We first recall a few basic results from potential theory. Suppose that \(\Delta u = \delta(x-x_0) \) in \(\mathbb{R}^n \) with \(n = 2 \), or \(n = 3 \).

Then
\[
\Delta u = \frac{1}{4\pi |x-x_0|^3} \text{ in } 3\text{-dim.}
\]
\[
\Delta u = \frac{1}{2\pi} \log |x-x_0|, \quad \text{in } 2\text{-dim.}
\]

We recall the derivation of this in 3-dim. We take a small sphere of radius \(\epsilon \) about \(x_0 \) so that \(\Omega_\epsilon = \{ |x-x_0| < \epsilon \} \). Then in a neighborhood of \(x_0 \) we let \(\Gamma = |x-x_0| \) and then
\[
\Delta u = \nabla u \cdot \nabla \Gamma = 0 \quad \text{for } \Gamma > 0 \quad \text{so that } \quad u = B/\Gamma.
\]

We then use the divergence theorem
\[
\int_{\Omega_\epsilon} \Delta u \, d\mathbf{x} = \int_{\partial \Omega_\epsilon} \nabla u \cdot \mathbf{n} \, d\mathbf{s} = 4\pi |\nabla u| = 1.
\]

Then let \(\epsilon \to 0 \)
\[
\int_{\partial \Omega_\epsilon} \nabla u \cdot \mathbf{n} \, d\mathbf{s} = \int_{\partial \Omega_\epsilon} \left(\frac{\partial u}{\partial \Gamma} \right) \, d\mathbf{s} = 4\pi \left(\frac{\partial u}{\partial \Gamma} \right)_{\Gamma = \epsilon} = 1.
\]

We calculate \(\frac{\partial u}{\partial \Gamma} = -B/\Gamma^2 \) so that
\[
4\pi \left(-\epsilon^2 \frac{B}{\epsilon^3} \right) = 1
\]
which yields \(B = -\frac{1}{4\pi} \), and so
\[
u \sim \frac{1}{4\pi |x-x_0|} \quad \text{as} \quad x \to x_0.
\]

In contrast in two-dimensions we let \(\Omega_\epsilon = \{ |x-x_0| < \epsilon \} \) and then for \(\Gamma = |x-x_0| > 0 \), \(\Delta u = \nabla u \cdot \nabla \Gamma = 0 \) so \(u = B \log \Gamma \) is the singular solution. Then using the divergence theorem
\[
\lim_{\epsilon \to 0} \int_{\Omega_\epsilon} \Delta u \, d\mathbf{x} = \lim_{\epsilon \to 0} \int_0^{2\pi} \frac{\partial u}{\partial \Gamma} \epsilon \, d\theta = \lim_{\epsilon \to 0} \int_0^{2\pi} \frac{\partial (\frac{B}{\epsilon}) \theta}{\partial \Gamma} \epsilon \, d\theta = \lim_{\epsilon \to 0} \int_{\Omega_\epsilon} \left(\frac{\partial u}{\partial \Gamma} \right) \, d\mathbf{x} = 2\pi B = 1,
\]

This yields that \(2\pi B = 1 \) and so
\[
u \sim \frac{1}{2\pi} \log |x-x_0|.
Remark

(i) If we want to solve in 3-D,

\[\Delta u = 0 \text{ in } \Omega \setminus \{X_0\} \]
\[u = 0 \text{ on } \partial \Omega \]

and \(u \sim \frac{A}{1|X - X_0|} \)

Then we recall \(-\frac{1}{4\pi} \frac{1}{|X - X_0|} \rightarrow \delta(X - X_0) \), and so

by scaling \(\frac{A}{|X - X_0|} \rightarrow -4\pi A \delta(X - X_0) \).

This yields that

\[\begin{cases} \Delta u = -4\pi A \delta(X - X_0) \text{ in } \Omega \\ u = 0 \text{ on } \partial \Omega \end{cases} \]

(ii) Similarly, \(\Delta u = 0 \text{ in } \Omega \setminus \{X_0\} \), \(\Omega \) is two-dimensional

\[u = 0 \text{ on } \partial \Omega \]
\[u \sim A \log|X - X_0| \]

is equivalent to \(\Delta u = 2\pi A \delta(X - X_0) \) in \(\Omega \) with \(u = 0 \) on \(\partial \Omega \).

Now suppose that we have lower-order terms of the form

\[\Delta u - p^2 u = \delta(X - X_0) \text{ in either 2-D or 3-D.} \]

Then we calculate

\[u = -e^{-\frac{r}{2}} \text{ in } \mathbb{R}^3; \quad u = -\frac{1}{2\pi} \log|X_0| \text{ in } \mathbb{R}^2. \]

But critically, the form of the singularity to leading-order near the singular point is independent of the lower-order term \(p u \). In fact,

\[u \sim -\frac{1}{4\pi|X - X_0|} \]
\[u \sim -\frac{1}{2\pi} \log|X - X_0|. \]

This follows from the observation that

\[\lim_{\varepsilon \to 0} \int_{\Omega_\varepsilon} u \, d\varepsilon = 0. \]
EIGENVALUE ASYMPTOTICS IN 3-D

Let Ω be a 3-D bounded domain with a hole of "radius" $0(\varepsilon)$ removed from Ω.

\[\Delta u + \lambda u = 0 \text{ in } \Omega \setminus \Omega_\varepsilon \]
\[u = 0 \text{ on } \partial \Omega \]
\[u = 0 \text{ on } \partial \Omega_\varepsilon \]
\[\int_{\Omega \setminus \Omega_\varepsilon} u^2 \, dx = 1 \]

We assume that Ω_ε shrinks to a point x_0 as $\varepsilon \to 0$.

For instance, Ω_ε could be the sphere $|x - x_0| < \varepsilon$.

The unperturbed problem is

\[\Delta \phi + \mu \phi = 0 \text{ in } \Omega \]
\[\phi = 0 \text{ on } \partial \Omega \]
\[\int_{\Omega} \phi^2 \, dx = 1 \]

This problem has eigenpairs as $\phi_j(x)$, μ_j $j = 0, 1, 2, \ldots$

with $\int_{\Omega} \phi_j \phi_k \, dx = 0$ $j \neq k$ and $\phi_0(x) > 0$ for x inside Ω.

We now look for an eigenpair of (\mathcal{e}) near the principal eigenpair $\phi_0(x)$, μ_0.

We proceed by the method of matched asymptotic expansions.

We first expand the eigenvalue for (\mathcal{e}) as

$\lambda \approx \mu_0 + \nu(\varepsilon) \lambda_1 + \ldots$

$\nu(\varepsilon) \to 0$ as $\varepsilon \to 0$.

In the outer region away from the hole, we expand
\[U = \phi_0 (x) + \sqrt{\varepsilon} \, U_1 + \ldots \]

Now, since \(\Omega_\varepsilon \to \Omega \setminus \{X_0\} \) as \(\varepsilon \to 0 \), we obtain that

\[
\begin{align*}
\Delta U_1 + \mu_0 U_1 &= -A_1 \phi_0 \quad \text{in} \quad \Omega \setminus \{X_0\} \\
U_1 &= 0 \quad \text{on} \quad \partial \Omega \\
\int_{\Omega} 2U_1 \phi_0 \, dx &= 0
\end{align*}
\]

(1)

Now we construct an inner expansion near the hole. We let \(y = \varepsilon^{-1} (x - X_0) \) and \(v(y; \varepsilon) = u(x_0 + \varepsilon y) \) satisfies

\[
\Delta v + \frac{1}{\varepsilon^2} v = 0 \quad \text{outside} \quad \Omega_0, \quad \Omega_0 = \Omega_\varepsilon / \varepsilon
\]

\[
v = 0 \quad \text{on} \quad \partial \Omega_0.
\]

Then we expand \(v = v_0 + \sqrt{\varepsilon} \, v_1 + \ldots \).

We substitute to obtain

\[
\begin{align*}
\Delta v_0 &= 0 \quad \text{outside} \quad \Omega_0 \\
v_0 &= 0 \quad \text{on} \quad \partial \Omega_0.
\end{align*}
\]

(2)

\[
v_0 \to \phi_0 (x_0) \quad \text{as} \quad |y| \to \infty.
\]

The matching condition is that

\[
\begin{align*}
\phi_0 (x) + \sqrt{\varepsilon} \, U_1 + \ldots &\sim v_0 + \sqrt{\varepsilon} \, v_1 + \ldots \\
 x &\to X_0 \quad \text{as} \quad |y| \to \infty
\end{align*}
\]

Therefore,

\[
v_0 \to \phi_0 (x_0) \quad \text{as} \quad |y| \to \infty.
\]

Now we write the solution to (2) as

\[
v_0 = \phi_0 (x_0) \left(1 - v_c (y) \right)
\]

Then we obtain that \(v_c (y) \) satisfies
\[\Delta y \nu C = 0, \text{ y outside } \Omega_0 \]
\[\nu C : 1 \quad \text{ y on } \partial \Omega_0 \]
\[\nu C \to 0 \quad \text{ as } |y| \to \infty. \]

The solution has the well-known asymptotic behavior
\[\nu C \sim \frac{C}{|y|} + \ldots, \quad \text{ as } |y| \to \infty, \]
where \(C > 0 \) is called the electrostatic capacitance of \(\Omega_0 \).

Remark (i) If \(\Omega_0 : |x-x_0| \leq \varepsilon \) then \(\Omega_0 : |y| \leq 1 \).

We let \(r = |y| \) so that in 3-D, \(\nu C = \nu C(r) \)
\[\nu C'' + \frac{2}{r} \nu C' = 0, \quad r > 1 \]
\[\nu C = 1 \quad \text{ on } \gamma = 1 \]
then \(\nu C = \frac{1}{r} \) for \(r \geq 1 \) and so \(C = 1 \).

(ii) \(C \) is known analytically for a wide variety of shapes
including ellipsoids etc.; otherwise we calculate it numerically.

(iii) A famous isoperimetric inequality of Szegő states that
of all bodies \(\Omega_0 \) of the same volume, the sphere has
the smallest capacitance.

Now we return to \(\nu_0 \) and note that
\[\nu_0 \sim \phi(x_0) \left(\frac{1}{|y|} \right), \quad |y| \to \infty \]

Let \(y = e^{i}(x-x_0) \) and recall the matching condition (3)
\[\phi_0(x_0) + \nu(e) u_1 \sim \phi_0(x_0) - \frac{\phi_0(x_0) e C}{|x-x_0|} + \ldots. \]

This yields that \(\nu(e) = e \), and \(u_1 \to -\frac{\phi_0(x_0) C}{|x-x_0|} \) as \(x \to x_0 \).
THEN WE RETURN TO (1) AND WRITE

\[\Delta u_1 + \mu_0 u_1 = -\lambda_1 \phi_0 \quad \text{in} \quad \Omega \setminus \{ x_0 \} \]

\[u_1 = 0 \quad \text{on} \quad \partial \Omega \]

\[u_1 \rightarrow -\phi_0(x_0) \frac{c}{|x-x_0|} \quad \text{as} \quad x \rightarrow x_0. \]

\[\int_{\Omega} u_1 \phi_0 \, d x = 0. \]

SINCE \(-\frac{1}{4\pi |x-x_0|} \rightarrow \delta(x-x_0)\), THEN WE OBTAIN

\[\lambda_1 \phi_0 = \Delta u_1 + \mu_0 u_1 = -\lambda_1 \phi_0 + 4\pi c \phi_0(x_0) \delta(x-x_0) \quad \text{in} \quad \Omega \]

\[u_1 = 0 \quad \text{on} \quad \partial \Omega \]

NOW WE USE GREEN’S SECOND IDENTITY WITH \(\lambda \phi_0 = 0 \) TO OBTAIN

\[\int_{\Omega} (\phi_0 \Delta u_1 - \nabla \phi_0 \cdot \nabla \phi_0) \, d x = \int_{\partial \Omega} (\phi_0 \frac{\partial u_1}{\partial n} - u_1 \frac{\partial \phi_0}{\partial n}) \, d s \]

SINCE \(\phi_0 = u_1 = 0 \) ON \(\partial \Omega \) AND \(\lambda \phi_0 = 0 \) WE OBTAIN

\[0 = \int_{\Omega} \phi_0 \Delta u_1 \, d x = \int_{\Omega} \phi_0 \left(-\lambda_1 \phi_0 + 4\pi c \phi_0(x_0) \delta(x-x_0) \right) \, d x \]

THIS YIELDS THAT

\[\lambda_1 = \frac{4\pi c \left[\phi_0(x_0) \right]^2}{\int_{\Omega} \phi_0^2 \, d x} \]

IN SUMMARY WITH \(\psi(\varepsilon) = \varepsilon \) WE OBTAIN THE TWO-TERM EXPANSION

(3) \[\lambda \sim \mu_0 + \varepsilon \lambda_1 + \ldots \]

\[\lambda_1 = \frac{4\pi c \left[\phi_0(x_0) \right]^2}{\int_{\Omega} \phi_0^2 \, d x} \]

REMARK IF THERE ARE N SMALL HOLES THEN WE OBTAIN

\[\lambda_j = \frac{4\pi}{\int_{\Omega} \phi_0^2 \, d x} \sum_{j=1}^{N} C_j \phi_0^2(x_j), \quad \text{where} \quad C_j = \text{capacitance of the} \ j^{\text{th}} \text{ hole.} \]
REMARK

(i) Let \(\mathcal{U} \) assume that \(\mathcal{U} = 0 \) on \(\partial \Omega \) is replaced by no-flux condition \(\partial_\nu \mathcal{U} = 0 \) on \(\partial \Omega \).

Then \[\Delta \phi + \mathcal{U} \phi = 0 \quad \text{in} \quad \Omega, \]
\[\partial_\nu \phi = 0 \quad \text{on} \quad \partial \Omega, \]
\[\int_{\Omega} \phi^2 \, dx = 1 \]
has the principal eigenvalue \(\mathcal{U}_0 \) and \(\phi_0 = \frac{1}{\left(\int_{\Omega} \right)^{1/2}} \)
where \(|\Omega| \) is the volume of \(\Omega \).

In this case \[\lambda \sim \frac{4\pi \mathcal{E}}{|\Omega|} \quad (\text{as seen from (3)}). \]

Notice that this leading-order term is independent of the hole location.

(ii) For multiple holes \(\Omega_{s,j}, \quad j=1, \ldots, N \)

then \[\lambda \sim \mathcal{U}_0 + 4\pi \varepsilon \sum_{j=1}^{N} c_j \left[\phi_0(x_j) \right]^2 + \cdots \]
\[\int_{\Omega} \phi_0^2 \, dx \]

Consider the special case of two concentric spheres.

As shown

\[\mathcal{U}_{rg} + \frac{2}{r} \mathcal{U}_r + \mathcal{U}_g = 0, \quad 0 < r < 1 \]
\[\mathcal{U}(1) = 0, \quad \mathcal{U}(\varepsilon) = 0. \]

The eigenfunction is \(\mathcal{U} = \frac{\sin \left(\sqrt{\varepsilon} \left(r - \varepsilon \right) \right)}{r} \)

Then we obtain \(\mathcal{U}(1) = 0 \) so that \(\sqrt{\varepsilon} \left(1 - \varepsilon \right) = \pi \).
This yields that

$$\Lambda = \frac{\pi^2}{1 - \varepsilon} \simeq \pi^2 \left(1 + 2\varepsilon + \ldots\right)$$

Hence, \(\Lambda \sim \pi^2 + 2\varepsilon \pi^2 + \ldots\).

Now use the asymptotic formula (3). In (3) we set

\(\mu_0 = \pi^2\), \(\phi_0 = \sin (\pi \Gamma) \frac{1}{\Gamma}\)

Then \(\phi_0(0) = \lim_{\Gamma \to 0} \frac{\sin (\pi \Gamma)}{\Gamma} = \pi\).

In addition,

$$\int_0^1 \phi_0^2 \, d\lambda = 4\pi \int_0^1 \frac{\sin^2 (\sqrt{\pi} \Gamma)}{\Gamma} \, d\Gamma = 2\pi.$$

Then (3) yields \(\Lambda \sim \pi^2 + 4\pi \varepsilon \pi^2 \text{ Re} \pi^2 + 2\varepsilon \pi^2 + \ldots\).

Finally \(C = 1\) by Remark (i) on page (3), so \(\Lambda \sim \pi^2 + 2\varepsilon \pi^2 + \ldots\).

As we would have expected.

Open Problem: Consider \(N\) holes of "radius" \(r\) for

$$\Delta u + \lambda u = 0 \text{ in } \Omega \setminus \bigcup_{j=1}^N \Omega_j$$

\(\partial u = 0\) on \(\partial \Omega_j\)

\(u = 0\) on \(\partial \Omega \setminus \bigcup_{j=1}^N \Omega_j\)

Then since \(\mu_0 = 0\) and \(\phi_0 = \frac{1}{\Omega} \int_\Omega \phi_0\), we get

$$\Lambda \sim \frac{4\pi \varepsilon}{\Omega} \sum_{j=1}^N c_j.$$

If we want to maximize \(\Lambda\) (in other words, get fastest decay to zero for the heat equation) we need the next term in the expansion, i.e., perhaps

$$\Lambda \sim \frac{4\pi \varepsilon}{\Omega} \sum_{j=1}^N c_j + \frac{4\pi \varepsilon^2}{\Omega^2} \sum_{i=1}^N \sum_{j=1}^N c_i c_j \rho(x_i, \ldots, x_N)$$

and so we need to find maximum of \(\rho(x_1, \ldots, x_N)\).
Suppose that a small patch of boundary allows for the leakage of heat. The model is

\[
\begin{align*}
\Delta u + \lambda u &= 0 \quad \text{in } \Omega \\
\partial_{n} u &= 0 \quad \text{on } \partial \Omega \setminus \partial \Omega_{\varepsilon} \\
u &= 0 \quad \text{on } \partial \Omega_{\varepsilon}
\end{align*}
\]

We assume that \(\partial \Omega_{\varepsilon} \to \frac{1}{\varepsilon} \mathcal{X}_{0} \) as \(\varepsilon \to 0 \).

We can repeat the entire inner/outer analysis to get that the inner problem satisfies with \(y = \varepsilon^{2} (x - x_{0}) \)

\[
\begin{align*}
\Delta y v_{0} &= 0 \quad \text{in } y_{3} > 0 \\
\partial_{n} y v_{0} &= 0 \quad (y_{1}, y_{2}) \notin \partial \Omega_{0} \\
v_{c} &= 0 \quad (y_{1}, y_{2}) \in \partial \Omega_{0} \\
v_{0} &\to \frac{1}{|y|^{1/2}} \quad \text{as } |y| \to \infty.
\end{align*}
\]

Notice that \(\mu_{0} = 0 \) and \(\phi_{0} = \frac{1}{|y|^{1/2}} \).

Now \(v_{0} = \frac{1}{|y|^{1/2}} (1 - v_{c}) \) where \(v_{c} (y) \) satisfies

\[v_{c} (y) \sim c / |y| \quad \text{as } |y| \to 0. \]

Then we end up with

\[
\begin{align*}
\Delta u_{1} + \lambda u_{1} &= 0 \quad \text{in } \Omega \\
\partial_{n} u_{1} &= 0 \quad \text{on } \partial \Omega \setminus \frac{1}{\varepsilon} \mathcal{X}_{0} \\
u &= -\frac{1}{|\Omega_{0}|^{1/2}} \frac{c}{|x - x_{0}|} \quad \text{as } \gamma \to x_{0}
\end{align*}
\]

Since a delta function on \(\partial \Omega \) contributes only \(1/2 \) of an interior \(\delta \)-function, we obtain

\[a \sim 2 \pi \varepsilon c / |\Omega| + \ldots \]
WE CONSIDER

\begin{align*}
\Delta u + \lambda u &= 0 \quad \text{in } \Omega \setminus \Omega_\varepsilon \\
\lambda &\to \lambda_0 \quad \text{as } \varepsilon \to 0 \\
\lambda &= \lambda_0 \quad \text{on } \partial \Omega \\
\lambda &= \lambda_0 \quad \text{on } \partial \Omega_\varepsilon \\
\int_{\Omega_\varepsilon} \lambda^3 \, d\varepsilon &= 1
\end{align*}

WITH \(\Omega_\varepsilon \) A SMALL HOLE OF "RADIUS" \(\varepsilon \) FOR WHICH \(\Omega_\varepsilon \to \{ x_0 \} \) AS \(\varepsilon \to 0 \).

LET \(\lambda_0, \phi_0 \) BE THE PRINCIPAL (OR FIRST) EIGENPAIR OF THE UNPERTURBED PROBLEM SATISFYING

\begin{align*}
\Delta \phi_0 + \lambda_0 \phi_0 &= 0 \quad \text{in } \Omega \\
\phi_0 &= 0 \quad \text{on } \partial \Omega \\
\int_{\Omega} \phi_0^2 \, d\Omega &= 1
\end{align*}

NOW WE WILL EXPAND THE EIGENVALUE OF (1) THAT IS CLOSE TO \(\lambda_0 \)

\[\lambda \sim \lambda_0 + \sqrt{\varepsilon} \lambda_1 + \cdots \quad \sqrt{\varepsilon} \to 0 \quad \text{as } \varepsilon \to 0. \]

IN THE OUTER REGION AWAY FROM THE HOLE WE EXPAND

\[u = \phi_0 + \sqrt{\varepsilon} u_1 + \cdots \]

UPON SUBSTITUTING INTO (1) WE OBTAIN

\begin{align*}
\Delta u_1 + \lambda_0 u_1 &= -\lambda_1 \phi_0 \quad \text{in } \Omega \setminus \{ x_0 \} \\
\Delta u_1 &= 0 \quad \text{in } \Omega \\
\int_{\Omega} u_1 \phi_0 \, d\Omega &= 0
\end{align*}

WITH SOME SINGULARITY CONDITION AS \(x \to x_0 \) TO BE FOUND.

NOW IN THE INNER REGION NEAR THE HOLE WE LET \(y = \varepsilon^{-1} (x - x_0) \)

AND WE EXPAND

\[u = \sqrt{\varepsilon} \right) v_0(y) + \cdots \]

WHERE \(\Delta y v_0 = 0 \). WE WANT \(v_0 y) \sim A_0 \log y \) AS \(y \to 0 \) AND SO WE WRITE

\[v_0(y) = A_0 v_c(y) \]

WHERE \(v_c(y) \) SATISFIES

\begin{align*}
\Delta y v_c &= 0, \quad y \text{ outside } \Omega_0 \\
v_c &= 0, \quad y \text{ on } \partial \Omega_0 \\
v_c &\sim \log y \quad \text{as } |y| \to 0.
\end{align*}
This problem for $V_c(y)$ has a unique solution, and the behavior at ∞ is

$$V_c(y) \sim \log |y| - \log d + O\left(\frac{1}{|y|}\right) \quad \text{as} \quad |y| \to \infty$$

where d is called the "logarithmic capacitance" of Ω_0. It depends on the shape of Ω_0 and not its orientation within Ω.

There are some key examples:

| Ω_0 | d | $V_c = \log \left(\frac{|y|}{a}\right)$ |
|--------------------------------|------------------------------------|--|
| circle, radius a | a | $\frac{\pi}{4} \cdot a^2$ |
| ellipse, semi-axes a, b | $(a+b)/2$ | $\frac{\pi}{4} \cdot \frac{a^2 + b^2}{2}$ |
| equilateral triangle side h | $\sqrt{3} \cdot \frac{h}{\sqrt{3}} $ | $0.422 \cdot h$ |
| square side h | $\frac{\pi}{4} \cdot h$ | $0.5902 \cdot h$ |

These values of d are found by conformal mapping, T. RANJFORD (Cambridge U. Press 1995).

Now we write inner expansion in outer variables:

$$U \sim V(\epsilon) A_0 \left[\log |y| - \log d \right] \sim V(\epsilon) A_0 \left[- \log (\epsilon d) + \log |x-x_0| \right].$$

The matching condition becomes:

$$\phi_0 (x_0) \ldots + V(\epsilon) U_1 (x \to x_0) \sim (- \log (\epsilon d)) A_0 V(\epsilon) + A_0 V(\epsilon) \log |x-x_0| + \ldots$$

Therefore, we take

$$V(\epsilon) = -\frac{1}{\log (\epsilon d)} \quad \text{and} \quad A_0 = \phi_0 (x_0)$$

and we let $U_1 (x) \to A_0 \log |x-x_0| = \phi_0 (x_0) \log |x-x_2|$. This becomes

$$\Delta U_1 + \mu_0 U_1 = - \lambda_1 \phi_0 \quad \text{in} \quad \Omega \setminus \{x_0\}$$

$U_1 = 0$ on $\partial \Omega$

$$U_1 \sim \phi_0 (x_0) \log |x-x_2| \quad \text{as} \quad x \to x_2; \quad \int_{\Omega} U_1 \phi_0 \, dx = 0.$$
This can be written as

\[\nabla u_i = \Lambda u_i + \mu_0 u_i = \Lambda, \quad \phi_0 + 2\pi \phi_0(x_0) \delta(x - x_0) \quad \text{in } \Omega \]

\[u_i = 0 \quad \text{on } \partial \Omega \]

\[\int_{\Omega} u_i \phi_0 \, dx = 0 \]

Now we Green's second identity

\[\int_{\partial \Omega} (\phi_0 \partial_n u_i - u_i \partial_n \phi_0) \, ds = \int_{\Omega} (\phi_0 \partial_n u_i - u_i \partial_n \phi_0) \, dx \]

But \(\phi_0 = u_i = 0 \) on \(\partial \Omega \) and \(\partial \phi_0 = 0 \) we obtain \(\int_{\Omega} \phi_0 \partial_n u_i \, dx = 0 \).

Thus

\[\int_{\Omega} \phi_0 (\Lambda, \phi_0 + 2\pi \phi_0(x_0) \delta(x - x_0)) \, dx = 0. \]

This yields that

\[\Lambda = \frac{2\pi [\phi_0(x_0)]^2}{\int_{\Omega} \phi_0^2 \, dx} \]

Therefore, we obtain a two-term expansion

\[\Lambda \sim \mu_0 + \frac{2\pi \sqrt{\int_{\Omega} \phi_0^2 \, dx}}{\mu_0 \sqrt{\int_{\Omega} \phi_0^2 \, dx}} \quad \text{or} \quad \nu = -\frac{1}{\mu_0 \sqrt{\int_{\Omega} \phi_0^2 \, dx}} \quad d \text{ logarithmic capacitance} \]

Remark (i) Further terms in the expansion have the form

\[\Lambda \sim \mu_0 + A_1 \nu + A_2 \nu^2 + A_3 \nu^3 + \cdots \]

which is an infinite-logarithmic expansion in powers of \(\nu \).

Since \(\log(e^d) \) decreases very slowly as \(e \) decreases, we'd like to sum

(ii) If \(u_i = 0 \) on \(\partial \Omega \) is replaced by \(\phi_0(x_0) = 0 \) on \(\partial \Omega \), then \(\mu_0 = 0 \) and \(\phi_0 = \frac{1}{1/\mu_0} \)? so that \(\int_{\Omega} \phi_0^2 \, dx = 1 \).

Thus

\[\Lambda \sim \frac{2\pi \nu}{1/\mu_0} \quad A_j \to 0. \]
EXAMPLE

Consider a circular domain with a concentric hole of radius ϵ and a hole of radius $\epsilon/2$ in $0 < r < 1$.

$u = 0$ on $\Gamma = 1$

$u = 0$ on $\Gamma = \epsilon$

The unperturbed solution is $\phi_0 = J_0(\sqrt{\mu_0} r)$ where $J_0(\sqrt{\mu_0}) = 0$ and $\sqrt{\mu_0} = z_0$, with z_0 the first zero of $J_0(z)$.

Using the perturbation formula we have $v_c(y) = \log |y|$

Since $\Delta v_c = 0$, $v_c = 0$ on $|y| = 1$, so that $d = 1$. Then $x_0 = 0$ and $\phi_0(x_0) = J_0(0) = 1$.

Therefore,

$$\lambda \sim \mu_0 + \frac{2\pi}{\int_0^1 \phi_0^2(x) dx} \mu_0 + \frac{2\pi}{\int_0^1 \int_0^1 \frac{J_0'}{J_0(\sqrt{\mu_0} r)} dr dt}$$

But we recall $\int_0^1 \frac{J_0'}{J_0(\sqrt{\mu_0} r)} dr = \frac{1}{2}(J_0'(\sqrt{\mu_0}))^2$ when $J_0'(\sqrt{\mu_0}) = 0$.

This yields that

$$(x) \quad \lambda \sim \mu_0 + \left(-\frac{1}{\log \epsilon} \right) \left(\frac{2}{[J_0'(\sqrt{\mu_0})]^2} \right) + \ldots$$

Now we compare (x) with the exact solution. We write

$u = J_0(\sqrt{\lambda} r) + c Y_0(\sqrt{\lambda} r)$

Now $u(1) = 0$ so

$u = J_0(\sqrt{\lambda} r) - \frac{J_0'(\sqrt{\lambda})}{Y_0(\sqrt{\lambda})} Y_0(\sqrt{\lambda} r)$

Next $u(\epsilon) = 0$ gives the eigenvalue relation

$J_0(\sqrt{\lambda} \epsilon) = \frac{J_0(\sqrt{\lambda})}{Y_0(\sqrt{\lambda})} Y_0(\sqrt{\lambda} \epsilon)$

We write this as

$J_0(\sqrt{\lambda}) = \frac{J_0(\sqrt{\lambda} \epsilon)}{Y_0(\sqrt{\lambda} \epsilon)}$
\[J_0(z) \sim 1 + O(z^2) \text{ as } z \to 0 \]
\[Y_0(z) \sim \frac{2}{\pi} \left[\log z - \log 2 + \gamma \right]^{1} \text{ as } z \to 0 \quad \gamma = \text{Euler's constant}. \]

Therefore with \(z = \sqrt{\lambda} \) we obtain,
\[J_0(z) \sim Y_0(z) \frac{\pi}{2} \left[\log (e z) - \log 2 + \gamma \right]^{1} \quad \text{for } \varepsilon \ll 1. \]

To find the root we let
\[z = z_0 - \frac{1}{\log e} z_1 + \ldots \quad \text{with } J_0(z_0) = 0 \quad \text{and} \quad z_0 = \sqrt{\lambda_0}. \]

Where \(z_0 \) is the first root of \(J_0(z_0) = 0 \), so \(z_0 = \sqrt{\mu_0}. \)

Then we use Taylor series to obtain
\[J_0(z_0) - \frac{1}{\log e} J_0'(z_0) z_1 + \ldots \sim \frac{\pi}{2} \frac{Y_0(z_0)}{\log e}. \]

This yields that
\[z_1 = -\frac{\pi}{2} \frac{Y_0(z_0)}{J_0'(z_0)}. \]

Now we write \(\sqrt{\lambda} = z = z_0 + \left(-\frac{1}{\log e} \right) z_1 + \ldots. \)

Hence
\[\lambda \sim z_0^2 + \left(-\frac{1}{\log e} \right) 2 z_0 z_1 + \ldots. \]

This yields
\[\lambda \sim \mu_0 + \left(-\frac{1}{\log e} \right) 2 \sqrt{\mu_0} z_1. \]

Therefore
\[\lambda \sim \mu_0 + \left(-\frac{1}{\log e} \right) \lambda_1 + \ldots, \]

with \(\lambda_1 = 2 \sqrt{\mu_0} z_1 = 2 \sqrt{\mu_0} \left(-\frac{\pi}{2} \frac{Y_0(\sqrt{\mu_0})}{J_0'(\sqrt{\mu_0})} \right). \)

To write this in a form to compare with the general theory result we need an identity.
ASIDE CONSIDER THE SECOND ORDER EQUATION
\[Ly = y'' + p(x)y' + q(x)y \]

THEN DEFINE \(y_1, y_2 \) AS TWO SOLUTIONS TO \(Ly = 0 \).

THEN LET \(W = y_1'y_2 - y_1y_2' = \text{WROKNIAN OF } y_1, y_2 \).

WE DERIVE \(W' + p(x)W = 0 \)

So \(W = C \exp \left(-\int p(x) \, ds\right) \).

FOR BESSEL EQUATION \(y'' + \frac{1}{\gamma} y' + \lambda y = 0 \)

WE OBTAIN \(p = \frac{1}{\gamma}, \quad y_1 = J_0(\sqrt{\lambda} \gamma), \quad y_2 = Y_0(\sqrt{\lambda} \gamma) \) \(\rightarrow W = C/\gamma \).

Then \(\left(\frac{d}{d \gamma} J_0(\sqrt{\lambda} \gamma)\right) Y_0(\sqrt{\lambda} \gamma) - \left(\frac{d}{d \gamma} Y_0(\sqrt{\lambda} \gamma)\right) J_0(\sqrt{\lambda} \gamma) = C/\gamma \).

NOW AT \(\gamma \to 0 \), \(Y_0'(\gamma) \sim 2/\pi \gamma \) AND \(J_0(\gamma) = 1 \).

THIS GIVES \(C = -2/\pi \).

NOW EVALUATE AT \(\gamma = 1 \) AND SET \(\lambda = \mu_0 \) WHERE \(J_0(\sqrt{\mu_0}) = 0 \)

WE GET \(\sqrt{\mu_0} J_0'(\sqrt{\mu_0}) Y_0(\sqrt{\mu_0}) = -\frac{2}{\pi} \).

\(J_0 Y_0(\sqrt{\mu_0}) = -\frac{2}{\pi \sqrt{\mu_0} J_0'(\sqrt{\mu_0})} \)

SUBSTITUTING THIS INTO THE RESULT ON THE PREVIOUS PAGE WE OBTAIN
\[\lambda_1 = -\pi \sqrt{\mu_0} \frac{Y_0(\sqrt{\mu_0})}{J_0'(\sqrt{\mu_0})} = \frac{2}{(J_0'(\sqrt{\mu_0}))^2} \]

This yields \(\lambda = \mu_0 + \left(\frac{-1}{\log e}\right) \frac{2}{(J_0'(\sqrt{\mu_0}))^2} + \ldots \)
WE CONSIDER POISSON'S EQUATION IN A DOMAIN WITH ONE SMALL HOLE GIVEN BY

\[\Delta W = -B \text{ in } \Omega \setminus \Omega_\varepsilon \]
\[W = 0 \text{ on } \partial \Omega \]
\[W = 0 \text{ on } \partial \Omega_\varepsilon \]

WE THEN EXPAND IN THE OUTER REGION

\[W(x; \varepsilon) = W_0(x; \varepsilon) + \sigma(\varepsilon) W_1(x; \varepsilon) + \cdots \text{ with } \sigma = -1/\log(\varepsilon) \]

AND WITH \(\sigma \ll \varepsilon^k \) FOR ANY \(K > 0 \).

WE OBTAIN THAT

\[\Delta W_0 = -B \text{ in } \Omega \setminus \{x_0\} \]
\[W_0 = 0 \text{ on } \partial \Omega \]

\(W_0 \) IS SINGULAR AS \(x \to x_0 \).

IN THE INNER REGION WE WRITE

\[y = \varepsilon^{-1}(x - x_0), \quad V(y; \varepsilon) = W(\varepsilon x_0 + \varepsilon y; \varepsilon) \]

WE THEN EXPAND

\[V(y; \varepsilon) = V_0(y; \varepsilon) + \mu_0(\varepsilon) V_1(y; \varepsilon) + \cdots \]

WITH \(\mu_0 \ll \varepsilon^k \) FOR ANY \(K > 0 \).

NOW WE GET THAT \(V_0 \) SATISFIES

\[\Delta y V_0 = 0 \text{ outside } \Omega_0 \]
\[V_0 = 0 \text{ on } \partial \Omega_0 \]

THE MATCHING CONDITION TO LEADING ORDER WILL BE THAT

\[W_0(x; \varepsilon) \sim W_0(x_0) \sim V_0(y; \varepsilon) \]

\(x \to x_0 \)
\(1/|y| \to \infty \)

THEOREFORE, WE TAKE IN TERMS OF AN UNKNOWN FUNCTION \(\chi = \chi(\varepsilon) \)

WITH \(\chi(0) = 0(1) \),
\[V_0(y; \varepsilon) = \nabla \chi V_0(y) \]
WE THEN OBTAIN THAT $V_c(y)$ SATISFIES

\[
\begin{cases}
\Delta y V_c = 0 & \text{outside } \Omega_0 \\
V_c = 0 & \text{on } \partial \Omega \\
V_c \sim \log |y| & \text{as } |y| \to \infty
\end{cases}
\]

THERE IS A UNIQUE SOLUTION TO THIS PROBLEM, AND $V_c(y)$ HAS THE
ASYMPTOTIC BEHAVIOR

\[V_c(y) \sim \log |y| - \log d + O\left(\frac{1}{|y|}\right) \quad \text{for } |y| \gg 1.\]

HERE d IS THE LOGARITHMIC CAPACITANCE.

NOW WE WRITE THE FAR-FIELD BEHAVIOR OF V_0 AS $|y| \to \infty$
IN THE FORM,

\[V_0(y; y) \sim \frac{\log \left(\frac{|x - x_0|}{\varepsilon}\right)}{-\log d} \sim \frac{\log |x - x_0|}{-\log (\varepsilon d) + \log |x - x_0|}.
\]

NOW WITH $v = -\frac{1}{\log (\varepsilon d)}$ WE OBTAIN,

\[V_0(y; y) \sim \gamma + \gamma \gamma \log |x - x_0|.
\]

THE MATCHING CONDITION GIVE $W_0 \sim \gamma \gamma \log |x - x_0| + \gamma$ AS $X \to x_0$.

THEN WE WRITE

\[
\begin{align*}
\Delta W_0 &= -B & \text{in } \Omega \setminus \{ x_0 \} \\
W_0 &= 0 & \text{on } \partial \Omega \\
W_0 &\sim \gamma + \gamma \gamma \log |x - x_0| & \text{as } X \to x_0.
\end{align*}
\]

NOW WE INTRODUCE $W_{0H}(X)$ AND $G(X; x_0)$, WHICH SATISFY

\[
\begin{cases}
\Delta W_{0H} = -B & \text{in } \Omega \\
W_{0H} = 0 & \text{on } \partial \Omega,
\end{cases}
\]

AND THE GREEN'S FUNCTION,

\[
\begin{align*}
\Delta G &= \delta(x - x_0) & \text{in } \Omega \\
G &= 0 & \text{on } \partial \Omega.
\end{align*}
\]

IN TERMS OF THIS SOLUTION, $G(X; x_0) = \frac{1}{2\pi} \log |x - x_0| + R(x_0) + c(1)$ AS $X \to x_0.$
Remark (i) If we write
\[G(x; x_0) = \frac{1}{2\pi} \log |x - x_0| + R(x; x_0) \]
where \(R(x; x_0) \) is the "regular part" of the Green's function. As \(x \to x_0 \), then \(R_0(x_0) = R(x_0; x_0) \).

The function \(R(x; x_0) \) depends on the shape of the domain.

Then we can solve for \(\omega_0 \) to obtain
\[\omega_0(x; \gamma) = \omega_{OH}(x) + 2\pi \gamma \log \frac{1}{2\pi} \log |x - x_0| + R_0(x_0) \]

Therefore, as \(x \to x_0 \), we obtain
\[\omega_{OH}(x_0) + 2\pi \gamma \log \left[\frac{1}{2\pi} \log |x - x_0| + R_0(x_0) \right] = \gamma + \gamma \log |x - x_0| \]

Therefore, we obtain that \(\gamma \) satisfies
\[\gamma \left[1 - 2\pi \gamma R_0(x_0) \right] = \omega_{OH}(x_0) \]

This yields that
\[\gamma = \frac{\omega_{OH}(x_0)}{1 - 2\pi \gamma R_0(x_0)} \]

Therefore, the outer expansion satisfies for \(|x - x_0| = o(1) \)
\[W \sim W_0(x; \gamma) = \omega_{OH}(x) + 2\pi \gamma \frac{\omega_{OH}(x_0)}{1 - 2\pi \gamma R_0(x_0)} \]

In contrast in the inner region for \(|x - x_0| = o(\epsilon) \) that
\[W \sim V_0(y; \gamma) \sim \gamma \frac{\omega_{OH}(x_0)}{1 - 2\pi \gamma R_0(x_0)} V_G(y) \]

This result is derived for \(\gamma << 1 \) and requires that \(2\pi \gamma R_0(x_0) < 1 \) for this result to provide an approximation.
Consider a pipe of radius \(R_0 \) containing a core centered at the origin. Assume that the core is a circle of radius \(\varepsilon \).

For this problem

\[
W_{OH}(\gamma) = \frac{B}{A} (\gamma_0^2 - \gamma^2), \quad G(\gamma; 0) = \frac{1}{2\pi} \log \gamma - \frac{1}{2\pi} \log \gamma_0
\]

which gives

\[
R_0(0) = -\frac{1}{2\pi} \log \gamma_0, \quad W_{OH}(0) = B \gamma_0^2/A, \quad d = 1.
\]

Then

\[
\chi = \frac{B \gamma_0^2}{A} = \frac{B \gamma_0^2}{1 - 2\pi \nu R_0(0)} \frac{1}{4} \frac{1}{1 + \nu \log \gamma_0} \quad \nu = -\frac{1}{2} \log \varepsilon
\]

This yields that

\[
\chi = \frac{B \gamma_0}{A} \frac{\log \varepsilon}{\log (\gamma_0/\varepsilon)}.
\]

Now in the outer solution we obtain

\[
W \sim W_0(x; \gamma) = W_{OH} + 2\pi \chi \nu G(x; 0) = \frac{B}{4} (\gamma_0^2 - \gamma^2) + \chi \nu \log \left(\frac{\gamma}{\gamma_0} \right).
\]

Then

\[
W \sim W_0(x; \gamma) = \frac{B}{4} (\gamma_0^2 - \gamma^2) - \frac{B \gamma_0^2}{4} \frac{1}{\log (\gamma_0/\varepsilon)} \frac{1}{\log (\gamma_0/\varepsilon)}
\]

Now the exact solution to

\[
\frac{\partial^2 W}{\partial \gamma^2} + \frac{1}{\gamma} \frac{\partial W}{\partial \gamma} = -B \quad \varepsilon < \gamma < \gamma_0
\]

\[
W(\gamma_0) = 0, \quad W(\varepsilon) = 0
\]

is given by

\[
W = \frac{B}{4} (\gamma_0^2 - \gamma^2) - \frac{B}{4} \left(\gamma_0^2 - \varepsilon^2 \right) \frac{1}{\log \left(\gamma_0/\gamma \right)}
\]

which, besides the \(O(\varepsilon^2) \) term, is the same as given by \(W_0(x; \gamma) \).

Remark

(i) Imagine that the interior circle \(\gamma = \varepsilon \) is replaced by a hole of arbitrary shape centered at the origin.

Then all we need to do is simply replace \(\varepsilon \) by \(\varepsilon \) where \(d \) is the logarithmic capacitance of the body.
RECALL THAT d WAS DEFINED BY
\[\Delta y V_C = 0 \text{ outside } \Omega \]
\[V_C = 0 \text{ on } \partial \Omega \]
\[V_C \sim \log |y| - \log d \quad \text{as } |y| \to \infty \]

FOR INSTANCE IF \(\Omega = \{ x^2 + y^2 / 5 = \epsilon^2 \} \to \Omega_0 = \{ y^2 + y^2 / 5 = 1 \} \)

THUS THE OUTER SOLUTION IS
\[W \sim W_0 = \frac{B}{4} \left(r^2 - r^2 \right) - \frac{B}{4} \log \left(\frac{r_0}{r} \right) \]
\[+ \frac{r^2}{\log \left(\frac{r_0}{\epsilon d} \right)} \]

(i) NOW SUPPOSE THAT THE HOLE IS OFF-CENTER AT SOME POINT \(x_0 \) IN \(\Omega \). ASSUME \(\Omega \) IS A CIRCLE OF RADIUS \(r_0 \).

\[|x| = r_0 \]

THEN WE MUST SOLVE
\[\Delta G = \delta(x - x_0) \text{ in } \Omega ; \quad G = 0 \text{ on } \partial \Omega \]
\[G(x; x_0) = \frac{1}{2\pi} \log |x - x_0| + R(x; x_0) \]

WE NEED TO CALCULATE \(R_0(x_0) = R(x_0; x_0) \).

TO SOLVE FOR \(G(x; x_0) \) WE USE THE METHOD OF IMAGES:

\[|x| = \frac{r_0^2}{|x_0|} \]

THEN \(|x_0| |x_1| = r^2 \)

THE SOLUTION IS
\[G(x; x_0) = \frac{1}{2\pi} \log |x - x_0| - \frac{1}{2\pi} \log |x - x_1| |x_0| / r_0 \]

THIS YIELDS THAT
\[R(x; x_0) = R_0(x_0) = \frac{1}{2\pi} \log \left(\frac{1}{|x_0 - x|} \frac{|x_0|}{r_0} \right) \]

THEN THE OUTER SOLUTION IS SIMPLY
\[W \sim W_0 = \frac{B}{4} \left(r_0^2 - r^2 \right) + \frac{2\pi \sqrt{B r_0^2 / 4}}{1 - 2\pi \sqrt{R_0(x_0)}} \log \left(\frac{r_0}{\epsilon d} \right) \]

WITH \(\nu = -1 / \log (\epsilon d) \).
Now if we define

\[\bar{w} = \frac{1}{\Omega_0^1} \int_{\Omega_0} w_0 \, dx \]

we could plot \(\bar{w} \) versus ed to obtain Kaplan's equivalence principle:

Corresponding to every non-circular domain \(\Omega_0 \) there exists a corresponding circular domain \(\Omega_0^c \) with the same \(\bar{w} \).

(iii) Consider the following eigenvalue problem in a circular domain \(\Omega_0 \): \(\Gamma_0 = 1 \) containing a hole of arbitrary cross-section centered at the origin.

The sum of all of the logarithmic terms for the principal eigenvalue satisfies

\[J_0(\sqrt{\lambda^*}) = \frac{\pi}{2} Y_0(\sqrt{\lambda^*}) \left[\log \left(\frac{z}{\sqrt{\lambda^*}} \right) - \log 2 + \gamma \right]^{-1} \]

where \(z = ed \) and \(\gamma \) is Euler's constant. Also \(\lambda^* \rightarrow \mu_0^2 \) where \(J_0(\mu_0) = 0 \) is the first root of \(J_0(x) = 0 \).
Example: Find an asymptotic solution in 3-D to

\[\Delta u = M(x) \quad \text{in} \quad \Omega \setminus \bigcup_{j=1}^{N} \Omega_{\varepsilon_j} \quad \Omega \quad \text{in} \quad \mathbb{R}^3. \]

\[u = d_j \quad \text{on} \quad \partial \Omega_{\varepsilon_j}, \quad j = 1, \ldots, N \]

\[u = 0 \quad \text{on} \quad \partial \Omega \]

Each \(\Omega_{\varepsilon_j} \) is a hole of "radius \(\varepsilon \)" with \(\Omega_{\varepsilon_j} \to B(x_j, \varepsilon) \) as \(\varepsilon \to 0 \). For instance, if \(\Omega_{\varepsilon_j} = \{ x - x_j \leq \varepsilon \} \) then we have a sphere of radius \(\varepsilon \) centered at \(x = x_j \).

In the outer region we expand

\[u = u_0 + \varepsilon u_1 + \ldots \]

We have

\[\begin{cases} \Delta u_0 = M(x) \quad \text{in} \quad \Omega, \\ u_0 = 0 \quad \text{on} \quad \partial \Omega \end{cases} \]

Unperturbed problem

And that \(u_1 \) satisfies

\[\begin{cases} \Delta u_1 = 0 \quad \text{in} \quad \Omega \setminus \{ x_1, \ldots, x_N \}, \\ u_1 = 0 \quad \text{on} \quad \partial \Omega, \\ u_1 \text{ singular as } x \to x_j, \quad j = 1, \ldots, N. \end{cases} \]

Now in the inner region near \(x = x_j \) we write \(\nu = \varepsilon^{-1}(x - x_j) \)

And \(\nu(x; \varepsilon) = u(x_j + \varepsilon y, \varepsilon) = v_0(\nu) + \ldots \). The matching condition yields that \(v_0 \to u_0(x_j) \) as \(|\nu| \to \infty \) so that

\[\begin{cases} \Delta y v_0 = 0 \quad \text{outside } \Omega_j = \Omega_{\varepsilon_j}/\varepsilon, \\ v_0 = d_j \quad \text{on} \quad \partial \Omega_j, \\ v_0 \to u_0(x_j) \quad \text{as} \quad |\nu| \to \infty \end{cases} \]

The solution is simply

\[v = u_0(x_j) + (d_j - u_0(x_j)) v_0(\nu) \]
WHERE $V_C(y)$ SATISFIES

\[\Delta y V_C = 0, \quad y \text{ outside } \Omega_j \]

\[V_C = 1, \quad y \text{ on } \Omega_j \]

\[V_C \sim C_j / |y| \quad \text{as } |y| \to \infty. \quad C_j \text{ capacitance of the } j \text{th hole.} \]

THIS YIELDS THAT

\[V_0 \sim u_0(x_j) + (d_j - u_0(x_j)) C_j / |y| \quad \text{as } |y| \to \infty. \]

NOW THE MATCHING CONDITION IS SIMPLY

\[u_0(x_j) + \varepsilon u_1 \sim u_0(x_j) + (d_j - u_0(x_j)) \frac{C_j}{1|x-x_j|} \quad x \to x_j \]

THIS YIELDS THAT

\[u_1 \sim (d_j - u_0(x_j)) C_j / |x-x_j| \quad \text{as } x \to x_j. \]

THEREFORE, THE PROBLEM FOR u_1 IS SIMPLY

\[\Delta u_1 = -4\pi \sum_{j=1}^{N} (d_j - u_0(x_j)) C_j \delta(x-x_j) \quad \text{in } \Omega. \]

\[u_1 = 0 \quad \text{on } \partial \Omega. \]

THE SOLUTION IS SIMPLY

\[u_1 = -4\pi \sum_{j=1}^{N} (d_j - u_0(x_j)) C_j G(x; x_j) \]

WHERE $G(x; x_j)$ IS THE GREEN'S FUNCTION SATISFYING

\[\Delta G = \delta(x-x_j) \quad \text{in } \Omega \]

\[G = 0 \quad \text{on } \partial \Omega. \]
Example: Now consider the corresponding Neumann problem

\[\Delta u = M(x) \text{ in } \Omega \setminus \bigcup_{j=1}^{N} \Omega_{ej} \subseteq \mathbb{R}^3, \]

\[\partial_\nu u = 0 \text{ on } \partial \Omega, \]

\[u = \alpha_j \text{ on } \partial \Omega_{ej}, \quad j = 1, \ldots, N. \]

We assume for simplicity that \(\Omega_{ej} : |x - x_j| = \varepsilon \Gamma_j \)
so that we have \(N \)-small spheres of radius \(\varepsilon \Gamma_j \).

Remark: i) We cannot expand \(u = u_0 + \varepsilon u_1, \ldots \)

since \(\Delta u_0 = M(x) \text{ in } \Omega \)

\[\partial_\nu u_0 = 0 \text{ on } \partial \Omega \]

has no solution in general unless \(\int_{\Omega} M(x) \, dx = 0. \)

(ii) Also recall that the eigenvalue problem

\[\Delta \phi + \lambda \phi = 0 \text{ in } \Omega \setminus \bigcup_{j=1}^{N} \Omega_{ej}, \]

\[\partial_\nu \phi = 0 \text{ on } \partial \Omega, \]

\[\phi = 0 \text{ on } \partial \Omega_{ej}, \quad j = 1, \ldots, N. \]

has the principal eigenvalue (from page 7) that

\[\lambda \sim \frac{4 \pi \varepsilon}{|\Omega|} \sum_{j=1}^{N} \Gamma_j. \]

Notice that in the \(j \)-th inner region

\[\Delta y v_c = 0, \quad |y| > \Gamma_j, \]

\[v_c = 1, \quad |y| = \Gamma_j, \quad v_c \sim \frac{C_j}{|y|} \text{ as } |y| \to \infty \]

\[\to v_c = \frac{\Gamma_j}{|y|}. \quad \text{This implies that } \Gamma_j \]

This eigenvalue with \(\lambda = O(\varepsilon) \) suggests that the expansion for \(u \) should be

\[u = u_0 / \varepsilon + u_1 + \varepsilon u_2 + \ldots \]
(iii) Consider the special case

\[\Delta u = M \text{ in } \varepsilon < r < 1 \text{ with } M = \text{constant} \]
\[u = 0 \text{ on } r = 1 \]
\[u = 1 \text{ on } r = \varepsilon \]

Then we calculate \(U = \frac{M r^2}{6} + \frac{A}{r} \).

Now \(u = 0 \text{ on } r = 1 \rightarrow \frac{M}{3} - A = 0 \) so \(A = \frac{M}{3} \).

\[u = 1 \text{ on } r = \varepsilon \rightarrow \frac{M \varepsilon^2}{6} + \frac{M}{3 \varepsilon} + B = 1 \]

This yields that \(B = 1 - \frac{M}{3 \varepsilon} - \frac{M \varepsilon^2}{6} \).

Then \(U = \frac{M}{6} (r^2 - \varepsilon^2) + \frac{M}{3} \left(\frac{1}{r} - \frac{1}{\varepsilon} \right) + 1 \).

Notice that in the outer region

\[\hat{U} = \hat{u}_0 / \varepsilon + \hat{u}_1 + \ldots \]

and in the inner region \(\sqrt{v} = v_0 / \varepsilon + \sqrt{v}_1 + \ldots \).

We return to the general problem (ix)

In the outer region we expand

\[\hat{U} = \hat{u}_0 / \varepsilon + \hat{u}_1 + \varepsilon \hat{u}_2 + \ldots \]

We obtain that \(\Delta \hat{u}_0 = 0 \) and so \(\hat{u}_0 = \mu \) where \(\mu \) is a constant.

The problems for \(\hat{u}_1 \) and \(\hat{u}_2 \) are

\[\Delta \hat{u}_1 = M(x) \text{ in } \Omega \setminus \{x_1, \ldots, x_N\} \]
\[\partial_n \hat{u}_1 = 0 \text{ on } \partial \Omega \]
\[\hat{u}_1 \text{ singular at } x \rightarrow x_i \]
\[\begin{align*}
\text{Then } U_2 \text{ satisfies } & \quad \Delta U_2 = 0 \quad \text{in } \Omega \setminus \{x_1, \ldots, x_M\} \\
& \quad \partial_\Omega U_2 = 0 \quad \text{on } \partial \Omega \\
U_2 \text{ singular at } & \quad x \rightarrow x_j. \\
\text{Now in the inner region we let } & \quad y = \varepsilon^{-1}(x - x_j) \text{ and we expand } \\
& \quad V = \frac{V_0}{\varepsilon} + V_1 + \varepsilon V_2 + \ldots \\
\text{We then obtain that, upon using matching condition } & \quad V_0 \rightarrow U_0 \text{ at } \infty \\
\Delta y V_0 & = 0 \quad \text{for } |y| > \Gamma_j \\
V_0 & = 0 \quad \text{for } |y| = \Gamma_j \\
V_0 & \rightarrow \mu A_j \quad |y| \rightarrow \infty \\
\text{The solution is written as } & \quad V_0 = \mu \left(1 - V_C\right) \\
\text{where } V_C(y) \text{ satisfies } & \quad \Delta y V_C = 0, \quad |y| > \Gamma_j \\
V_C & = 1, \quad |y| = \Gamma_j \\
V_C & \sim \frac{C_j}{|y|} \quad \text{as } |y| \rightarrow \infty. \text{ We get } V_C = \frac{\Gamma_j}{|y|} \text{ so } C_j = \Gamma_j. \\
\text{Therefore, the matching condition becomes near } & \quad x = x_j: \\
\frac{U_j}{\varepsilon} + U_j + \varepsilon U_2 + \ldots & \sim \frac{V_0}{\varepsilon} + V_1 + \ldots = \frac{\mu}{\varepsilon} \left(1 - \frac{C_j}{|x - x_j|}\right) + V_1 \\
& \quad x \rightarrow x_j, \quad y \rightarrow \infty \\
\text{Therefore, we obtain } & \quad U_j \rightarrow -\frac{\mu}{|x - x_j|} C_j \quad \text{as } x \rightarrow x_j.
\end{align*} \]
THE PROBLEM FOR \(U_i \) IS SIMPLY:
\[
\Delta U_i = M(x) \quad \text{in } \Omega \setminus \{x_1, \ldots, x_N\}
\]
\[
\partial_n U_i = 0 \quad \text{on } \partial \Omega
\]
\[
U_i \sim \frac{-\mu c_j}{|x - x_j|} \quad x \to x_j, \quad j = 1, \ldots, N
\]

THIS PROBLEM IS EQUIVALENT TO
\[
\left\{ \begin{array}{l}
\Delta U_i = M(x) + 4\pi \mu \sum_{j=1}^{N} c_j \delta(x - x_j) \quad \text{in } \Omega \\
\partial_n U_i = 0 \quad \text{on } \partial \Omega
\end{array} \right.
\]

THEN USING THE DIVERGENCE THEOREM
\[
\int_{\Omega} M(x) \, dx + 4\pi \mu \sum_{j=1}^{N} c_j = 0
\]

THUS YIELDS
\[
\mu = -\frac{1}{4\pi} \frac{\int_{\Omega} M(x) \, dx}{\sum_{j=1}^{N} c_j}
\]

WHICH DETERMINES THE LEADING ORDER OUTER SOLUTION
\[
U_i \sim \frac{-\mu}{\varepsilon}
\]

NOW WE PROCEED TO SECOND ORDER. WE NEXT SOLVE FOR \(U_i \) EXPLICITLY. WE INTRODUCE THE NEUMANN GREEN'S FUNCTION \(G(x; x_j) \) DEFINED BY THE SOLUTION TO
\[
\left\{ \begin{array}{l}
\Delta G = \frac{1}{|x - x_j|} - \delta(x - x_j), \quad \text{in } \Omega \\
\partial_n G = 0 \quad \text{on } \partial \Omega \\
\int_{\Omega} G \, dx = 0
\end{array} \right.
\]

NOTICE THAT \(G(x; x_j) \) IS UNIQUE AND EXISTS SINCE \(\int_{\Omega} \left(\frac{1}{|x - x_j|} - \delta(x - x_j) \right) \, dx = 0 \)
THEN WE HAVE
\[G(x; x_j) = \frac{1}{4\pi |x - x_j|} + R(x; x_j) \quad R = \text{regular part of Neumann Green's function.} \]

Therefore as \(x \to x_j \) we obtain
\[G(x; x_j) \sim \frac{1}{4\pi |x - x_j|} + R_j, \quad R_j = R(x_j; x_j). \]

Now we write the problem for \(u_j \), \(\forall \)
\[\Delta u_j = (M(x) - \frac{1}{\Omega_1} \int_{\Omega_1} M dx) + \left(\frac{1}{\Omega_1} \int_{\Omega_1} M dx \right) + 4\pi \mu \sum_{j=1}^{N} C_j \delta(x - x_j) \quad \text{in } \Omega \]
\[\partial_n u_j = 0 \quad \text{on } \partial \Omega. \]

Now we write the solution as
\[u_j = u_{ip} - 4\pi \mu \sum_{i=1}^{N} C_i G(x; x_i) + \bar{u}_i \]
where \(\bar{u}_i \) is a constant and \(u_{ip} \) satisfies
\[\Delta u_{ip} = (M(x) - \frac{1}{\Omega_1} \int_{\Omega_1} M dx) \quad \text{in } \Omega \]
\[\partial_n u_{ip} = 0 \quad \text{on } \partial \Omega \]
\[\int_{\Omega} u_{ip} dx = 0 \]

Notice that \(u_{ip} \) is uniquely determined. Now since \(\int_{\Omega} u_{ip} dx = 0 \) and \(\int_{\Omega} G(x; x_j) dx = 0 \) then \(\int_{\Omega} u_i dx = \bar{u}_i |\Omega_1| \), and so \(\bar{u}_i = \frac{1}{|\Omega_1|} \int_{\Omega} u_i dx \).

Now we expansion \((\ast) \) as \(x \to x_j \) for each \(j = 1, \ldots, N \) to obtain
\[U_i \sim u_{ip} (x_j) - 4\pi \mu \left(\sum_{i \neq j}^{N} C_i G(x_j; x_i) + C_j \left(\frac{1}{4\pi |x - x_j|} + R_j \right) \right) + \bar{u}_i. \]

We write \(U_i \sim B_j + \bar{u}_j - \frac{\mu}{|x - x_j|} \quad \text{as } x \to x_j \).
WHERE \[B_j = U_{j \rho} (x_j) - 4 \pi \mu \left(C_j R_j + \sum_{i \neq j}^N C_i G(x_j; x_i) \right) \]

THEN THE MATCHING CONDITION IS
\[\frac{U}{\varepsilon} + U_1 + e U_2 + \cdots \sim \frac{V_0}{\varepsilon} + V_1 + \cdots \]

WRITING THIS OUT WE GET
\[\frac{U}{\varepsilon} + \bar{U}_1 + B_j - \frac{U}{\varepsilon} \frac{C_j}{|x - x_j|} + e U_2 \sim \frac{U}{\varepsilon} \left(1 - \frac{C_j}{|x - x_j|} \right) + V_1 \]

THIS IMPLIES THAT \(V_1 \) SATISFIES, FOR EACH \(j = 1, \ldots, N \),
\[\Delta_y V_1 = 0, \quad |y| \geq \Gamma_j \]
\[V_1 = d_j, \quad |y| = \Gamma_j \]
\[V_1 \sim \bar{U}_1 + B_j \quad A_j, \quad |y| \to \infty \]

THEN WE HAVE
\[V_1 = (\bar{U}_1 + B_j) - \left[(\bar{U}_1 + B_j) - d_j \right] C_j \frac{1}{|y|} \]

WHERE
\[\Delta_y V_c = 0, \quad |y| \geq \Gamma_j \]
\[V_c = 1, \quad |y| = \Gamma_j \]
\[V_c \sim \frac{C_j}{|y|} \quad A_j, \quad |y| \to \infty \]

THEREFORE,
\[V_1 \sim (\bar{U}_1 + B_j) - \left[(\bar{U}_1 + B_j) - d_j \right] \frac{C_j}{|y|} \quad \text{as} \quad |y| \to \infty \]

This implies that \(U_2 \) SATISFIES
\[\Delta U_2 = 0 \quad \text{in} \quad \Omega \setminus \{x_1, \ldots, x_N\} \]
\[\partial_n U_2 = 0 \quad \text{on} \quad \partial \Omega \]
\[U_2 \sim \left[d_j - (\bar{U}_1 + B_j) \right] C_j \frac{1}{|x - x_j|} \quad A_j, \quad x \to x_j \]

THEREFORE,
\[\Delta U_2 = -4 \pi \sum_{j=1}^N \left[d_j - (\bar{U}_1 + B_j) \right] C_j \frac{\delta (x - x_j)}{|x - x_j|} \]
Finally, we determine \(\bar{u}_j \) by divergence theorem,

\[
\sum_{j=1}^{N} \left[d_j - \left(\bar{u}_j + B_j \right) \right] C_j = 0
\]

Thus yield \(\bar{u}_j \sum_{j=1}^{N} C_j = \sum_{j=1}^{N} \left(d_j - B_j \right) C_j \).

This yield that \(\bar{u}_j = \frac{\sum_{j=1}^{N} \left(d_j - B_j \right) C_j}{\sum_{j=1}^{N} C_j} \).

In summary, a two-term outer expansion is given by

\[
\bar{u} = \frac{\mu}{\varepsilon} + \bar{u}_j + \ldots
\]

with \(\mu = -\frac{1}{4\pi} \int_{\Omega} \frac{M(x)}{r} \frac{1}{C_j} d\mathbf{x} \).

while \(\bar{u}_j = \bar{u}_{ip}(x) + \bar{u}_j - 4\pi \mu \sum_{j=1}^{N} C_j G(x; x_j) \).

with \(\bar{u}_j \) is given above

and \(B_j = \bar{u}_{ip}(x_j) - 4\pi \mu \left(C_j R_j + \sum_{i \neq j}^{N} C_j G(x_i; x_j) \right) \).

Now consider the special case with \(M \) constant and

\(\Delta \bar{u} = M \) in \(\varepsilon < r < 2 \)

exact solution

\(\bar{u}_{ip} = 0 \) on \(r = 1 \)

\(\bar{u} = 1 \) on \(r = \varepsilon \)

Then \(j = 1, \ x_i = 0, \ C_i = 1, \ d_i = 1 \) and \(\bar{u}_{ip} = 0 \) since \(M \) constant.

Now \(\Delta \bar{G} = 0 \) in \(\Omega \setminus \{0\} \)

\(\bar{G} = 0 \) on \(r = 1 \)

\(\bar{G} \sim + \frac{1}{4\pi r} + \mathcal{R}, \ \text{as} \ r \to 0 \)

\(\int_{\Omega} \bar{G} d\mathbf{x} = 0 \)

we calculate

\(\bar{G} = D_0 + \frac{D_1}{r} + \frac{r^2}{16\pi} \).
Now \(D_0 = \frac{1}{4\pi} \), \(|\Omega| = \frac{4\pi}{3} \).

Then \(G = D_0 + \frac{1}{4\pi \Gamma} + \frac{r^2}{8\pi} \).

Notice that \(G = 0 \) on \(\Gamma = 1 \). Now \(\int_0^1 r^2 G \, dr = 0 \) so that

\[
\int_0^1 \left(D_0 r^2 + \frac{r}{4\pi} + \frac{r^4}{8\pi} \right) \, dr = 0 \rightarrow \frac{D_0}{3} + \frac{1}{8\pi} + \frac{1}{40\pi} = 0
\]

Thus,

\[
\frac{D_0}{3} + \frac{-9}{40\pi} = 0 \quad \Rightarrow \quad D_0 = -\frac{9}{20\pi}.
\]

Then \(G = -\frac{9}{20\pi} + \frac{1}{4\pi \Gamma} + \frac{r^2}{8\pi} \).

Now as \(\Gamma \to 0 \), \(G \approx \frac{1}{4\pi \Gamma} + R_1 \), with \(R_1 = -\frac{q}{20\pi} \).

Now we calculate \(J = -\frac{1}{4\pi c_1} \int_\Omega M \, dx = -\frac{M}{4\pi (l_1)} \left(\frac{4\pi}{3} \right) = -\frac{M}{3} \).

Now we calculate that

\(B_1 = -4\pi \mu c_1, R_1 = -4\pi \left(-\frac{M}{3} \right) \left(-\frac{9\pi}{20\pi} \right) = -\frac{3M}{5\pi} \).

Then \(U_1 = (d_1 - B_1) c_1 = (1 + \frac{3M}{5}) \).

Then \(U = U_{JP} + U_1 - 4\pi \mu c_1 G = 1 + \frac{3M}{5} - 4\pi \left(-\frac{M}{3} \right) \left[-\frac{9}{20\pi} + \frac{1}{4\pi \Gamma} + \frac{r^2}{8\pi} \right] \)

\(U_1 = 1 + \frac{4\pi}{3} M \left(\frac{1}{4\pi \Gamma} + \frac{r^2}{8\pi} \right) = 1 + \frac{M}{3\Gamma} + \frac{M r^2}{6} \).

Therefore to two terms \(U \sim \frac{M}{\varepsilon} + U_1 + ... \)

with \(U \sim 1 + \frac{M}{3} \left(\frac{1}{r} - \frac{1}{\varepsilon} \right) + \frac{M r^2}{6} \)

which agrees with the exact solution up to term of \(O(\varepsilon^3) \).