PROBLEM 1: (15 Points) For $\lambda \geq 0$, consider the following differential equation for $u(x)$:

$$u'' + \lambda u = f(x), \quad 0 < x < L; \quad u'(0) = 0, \quad u'(L) = 0.$$

(i) For what values of λ is a condition on $f(x)$ required for there to be a solution? Find this solvability condition.

(ii) For λ not one of the values in (i), calculate explicitly the required Green’s function and find an integral representation for the solution $u(x)$.

(iii) What is the problem for the generalized Green’s function when $\lambda = 0$? (do not solve for it).

PROBLEM 2: (15 Points) Suppose that in a 3-D half-space $u(x, y, z)$ satisfies

$$u_{xx} + u_{yy} + u_{zz} = 0, \quad -\infty < x < \infty, \quad -\infty < y < \infty, \quad z > 0,$$

$$u_z(x, y, 0) = f(x, y); \quad u \sim C \frac{1}{|x|} \text{ as } |x| = (x^2 + y^2 + z^2)^{1/2} \rightarrow \infty.$$

Assume that $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dx \, dy$ is finite.

(i) Find the Green’s function relevant to this problem.

(ii) Find an explicit representation for u in terms of this Green’s function.

(iii) For $|x| = (x^2 + y^2 + z^2)^{1/2} \rightarrow \infty$, find an approximation for u in the form

$$u \sim \frac{C}{|x|} + \frac{p \cdot x}{|x|^3} + \cdots, \quad \text{as } |x| \rightarrow \infty,$$

where the scalar C and the vector p are to be found.
PROBLEM 3: (10 Points) Between two infinite parallel plates in 3-D separated by a distance \(\pi \) suppose that \(u(x, y, z) \) satisfies
\[
u_{xx} + u_{yy} + u_{zz} = \delta(x - x_0)\delta(y - y_0)\delta(z - z_0), \quad \text{in} \quad 0 \leq z \leq \pi, \quad -\infty < x < \infty, \quad -\infty < y < \infty,
\]
\[
u(x, y, 0) = 0, \quad u(x, y, \pi) = 0; \quad u \to 0 \quad \text{as} \quad (x^2 + y^2 + z^2)^{1/2} \to \infty,
\]
where \(0 < z_0 < \pi \).

(i) Write an eigenfunction representation for \(u \) in terms of the eigenfunctions in the \(z \)-direction, and derive PDE problems for the coefficients \(c_n(x, y) \) with \(n \geq 1 \) in this expansion.

(ii) For \(n \geq 1 \), determine the \(c_n(x, y) \) explicitly in (i) in terms of an appropriate special function.

PROBLEM 4: (10 Points) (Quick Response Questions):

(i) Write \(\delta(x^2 - 5x + 4) \) as a linear combination of two Delta functions \(\sum_{i=1}^2 a_i \delta(x - x_i) \) for some \(a_i \) and \(x_i \) to be found.

(ii) Interpret the limit of the delta sequence
\[
\lim_{\sigma \to 0} \frac{\sigma}{(x - 1)^2 + \sigma^2}
\]
as a generalized function. (Hint: \(d/dz \arctan(z) = 1/(z^2 + 1) \))

(iii) By multiplying both sides by some appropriate function \(p(r) \) put the following problem for \(u(r) \) in self-adjoint form
\[
u'' + \frac{2}{r}u' - u = f(r), \quad \text{in} \quad 1 < r < 2; \quad u(1) = 0, \quad u(2) = 0.
\]

(iv) Let \(\mathbf{p} \) be a constant vector in 2-D, and consider the 2-D Laplacian with a dipole singularity:
\[
\Delta u = \mathbf{p} \cdot \nabla_x \delta(x - \mathbf{x}_0).
\]

Here \(\nabla_x \) is the gradient operator acting on \(x \) and \(\cdot \) is the dot product. Find an explicit expression for the singular behavior of \(u \) as \(x \to \mathbf{x}_0 \).