PROBLEM 1: In a 3-D domain the splitting probability $U(x)$ is defined as the probability of reaching a specific target trap Ω_{x_j} from the initial source point x before reaching any of the other surrounding traps Ω_{x_j} for $j = 2, \ldots, N$. It is well-known that $U(x)$ satisfies

$$
\begin{align*}
\Delta U &= 0, \quad x \in \Omega \\
\sum_{j=1}^{N} \mathcal{P}_{x_j} &\subset \Omega_{x_j} \\
\frac{\partial U}{\partial n} &= 0, \quad x \text{ on } \partial \Omega \\
U &= 1, \quad x \text{ on } \partial \Omega_{x_j} \\
U &= 0, \quad x \text{ on } \cup_{j=2}^{N} \partial \Omega_{x_j},
\end{align*}
$$

Assume for simplicity that Ω_{x_j} is a small sphere of radius ϵa_j centered at x_j in Ω where $a_j > 0$.

(i) Show for $\epsilon \rightarrow 0$ that a two term expansion for $U(x)$ in the outer region has the form

$$
U \sim \frac{C_i}{N \epsilon} + 4\pi \epsilon C_i \left[G(x; x_1) - \frac{1}{N \epsilon} \sum_{j=1}^{N} C_j G(x; x_j) \right] + \epsilon^2 C_i + O(\epsilon^2),
$$

where $C = \frac{1}{N} (C_1 + \cdots + C_N)$ and C_j is capacitance of j^{th} trap, while $G(x; x_s)$ is the unique Neumann g-function satisfying

$$
\Delta g = \delta(x - x_s), \quad x \in \Omega \\
\frac{\partial g}{\partial n} = 0, \quad x \text{ on } \partial \Omega \\
g(x; x_s) = -\frac{1}{4\pi |x - x_s|} + R(x_0; x_s + \Omega) \text{ at } x \rightarrow x_0,
$$

(iii) Determine x_1 in (i) explicitly by going to one higher order in the expansion.
Problem 2: Consider two rooms Ω_1 and Ω_2 in 3-D, modeled by cubes of volume $|\Omega_1|$ and $|\Omega_2|$ attached by a narrow opening of circular shape of radius ε. The side view is

![Side view of two rooms](image)

Consider the time dependent heat equation

$$u_t = \Delta u \quad x \text{ in } \Omega_1 \cup \Omega_2$$

$$\partial_\nu u = 0 \quad \text{on } \partial \Omega_1 \cup \partial \Omega_2 \setminus \partial \Omega_\varepsilon$$

$$u(x, 0) = f(x) \quad x \text{ in } \Omega_1 \cup \Omega_2$$

where $\partial \Omega_\varepsilon = \{ (x_1, x_2, x_3) \mid x_1 = 0 \text{ and } x_2^2 + x_3^2 \leq \varepsilon^2 \}$ is the hole between the two rooms.

Find, for $\varepsilon \ll 1$, an approximation to the solution valid for $t \gg 1$ that shows how u tends to the steady-state limit.
PROBLEM 3 (THE CLAUSIUS-MOSER FORMULA)

We want to find the effective conductivity of a periodic array of spheres in the low-volume-fraction limit. The perturbed problem is

\[\nabla \cdot \left[D(y/\epsilon) \nabla u \right] = f(x) \text{ in } \mathbb{R}^N \]

where \(D(y) \) is 1-periodic with respect to the unit cell \(\Gamma \)

\[\Gamma = \left\{ (y_1, y_2, y_3) \mid -1/2 < y_j < 1/2, \ j = 1, 2, 3 \right\} \]

in the unit cell \(\Gamma \), we assume that \(D \) is a periodic function within \(\Gamma \) and \(\partial D \) on \(\partial \Gamma \).

\[D = \begin{cases}
D_1 & \text{in } \Gamma \setminus B_3 \\
D_2 & \text{in } B_3
\end{cases} \]

where \(B_3 = \left\{ y \mid |y| < \delta \right\} \) with \(0 < \delta < 1 \).

Here \(D_1 > 0, D_2 > 0 \) are constants. Across each sphere, we have \(u \) is continuous and - \(D_1 \nabla u \cdot \hat{n} \big|_{\text{out}} = D_2 \nabla u \cdot \hat{n} \big|_{\text{in}} \).

(i) For \(\epsilon \to 0 \) draw the leading order problem for \(u \) to be solved on the macroscale \(x \). Determine the "cell problem" that needs to be solved.

(ii) In the low-volume-fraction limit \(\delta \ll 1 \) solve the unit cell problem asymptotically using techniques from strong localized perturbation theory. In particular, if \(F = 4\pi \delta^3/3 \ll 1 \) is the volume fraction, show that

\[\text{Deff} = D_1 + O(F) \]

and calculate the coefficient of the \(O(F) \) term explicitly in terms of \(D_1 \) and \(D_2 \).

(Hint: Please read and study notes for 2-D problem online)