PROBLEM 1 CONSIDER THE DELAY EQUATION

\[x'(t) = -ax(t - \pi/2) - x^3(t), \quad a > 0. \]

(i) PROVE THAT \(x = 0 \) IS STABLE WHEN \(0 < q < 1 \) AND THAT THE
LINEARIZED PROBLEM AROUND \(x = 0 \) HAS A PURE IMAGINARY EIGENVALUE
WHEN \(d = 1 \).

(ii) LET \(d = 1 + \epsilon \) AND \(x = \sqrt{\epsilon} y \) TO OBTAIN THAT \(y(t) \) SATISFIES

\[y'(t) = -y(t - \pi/2) - \epsilon \left[y(t - \pi/2) + y^3(t) \right]. \]

NOW USE THE POINCARE-LINDSTEDT METHOD WITH \(\tau = \omega t \)
WHERE \(\omega = 1 + \epsilon \omega_1 + \cdots \) AND LET \(y(t) = y(\tau/\omega) \), TO SHOW THAT

(iii) HAS A PERIODIC SOLUTION WHEN \(\epsilon \ll 1 \) WITH

\[y \sim \frac{6\pi^2}{3} \cos \left(\omega t \right) + O(\epsilon) \quad \text{with} \quad \omega = 1 + \epsilon + O(\epsilon^2). \]

(iv) NEXT, USE A MULTIPLE-SCALE APPROACH TO SOLVE (ii) BY SEEKING
A SOLUTION IN THE FORM

\[y(t) = y(t, \tau) = y_0(t, \tau) + \epsilon y_1(t, \tau) + \cdots \quad \text{with} \quad \tau = \epsilon t. \]

SHOW THAT \(y_0 = A(\tau) \sin t + B(\tau) \cos t \) WHERE \(A(\tau) \) AND \(B(\tau) \) SATISFY

\[A' - \frac{\pi}{2} B' = -B - 3A^3 - 3AB^2, \quad B' + \frac{\pi}{2} A' = A - 3A^2B - 3B^3. \]

WRITE \(A = R \cos \phi \) AND \(B = R \sin \phi \) TO OBTAIN THAT

\[R' = \frac{(2\pi - 3R^2)R}{\pi^2 + 4}, \quad \phi' = \frac{1}{2} \left(\frac{3R^2\pi + 8}{\pi^2 + 4} \right). \]

DOES THE EQUILIBRIA AGREE WITH THE RESULT IN (ii)?

(iv) SOLVE (ii) NUMERICALLY USING THE DDE PROGRAM IN MATLAB
FOR \(\epsilon = 0.1 \) AND INITIAL DATA \(y(t) = \sin t \) FOR \(-\pi/2 < t < 0\).
ON THE SAME GRAPH PLOT THE AMPLITUDE \(R(\tau) \) WITH \(\tau = \epsilon t \)
FROM THE MULTIPLE SCALE APPROACH IN (iii).
PROBLEM 2 A MODEL FOR THE STABILIZATION OF AN INVERTED PENDULUM WITH DELAY IS

\[\ddot{\phi}(t) + \Pi \dot{\phi}(t) - g \sin(\phi(t)) + R_0 \phi(t-\tau) = 0 \]

WHERE \(R_0 \phi(t-\tau) \) IS THE "CONTROL" ACTING AS A DELAYED TORQUE.

HERE \(R_0 > 0, \Pi > 0, g > 0 \) AND \(\tau > 0 \). WE WILL CONSIDER \(\Pi \) BIFURCATION PARAMETER, \(R_0 \) AND \(\tau \).

(i) Determine the equilibrium solutions and how the steady state bifurcation diagram changes as \(R_0 \) passes through the value \(g \). What is the stability property of these solutions with no delay (\(\tau = 0 \))? (ii) Prove that the steady-state solution \(\phi_e = 0 \) is unstable for any \(\tau > 0 \) when \(0 < R_0 < g \).

(iii) Suppose that \(R_0 > g \). Show that the steady-state solution \(\phi_e = 0 \) undergoes a Hopf bifurcation at some critical value \(\tau_H = \tau_H(R_0) \) (Hint: the curve will be obtained implicitly). Show that \(\tau_H \to \pi/2 \) as \(R_0/g \to 1^+ \).

(iv) For \(g = 1 \) and \(\Pi = 2 \) find and numerically plot the region in the \(R_0 \) vs \(\tau \) parameter plane where the inverted state of the pendulum (\(\phi_e = 0 \)) is stable.
PROBLEM 3

Consider the thermostat model for \(U(x, t) \) given by

\[
U_t = k U_{xx} \quad \text{on} \quad 0 < x < L, \quad t > 0
\]

with \(U_x(0, t) = \gamma U(L, t) \) and \(U(L, t) = 0 \)

with initial data \(U(x, 0) \) prescribed \(x = 0 \) \(x = L \)

Here \(k > 0 \), \(\gamma > 0 \) and \(L > 0 \) constants.

(i) Non-dimensionalize this problem to

\[
U_t = U_{xx}, \quad 0 < x < 1, \quad t > 0
\]

\[
U_x(0, t) = b U(1, t), \quad U_x(1, t) = 0
\]

with initial data.

Here \(b > 0 \) is to be found.

(ii) By separating variable in \((+)\) find solution in the form

\[U(x, t) = e^{-\lambda t} \Phi(x) \]

Derive the eigenvalue problem for \(\lambda \) and \(\Phi(x) \).

(it is not of Sturm-Liouville type).

(iii) Numerically compute the minimum value \(b_r \) of \(b \)

for which a pair of eigenvalues cease to be real-valued.

(iv) Numerically find the minimum value \(b_H \) of \(b \) where a pair of eigenvalues first enters the unstable half-plane \(\text{Re} \lambda < 0 \). Give a rough sketch of what happens to the eigenvalues as \(b \) is varied on \(0 < b < b_H \).

(remark at \(b = b_H \) an oscillation sets in for the solution \(U(x, t) \).)