Math 210, Spring 2013 Lab Quiz #3 solutions LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYkLUkjbWlHRiQ2JVEocmVzdGFydEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIjtGJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjEvJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMjc3Nzc3OGVtRic= Q#1 Enter the function below, then the answers are just one line Maple commands QyQ+SSJmRzYiKiYtSSRjb3NHRiU2IyokSSJ4R0YlIiIjIiIiLCYqJEYrIiIlRi1GLUYtISIiRi0= KiYtSSRjb3NHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2IyokSSJ4R0YoIiIjIiIiLCYqJEYrIiIlRi1GLUYtISIi (a) LUklcGxvdEc2IjYkSSJmR0YkL0kieEdGJDsiIiQiIiY= LSUlUExPVEc2Ji0lJ0NVUlZFU0c2JDdqdzckJCIjSSEiIiQhMC04ZFlNNjYiISM7NyQkIjBEXStAOjAsJCEjOSQhLyYqUVJsKlw3IiEjOjckJCIwWCE0UVdtPkkhIzkkITB3TXdfd0k4IiEjOzckJCIqMjRbLSQhIikkITA9d3QkWytPNiEjOzckJCIwYjQ+cWAqSEkhIzkkITBUSUpFeng4IiEjOzckJCIwKil5ZFZLXi4kISM5JCEweD9ERjMlUTYhIzs3JCQiMENbJ3A2SlNJISM5JCEwYFU+YCYpeTgiISM7NyQkIi8mKiopKkdsYS8kISM4JCEwZkw7IT5CTzYhIzs3JCQiMHZdLFQ+MTAkISM5JCEwdHd4cWVNOCIhIzs3JCQiMEFWJ29rPGdJISM5JCEwN2dwXSZSRDYhIzs3JCQiMHRYIlxBMnFJISM5JCEwallHbURKNiIhIzs3JCQiMFwoXHprSSEzJCEjOSQhMFtYIikpSE4nNCIhIzs3JCQiMHJVJikpeV0hNCQhIzkkITBkaW1KS2MyIiEjOzckJCIwSGU7SCw1NSQhIzkkITAiRydvPi0uMCIhIzs3JCQiMDxNbylRQzVKISM5JCEwNyh6b0B2QzUhIzs3JCQiLyYqKilmKVsxNyQhIzgkITBiN2xaPl8jKiohIzw3JCQiMCNSeWNsNEpKISM5JCEwdFk2KUddbSYqISM8NyQkIjBBVidbWztUSiEjOSQhMChSVTV0WCo9KiEjPDckJCIwMTZBI3lJXUohIzkkITAkXD8hNFc/IykpISM8NyQkIjBiNUBxejY7JCEjOSQhMEUiekUoPmpOKSEjPDckJCIwRV8vaCpRcUohIzkkITA9PWpHTyJSeiEjPDckJCIwZTtMI0g1Ij0kISM5JCEwI0d1MUcvSXUhIzw3JCQiMF4tMC0nZSE+JCEjOSQhMCczbEpUNWdwISM8NyQkIjBgMDZbISo0PyQhIzkkITBrVl9ERGdVJyEjPDckJCIvLS8pKXoqM0AkISM4JCEwS1suMnk8IWYhIzw3JCQiLzM7S2FCQEshIzgkITAobyI+SHY0TSYhIzw3JCQiMEtrR1ZHMkIkISM5JCEwbk9KOXRkIlshIzw3JCQiMCJIZTt6JzRDJCEjOSQhMGUqNHAydFNVISM8NyQkIjAxN0MnUWdeSyEjOSQhMHZzRT9NbmokISM8NyQkIjBoQVhbaTNFJCEjOSQhMHoqUiZ5RHc1JCEjPDckJCIwRF0rMGkzRiQhIzkkITAlUl08RypcYCMhIzw3JCQiMFwpcHpEPiJHJCEjOSQhMHlSTm8iZVc+ISM8NyQkIjBwUHYpKilIIkgkISM5JCEwbUY9LCsxUCIhIzw3JCQiMCNSeWN1MixMISM5JCEvVyUzcTYjNCMpISM8NyQkIjBcKXB6WiQ+SiQhIzkkITBbUGpXeHU+IyEjPTckJCIwPU9zYyFwQEwhIzkkIjBCZ3pQKGYqNCQhIz03JCQiMCNRd19wNUtMISM5JCIwJTRZSD9dQScpISM9NyQkIjA7Sml1WDpNJCEjOSQiMDlvX1BKKls4ISM8NyQkIjAtLjElWyc9TiQhIzkkIi96M3oxJ1InPSEjOzckJCIwNkBVSXU6TyQhIzkkIjBMNzklelpJQiEjPDckJCIweWM4XEI8UCQhIzkkIjAmb1p1PGAoeiMhIzw3JCQiMFUlKW88WTtRJCEjOSQiMDhFeXc5QEIkISM8NyQkIjBCWCE0Vi4jUiQhIzkkIi8wbk1GK2lPISM7NyQkIjAoWyhcSlI/UyQhIzkkIjBuMFtBWC0wJSEjPDckJCIwJ0hmeTNGN00hIzkkIjAoW2x0Pm0+VyEjPDckJCIwXClwPnhUQU0hIzkkIjBiXig+VjlkWiEjPDckJCIwS2tHaFQ8ViQhIzkkIi9SJjNRNjQvJiEjOzckJCIwPExtJXlVVU0hIzkkIjBXLGlRdFNMJiEjPDckJCIwYTI6dSYpPlgkISM5JCIwaW0uVnlrYyYhIzw3JCQiMHhhNFh3QFkkISM5JCIwYUBUYnlEeSYhIzw3JCQiMCwsLUVJPlokISM5JCIwI3BKWTdGZWYhIzw3JCQiLyRmPWhnRlskISM4JCIwI3p1JGZKczYnISM8NyQkIjAtLjEhKlFAXCQhIzkkIjBwaWdhYFJBJyEjPDckJCIwMTZBTSR5LU4hIzkkIjBmMiZHV0E1aiEjPDckJCIwWiRwb1JqMk4hIzkkIjB2altzanNMJyEjPDckJCIwKWU8JmYlWzdOISM5JCIwSFRUSVltTichIzw3JCQiMEBUIz0vejxOISM5JCIwN3JaOjsicGohIzw3JCQiMGAxOEMnNEJOISM5JCIwbnViWDhEUCchIzw3JCQiMFsnSHBVbkZOISM5JCIwM0ZbJD4/b2ohIzw3JCQiMFYnRyhIX0FgJCEjOSQiMCR6QHU0QmRqISM8NyQkIjBUIkd3KnpFYSQhIzkkIjBrKGYiZSJvMmohIzw3JCQiMClwUipmX0ZiJCEjOSQiMEBSeiwyIUdpISM8NyQkIjBjNkJrPUdjJCEjOSQiMHZhbS8pKno2JyEjPDckJCIwTnFTbFpHZCQhIzkkIjBcOCFvVjp6ZiEjPDckJCIwUHRZUiNbI2UkISM5JCIwUFpHQS8kPmUhIzw3JCQiMDZBVyF5KkdmJCEjOSQiL0o2bVNnPWMhIzs3JCQiMGpEXldDR2ckISM5JCIwL2EoKmUmcCxhISM8NyQkIjA9TnF3cktoJCEjOSQiMCVwQSEzJCl6OSYhIzw3JCQiMHRYIjQiSEZpJCEjOSQiMDl4Q0UmRygqWyEjPDckJCIwMjhFQyI9TE8hIzkkIjBYamU5PygpZiUhIzw3JCQiMGpEXmMjPlZPISM5JCIwQ1M7JD1QJEglISM8NyQkIi4qej4mekpsJCEjNyQiMEAzRyRcdHJSISM8NyQkIjBLakUkNGhqTyEjOSQiME81bFp5Jz5PISM8NyQkIjBpQlprPUtuJCEjOSQiMGtXVyopZUZHJCEjPDckJCIvLzNjI2VJbyQhIzgkIjBvNzx5WHEjSCEjPDckJCIvND1jQiNScCQhIzgkIjBzOSV6bDVDRCEjPDckJCIwc1cqMyplUHEkISM5JCIwZVUpZj1BX0AhIzw3JCQiMDxMbWk9UXIkISM5JCIvaCk0SEpydyIhIzs3JCQiMCwtLzVcU3MkISM5JCIwIjQ+QyhvRlAiISM8NyQkIjAiSGUnKkdYTFAhIzkkIjA3IilmOHYoNDUhIzw3JCQiMChSelFxWlZQISM5JCIwRWBhc21MQychIz03JCQiMCJIZXdbVWBQISM5JCIwJ2YiUkJtUVgjISM9NyQkIjBGYTMoZjFrUCEjOSQhMERKVHd2d2AiISM9NyQkIjAqeWR2aVh0UCEjOSQhLydSY2ElKnopXCEjPDckJCIwWCopeXQhSCV5JCEjOSQhMHdWOj5pSicpKSEjPTckJCIwN0NbK29TeiQhIzkkITBSISkpPXBTQzchIzw3JCQiMCpwUio0VVAhUSEjOSQhMC1Da0wkUVk6ISM8NyQkIjBaJSopZVs5OVEhIzkkITBlUWthOnAoPSEjPDckJCIwXClwKnAqZUNRISM5JCEvdyYpZTxrIT4jISM7NyQkIjBZIkhlSDRNUSEjOSQhMGw0dllfKWVDISM8NyQkIjAjUnknKlw9V1EhIzkkITBFcSg0OUxDRiEjPDckJCIqJVEuYVEhIikkITBhOXdCekgnSCEjPDckJCIwdlwqKjM1WidRISM5JCEwXGxCZDJ3PiQhIzw3JCQiME9zVyxbUihRISM5JCEweFstejEmekwhIzw3JCQiMDxMbTVlWClRISM5JCEwJjNsVXZLak4hIzw3JCQiMEdiNTpLWCpRISM5JCEwMzQpNEokNHIkISM8NyQkIjBWJjNkKTRXIVIhIzkkITA0dDYnXFtLUSEjPDckJCIwXy80VSZIOVIhIzkkITBjOGRZJj5IUiEjPDckJCIwRV4tMnlWI1IhIzkkITB5QyV6Uyg9KyUhIzw3JCQiMENbJzRiMU5SISM5JCEwYT1aQ3MsMCUhIzw3JCQiMDhEXSVbJ1slUiEjOSQhMFUlR2UoPSZvUyEjPDckJCIwb090L1FYJlIhIzkkITBNLE1cKltpUyEjPDckJCIwLzI5YXlbJ1IhIzkkITBaOUZSJiopSFMhIzw3JCQiMGpEXl8nPnZSISM5JCEwTkkpKipIKjQoUiEjPDckJCIwQFQjR3ZYJSlSISM5JCEwMCo9PjFHJypRISM8NyQkIjBPclUmeVUmKlIhIzkkITBCKnlaJ1w+eSQhIzw3JCQiMCc9UDl0Zy9TISM5JCEwSEguazVjbSQhIzw3JCQiLywtQ1BNOlMhIzgkITBsJCk9Iz4jb10kISM8NyQkIjBuTXBlIWZEUyEjOSQhMChHNGR1c0xMISM8NyQkIjAoWyhcIilSWi4lISM5JCEvUXAqZWpEOyQhIzs3JCQiMChSenkhSF0vJSEjOSQhMHBGZUVmRiZIISM8NyQkIjBtS2xhJ1FiUyEjOSQhMDshPjY0bkNGISM8NyQkIjA9TnF5JXBsUyEjOSQhMEMtJyopKjRFWyMhIzw3JCQiMGtGYiU9RHZTISM5JCEwN3UiKnAoUVlBISM8NyQkIjA6SWdpWl4zJSEjOSQhME0iUkwhMzoqPiEjPDckJCIwIj5RYz1RJjQlISM5JCEwPS1MJVt2PTwhIzw3JCQiMDlGYUUkZTBUISM5JCEwOVJcOnImUjkhIzw3JCQiMHJVJm9tMjtUISM5JCEvXjZzYyFwOSIhIzs3JCQiMGY9UEU+YDclISM5JCEwKClRVCVSYWkpKSEjPTckJCIwI1J5T1VzTlQhIzkkITBzKFwmZWpkImYhIz03JCQiME1vTyQ+PFlUISM5JCEwaClSdWFea0ghIz03JCQiMGtGYkFTaTolISM5JCEwakA7ckwmeTkhIz43JCQiMFsmNCo+JFFsVCEjOSQiMCc9dSUqeVdxQiEjPTckJCIwKVwqKnldRHdUISM5JCIwNEdUS2doSCYhIz03JCQiMG9PdClcWSY9JSEjOSQiMExrczRYLXEoISM9NyQkIjAsLC1JeWg+JSEjOSQiMDlWSVFLI1I1ISM8NyQkIjAlcFEoUmhjPyUhIzkkIjBzT10tTm1FIiEjPDckJCIwJioqKXomZTE7VSEjOSQiMGgjRzQkXEZdIiEjPDckJCIwaUNcT3RmQSUhIzkkIjBuO1NPVUpyIiEjPDckJCIwQlghNDNKT1UhIzkkIjBDZWFGTWkiPiEjPDckJCIwdVsoNFEhZUMlISM5JCIwJnlEQ2UkbzMjISM8NyQkIjBNbk1IVmdEJSEjOSQiMCk0JDQ2KnBfQSEjPDckJCIwWydIUiN6bUUlISM5JCIwXCR6YzwpUlMjISM8NyQkIjAvMjkneSRmRiUhIzkkIjBaQDNoNXZeIyEjPDckJCIwbk1wVVBmRyUhIzkkIi9gYm0qMzBpIyEjOzckJCIwIkhlY3pFJ0glISM5JCIudkt1LV1xIyEjOjckJCIwNkFXT3VqSSUhIzkkIjBNeWpBWGR3IyEjPDckJCIwTW9PJEc6O1YhIzkkIjA0RChHQHAuRyEjPDckJCIwI0hlYywsRlYhIzkkIjAzPWVUInpARyEjPDckJCIvMTdXZndPViEjOCQiLy0tKSkpM20iRyEjOzckJCIwQ1snSEI9WlYhIzkkIjByQzFZdSopeSMhIzw3JCQiMGU6SjdAbU4lISM5JCIwKHk3b2JpV0YhIzw3JCQiMFcoWzwtJXBPJSEjOSQiMENcJWVkdHZFISM8NyQkIjBgMDZvXG1QJSEjOSQiMEJMVV5dQGYjISM8NyQkIjBAVCNvKSl6J1ElISM5JCIwY3BNRTVpWyMhIzw3JCQiMCUpb1BiQG5SJSEjOSQiMD1BcV1zX08jISM8NyQkIjBsSGZvNHJTJSEjOSQiLzFPYlFaQEEhIzs3JCQiLyRmPXA5clQlISM4JCIwW2ozR1B3MSMhIzw3JCQiMFJ4YURZdFUlISM5JCIwJ3olUj51aCo9ISM8NyQkIjAiSGUnNCRcUFchIzkkIjB4NC1qP05yIiEjPDckJCIwdVsoKilwIm9XJSEjOSQiMGVRSCZRKWZgIiEjPDckJCIwZjxOQS52WCUhIzkkIjBuZCRwayFHSyIhIzw3JCQiMCc+Uj02MW5XISM5JCIwX2BQX1dcNyIhIzw3JCQiLyNSeSM9RHhXISM4JCIwS2IjcE9WIzMqISM9NyQkIjBWJjNQYysoWyUhIzkkIjBEeXlpMCZwcCEjPTckJCIwc1YoKSlmJHlcJSEjOSQiMGhfMUs5ISpmJSEjPTckJCIwVyhbeFVAMlghIzkkIjB1TiUpeWFCYSMhIz03JCQiMFsmND4oZXleJSEjOSQiMDNNPzAiM0dBISM+NyQkIi8uMXMqZnZfJSEjOCQhMFQwQmJfMCc9ISM9NyQkIjAmND49OzxRWCEjOSQhMDpEckVjcTMlISM9NyQkIjAmMzx1d0taWCEjOSQhMDowInkjSCZcZiEjPTckJCIwJGU7YGB2ZFghIzkkITBsXXRESiMpKXohIz03JCQiMFQiR3d6I3ljJSEjOSQhMDpxMT9jKGUpKiEjPTckJCIwKWY+PlMqeWQlISM5JCEwMFZqLFU7OyIhIzw3JCQiMHhhNC5CemUlISM5JCEwLXI4SkNWSyIhIzw3JCQiMHpkOnhkdmYlISM5JCEwNzkqKVIieW45ISM8NyQkIjBgMTg9dHpnJSEjOSQhMFJmbmp4dmciISM8NyQkIjAwNT8jKSoqeWglISM5JCEwRE8pPkIxRDwhIzw3JCQiLyc+UjlaJEdZISM4JCEwSnQzPi83JD0hIzw3JCQiMDpJZ1sveWolISM5JCEwJ1JsQSZvNiI+ISM8NyQkIjBcKFw+bURbWSEjOSQhMG1qYSNSOyIpPiEjPDckJCIwMDU/JXpFZVkhIzkkITA9Ikc+ZHNIPyEjPDckJCIwVSRvJypbRG9ZISM5JCEwOHk+RUQqZj8hIzw3JCQiMHVaJjRqb3lZISM5JCEwWUB1WFc+MiMhIzw3JCQiMC8zOy0lSClvJSEjOSQhMEMoWycqb1hsPyEjPDckJCIwI1snSGpMIilwJSEjOSQhMCoqPkpkKzsvIyEjPDckJCIwTGxJdCgqKjNaISM5JCEwL2FGRSFcJio+ISM8NyQkIjA6SGVHTSk9WiEjOSQhMC4xJyl5P2skPiEjPDckJCIwZjxOKyUqKUdaISM5JCEwbSo0ZyMzKGY9ISM8NyQkIjBWJ0d4VzdSWiEjOSQhMC03c25tY3ciISM8NyQkIjBNbk1GRyZbWiEjOSQhMDBpNXFlZW0iISM8NyQkIjBSeWNUXyZlWiEjOSQhLz43OUxVWTohIzs3JCQiME1uTUQrJm9aISM5JCEwMFEqZk13OjkhIzw3JCQiMHBReE1UInpaISM5JCEwNCgqPmZ5U0UiISM8NyQkIjBKaUNsSiYpeSUhIzkkIS9lUys8SUA2ISM7NyQkIjAoUXg5aE8qeiUhIzkkITAyIz1tPk55JSohIz03JCQiMGEzPFFWIjRbISM5JCEwVXlpKj45W3khIz03JCQiMFQiR3d1Iik9WyEjOSQhMEhQNFQlbyo9JyEjPTckJCIwKil5ZEI/I0hbISM5JCEwQ3JhdzNGUCUhIz03JCQiMCJIZXddbVJbISM5JCEwTFhnXj06YCMhIz03JCQiMCllPE4kbyJcWyEjOSQhMFpzenFPUmQpISM+NyQkIjBNb09QZyNmWyEjOSQiME4jUnZoXEohKiEjPjckJCIwVSUpb0A0InBbISM5JCIweCskPlZmKWUjISM9NyQkIjA8TW9ZJnl6WyEjOSQiMGJtKDR0bWhWISM9NyQkIjB5YzhSQiEqKVshIzkkIjA9RTN0dW4kZSEjPTckJCIwZjxOW0wnKipbISM5JCIwOEcvZTN6VyghIz03JCQiLyhSel8yJzRcISM4JCIwbiMqR3I8dycpKSEjPTckJCIwJilwUkImWz5cISM5JCIwSko9Km8vPDUhIzw3JCQiMCUqKXkoenEkSFwhIzkkIjBOSl4mPi9PNiEjPDckJCIwb05yV2AlUlwhIzkkIjB1Sy1gSVlDIiEjPDckJCIwbUtsKTM5XVwhIzkkIi9oWDVgaFc4ISM7NyQkIjBiND5BUypmXCEjOSQiMCh5MlVOJD1VIiEjPDckJCIwNkBVVTgncFwhIzkkIjBgSih6OiFSWyIhIzw3JCQiMFkiSD1SJip6XCEjOSQiMCh6ZVE7QE06ISM8NyQkIjAwNT8hPkYhKlwhIzkkIjAnSDNDJVt2YyIhIzw3JCQiI10hIiIkIjBMa0syIlIkZSIhIzwtJSZDT0xPUkc2JiUkUkdCRyQiIzUhIiIkIiIhISIiJCIiISEiIi0lJVZJRVdHNiQ7JCIjSSEiIiQiI10hIiIlKERFRkFVTFRHLSUrQVhFU0xBQkVMU0c2JC1JI21pRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjVRIng2Ii8lJ2ZhbWlseUdRITYiLyUlc2l6ZUdRIzEwNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJXRydWU2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWM2IlEhNiItJSVST09URzYnLSUpQk9VTkRTX1hHNiMkIiQhbyEiIi0lKUJPVU5EU19ZRzYjJCIjISkhIiItJS1CT1VORFNfV0lEVEhHNiMkIiVTSyEiIi0lLkJPVU5EU19IRUlHSFRHNiMkIiVTUSEiIi0lKUNISUxEUkVORzYi (b) LUkmZXZhbGZHJSpwcm90ZWN0ZWRHNiMtSSVldmFsR0YkNiRJImZHNiIvSSJ4R0YqIiIj JCErd0MnXCVRISM2 (c) QyQtSSVkaWZmRyUqcHJvdGVjdGVkRzYkSSJmRzYiSSJ4R0YoIiIi LCYqKC1JJHNpbkc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkc2IjYjKiRJInhHRikiIiMiIiJGLEYuLCYqJEYsIiIlRi5GLkYuISIiISIjKigtSSRjb3NHRiZGKkYuRi9GM0YsIiIkISIl (d) LUkmbGltaXRHNiI2JEkiZkdGJC9JInhHRiRJKWluZmluaXR5RyUqcHJvdGVjdGVkRw== IiIh (e) I used the expression tab on the left to enter the definite integral form LUkkaW50RzYiNiRJImZHRiQvSSJ4R0YkOyIiJCIiJg== LUkkaW50RzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliRzYiNiQqJi1JJGNvc0dGJDYjKiRJInhHRiciIiMiIiIsJiokRi4iIiVGMEYwRjAhIiIvRi47IiIkIiIm Couldn't do the integral symbolically, we'll have to use a numerical approximation QyQtSSZldmFsZkclKnByb3RlY3RlZEc2I0kiJUc2IiIiIg== JCErJjRoOUMiISM3 Q #2 The equilibrium points are the roots of the RHS function QyQ+SSJmRzYiLCYtSSRleHBHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHRiU2I0kieEdGJSIiIiokRi0iIiMhIiVGLg== LCYtSSRleHBHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHNiI2I0kieEdGKCIiIiokRioiIiMhIiU= Plot the function over different intervals until I see three roots LUklcGxvdEc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkc2IjYkSSJmR0YnL0kieEdGJzshIiIiIiY= LSUlUExPVEc2Ji0lJ0NVUlZFU0c2JDdkdzckJCEjNSEiIiQhMGNHKWUwN0tPISM5NyQkITBZI1wpcFZYbyohIzokIS8zZ19nJT5QJCEjODckJCEwVidHZG8xNSUqISM6JCEwcCVlTyZSPDokISM5NyQkITBkOEYlKilRLCIqISM6JCEwaWF5IUglNCJIISM5NyQkITB3XzAiXG0heikhIzokITAmKmZuR2hlbiMhIzk3JCQhMFJ4YXA8OVspISM6JCEwckAjUno7XEMhIzk3JCQhMF8uMiVmcSU+KSEjOiQhMGs8W0xqYUMjISM5NyQkITA5R2NfS3kqeSEjOiQhMHN1JW9yM1Q/ISM5NyQkITBRdl1oMDNmKCEjOiQhME51LGU7biQ9ISM5NyQkITBmPVBNalpHKCEjOiQhME5KNUVuK2siISM5NyQkITBFXi1EaCpwcCEjOiQhMFgnZW1eOFg5ISM5NyQkITAoWyhcUiRvI3AnISM6JCEwMHUjSHRmejchIzk3JCQhMDM6ST9NMFEnISM6JCEwVzgjRylHLDUiISM5NyQkITBUI1snSC5yMSchIzokITA3ITQpUSVbcyMqISM6NyQkITBfLjJhYV13JiEjOiQhMD1ZW3VkZG4oISM6NyQkITBNb09MbDJcJiEjOiQhMFFGaDJ0WEcnISM6NyQkITBVJG9PKjNZOyYhIzokITApWydvciEqSHElISM6NyQkITA7S2tvNiQpKVshIzokITBYaylmeCFbVSQhIzo3JCQhMF4tMEk3cGMlISM6JCEwVyMzNmsiKjM/ISM6NyQkITBpQ1xRPkNHJSEjOiQhMCRmQiRmKjMiPikhIzs3JCQhMDxNb2MmR3FSISM6JCIwUFMpKXA3KXlUISM7NyQkITAoUnplLjF0TyEjOiQiMEc+IXB2VUg6ISM6NyQkITApZTxOcSRITyQhIzokIjBMSkBIJVI/RSEjOjckJCEwTnFTLFoieUkhIzokIjAjKT16Wj4wYyQhIzo3JCQhMGM3RF1pNHgjISM6JCIwMUYyNUEmM1ghIzo3JCQhMD5RdzclKT1YIyEjOiQiMCgpUWZcdzNVJiEjOjckJCEwaEBWWURUPCMhIzokIjAiXEBhNURiaCEjOjckJCEwWSNcKVxRVCg9ISM6JCIuI3p4dC8nKW8hIzg3JCQhMEJYITRFQWs6ISM6JCIwJW82RUlFdHYhIzo3JCQhME5wUVBJNUUiISM6JCIwUi0tM2gieiIpISM6NyQkITA4Q1snSHd3JyohIzskIjApeWFKLTYuKCkhIzo3JCQhMEZfLzRtJj5rISM7JCIwVD4xYnJMQCohIzo3JCQhMHVYIkgpSEdcJCEjOyQiMGI8QDVaemcqISM6NyQkITB5VSYzPDl6TyEjPCQiMCxmcXRNRicqKiEjOjckJCIwc1kkcFFzakMhIzskIjBOMCNwX15BNSEjOTckJCIwXy80PV8lZmIhIzskIjB4XFckZiFbLyIhIzk3JCQiMGtKakUiSHMlKSEjOyQiMCRmMF5OcWY1ISM5NyQkIjBfLjJ1Lzw6IiEjOiQiMFc6PXYyIXA1ISM5NyQkIjBtS2xJJlFcOSEjOiQiMDckeSspUj4yIiEjOTckJCIweWM4Rkg1dyIhIzokIjAxPWEkPV5vNSEjOTckJCIwQlkjXCV6NjEjISM6JCIwWm0pMyhmKmU1ISM5NyQkIjAlKil5ZGo3b0IhIzokIjAnWy9wRilHLyIhIzk3JCQiMHhhNGZKRG4jISM6JCIwJXosP1RuPzUhIzk3JCQiMGxIZlFbQSZIISM6JCIvayopemIoeiUqKiEjOTckJCIwKVwqKilSTkdGJCEjOiQiMDpqXyVvTyhlKiEjOjckJCIwOEVfQ3MmZk4hIzokIjBQaEArVnM/KiEjOjckJCIwQVYnR05IbFEhIzokIjBAP01QUUN1KSEjOjckJCIwOklnIXkhejolISM6JCIwbC1RYzMvQykhIzo3JCQiMCopeWROPUdbJSEjOiQiMDN0VWtNemgoISM6NyQkIjBYITQ9cTtrWiEjOiQiME95XCRSLUNxISM6NyQkIjBtSmpFK04zJiEjOiQiMCJwc2d4bSlHJyEjOjckJCIwUXdfJnlgdWAhIzokIjBsQkU3b0BjJiEjOjckJCIwKWY+UnMpR3AmISM6JCIwcHUkeTteMVohIzo3JCQiMCdIZj0qb3YnZiEjOiQiL0wlNCMqUXUiUiEjOTckJCIwQFUlKUcqUiFHJyEjOiQiMExrWEN0PidIISM6NyQkIjBiND4pemQjZSchIzokIjBFOXlhNkApPiEjOjckJCIwdFkkcCNmWClvISM6JCIwdWg0SEBgWiohIzs3JCQiMGI1QGlIYT0oISM6JCEwNCQ0bl1SeDghIzs3JCQiLiwtJT1adXUhIzgkITByc0B1bDVCIiEjOjckJCIwS2pFOE1weSghIzokITBwNlUkKSlIb0MhIzo3JCQiMCUpb1BOTFozKSEjOiQhME0/ckt4LnEkISM6NyQkIjBHYjUsYCIpUikhIzokITA5Xix1KD5fXSEjOjckJCIwJz1QdUsoPW8pISM6JCEwIzQ5dCYpM0NqISM6NyQkIjAnPlJ5c1YmKiopISM6JCEwQ0FZYVhCeSghIzo3JCQiMCUpb1AmcHgmSCohIzokITAlNEEkKXA+SSMqISM6NyQkIjAmKXBSZiZRJmYqISM6JCEwKkdDemBPczUhIzk3JCQiLyYqKil6ekszKiohIzkkITB1bVAoPV9MNyEjOTckJCIwJjM8TWZsPjUhIzkkITBgQSlIQGInUSIhIzk3JCQiMEBUI29aPFw1ISM5JCEwc3gzInB4WjohIzk3JCQiMHJVJm9xdyIzIiEjOSQhMEdIME8jKjR0IiEjOTckJCIwPE1vc3c3NiIhIzkkITA9KTNSKjM6IT4hIzk3JCQiLyYqKil6ZVhUNiEjOCQhMHYjSEJBTyEzIyEjOTckJCIwLjE3SVpAPCIhIzkkIS9aQUEmKXptQSEjODckJCIwdVsoKm9lLj8iISM5JCEwLXV6IWY4VUMhIzk3JCQiMCI+UTs2Vkk3ISM5JCEwWHJpN1FKaiMhIzk3JCQiMHVbKEhZRmc3ISM5JCEvQWhqKHluI0chIzg3JCQiMCJHYzd6PiNIIiEjOSQhMGNrbyo9S1FJISM5NyQkIjBuTG4jKW8uSyIhIzkkITAoUmxbSXBHSyEjOTckJCIwTW9PQHNHTiIhIzkkIS93bCk0S0RYJCEjODckJCIwT3NXLC9BUSIhIzkkITByKnk/KHojZU8hIzk3JCQiMCY0PilIRTdUIiEjOSQhMGJFNUpkXydRISM5NyQkIjBVJG93WFZVOSEjOSQhMGwjKikpMydbIjQlISM5NyQkIjBbJjQqNHBQWiIhIzkkITBZJXplRUtBViEjOTckJCIwUHVbKCl5QV0iISM5JCEwdWlrTWBhYCUhIzk3JCQiMHdeLipcYks6ISM5JCEwI2Z3KCl5IVx3JSEjOTckJCIqXyxAYyIhIikkITB1QWk2Nz0qXCEjOTckJCIwRFwpcC04JWYiISM5JCEwQVApXDEnNEMmISM5NyQkIjA0PE0vVz1pIiEjOSQhMFAiUXRgNGZhISM5NyQkIi8mKiopPlZuYDshIzgkIS8zZCcqeVM3ZCEjODckJCIwJGU7YGtmJG8iISM5JCEvcGclUStKJmYhIzg3JCQiMEdjN2RIS3IiISM5JCEwUWV3dHZQPichIzk3JCQiMGQ4RkUnKUd1IiEjOSQhMGY/RiopKXpPayEjOTckJCIweGAyQE1KeCIhIzkkITBCLCcpKnB0J28nISM5NyQkIjBzVypHbD4wPSEjOSQhMEdTaGRyUCZwISM5NyQkIjBRdl1gJWZNPSEjOSQhMCo+SGtTTitzISM5NyQkIjAwNT85OU8nPSEjOSQhMFtlKDNjQlh1ISM5NyQkIjA2QFVpTlkqPSEjOSQhMG5wYnheJTN4ISM5NyQkIjApb1B2JiplRD4hIzkkITAuKHltJCpRc3ohIzk3JCQiMGlCWmVzTCY+ISM5JCEwJ1x4dmBBNSMpISM5NyQkIjAyOUdjJEcnKT4hIzkkITBsPSlvSSpHXCkhIzk3JCQiMGU6SiU+I1EsIyEjOSQhMHlVUSgqPSt0KSEjOTckJCIvLjFzNi5ZPyEjOCQhL1xDKFtUeSsqISM4NyQkIjAtLzN3cm4yIyEjOSQhMG1NdGFgS0YqISM5NyQkIjBpQ1xXPlU1IyEjOSQhMDIua1plLV4qISM5NyQkIjAiPlFPczNOQCEjOSQhMF9pbXMwbXgqISM5NyQkIjAqemZSJ2ZoOyMhIzkkITA4eGduRlcrIiEjODckJCIwYDA2TyUzKD4jISM5JCEwYydvaCEpKjQuIiEjODckJCIwIkhlT2J2REEhIzkkITAoZlMvdWFiNSEjODckJCIwWCE0eUdXYkEhIzkkITBwUygzdCYzMyIhIzg3JCQiMHRYInBiOSdHIyEjOSQhMCp6bGQoKilvNSIhIzg3JCQiMFQiRyd6XG5KIyEjOSQhMC0lUVxqbUs2ISM4NyQkIjA5R2MrSSNbQiEjOSQhMDBuJyopNCgqZTYhIzg3JCQiMHliNnpkZlAjISM5JCEwTDdkalE+PSIhIzg3JCQiMHdeLnJzclMjISM5JCEwMnZmXlJ2PyIhIzg3JCQiMC4wNSFlXlFDISM5JCEwV0tcQFRIQiIhIzg3JCQiMCJIZXcxc29DISM5JCEvQW9LJio0ZDchIzc3JCQiMFYnRyhmXGhcIyEjOSQhMCpIWWd1dHk3ISM4NyQkIjAjXClwQmwoR0QhIzkkITBLcShSKmZTSSIhIzg3JCQiMDA1PydcUmNEISM5JCEwJz1sa2A4RDghIzg3JCQiMCwuMSFcYCllIyEjOSQhLVdFJnoiXDghIzU3JCQiLzM7Iz4lKXBoIyEjOCQhMEF1a0wxK1AiISM4NyQkIjAmKXBSZCg+W0UhIzkkITBSJXlhXksjUiIhIzg3JCQiMChReCU0P3puIyEjOSQhMGM3RVxCSVQiISM4NyQkIjBvTnJVSyozRiEjOSQhMCozJlwuLVNWIiEjODckJCIwQlkjSDlUUEYhIzkkITAoWyxiUG5fOSEjODckJCIwLC0vKSlIIm9GISM5JCEweVklemE4czkhIzg3JCQiMFgqKXlyUCshRyEjOSQhMDJEWXlkOlwiISM4NyQkIjA2QFVlOHkjRyEjOSQhMEA6JD5udzI6ISM4NyQkIjAtLzNHN3kmRyEjOSQhMEVPYWoqXEM6ISM4NyQkIjB1WyhwUSEpKSlHISM5JCEvYV8xXiozYSIhIzc3JCQiMExtSzRCIj5IISM5JCEwJj56I0gzZ2IiISM4NyQkIjAuMDVdZSVbSCEjOSQhMG1fP2I1KHA6ISM4NyQkIjB1WyhwLy4iKUghIzkkITBqX1hlMFFlIiEjODckJCIwIj1PS3lINUkhIzkkITBmdCkzSFQmZiIhIzg3JCQiMHNXKikpcGFUSSEjOSQhMGVyK1JVbWciISM4NyQkIjB0WSRwTCcpcEkhIzkkITB6KlIkW0dkaCIhIzg3JCQiMEppQ2w/MzUkISM5JCEwMkQ4JHpUQzshIzg3JCQiMGU7TC9cKkhKISM5JCEwLS5sK144aiIhIzg3JCQiMGlCWmcnUmdKISM5JCEvRFEhM1tzaiIhIzc3JCQiMGAxOG1rLD4kISM5JCEwb1RHXjw7ayIhIzg3JCQiMCYqKXlkIUg4QSQhIzkkITApXC1bUGtXOyEjODckJCIwKnlkdlNNXkshIzkkITAwKj0hZSMqZmsiISM4NyQkIjA7S2t3UT9HJCEjOSQhMGhzJTQvclg7ISM4NyQkIjB1WygqR3pDSiQhIzkkITBbPjYzKHBWOyEjODckJCIwQlkjcDRYU0whIzkkITBbNXleZi1rIiEjODckJCIwd18wbjREUCQhIzkkITAqKmV6JypvVmoiISM4NyQkIjApZTxiTD0sTSEjOSQhL1JQbDhFRjshIzc3JCQiMGY8TltiPFYkISM5JCEwcC4uISopbzw7ISM4NyQkIjBHYzcicCxoTSEjOSQhMDI1RlU/bGciISM4NyQkIjA7Smknel0kXCQhIzkkITBia3IqSHMiZiIhIzg3JCQiMEppQyRHa0BOISM5JCEwV3RBbip5dzohIzg3JCQiMFYnR2RoZGBOISM5JCEwOEllZGR0YiIhIzg3JCQiLzQ9Oyp6RWUkISM4JCEwUFVoT2RzYCIhIzg3JCQiMCdHZGFbXjlPISM5JCEwakZXU2FEXiIhIzg3JCQiMGM3RC0kKT5rJCEjOSQhMDtpL0ZyKSlbIiEjODckJCIwXChcZmdFdE8hIzkkITBqP3UnPjdmOSEjODckJCIwQVcpR1JbLlAhIzkkIS93Iyo+MlpGOSEjNzckJCIwJXplZD9vTFAhIzkkITAlcHghNG5HUiIhIzg3JCQiMEtrRzRwUHckISM5JCEwbEwwSkFgTiIhIzg3JCQiMFB0WUp0RXokISM5JCEwI1xXazhFOzghIzg3JCQiLyc+UmE+UiNRISM4JCEwek1LZjgxRiIhIzg3JCQiMDpJZ1kqcGBRISM5JCEwd21gUXdPQSIhIzg3JCQiMHplPFZUXSlRISM5JCEwcGtaKUdfcTYhIzg3JCQiMFghNGVNVDhSISM5JCEwT08nZVsnKj02ISM4NyQkIjBZI1xlKXBaJVIhIzkkITBock4uUiFlNSEjODckJCIwOklnI1EhWyhSISM5JCEwazUjeSxmYyoqISM5NyQkIjBEXStwa1orJSEjOSQhMF9PKWVvayRIKiEjOTckJCIwQVYnRyplZy4lISM5JCEwWmlIJClmaWIpISM5NyQkIjA3Q1sxIylbMSUhIzkkITBsPSNldC1OeSEjOTckJCIwWiUqKSkqM1MlNCUhIzkkITB2N3plJTRgcSEjOTckJCIwKWY+Kj4kKnA3JSEjOSQhMHR3JnBWL1BoISM5NyQkIjBXKFtkR11jVCEjOSQhMDR4Oks8I2VfISM5NyQkIjB3XzAsI28nPSUhIzkkITBiJ2ZxUjg0ViEjOTckJCIvJGY9VnR0QCUhIzgkITA7M2xaSSoqRyQhIzk3JCQiMCwtLyNbZVhVISM5JCEwS1FBPyZSLkIhIzk3JCQiMD1OcUNkY0YlISM5JCEwJlEjKUg8ZSg+IiEjOTckJCIwLC0vdytiSSUhIzkkITAqUipbKj46LlYhIzs3JCQiMDM7Sy9DdUwlISM5JCIwWiRRKikqM3NEIiEjOTckJCIwJHBRZFxmbFYhIzkkIjA5JjR5JkhEWSMhIzk3JCQiMGhAVk0pNClSJSEjOSQiMDs0WTpbSSNSISM5NyQkIjBqRF45SXVVJSEjOSQiL3VHKzpYMmAhIzg3JCQiMEFXKUdDWGNXISM5JCIwJjNZIzRmOHUnISM5NyQkIjBvT3RxZ3dbJSEjOSQiME5bbSpRIm9OKSEjOTckJCIwdVsoSF8qKj1YISM5JCIvTm40KjRlKyIhIzc3JCQiMGtGYiswdmElISM5JCIwbF53IilReDsiISM4NyQkIjAuMDU3Inl4WCEjOSQiMFBpdDklUlo4ISM4NyQkIjBGYDFsRnRnJSEjOSQiMDZ4V3E1MWAiISM4NyQkIjBeLTBTYyRSWSEjOSQiMC47IXA7S1E8ISM4NyQkIjBOcVM8cXFtJSEjOSQiMGFsdSE9JWYjPiEjODckJCIwd18wWCsqKXAlISM5JCIwXyI9dyVvMjojISM4NyQkIi8iPlFlQSlHWiEjOCQiMFopUXEjPjpQIyEjODckJCIwYjQ+cWIlZVohIzkkIjBoIypmPTwlKmYjISM4NyQkIjAkb08kUjciKXklISM5JCIwTkxAK1VxJEchIzg3JCQiMC4yOU1nJD1bISM5JCIwYHQjUTZjKjMkISM4NyQkIjAqemZmRVVdWyEjOSQiME5MXz8qem9MISM4NyQkIjBrR2RtPyl6WyEjOSQiMDFcJT5oa05PISM4NyQkIjBLakVGUykzXCEjOSQiMCQ0O2NcYDRSISM4NyQkIjBQdVt2aClSXCEjOSQiMFd4NTwqPjlVISM4NyQkIjA6SWdxOjMoXCEjOSQiMCZmc3ckUTNgJSEjODckJCIjXSEiIiQiMG1kLSJmSlRbISM4LSUmQ09MT1JHNiYlJFJHQkckIiM1ISIiJCIiISEiIiQiIiEhIiItJSVWSUVXRzYkOyQhIzUhIiIkIiNdISIiJShERUZBVUxURy0lK0FYRVNMQUJFTFNHNiQtSSNtaUc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1USJ4NiIvJSdmYW1pbHlHUSE2Ii8lJXNpemVHUSMxMDYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSV0cnVlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1EnaXRhbGljNiJRITYiLSUlUk9PVEc2Jy0lKUJPVU5EU19YRzYjJCIkUyIhIiItJSlCT1VORFNfWUc2IyQiI10hIiItJS1CT1VORFNfV0lEVEhHNiMkIiUheSQhIiItJS5CT1VORFNfSEVJR0hURzYjJCIlISlRISIiLSUpQ0hJTERSRU5HNiI= Find the three zeros seen above more accuractely PkkjeDFHNiItSSdmc29sdmVHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHRiQ2JEkiZkdGJC9JInhHRiQ7ISIiIiIh JCErJTRueDIlISM1 PkkjeDJHNiItSSdmc29sdmVHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHRiQ2JEkiZkdGJC9JInhHRiQ7IiIhIiIi JCIrQyJmIVtyISM1 PkkjeDNHNiItSSdmc29sdmVHNiQlKnByb3RlY3RlZEdJKF9zeXNsaWJHRiQ2JEkiZkdGJC9JInhHRiQ7IiIlIiIm JCIrR1plMVYhIio= Considering the sign of the derivative of f at the equilibrium points seen from the graph, x2 is stable and x1 and x3 are unstable. Q#3 QyQ+SSdpbXByZWxHNiIvLCoqJkkieEdGJSIiIkkieUdGJSIiJEYqKiZGKSIiI0YrRi5GKiomRilGLEYrRipGKiEiJEYqIiIhRio= LywqKiZJInhHNiIiIiJJInlHRiYiIiRGJyomRiUiIiNGKEYrRicqJkYlRilGKEYnRichIiRGJyIiIQ== QyQtSSV3aXRoRzYiNiNJJnBsb3RzRzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliR0YlISIi LUktaW1wbGljaXRwbG90RzYiNiVJJ2ltcHJlbEdGJC9JInhHRiQ7ISIjIiIkL0kieUdGJEYp LSUlUExPVEc2JS0lJ0NVUlZFU0c2JTc1NyQkISM/ISIiJCExJCl5O0AkKXk7SiEjOzckJCEyKT1kPGwjNG4hPSEjOyQhIiUhIiI3JCQhIz0hIiIkITF4Zi8zUj1LUyEjOzckJCEyJEhqXVMjUjZ6IiEjOyQhMiUzbiRcZjInKTMlISM8NyQkISM7ISIiJCExRUhvI0hvI3pdISM7NyQkITItUko1KlJkazkhIzskISInISIiNyQkISM5ISIiJCExZEc5ZEc5ZGshIzs3JCQhMUJwMkJwMjg3ISM6JCEiKSEiIjckJCEjNyEiIiQhMWFwWCJ5I2U3IikhIzs3JCQhIzUhIiIkISM1ISIiNyQkITFgcFgieSNlNyIpISM7JCEjNyEiIjckJCEiKSEiIiQhMkYjcDJCcDI4NyEjOzckJCExZEc5ZEc5ZGshIzskISM5ISIiNyQkISInISIiJCEyLVJKNSpSZGs5ISM7NyQkITFFSG8jSG8jel0hIzskISM7ISIiNyQkITJ0cU9cZjInKTMlISM8JCEyJEhqXVMjUjZ6IiEjOzckJCEybChmLzNSPUtTISM8JCEjPSEiIjckJCEiJSEiIiQhMik9ZDxsIzRuIT0hIzs3JCQhMSQpeTtAJCl5O0ohIzskISM/ISIiN0k3JCQiMipbLU0pUld0LiIhIzwkIiNJISIiNyQkIjF1Vi1LXllwNyEjOyQiMWp2eidbYEkoRyEjOjckJCIxdVYtS15ZcDchIzskIiNHISIiNyQkIjJ0NioqKWZESHc6ISM8JCIyKSkzNVN1cUJrIyEjOzckJCIydDYqKilmREh3OiEjPCQiI0UhIiI3JCQiMjtocylmZVchKj4hIzwkIjFSRiw5YSY0UyMhIzo3JCQiMjtocylmZVchKj4hIzwkIiNDISIiNyQkIiIjISIiJCIxJj5lYllDZFIjISM6NyQkIjEvI3lsJlFGbEMhIzskIiNBISIiNyQkIjEpKillYDpFLSJHISM7JCIyLzZrV1F4Kj1AISM7NyQkIjEkKXk7QCQpeTtKISM7JCIjPyEiIjckJCIiJSEiIiQiMik9ZDxsIzRuIT0hIzs3JCQiMmwoZi8zUj1LUyEjPCQiIz0hIiI3JCQiMnRxT1xmMicpMyUhIzwkIjIkSGpdUyNSNnoiISM7NyQkIjFFSG8jSG8jel0hIzskIiM7ISIiNyQkIiInISIiJCIyLVJKNSpSZGs5ISM7NyQkIjFlRzlkRzlkayEjOyQiIzkhIiI3JCQiIikhIiIkIjFCcDJCcDI4NyEjOjckJCIxYHBYInkjZTciKSEjOyQiIzchIiI3JCQiIzUhIiIkIiM1ISIiNyQkIiM3ISIiJCIxYXBYInkjZTciKSEjOzckJCIySyNwMkJwMjg3ISM7JCIiKSEiIjckJCIjOSEiIiQiMWVHOWRHOWRrISM7NyQkIjItUko1KlJkazkhIzskIiInISIiNyQkIiM7ISIiJCIxRUhvI0hvI3pdISM7NyQkIjIkSGpdUyNSNnoiISM7JCIyJTNuJFxmMicpMyUhIzw3JCQiIz0hIiIkIjJ3KGYvM1I9S1MhIzw3JCQiMik9ZDxsIzRuIT0hIzskIiIlISIiNyQkIiM/ISIiJCIxJCl5O0AkKXk7SiEjOzckJCIwNmtXUXgqPUAhIzkkIjEpKillYDpFLSJHISM7NyQkIiNBISIiJCIyUD95bCZRRmxDISM8NyQkIjEmPmViWUNkUiMhIzokIiIjISIiNyQkIiNDISIiJCIyO2hzKWZlVyEqPiEjPDckJCIxUkYsOWEmNFMjISM6JCIyO2hzKWZlVyEqPiEjPDckJCIjRSEiIiQiMnQ2KiopZkRIdzohIzw3JCQiMiQpMzVTdXFCayMhIzskIjJ0NioqKWZESHc6ISM8NyQkIiNHISIiJCIxdVYtS15ZcDchIzs3JCQiMWp2eidbYEkoRyEjOiQiMXVWLUteWXA3ISM7NyQkIiNJISIiJCIyKlstTSlSV3QuIiEjPC0lJkNPTE9SRzYmJSRSR0JHJCIjNSEiIiQiIiEhIiIkIiIhISIiLSUrQVhFU0xBQkVMU0c2JC1JI21pRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjVRIng2Ii8lJ2ZhbWlseUdRITYiLyUlc2l6ZUdRIzEwNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJXRydWU2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWM2Ii1JI21pRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjVRInk2Ii8lJ2ZhbWlseUdRITYiLyUlc2l6ZUdRIzEwNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJXRydWU2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWM2Ii0lJVJPT1RHNictJSlCT1VORFNfWEc2IyQiJFMiISIiLSUpQk9VTkRTX1lHNiMkIiQ/IiEiIi0lLUJPVU5EU19XSURUSEc2IyQiJSF5JCEiIi0lLkJPVU5EU19IRUlHSFRHNiMkIiVdUCEiIi0lKUNISUxEUkVORzYi Q#4 Specify the DE and the initial condition, then use dsolve to find the solution QyQ+SSNkZUc2Ii8tSSVkaWZmRyUqcHJvdGVjdGVkRzYkLUkidUdGJTYjSSJ0R0YlRi4sJiokRisiIiMiIiIhIiJGMkYy Ly1JJWRpZmZHJSpwcm90ZWN0ZWRHNiQtSSJ1RzYiNiNJInRHRilGKywmKiRGJyIiIyIiIiEiIkYv QyQ+SSNpY0c2Ii8tSSJ1R0YlNiMiIiEjIiIiIiIjRiw= Ly1JInVHNiI2IyIiISMiIiIiIiM= LUknZHNvbHZlRzYiNiQ8JEkjZGVHRiRJI2ljR0YkLUkidUdGJDYjSSJ0R0Yk Ly1JInVHNiI2I0kidEdGJSwkLUkldGFuaEc2JCUqcHJvdGVjdGVkR0koX3N5c2xpYkdGJTYjLCZGJyIiIi1JKGFyY3RhbmhHRis2IyNGMCIiIyEiIkY2 Isolate the expression on the LHS above as the solution. QyQ+SSVzb2xuRzYiLUkkcmhzRyUqcHJvdGVjdGVkRzYjSSIlR0YlIiIi LCQtSSV0YW5oRzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliRzYiNiMsJkkidEdGKCIiIi1JKGFyY3RhbmhHRiU2IyNGLCIiIyEiIkYy The range of the plot was not specified, I tested a few things until I saw that it was tending to an equilibrium point. QyQtSSVwbG90RzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliRzYiNiRJJXNvbG5HRigvSSJ0R0YoOyIiISIiJSIiIg== LSUlUExPVEc2Ji0lJ0NVUlZFU0c2JDdkdzckJCIiISEiIiQiIiYhIiI3JCQiMERdKyxVSTUjISM7JCIvQz9EJT4xJVshIzk3JCQiMFghND13KUckUiEjOyQiMEw1PihbRipwJSEjOjckJCIwYjQ+UVMyKmYhIzskIjBIKXotNFJQWCEjOjckJCIwQ1snSFJCaSEpISM7JCIwJSoqUjJDTnJWISM6NyQkIjAzOkk/KVE3NSEjOiQiMEV0d1shNC5VISM6NyQkIjBLa0dQSE4/IiEjOiQiME9YWzxoVy8lISM6NyQkIjBkOUgpXFcsOSEjOiQiMCI9dThoZ3hRISM6NyQkIjB2XCoqZUhoZyIhIzokIjAneit3M0wtUCEjOjckJCIwRmEzeGQsIj0hIzokIjBZUyQqNGFcXyQhIzo3JCQiMCRlO0xlLT8/ISM6JCIwJ29dI1E/KVJMISM6NyQkIjBVJG9PeChbPyMhIzokIjBsbzJKJ2V1SiEjOjckJCIwJioqKXo+eEhUIyEjOiQiMCh6RVE/QycpSCEjOjckJCIwUnljOEo+aSMhIzokIi94bndbdiV6IyEjOTckJCIwS2tHKHBIQkchIzokIjBuNyR5PDQzRSEjOjckJCIwNkBVV2NoKyQhIzokIjBaQ209dG9WIyEjOjckJCIwMTZBLyVmQkshIzokIjAvUSl6M0hKQSEjOjckJCIwQlghNEF6Mk0hIzokIi9VMk80Y2I/ISM5NyQkIjBtSmpZZT9pJCEjOiQiMGF4Oyk+Wlw9ISM6NyQkIjBEXStUPzwiUSEjOiQiMGwmW1Bbbmw7ISM6NyQkIjBiNUBpNCk+UyEjOiQiMERSKj5ab2k5ISM6NyQkIjAtLzN3ZnpAJSEjOiQiMDpEQ3hOI283ISM6NyQkIjAzO0trM1pVJSEjOiQiMGAlM0RtSWs1ISM6NyQkIjBWJ0dkJ29YaCUhIzokIjBoX0Q+KVJpKCkhIzs3JCQiMEhlO0xlJD5bISM6JCIwaCQzLHEmb3MnISM7NyQkIjBAVCNbczJLXSEjOiQiMDMlej8kemxnJSEjOzckJCIwRV8vcFxzQCYhIzokIi9mV2IkPXV2IyEjOjckJCIwLjA1K1RzVCYhIzokIjBlT2klKikqPWUoISM8NyQkIjAmKXBSZl5RaSYhIzokITB4dVgkcCN5SSIhIzs3JCQiMHhgMnZ6ZiNlISM6JCEwKmUkcGxgekskISM7NyQkIjBSeWM4XDotJyEjOiQhMGVucD9pKnpfISM7NyQkIjAmKXBSZiZwUWkhIzokITA5NSo+UWJVdSEjOzckJCIwaUJaTTZRVichIzokIS8neS9ZVyl6JCohIzo3JCQiMFF3XzBSQGsnISM6JCEwa0ZoeVlTOSIhIzo3JCQiMDZCWSNcIjQkbyEjOiQhLzFAXSRHKkg4ISM5NyQkIi8uMTdvSFBxISM5JCEwMSkpKSpSdz9gIiEjOjckJCIwNkFXMydbSnMhIzokITBsdVFOQDZzIiEjOjckJCIwb05yIylwV1YoISM6JCEwIilcQWZ6dCI+ISM6NyQkIjBXKW9QTiNIaighIzokIS8kbyhSenkyQCEjOTckJCIwXy80PSdvU3khIzokITAmSGFMaVUwQiEjOjckJCIwXChcKkgneVMhKSEjOiQhMCY9JDQpZipSXCMhIzo3JCQiLyRmPWQ8YUMpISM5JCEwLXY3QykqW28jISM6NyQkIjAmKXBSUmEkWyUpISM6JCEwbDg0KCpmQChHISM6NyQkIjBWJ0dkQSRbaikhIzokITA5YCtnQkIvJCEjOjckJCIwS2pFJHBiWykpISM6JCEvKikpelYlKVxCJCEjOTckJCIwdl0sJFtyUiEqISM6JCEwY3VAJVwxME0hIzo3JCQiMFsmND4hSE5DKiEjOiQhMCdSTTE6KVJlJCEjOjckJCIvLC0vX2dRJSohIzkkITBENHJnKXpfUCEjOjckJCIwJGY9UEFAYicqISM6JCEwIylmZGRxdCRSISM6NyQkIi8uMTcheUYlKSohIzkkITBsM0UweVk0JSEjOjckJCIwNkFXb21iKyIhIzkkITB3VjtgOi5GJSEjOjckJCIwd14uPnBcLSIhIzkkITBfJ2VfZGpGVyEjOjckJCIwMjhFWyM+WTUhIzkkITApPiVcL1xtZiUhIzo3JCQiMCdHZCVmL1gxIiEjOSQhMFl3MXNjKVJaISM6NyQkIjAiR2NfKmZgMyIhIzkkITAmem0hUl0qKipbISM6NyQkIjAoUnopPjBiNSIhIzkkITBUIipSWD06MCYhIzo3JCQiMDdCWUdQYzciISM5JCEvQSxaciQqKj4mISM5NyQkIi8yOTNgcFg2ISM4JCEvQElfPnZXYCEjOTckJCIwdFkkKnlrXDsiISM5JCEwJCpvTCY0KTRbJiEjOjckJCIwQVcpM2N6Jj0iISM5JCEwLiEpKSlIWF1pJiEjOjckJCIwRV4tKilbYz8iISM5JCEwdE5zeFYjZmQhIzo3JCQiME5xU2BWbEEiISM5JCEwL3I2dS9zKmUhIzo3JCQiMFkiSD0jZWFDIiEjOSQhME1NJ1xtPj5nISM6NyQkIjA4RV9baWpFIiEjOSQhMEZmMEBFMzonISM6NyQkIjBFXi04JlEnRyIhIzkkITAya2E0clBGJyEjOjckJCIwKnpmUiFmakkiISM5JCEvTFBkeFAkUichIzk3JCQiMGpFYCc9QUY4ISM5JCEwTTU2YygzOmwhIzo3JCQiMENaJSpHUGtNIiEjOSQhMGY/TGwpSENtISM6NyQkIi8zOzdsNm04ISM4JCEwRzVYeitMdCchIzo3JCQiMCI9TzdaJXlRIiEjOSQhMCxgWDpVLiZvISM6NyQkIjBYKil5InleMjkhIzkkIS95UVM4TmBwISM5NyQkIjBMbUtEUHdVIiEjOSQhLyZIMm5BZTAoISM5NyQkIjAtLzM/KTRbOSEjOSQhL1RkQz40ZHIhIzk3JCQiMCRlOyR6MHBZIiEjOSQhMFViIlEqKWZacyEjOjckJCIwJXpleFMmcFsiISM5JCEwLysqKkgoUlR0ISM6NyQkIjAkZTtgKFxvXSIhIzkkITA+K3AlPXpKdSEjOjckJCIwYTM8JT44RzohIzkkITAnMzxFOmREdiEjOjckJCIweWI2YjdwYSIhIzkkITBrUUl1cWVnKCEjOjckJCIwKil5ZFoiZW86ISM5JCEwVSMpcDQ3ZHAoISM6NyQkIjBDWyc0ZzgpZSIhIzkkIS8iMzlyYlV4KCEjOTckJCIwKFJ6KT4lWzI7ISM5JCEwVWZ6VWInXHkhIzo3JCQiMCUqKXk8KCpHRzshIzkkITAielhqJz0jR3ohIzo3JCQiMClwUipSeiJcOyEjOSQhMGxJPiFcYC8hKSEjOjckJCIwIkhlO2Y9bzshIzkkITApXGlCIip5ciEpISM6NyQkIjAleWMkKipwJClvIiEjOSQhMHZzZUInKTQ5KSEjOjckJCIqb24hMzwhIikkITAoUkhLJ2VqPykhIzo3JCQiLyYqKil6LFVIPCEjOCQhMHhudWx2W0YpISM6NyQkIjBzVypHZyp5dSIhIzkkITB2RXAoKVJBTCkhIzo3JCQiMExtS0A7InA8ISM5JCEwKTMpb1MiKWZSKSEjOjckJCIwYjVASWshKnkiISM5JCEwPjAwMm1RWCkhIzo3JCQiMCYzPDkoPikzPSEjOSQhMGRbRV0qSDQmKSEjOjckJCIwMDQ9JTNmRz0hIzkkIS9vYiE9VUhjKSEjOTckJCIwXi0wOWMoWz0hIzkkITBhWyVIXSJlaCkhIzo3JCQiMFsnSD41OHE9ISM5JCEwaTh5OyopKXAnKSEjOjckJCIwRF0rcEgoKik9ISM5JCEwSkstU1J4cikhIzo3JCQiMFB0WTR3ITQ+ISM5JCEwLUA1KyhSaigpISM6NyQkIjAyOUczZChIPiEjOSQhMGMtRy9BMCIpKSEjOjckJCIwRV4tMCRSXT4hIzkkITB5XmpmamUmKSkhIzo3JCQiMFQjW2NdIipvPiEjOSQhMHopUSg0dF4qKSkhIzo3JCQiMHJVJjNkJjMqPiEjOSQhMDxNaUgjNFMqKSEjOjckJCIwc1YoR1lAND8hIzkkITBzWmNBW2ooKikhIzo3JCQiLy0vW3VvST8hIzgkITAkeTwxWUU8ISohIzo3JCQiME5wUTwiPV4/ISM5JCEwc0ZYNGxbMCohIzo3JCQiMHZcKkgneiVwPyEjOSQhMEdbdicpeXMzKiEjOjckJCIwJXplZCJlKzQjISM5JCEwYykqPVttQzcqISM6NyQkIjBMbEk0dDI2IyEjOSQhMHlNLiJ6ZGMiKiEjOjckJCIwTnFTZCpRSkAhIzkkITA0T0VUbSMqPSohIzo3JCQiMEdiNXAuMDojISM5JCEwTD95PSdbPSMqISM6NyQkIi8uMV9fSHFAISM4JCEwJ3pQeGRuWiMqISM6NyQkIjAjUXc3UHchPiMhIzkkITBaUkZfZ25GKiEjOjckJCIwRmEzYG02QCMhIzkkITBrL05PdFlJKiEjOjckJCIwViYzUEw6S0EhIzkkITByKm8+MElLJCohIzo3JCQiMD5QdV9RMUQjISM5JCEwWE9AQ2FkTiohIzo3JCQiMCV5Y3QlWzlGIyEjOSQhMDQxPHkvN1EqISM6NyQkIjBvT3QnUU0jSCMhIzkkITBVbFdLemRTKiEjOjckJCIwR2I1WCFbN0IhIzkkITBZPG0iW2NHJSohIzo3JCQiMCY0PilSbTJMIyEjOSQhMClcVzIqPiZbJSohIzo3JCQiMCYqKil6OjVETiMhIzkkITApW2QxIm84WiohIzo3JCQiMFB0WSgqSDRQIyEjOSQhMFdkQHorK1wqISM6NyQkIjAsLS9nY0JSIyEjOSQhMFwwXC9yM14qISM6NyQkIjAoUXglekE4VCMhIzkkITBUdXFJWydHJiohIzo3JCQiLyp6ZnJKQFYjISM4JCEwKTRbanZVWiYqISM6NyQkIjBEXClIbiU+WCMhIzkkITB6J2UmW0hZYyohIzo3JCQiMFghND07aXNDISM5JCEwJHotbmgqPWUqISM6NyQkIjBcKFw+d2ciXCMhIzkkITBkKG93NDsoZiohIzo3JCQiMG5NcGUnMzdEISM5JCEwJCkzRUk5SWgqISM6NyQkIjAoSGZ5JWVMYCMhIzkkITA3cEVxTClHJyohIzo3JCQiMDI5R3N2PWIjISM5JCEwZDIjUm4zVScqISM6NyQkIjBOcFEmWyg9ZCMhIzkkITBwaT5teWVsKiEjOjckJCIwJGU7OGZgI2YjISM5JCEwNl1WYnkmcCcqISM6NyQkIjBBVylHKFtGaCMhIzkkITBFZkYiPVkjbyohIzo3JCQiMG9PdG0wQmojISM5JCEwZUdqNmNXcCohIzo3JCQiMCRlOzguLWFFISM5JCEwRzUoeTpEMigqISM6NyQkIjBAVCMpKT1gdEUhIzkkITBUYHRxKEg9KCohIzo3JCQiMFsnSGZZTyVwIyEjOSQhMGJOOlVRJ0goKiEjOjckJCIwO0ppQ1VLciMhIzkkITBvZ2lARCZSKCohIzo3JCQiMChbKFxWISlRdCMhIzkkITAsWW01RSpcKCohIzo3JCQiMDE2QU8qSGBGISM5JCEwLXRlaVAkZigqISM6NyQkIjBUI1tPeGZ0RiEjOSQhMFU0XlIsKW8oKiEjOjckJCIwcFB2NVZNeiMhIzkkITBtQmM2KXB4KCohIzo3JCQiLyRmPVA+VSJHISM4JCEwWSNIPSZcbXkqISM6NyQkIjBmPVBRSFUkRyEjOSQhMDYlZihSTFx6KiEjOjckJCIweGE0XiNwYUchIzkkITAzTSQ9YzIuKSohIzo3JCQiMCRlOyQ+JylcKEchIzkkITAjPi5cVCQzIikqISM6NyQkIjBcKFx6UmokKkchIzkkITAiSFdMaHA8KSohIzo3JCQiMD1OcVcxXSJIISM5JCEwSycpPiZ5REQpKiEjOjckJCIwI1J5T0E3TUghIzkkITAvRSIpR2Q8JCkqISM6NyQkIjBSeWNsLlgmSCEjOSQhMG51MTpCJVEpKiEjOjckJCIwJjM8dTcsdUghIzkkITAjNHFtd2JXKSohIzo3JCQiMFcoW3g+biYqSCEjOSQhMHJUUCEpKTReKSohIzo3JCQiMChbKFxiR1csJCEjOSQhMFZKPHdUbCYpKiEjOjckJCIwJjQ+UXVyTkkhIzkkITBiIjNtMFtpKSohIzo3JCQiLzE3Vyo+XjAkISM4JCEwVGVkOyFvbikqISM6NyQkIjAiPlFPS013SSEjOSQhMHA5JnpVOXQpKiEjOjckJCIwclQkW2BsJTQkISM5JCEwRmo9S3l3KCkqISM6NyQkIjBtSmpxNWI2JCEjOSQhMHk2QT1ZRSkpKiEjOjckJCIwIkdjX2ZsTkohIzkkITBiTWJKYXMpKSohIzo3JCQiMCc+UlEhKXliSiEjOSQhMDpBOWx6OyopKiEjOjckJCIwYjQ+MVllPCQhIzkkITBFT0snbyJmKikqISM6NyQkIjBlOkphOl4+JCEjOSQhMCQzQCtAJCkqKikqISM6NyQkIjAyOEVPWWZAJCEjOSQhMHZHTSkpKipRISoqISM6NyQkIi8sLVcnKnpOSyEjOCQhMGwmNFlPaTIqKiEjOjckJCIvI1J5RyVwY0shIzgkITAoZk0pbyhRNioqISM6NyQkIi8uMXMqM2NGJCEjOCQhMGU1dT1qWSIqKiEjOjckJCIwKFwqKlFLXidIJCEjOSQhMFZII1JKOT0qKiEjOjckJCIvLC0lKWVgO0whIzgkITBQRXZyVjgjKiohIzo3JCQiMCRvTyR6NGxMJCEjOSQhMEoyJypHN1cjKiohIzo3JCQiMFsmND5FUGRMISM5JCEweTdBOSFcRioqISM6NyQkIjAzO0svKWV3TCEjOSQhMHhOQE45LSQqKiEjOjckJCIwbEhmRW5pUiQhIzkkIS8jNDJpKSpHJCoqISM5NyQkIjBsSWhZJip6VCQhIzkkITA+WmYpSHVOKiohIzo3JCQiMEhlO2Rvd1YkISM5JCEwdiE9L1hAUSoqISM6NyQkIjA9TnErKXlkTSEjOSQhMDMhXCU0VzElKiohIzo3JCQiMCdHZGEqWyN5TSEjOSQhMEQjPVVzLFYqKiEjOjckJCIwbk1wYWNxXCQhIzkkITAtZFgyOl4lKiohIzo3JCQiMHljOCRbNTxOISM5JCEwLVd3YW1zJSoqISM6NyQkIjBuTXBdK3FgJCEjOSQhMDAmXHElPSRcKiohIzo3JCQiMFJ4YXAjR2VOISM5JCEwRDxHSUQ5JioqISM6NyQkIjBpQ1xJanFkJCEjOSQhMG9SeXo2SyYqKiEjOjckJCIwdVomSEF0KWYkISM5JCEwbm89dSI+YioqISM6NyQkIjA0PE13J0c9TyEjOSQhMG5PSGkxcCYqKiEjOjckJCIwIkdjX1xqUE8hIzkkITAncGdQKlEmZSoqISM6NyQkIjB6ZDpaUyVlTyEjOSQhMEMnMzhhQWcqKiEjOjckJCIwJGU7YCxMek8hIzkkITB0Vy4kKVw9JyoqISM6NyQkIjB3Xi5uTyQpcCQhIzkkITBoJVIuLUZqKiohIzo3JCQiMG9PdHU/Jj1QISM5JCEwUHZiIzNzayoqISM6NyQkIjAlKW9QVj0jUVAhIzkkITBWJCoqSDgzbSoqISM6NyQkIjBNb08kNGRmUCEjOSQhLyY0KkdxXG4qKiEjOTckJCIwZDhGeVkheVAhIzkkIS8jR0VJdSdvKiohIzk3JCQiMD1OcSdwRSp6JCEjOSQhMFI5ZSt1KnAqKiEjOjckJCIvJXplMDojPlEhIzgkITBVOENsWTYoKiohIzo3JCQiLyhSellxKlFRISM4JCEwRSMqUSpHRXMqKiEjOjckJCIwKnlkJmZUKGVRISM5JCEuXmklb0x0KiohIzg3JCQiME9yVSpvISp5USEjOSQhMG4lZlQlKlF1KiohIzo3JCQiMExsSXgiRytSISM5JCEwPV0lKiopZmEoKiohIzo3JCQiLyI+UVchKSk+UiEjOCQhMHUoKVwzLWsoKiohIzo3JCQiMEBVJVtvQVJSISM5JCEwPWAqKXAnSHgqKiEjOjckJCIwIkhlT3khKmZSISM5JCEwWVNbZjojeSoqISM6NyQkIi8sLS9RYSEpUiEjOCQhMCRwI3pYJjR6KiohIzo3JCQiI1MhIiIkITAyI0h5QyopeioqISM6LSUmQ09MT1JHNiYlJFJHQkckIiM1ISIiJCIiISEiIiQiIiEhIiItJSVWSUVXRzYkOyQiIiEhIiIkIiNTISIiJShERUZBVUxURy0lK0FYRVNMQUJFTFNHNiQtSSNtaUc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1USJ0NiIvJSdmYW1pbHlHUSE2Ii8lJXNpemVHUSMxMDYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSV0cnVlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1EnaXRhbGljNiJRITYiLSUlUk9PVEc2Jy0lKUJPVU5EU19YRzYjJCIkUyYhIiItJSlCT1VORFNfWUc2IyQiI10hIiItJS1CT1VORFNfV0lEVEhHNiMkIiUhUSQhIiItJS5CT1VORFNfSEVJR0hURzYjJCIlISlRISIiLSUpQ0hJTERSRU5HNiI= JSFH