal Grains

1.0000 1.2580
1.3400 1,3440

D &

Bronsard and Wetton 1995
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Junctions - I
3D Crystal Grains

Ruuth

£ = 0.0000 = 00036
= 100072 1 =0.0108
£=00144 /= nmsn

Esedoglu
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Junctions -llI
Quarter Loop

Iniial Status Result at time 1

o — NN -
2 "
o o
3 0 5 % 5 » 3 0 5 % % )
Resutattime 5 Resutatimo 20

Pan and Wetton 2008
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Mullins-Sekerka Flow

Au=0

u — constant

® Mullins and Sekerka 1963

® Sharp interface limit of Cahn Hilliard equations, Pego 1989
and Alikakos, Bates, and Chen 1994
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Generalized Mullins Sekerka -I

u= Ug(s)
to be determined

[Ou/On] = G(Uy(s))

Au—u=10 \
u—0

V=x + H(Uy(s))(OufOn_ + dufon,)

Limit of an activator-inhibitor reaction diffusion problem.

® u is the inhibitor (global), v the activator (local to the curve)

G and H involve the inner solution for the activator
Moyles and Ward
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Generalized Mullins Sekerka -1

® Moyles and Wetton
® x tracking formulation

® Single layer potential formulation

uly) = 5= [ Kalbe =y F(s)ds

® Singular boundary integral problem to match u = Up(s).

e f(s) =[0u/0n], and u/Ons + Ou/On_ can be determined
from f with a non-singular integral.

® FD discretization in space, implicit time stepping.

® Trapezoid rule used for the singular integral. Errors
O(h?log h), h = Ao.
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Generalized Mullins Sekerka - |11

Results

101 — 0

--=t=4
t=10
==t =19.99

g

-10-
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Gradient Flow for £(T)

Example

® Adhesion Energy

Summary

1 1 1 1
£ = L/ 518 da+L2/ / G(|d|?) do do’ + A(L — Lo)?
0 0 Jo

® G has a minimum at a prescribed distance.
® Gradient flow velocity Promislow:

V= <A5 + "‘22 - IB%(U)) k — A(o) - n(s).

where

1
A(s) == 4L/0 2G'(|d|?); do’

and .
B(s) = 2L/ G(|dP): do’
0

® x tracking results movie.
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General x Code

Ongoing (just started) project for an open source code that
can handle a variety of (local) geometric motion velocities.

Up to sixth order terms (fourth order in curvature).
Adaptive implicit time stepping.

Direct solves for Newton iterations.
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Summary

® Some history of methods for curvature motion.
® Some more general geometric motion examples (Wetton
focussed).

® Proposed open source framework to handle a general class of
2D local geometric motion problems.
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