For Problems 1, 2, and 3 below, find whether a solvability condition is needed for $f(x)$, and if so find this solvability condition. Assuming that this condition is satisfied, calculate the modified Green's function and find an integral representation for the solution.

Problem 1

$L u = u'' + u = f(x)$, on $0 < x < 1$

With $u(0) = 0$, $u'(1) = u(1)$.

Problem 2

$L u = u'' + \pi^2 u = f(x)$, on $0 < x < 1$

With $u(0) = 0$, $u(1) = 0$.

Problem 3

$L u = [(1 - x^2) u']' = f(x)$, on $-1 < x < 1$

With $u(-1)$ and $u(1)$ bounded.

Problem 4

Consider the non-self-adjoint problem

$L u = u'' + 2u' + u = f(x)$, on $0 < x < 1$ \(\forall \)

With $u(0) = 0$ and $u(1) = 1$.

Find an integral representation for the solution to \(\forall \) in two ways.

(i) by finding the Green's function for L.

(ii) by first multiplying \(\forall \) by some function to make the resulting problem self-adjoint, then find the Green's function for the new problem.

Problem 5

Let $k > 0$ be arbitrary and consider the non-self-adjoint problem

$L u = u'' + u^2 = f(x)$, on $0 < x < 1$

With $u(0) = u(1)$ and $u'(0) = -u'(1)$.

Find a condition on $f(x)$ for this problem to have a solution.

(Hint: you will need to find a nontrivial solution to the adjoint problem).