LAPLACE AND POISSON'S EQUATION

LAPLACE AND POISSON'S EQUATION Arises AS THE STEADY-STATE OF

\[u_t = \Delta u + F \text{ in } \Omega \]

\[\partial_\nu u + k(u - u_b) = 0 \text{ on } \partial\Omega \]

The steady-state is

\[\Delta u = -F \text{ in } \Omega \]

\[\partial_\nu u + k(u - u_b) = 0 \text{ on } \partial\Omega \]

* Poisson when \(F \neq 0 \)
* Laplace when \(F = 0 \).

We now consider a circular domain, \(0 \leq \varphi \leq R, 0 \leq \varphi \leq 2\pi \) and derive Poisson's integral formula for the solution to

\[\Delta u = u_{rr} + \frac{1}{r} u_r + \frac{1}{r^2} u_{\varphi \varphi} = 0 \quad 0 \leq r \leq R, 0 \leq \varphi \leq 2\pi \]

\[u(r, \varphi) = f(\varphi), \text{ } u \text{ bounded } r \to 0 \]

\(u, u_\varphi \) are \(2\pi \) periodic in \(\varphi \).

We separate variables, \(u(r, \varphi) = R(r) \Phi(\varphi) \) to obtain

\[(r'' + \frac{1}{r} r') \Phi + \frac{1}{r^2} R \Phi'' = 0 \implies \frac{r^2 R'' + r R'}{R} = -\frac{\Phi''}{\Phi} = \lambda \]

Then \(\Phi'' + \lambda \Phi = 0 \) with \(\Phi(0) = \Phi(2\pi) \) and \(\Phi'(0) = \Phi'(2\pi) \).

Then \(\lambda = \pi^2 \) and \(\Phi_n(\varphi) = \begin{cases} A_n \cos n\varphi + B_n \sin n\varphi, & n \geq 1 \\ A_0, & n = 0 \end{cases} \]

Then \(r^2 R'' + r R' + \pi^2 R = 0 \) let \(R = r^B \to B(8-1) + B + \pi^2 = 0 \)

so that \(B = 2 \pi \). We calculate

\[R_n(r) = \begin{cases} C_n r^n + d_n r^{-n}, & n \geq 1 \\ c_0 + d_0 \log r, & n = 0 \end{cases} \]
For boundedness we take \(d_0 = d_n = 0\) for \(n = 1, 2, \ldots\).

Then set \(c_0 = c_n = 1\) \(\forall n\), so that \(R_0 = 1\) and \(R_n = R^n\), \(n = 1, 2, \ldots\)

By superposition \(U_n = (A_n \cos(n \varphi) + B_n \sin(n \varphi)) R^n\) is a solution for \(n = 1, 2, \ldots\)

And \(U_0 = A_0\) is a solution.

So \((\ast)\) \(U(\varphi, \varphi) = A_0 + \sum_{n=1}^{\infty} (A_n \cos(n \varphi) + B_n \sin(n \varphi)) R^n\)

Then \(F(\varphi) = A_0 + \sum_{n=1}^{\infty} (A_n \cos(n \varphi) + B_n \sin(n \varphi)) R^n\)

We integrate \(\int_0^{2\pi} F(\varphi) \, d\varphi = A_0 \int_0^{2\pi} \) \(\rightarrow A_0 = \frac{1}{2\pi} \int_0^{2\pi} F(\varphi) \, d\varphi\).

Now we multiply by \(\cos(m \varphi)\) and integrate \(\int_0^{2\pi} \) gives

\[A_n R^n \int_0^{2\pi} \cos^2(n \varphi) \, d\varphi = \int_0^{2\pi} F(\varphi) \cos(n \varphi) \, d\varphi \rightarrow A_n = \frac{1}{\frac{1}{R^n} \int_0^{2\pi} F(\varphi) \cos(n \varphi) \, d\varphi.\]

Similarly, \(B_n = \frac{1}{\frac{1}{R^n} \int_0^{2\pi} F(\varphi) \sin(n \varphi) \, d\varphi.\)

Replace \(\varphi \rightarrow \omega\) in integrals and substitute in \((\ast)\)

This gives:

\[U(\varphi, \omega) = \frac{1}{2\pi} \int_0^{2\pi} F(\omega) \, d\omega + \sum_{n=1}^{\infty} \frac{1}{R^n} \int_0^{2\pi} F(\omega) \left[\cos(n \varphi) \cos(n \omega) \right.\]

\(\left. + \sin(n \varphi) \sin(n \omega) \right] \, d\omega\)

This can be written as

\[U(\varphi, \omega) = \frac{1}{2\pi} \int_0^{2\pi} F(\omega) \left[1 + 2 \sum_{n=1}^{\infty} \left(\frac{R}{R} \right)^n \cos(n(\omega - \varphi)) \right] \, d\omega,\]

Now define \(Z = \frac{R}{R} e^{i n(\omega - \varphi)}\) with \(|Z| < 1\) when \(\varphi < R\).
Now we obtain:

\[
1 + Z + Z^2 + \ldots = \frac{1}{1-Z} \quad \Rightarrow \quad Z + Z^2 + \ldots = \frac{1}{1-Z} - 1.
\]

\[
1 + 2 \sum_{n=1}^{\infty} \left(\frac{r}{R} \right)^n \cos(n(w-\phi)) = 1 + 2 \text{RE} \left(\sum_{n=1}^{\infty} Z^n \right) = 1 + 2 \left(\frac{1}{1-Z} - 1 \right)
\]

\[
= 1 + \frac{2Z}{1-Z} = \frac{1+Z}{1-Z} = \frac{(1+Z)(1-Z)}{|1-Z|^2}
\]

\[
= 1 - |Z|^2 + (Z-\bar{Z}) \frac{1-|Z|^2}{|1-Z|^2}.
\]

Then

\[
1 + 2 \text{RE} \left(\sum_{n=1}^{\infty} Z^n \right) = \text{RE} \left(1 + 2 \sum_{n=1}^{\infty} Z^n \right) = \text{RE} \left(\frac{1-|Z|^2 + Z - \bar{Z}}{1-|Z|^2} \right) = \frac{1-|Z|^2}{|1-Z|^2}
\]

\[
= \frac{1 - \frac{r^2}{R^2}}{\left(1 - \frac{r}{R} \cos(w-\phi) \right)^2 + \frac{r^2}{R^2} \sin^2(w-\phi)}
\]

\[
= \frac{1 - \frac{r^2}{R^2}}{1 + \frac{r^2}{R^2} - \frac{2r}{R} \cos(w-\phi)}
\]

Then

\[
1 + 2 \sum_{n=1}^{\infty} \left(\frac{r}{R} \right)^n \cos(n(w-\phi)) = \frac{R^2 - r^2}{R^2 + r^2 - 2rR \cos(w-\phi)}
\]

This yields that

Poisson's integral formula

\[
U(r,\phi) = \frac{1}{2\pi} \int_0^{2\pi} f(\omega) \left(\frac{R^2 - r^2}{R^2 + r^2 - 2rR \cos(w-\phi)} \right) d\omega.
\]

Remark (i): \(U \big|_{r=0} = \frac{1}{2\pi} \int_0^{2\pi} f(\omega) \, d\omega \) is the temperature at center of disc is the average of the temperature over the entire boundary of the disc.

\[
\min_{\phi} f(\phi) = f_{\text{MIN}} \leq U \big|_{r=0} \leq f_{\text{MAX}} \left(\frac{R^2 - r^2}{R^2 + r^2 - 2rR \cos(w-\phi)} \right)
\]
\[(ii) \lim_{r \to R^-} \frac{1}{2\pi} \left(\frac{R^2 - r^2}{R^2 + r^2 - 2r R \cos(\omega - \phi)} \right) = \delta(\omega - \phi) \text{ so } u(r, \phi) = \int_0^{2\pi} F(w) \delta(\omega - \phi) \, dw \]

\[\text{gives } u(R, \phi) = F(\phi).\]

Max-Min Principle

Consider \(\Delta u = 0 \) in \(\Omega \) and \(u = f \) on \(\partial \Omega \) with \(\Omega \) being a bounded two-dimensional domain. Then

\[\min f \leq u \leq \max f.\]

Proof Suppose, by contradiction, that \(u \) achieves its maximum at some point \(x_0 \) in \(\Omega \). Let \(R \) be any value so that the disc centered at \(x_0 \) is strictly inside \(\Omega \).

Then by Poisson's integral formula

\[u(r, \phi) = \frac{1}{2\pi} \int_0^{2\pi} F(w) \left(\frac{R^2 - r^2}{R^2 + r^2 - 2r R \cos(\omega - \phi)} \right) \, dw\]

Then with \(u(x_0) = u(0, \phi) \) we obtain

\[u(x_0) = \frac{1}{2\pi} \int_0^{2\pi} u(r, \phi) \, d\phi\]

so

\[\min_{r=R} u \leq u(x_0) \leq \max_{r=R} u\]

This violates the assumption that \(u \) attains its maximum at \(x = x_0 \) unless of course \(u \) is constant everywhere in \(\Omega \).
EXAMPLE

\[u_{xx} + u_{yy} = 0 \quad \text{in} \quad 0 < x < \infty, \quad 0 < y < 1 \]
\[u(x,0) = u_x(x,1) = 0, \quad u(0,y) = 1 - y, \quad u \to 0 \quad \text{as} \quad x \to \infty \]

We separate variables to obtain \(u = X \, Y \) so
\[\frac{X''}{X} = \frac{Y''}{Y} = -\lambda \]

Then \(\lambda \gamma'' + \lambda \gamma = 0, \quad 0 < y < 1 \)
\(\gamma(0) = \gamma(1) = 0 \)
\(\gamma = \sin(\pi y) \)
\(\lambda = \pi^2 \)

Then \(\frac{X''}{X} = -\pi^2 \) so \(X = e^{-\pi^2 x} \) bounded as \(x \to \infty \).

This yields that
\[u(x,y) = \sum_{n=1}^{\infty} b_n e^{-\pi^2 n x} \sin(\pi n y) \]

Now
\[u(0,y) = 1 - y = \sum_{n=1}^{\infty} b_n \sin(\pi n y) \]
\[b_n = 2 \int_0^1 (1 - y) \sin(\pi n y) \, dy \]

If we calculate
\[b_n = \frac{2}{\pi n} \]
\(n = 1, 2, 3, \ldots \)

This yields
\[u(x,y) = \sum_{n=1}^{\infty} \frac{2}{\pi n} e^{-\pi^2 n x} \sin(\pi n y) \]

We let \(z = e^{-\pi x + i\pi y} \) so
\[u(x,y) = \frac{2}{\pi} \sum_{n=1}^{\infty} \text{IM} \left(\frac{z^n}{n} \right) = \frac{2}{\pi} \text{IM} \left(\sum_{n=1}^{\infty} \frac{z^n}{n} \right) \]

Now
\[z + \frac{z^2}{2} + \frac{z^3}{3} + \ldots = \sum_{n=1}^{\infty} \frac{z^n}{n} = -\log(1 - z) \]

Thus
\[u(x,y) = -\frac{2}{\pi} \text{IM} \left[\log(1 - z) \right] = -\text{IM} \left[\frac{2}{\pi} \log(1 - z - i\,\phi) \right] \quad (\phi = \tan^{-1} \left(\frac{\text{IM}(1 - z)}{\text{RE}(1 - z)} \right)) \]

\[1 - z = 1 - e^{-\pi x} \cos(\pi y) - i \, e^{-\pi x} \sin(\pi y) \]
\[\text{RE}(1 - z) = 1 - e^{-\pi x} \cos(\pi y), \quad \text{IM}(1 - z) = -e^{-\pi x} \sin(\pi y). \]
\[Q = \tan^{-1}\left[\frac{e^{-\pi x} \sin(\pi y)}{1 - e^{-\pi x} \cos(\pi y)} \right] = -\tan^{-1}\left(\frac{\sin(\pi y)}{e^{\pi x} - \cos(\pi y)} \right). \]

This yields that
\[U(x, y) = \frac{2}{\pi} \tan^{-1}\left(\frac{\sin(\pi y)}{e^{\pi x} - \cos(\pi y)} \right). \]

Notice that there is a discontinuity in the boundary data near \(x = 0, y = 0 \).

Then \(\sin(\pi y) \approx \pi y \)
\[e^{\pi x} - \cos(\pi y) \approx 1 + \pi x - \left[1 - \left(\frac{\pi y}{2} \right)^2 \right] \approx \pi x. \]

This yields near \(x \approx 0 \) and \(y \approx 0 \) that
\[U(x, y) \approx \frac{2}{\pi} \tan^{-1}\left(\frac{Y}{X} \right) = \frac{2}{\pi} \omega \]

when \(\omega = 0 \rightarrow U = 0 \)
\(\omega = \frac{\pi}{2} \rightarrow U = 1 \)

Now near the corner,
\[U_{x} \approx \frac{2}{\pi} \frac{-Y/X^2}{1 + Y^2/X^2} \approx -\frac{2}{\pi} \frac{Y}{X^2 + Y^2} \]
which looks like \[U_{x} \approx -\frac{2}{\pi} \left(\frac{\sin Q}{\Gamma} \right) \]

Similarly,
\[U_{y} \approx \frac{2}{\pi} \left(\frac{\cos Q}{\Gamma} \right) \]

and so the derivatives blow up \(U(0, 0) \rightarrow (0, 0) \).
Suppose that we want to solve

\[\Delta u = f \]

in the domain as shown below with \(u = 0 \) on all sides.

We want to see what is the behavior of the solution near the corners at points A and B.

We zoom in a neighborhood near A and introduce a local coordinate system near A.

Near A we introduce polar coordinates \(\Gamma \) and \(\theta \) to get

\[\Gamma_{\Gamma\Gamma} + \frac{1}{\Gamma} \Gamma_{\Gamma} + \frac{1}{\Gamma^2} \Gamma_{\theta\theta} = F(\Gamma, \theta), \quad \Gamma = 0 \to \text{point A} \]

We then let \(\Gamma = \varepsilon p \) where \(\varepsilon \) is small to localize the region near A. Then \(\Gamma_{\Gamma} = \frac{1}{\varepsilon} \Gamma_{p} \), \(\Gamma_{\Gamma\Gamma} = \frac{1}{\varepsilon^2} \Gamma_{pp} \)

and so

\[\frac{1}{\varepsilon^2} (\Gamma_{pp} + \frac{1}{p} \Gamma_{p} + \frac{1}{p^2} \Gamma_{\theta\theta}) = F(\varepsilon p, \theta). \]

So if \(F \) is bounded as \(\varepsilon \to 0 \) then in a small neighborhood of point A we must solve

\[\begin{align*}
\Gamma_{pp} + \frac{1}{p} \Gamma_{p} + \frac{1}{p^2} \Gamma_{\theta\theta} &= 0 \\
\Gamma = 0 \text{ on } \theta = 0 \\
\Gamma = 0 \text{ on } \theta = B
\end{align*} \]

We separate variables \(\Gamma = P(\rho) \Phi(\theta) \)

\[\frac{\rho^2 (\rho'' + \frac{1}{\rho} \rho')}{\rho} = -\frac{\Phi''}{\Phi} = \lambda \]
This yields that
\[\Phi' + A \Phi = 0 \quad \rightarrow \quad \Phi = \sin(\sqrt{A} \varphi) \quad \text{so} \quad \sqrt{A} B = \pi \]
\[\Phi(0) = \Phi(B) = 0 \]

or \(A = \frac{\pi^2}{B^2} \) is smallest \(A \).

Then \(p^2 \Phi'' + p \Phi' - \frac{\pi^2}{B^2} \Phi = 0 \) so \(\Phi = p^{\pi/B} \) is bounded solution.

Therefore near the corner we have
\[U(p, \varphi) \approx C p^{\pi/B} \sin\left(\frac{\pi \varphi}{B}\right) \quad \text{for some} \quad C. \]

We calculate the electric field
\[\nabla U \approx \left(\frac{\partial U}{\partial p}, \frac{1}{p} \frac{\partial U}{\partial \varphi} \right) = C \left(\frac{\pi}{B} p^{\pi/B-1} \sin\left(\frac{\pi \varphi}{B}\right), \frac{\pi}{B} p^{\pi/B-1} \cos\left(\frac{\pi \varphi}{B}\right) \right) \]

This yields
\[\nabla U \approx C \frac{\pi}{B} p^{\pi/B-1} \left(\sin\left(\frac{\pi \varphi}{B}\right), \cos\left(\frac{\pi \varphi}{B}\right) \right) \]

We consider a few cases:

- \(B = \pi/2 \)
\[\rightarrow \nabla U = O(p) \rightarrow \text{does not blow up as} \quad p \to 0. \]

- \(B = \pi \)
\[\rightarrow \nabla U = O(1) \rightarrow \text{no blow-up as} \quad p \to 0. \]

- \(B = 3\pi/2 \)
\[\rightarrow \nabla U = O(p^{-1/2}) \rightarrow \text{blow up as} \quad p \to 0. \]

- \(B = 2\pi \)
\[\rightarrow \nabla U = O(p^{-1/2}) \rightarrow \text{blow up as} \quad p \to 0. \]

This last example is a "lightning rod" that can store lots of charge at tip.
We want to prove that there is a unique solution to
\[\Delta u = F \text{ in } \Omega \]
\[\partial_\nu u + \kappa (u-g) = 0 \text{ on } \partial \Omega \] with \(\kappa > 0 \) and constant.

Here \(\Omega \) is an arbitrary bounded domain.

Suppose that \(u_1, u_2 \) are two solutions and let \(v = u_1 - u_2 \).

Then \(v \) satisfies
\[\Delta v = 0 \text{ in } \Omega \]
\[\partial_\nu v + \kappa v = 0 \text{ on } \partial \Omega, \kappa > 0. \]

We want to prove that \(v \equiv 0 \text{ in } \Omega \) so that \(u_1 \equiv u_2 \text{ in } \Omega \).

We recall a vector identity
\[\nabla \cdot [\mathbf{F} \cdot \mathbf{\phi}] = \mathbf{\phi} \cdot (\partial_\nu \mathbf{F} + \mathbf{F} \cdot \nabla \mathbf{\phi}) \]
so that
\[\nabla \cdot [\nabla v] = \nabla \cdot \nabla v + \nabla \Delta v = |\nabla v|^2 + \nabla \Delta v. \]

Then
\[0 = \int \nabla \Delta v \, dx = \int \nabla \cdot [\nabla v] \, dx = \int \nabla \cdot [\nabla v] \, dx = \int |\nabla v|^2 \, dx \]

Now using divergence theorem,
\[\int \nabla \cdot [\nabla v] \, \hat{n} \, ds = \int |\nabla v|^2 \, dx \]

But \(\nabla v \cdot \hat{n} = \partial_\nu v = -\kappa v \text{ on } \partial \Omega. \) Then,
\[-\int \kappa v^2 \, ds = \int |\nabla v|^2 \, dx \rightarrow \int |\nabla v|^2 \, dx + \int \kappa v^2 \, ds = 0. \]

Since \(\kappa > 0 \) this implies that \(v \equiv 0 \text{ in } \Omega \) so \(u_1 \equiv u_2. \)

If \(\kappa = 0 \) (no flux) then \(v \) = constant in \(\Omega \) and so any two solutions differ by a constant.
UNBOUNDED REGIONS - UNIQUENESS THEOREMS

Consider \(\Omega \) to be a domain in \(\mathbb{R}^3 \) with
\[
\begin{align*}
\Delta u &= 0 \quad \text{outside } \Omega \\
u &= 0 \quad \text{on } \partial \Omega
\end{align*}
\]

and let us impose \(u \) is bounded as \(\gamma = \|x\| \to \infty \).

Does this mean that \(u \equiv 0 \) at each \(x \) outside \(\Omega \)?

No! Let \(\Omega \) be a sphere of radius 1 so that
\[
\begin{align*}
u_{rr} + \frac{2}{r} u_r &= 0 \quad \text{with } \gamma > 1 \\
u &= 0 \quad \text{on } \gamma = 1 \\
u \text{ bounded as } \gamma \to \infty
\end{align*}
\]

Then this problem has an infinite number of solutions given by
\[
u = A \left(\frac{1}{\gamma} - 1/\gamma \right)
\]
for any \(A \).

In order to get the unique solution \(u = 0 \), we must impose the stronger condition that
\[
u = 0 \left(\frac{1}{\gamma} \right) \quad \text{as } \gamma \to \infty
\]

i.e., \(u \to 0 \) as \(\gamma \to \infty \) like \(u = C/\gamma \).

To see that this condition is sufficient to guarantee that \(u \equiv 0 \), we "solve" the following problem in the domain where \(\Omega \) is surrounded by a large sphere of radius \(R \).
Let \(S_R = \{ x \in R / \Omega \} \)
region outside \(\Omega \) but inside sphere.

Then recall
\[
\nabla \Delta u = \nabla \cdot (\nabla u) = \nabla \cdot [\nabla u \nabla] - |\nabla u|^2.
\]

Thus
\[
0 = \int_{S_R} u \Delta u \, d\mathbf{x} = \int_{S_R} \nabla \cdot [\nabla u \nabla] \, d\mathbf{x} - \int_{S_R} |\nabla u|^2 \, d\mathbf{x}.
\]

Now use divergence theorem
\[
\int_{\partial S_R} u \nabla u \cdot \mathbf{n}_1 \, d\mathbf{s} + \int_{\partial S_R} u \nabla u \cdot \mathbf{n}_2 \, d\mathbf{s} = \int_{S_R} |\nabla u|^2 \, d\mathbf{x}
\]

But \(u = 0 \) on \(\partial \Omega \) and \(\partial S_R \) is the boundary of a sphere of radius \(R \).

\[
\Rightarrow - \int_0^{2\pi} \int_0^\pi \frac{u}{\partial \mathbf{r}} \bigg|_{\mathbf{r} = R} \ R^2 \sin \phi \, d\phi \, d\theta = \int_{S_R} |\nabla u|^2 \, d\mathbf{x}
\]

Now if we can show that \(\text{LHS} \to 0 \) as \(R \to \infty \)

then \(|\nabla u|^2 \, d\mathbf{x} = 0 \) outside \(\Omega \)

\(\Rightarrow u = \text{constant} \) and since \(u = 0 \) on \(\partial \Omega \) \(\Rightarrow u \equiv 0 \).

So we need \(\frac{\partial u}{\partial \mathbf{r}} \big|_{\mathbf{r} = R} \leq \frac{1}{R^{2+\delta}} \) for any \(\delta > 0 \).

This is clearly satisfied if \(u \equiv \frac{c}{\mathbf{r}} \) as \(\mathbf{r} \to \infty \)

for then \(\frac{\partial u}{\partial \mathbf{r}} \big|_{\mathbf{r} = R} = -\frac{c^2}{R^3} \) with \(\delta = 1 \).
Therefore in \(\mathbb{R}^3 \) the following problem has a unique solution:

\[
\begin{align*}
 \Delta u &= 0 \quad \text{outside } \Omega \\
 u &= 1 \quad \text{on } \partial \Omega \\
 u &\approx c' / r, \quad r = |x| \to \infty
\end{align*}
\]

The constant \(c \) is called the "capacitance" of the "body" \(\Omega \). It measures how much charge can be stored on the surface of \(\Omega \) (hint: use the divergence theorem).

I Ill-posed problem

Consider the following problem where we give both \(u \) and the flux \(u_y \) at \(y = 0 \) for

\[
\begin{align*}
 u_{xx} + u_{yy} &= 0, \quad -\infty < x < \infty, \quad y > 0 \\
 u(x, 0) &= 0, \quad u_y(x, 0) = \frac{1}{K^2} \sin (Kx)
\end{align*}
\]

If \(K \gg 1 \) is large then \(|u_y| \leq \frac{1}{K^2} \to 0 \) but \(u_y \) highly oscillatory so that

\[
\begin{align*}
 u_y(x, 0) &\to 0(1/K) \\
 \quad &\rightarrow 0(1/K^2) \\
\end{align*}
\]

The exact solution is

\[
\begin{align*}
 u &= f(y) \sin (Kx) \quad \to \quad f'' - K^2 f = 0
\end{align*}
\]

with \(f(0) = 0 \) and \(f'(0) = 1/K^2 \). The solution is

\[
\begin{align*}
 f(y) &= \frac{1}{K^3} \sinh (Ky) \\
 u(x, y) &= \frac{1}{K^3} \sin (Kx) \sinh (Ky)
\end{align*}
\]

and so

\[
\begin{align*}
 |u| &\leq \frac{c}{K^3}
\end{align*}
\]

Notice that for each fixed \(y > 0 \) we get that \(|u| \leq \frac{c}{K^3} \), which has unbounded growth for high frequency \(K \to \infty \).

The solution does not have continuous dependence on data \(\to \text{ill-posed} \).
WE CONSIDER THE FOLLOWING PDE:

\[u_t = \nabla \cdot (p(x) \nabla u) - q(x) u - f \text{ in } \Omega \]
\[\partial_n u + k(u - g) = 0 \text{ on } \partial \Omega \]
\[u(x, 0) = u_0(x). \]

WE ASSUME THAT \(p(x) > 0, \ q(x) > 0 \) AND \(k > 0 \) FOR \(x \in \Omega \).

NOW SHOW THERE IS A UNIQUE SOLUTION.

LET \(u_1, u_2 \) BE TWO SOLUTIONS AND DEFINE \(\psi = u_1 - u_2 \).

WE WANT TO SHOW THAT \(\psi \equiv 0 \) IN \(\Omega \) AND FOR \(t > 0 \).

BY SUBTRACTION, WE OBTAIN THAT

\[\psi_t = \nabla \cdot (p(x) \nabla \psi) - q \psi \text{ in } \Omega \]
\[\partial_n \psi + k \psi = 0 \text{ on } \partial \Omega \]
\[\psi = 0 \text{ at } t = 0. \]

WE WANT TO SHOW \(\psi \equiv 0 \). WE MULTIPLY BY \(\psi \) AND INTEGRATE OVER \(\Omega \) TO OBTAIN:

\(\psi \psi_t = \psi \nabla \cdot (p(x) \nabla \psi) - q \psi^2. \)

THEN,

\[\frac{1}{2} \frac{d}{dt} \int \Omega \psi^2 \, dx = \int \Omega \nabla \cdot (p(x) \nabla \psi) \, dx - \int \Omega q \psi^2 \, dx. \]

NOW

\(\nabla \cdot (p \psi \nabla \psi) = \psi \nabla \cdot (p \nabla \psi) + p \nabla \psi \cdot \nabla \psi \)

THIS GIVES

\[\frac{d}{dt} \left(\frac{1}{2} \int \Omega \psi^2 \, dx \right) = \int \Omega \nabla \cdot (p \psi \nabla \psi) - p |\nabla \psi|^2 \, dx - \int \Omega q \psi^2 \, dx. \]
We use the divergence theorem next to obtain,

\[\frac{1}{2} \frac{d}{dt} \int_{\Omega} \nabla^2 \, dx = \int_{\partial \Omega} \mathbf{v} \cdot \mathbf{n} \, ds - \int_{\Omega} \left(p |\nabla \mathbf{v}|^2 + g \nabla \mathbf{v}^2 \right) \, dx \]

\(\tag{x} \)

\[\frac{1}{2} \frac{d}{dt} \int_{\Omega} \nabla^2 \, dx = -\int_{\partial \Omega} p \kappa \nabla \mathbf{v} \, ds - \int_{\Omega} \left(p |\nabla \mathbf{v}|^2 + g \nabla \mathbf{v}^2 \right) \, dx. \]

Now define \(E(t) = \frac{1}{2} \int_{\Omega} \nabla^2 (x,t) \, dx \).

Then \(E(t) \) is continuous, \(E(0) = 0 \) since \(\nabla (x,0) = 0 \) for \(x \in \Omega \), and \(E(t) \geq 0 \) since \(\nabla^2 \geq 0 \) in \(\Omega \).

But since \(p \geq 0, g \geq 0 \) and \(\kappa > 0 \), \(\text{(x)} \) yields \(\frac{dE}{dt} \leq 0 \).

Therefore, by calculus \(E(t) \equiv 0 \) for all \(t \).

This implies that \(\nabla = 0 \) in \(\Omega \) and for \(t > 0 \),

which yields \(u_1 = u_2 \).

Remark

(1) The condition for the existence of a solution

\[\Delta u = F \quad \text{in} \quad \Omega \]

\[\partial_{\Omega} u = g \quad \text{on} \quad \partial \Omega \]

is that \(\int_{\Omega} F \, dx = \int_{\partial \Omega} g \, ds \).

Proof: Use divergence theorem \(\int_{\Omega} \nabla \cdot (\nabla u) \, dx = \int_{\partial \Omega} \nabla u \cdot \mathbf{n} \, ds \).

Hence \(\int_{\Omega} F \, dx = \int_{\partial \Omega} \partial_{\Omega} u \, ds = \int_{\partial \Omega} g \, ds \) is needed.
Nonlinear problems can have more than one solution. For instance, consider the nonlinear problem in a disk:

\[\Delta u + Be^u = 0, \quad 0 \leq r \leq 1, \quad 0 \leq \theta \leq 2\pi \]

\[u = 0 \text{ on } \Gamma = 1, \quad u \text{ bounded as } \Gamma \to 0. \]

We look for radially symmetric solutions \(u = u(r) \) satisfying

\[u_{rr} + \frac{1}{r} u_r + Be^u = 0, \quad 0 \leq r \leq 1 \]

\[u = 0 \text{ on } r = 1, \quad u \text{ bounded as } r \to 0. \]

The solutions have the form

\[
\begin{align*}
\alpha > 0 \\
\gamma = 2 \log \left(\frac{1 + \alpha}{1 + \alpha \gamma^2} \right)
\end{align*}
\]

(We verify this below.) Notice \(u(0) = 2 \gamma \log (1 + \alpha) \) so that \(\alpha \) is a measure of the temperature at the center. Notice that \(u(0) \) is the maximum temperature.

If we plot \(\alpha \) versus \(B \), then by calculus we obtain \(\alpha \) vs. \(B \) graph.

Observe \(dB/\alpha = 0 \) at \(\alpha = 1 \).

Then \(B(\alpha) = \frac{8}{(1 + \alpha)^2} = 2 = B_c \)

- For \(0 < B < B_c = 2 \), there are two radially symmetric solutions.
- No radially symmetric solution for \(B > B_c = 2 \).
WE WRITE
\[U = -2 \log(1 + \alpha \Gamma^2) + 2 \log(1 + \alpha) \].

THEN
\[U_\Gamma = -4 \alpha \Gamma (1 + \alpha \Gamma^2)^{-1} \]
\[U_{\Gamma \Gamma} = -4 \alpha (1 + \alpha \Gamma^2)^{-1} + 8 \alpha^2 \Gamma^2 (1 + \alpha \Gamma^2)^{-2} \]

NOW
\[U_{\Gamma \Gamma} + \frac{1}{\Gamma} U_\Gamma = 8 \alpha^2 \Gamma^2 (1 + \alpha \Gamma^2)^{-2} - 8 \alpha (1 + \alpha \Gamma^2)^{-1} = 8 \alpha (1 + \alpha \Gamma^2)^{-2} \left[\alpha \Gamma^2 - (1 + \alpha \Gamma^2) \right] \]
\[\therefore U_{\Gamma \Gamma} + \frac{1}{\Gamma} U_\Gamma = -8 \alpha (1 + \alpha \Gamma^2)^{-2} \]

NOW
\[e^U = \frac{(1 + \alpha)^2}{(1 + \alpha \Gamma^2)^2} \]
\[\therefore U_{\Gamma \Gamma} + \frac{1}{\Gamma} U_\Gamma + 8 e^U \]
\[= -8 \alpha \]
\[+ \frac{B(1 + \alpha)^2}{(1 + \alpha \Gamma^2)^2} = 0 \]

THUS \[8 \alpha = 8 (1 + \alpha)^2 \] OR \[B = 8 \alpha / (1 + \alpha)^2 \].

STABILITY AND STURM-LIOUVILLE THEORY

CONSIDER
\[U_t = U_{\Gamma \Gamma} + \frac{1}{\Gamma} U_\Gamma + 8 e^U \] IN \(0 < \Gamma < 1, \ t > 0 \)
\[U(1, t) = 0, \ U \text{ BOUNDED AS } \Gamma \to 0. \]

LET \(U_S(\Gamma) \) BE STEady-STATE SOLUTION GIVEN BY
\[U_S(\Gamma) = 2 \log \left(\frac{1 + \alpha}{1 + \alpha \Gamma^2} \right), \ B = \frac{8 \alpha}{(1 + \alpha)^2} \].

IS THIS SOLUTION STABLE? IF WE START WITH INITIAL CONDITION NEAR \(U_S(\Gamma) \) DO WE REMAIN CLOSE AS \(t \to \infty \)?

TO STUDY THIS WE LINEARIZE THE PDE AROUND \(U_S(\Gamma) \). WE WRITE
\[U(\Gamma, t) = U_S(\Gamma) + \delta e^{\frac{\lambda t}{\Gamma}} \phi(\Gamma) \]
WITH \(\delta \ll 1 \) (\(\delta \) SMALL).
This yields that
\[A \exp \left(\frac{1}{\Gamma} \right) \phi = u_s'' + \frac{1}{\Gamma} u_s' + \exp \left(\frac{1}{\Gamma} \phi' \right) + B e^{u_s + \exp \left(\frac{1}{\Gamma} \phi \right)} \]
\[= u_s'' + \frac{1}{\Gamma} u_s' + \exp \left(\frac{1}{\Gamma} \phi' \right) + B e^{u_s (1 + \exp \left(\frac{1}{\Gamma} \phi \right))} \]

Upon using \(e^h \approx 1 + h + \ldots \) as \(h \to 0 \).

Then since \(u_s'' + \frac{1}{\Gamma} u_s' + B e^{u_s} = 0 \) we obtain that
\[A \phi = \phi'' + \frac{1}{\Gamma} \phi' + B e^{u_s} \phi \]

Now \(B e^{u_s} = \frac{8d}{(1 + d)^2} e^{2 \log \left(\frac{1 + d}{1 + d r^2} \right)} = \frac{8d}{(1 + d)^2 \left(1 + d r^2\right)^2} = \frac{8d}{(1 + d r^2)^2} \)

The eigenvalue problem becomes a SL problem
\[\phi'' + \frac{1}{\Gamma} \phi' + q(\Gamma) \phi = \lambda \phi \]
\[\phi(1) = 0, \ \phi(0) \text{ bounded} \]

with \(q(\Gamma) = \frac{8d}{(1 + d r^2)^2} \) an infinite number of eigenvalues \(\lambda_1, \lambda_2, \ldots \)

If one can show that any eigenvalue \(\lambda \) satisfies
\[\lambda < 0, \ \forall \lambda_1, 2, \ldots \] then we have stability of \(u_s(\Gamma) \).

It turns out to be true only for \(0 < \lambda < 1 \) (lower branch).

If \(\exists \lambda_1 > 0 \), then \(u_s(\Gamma) \) is unstable. This occurs on the high temperature branch where \(d > 1 \).
GIBBS PHENOMENA

WE CONSIDER THE FOURIER SINE SERIES OF THE FUNCTION

\[f(x) = 1, \quad 0 < x < \pi \]

THE PERIODIC ODD-EXTENSION IS

\[\frac{-\pi}{2} < x < \frac{\pi}{2} \]

NOW WE WANT TO ESTABLISH CONVERGENCE BEHAVIOR NEAR \(x = 0 \). WE WRITE

\[f(x) = \sum_{n=1}^{\infty} b_n \sin(n x) \]

NOW

\[b_n = \frac{2}{\pi} \int_{0}^{\pi} (1) \sin(n x) \, dx = \frac{2}{\pi n} \left[\sin(n x) \right]_{0}^{\pi} = \begin{cases} \frac{4}{\pi n}, & n \text{ odd} \\ 0, & n \text{ even} \end{cases} \]

THIS YIELD

\[f(x) = \sum_{n=1}^{\infty} \frac{4}{n \pi} \sin(n x) \]

THIS CAN BE WRITTEN AS

\[f(x) = \frac{4}{\pi} \sum_{m=0}^{\infty} \frac{\sin((2m+1)x)}{(2m+1)} \]

WE WRITE THE PARTIAL SUM AS

\[S_{N+1}(x) = \frac{4}{\pi} \sum_{k=0}^{N} \frac{\sin((2k+1)x)}{2k+1} = \frac{4}{\pi} \, IM \left(\sum_{k=0}^{N} \frac{e^{i(2k+1)x}}{2k+1} \right) \]

THEN

\[S_{N+1}'(x) = \frac{4}{\pi} \, IM \left(i e^{ix} \sum_{k=0}^{N} \frac{e^{i(2k+1)x}}{2k+1} \right) = \frac{4}{\pi} \, IM \left(i e^{ix} \sum_{k=0}^{N} e^{i(2k)k} \right) \]
Let \(Z = e^{2ix} \)

Then
\[
\sum_{k=0}^{N} Z^k = \frac{1-Z^{N+1}}{1-Z} = \frac{1-e^{2i(N+1)x}}{1-e^{2ix}}
\]

Then
\[
S_{N+1}'(x) = \frac{4}{\pi} \text{IM} \left(i e^{iX} \left(\frac{1-e^{2i(N+1)x}}{1-e^{2ix}} \right) \right)
\]

so
\[
S_{N+1}'(x) = \frac{4}{\pi} \text{IM} \left[\frac{i (1-e^{2i(N+1)x})}{e^{-ix}-e^{ix}} \right]
\]

so
\[
S_{N+1}'(x) = \frac{2}{\pi} \text{IM} \left[\frac{e^{2i(N+1)x} - 1}{\sin x} \right]
\]

This yields that
\[
S_{N+1}(x) = \frac{2}{\pi} \frac{\sin \left[2(N+1)x \right]}{\sin x}
\]

This can be integrated to get
\[
S_{N+1}(x) = \frac{2}{\pi} \int_{0}^{x} \frac{\sin \left[2(N+1)\xi \right]}{\sin \xi} \, d\xi \quad \text{since} \quad S_{N+1}(0) = 0.
\]

Now let \(t = 2(N+1)\xi \). Then
\[
S_{N+1} = \frac{2}{\pi} \int_{0}^{2(N+1)x} \frac{\sin t}{\sin \left[t/(2(N+1)) \right]} \frac{1}{2(N+1)} \, dt
\]

Now for \(N \gg 1 \) we use \(\sin \left[\frac{t}{2(N+1)} \right] \sim \frac{t}{2(N+1)} \).

Then, we obtain for \(N \gg 1 \)
\[
S_{N+1}(x) \approx \frac{2}{\pi} \int_{0}^{2(N+1)x} \frac{\sin t}{t} \, dt
\]
Now notice that
\[S_{N+1}(x) = \frac{4}{\pi} \left(\frac{N+1}{2N+1} \right) \sin\left(\frac{2(N+1)x}{2N+1} \right) \approx \frac{2}{\pi} \sin\left(\frac{2(N+1)x}{2N+1} \right) \]

We set \(\sin\left(\frac{2(N+1)x}{2N+1} \right) = 0 \) to obtain \(2(N+1)x = \pi \)

or \(x_{\text{max}} = \frac{\pi}{2(N+1)} \).

This yields \(S_{N+1}\left(\frac{\pi}{2(N+1)} \right) \approx \frac{2}{\pi} \int_0^{\pi/2} \frac{\sin t}{t} \, dt = \text{finite and } > 0 \) as \(N \to \infty \).

This is the finite overshoot associated with the Gibbs phenomenon. It is easy to see that \(x_{\text{max}} = \frac{\pi}{2(N+1)} \) is a maximum of \(S_{N+1}(x) \) and has alternating local minimum and maximum of \(S_{N+1}(x) \) at \(x = \frac{\pi k}{2(N+1)} \), \(k = 1, 2, 3, \ldots \).

\[S_{N+1}(x) \]

\[\text{Finite overshoot} \]

\[x_{\text{max}} = \frac{\pi}{2(N+1)} \]

Gibbs phenomena since \(f(x) = \sum_{n=1}^{\infty} q_n \sin(n \pi x) \)

with \(q_n = o\left(\frac{1}{n} \right) \) as \(n \to \infty \).

Remark (i) the same qualitative overshoot behavior occurs for Bessel expansion. For instance,
\[F(\gamma) = \sum_{K=1}^{\infty} C_K J_0(\sqrt{A_K} \gamma) \quad \text{with} \quad J_0(\sqrt{A_K}) = 0 \]

if \(F(\gamma) = 1 \), then \(C_K = \frac{1}{\Gamma} \int_0^{1/\gamma} J_0(\sqrt{A_K} \gamma) \, d\gamma \rightarrow 0 \quad \text{as} \quad K \to \infty \).
Recall that \(\hat{f}(f(x)) = \hat{F}(k) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) e^{-ikx} \, dx \) is the Fourier transform. Then \(F(x) = \int_{-\infty}^{\infty} \hat{f}(k) e^{ikx} \, dk \) is \(\hat{F}^{-1}(\hat{F}(k)) \).

The idea of a "dispersion relation" for a PDE which is linear and has constant coefficients on \(-\infty < x < \infty\) is to look for a solution of the form
\[
\phi(x, t) = e^{ikx + \sigma t}
\]

The class of PDE's are, for constants \(c_0, b_0, b_1, b_2, b_3\)
\[
\phi_{tt} + c_0 \phi_t = b_0 \phi_x + b_1 \phi_{xx} + b_2 \phi_{xxx} + b_3 \phi_{xxxx} + \ldots
\]

The relation \(\sigma = \sigma(k)\) is called the dispersion relation. It may have more than one branch when there are two or more time derivatives.

Remark that if \(\sigma(k)\) has the form as shown, then

\[
\sigma(k) \quad \begin{cases}
\sigma(k) \quad \begin{cases}
0 < k < k_c & \text{long wavelength}
\end{cases} & \text{there disturbance decay in time since } \sigma < 0 \\
k > k_c & \text{short wavelength}
\end{cases}
\]

ILL-POSED

IF \(\sigma > 0\) FOR LARGE \(k\), then the problem is ill-posed in the sense that an arbitrary small wavelength initial perturbation can grow without bound as \(k \to 0\) at each fixed \(t\).
ALTERNATIVELY IF σ IS IMAGINARY THEN THIS SIGNIFIES WAVE PROPAGATION.

(i) $u_t = Du_{xx}$ \quad \text{LET} \quad u = e^{ixx + \sigma t}$

then $\sigma = -DK^2$

\begin{align*}
\text{FOR } D > 0 & \quad \text{USUAL HEAT EQUATION, DECAY OF INITIAL WAVE WITH FASTER DECAY FOR SHORTER SPATIAL WAVELENGTH} \\
\text{FOR } D < 0 & \quad \text{BACKWARD HEAT EQUATION \rightarrow ILL-POSED.}
\end{align*}

(ii) $u_t = Du_{xxxx}$ \quad \text{LET} \quad u = e^{ixx + \sigma t}$

then $\sigma = DK^4$

\begin{align*}
\text{FOR } D > 0 & \quad \text{ILL-POSED} \\
\text{FOR } D < 0 & \quad \text{BEHAVE LIKE HEAT EQUATION.}
\end{align*}

CONSIDER THE $D < 0$ CASE AND SET $D = -1$ FOR SIMPLICITY.

THEN $u(x, t) = e^{ixx - K^4 t}$ \quad \text{IS A SOLUTION.}

A MORE GENERAL SOLUTION IS

$$u(x, t) = \int_{-\infty}^{\infty} A(k) e^{ikx - K^4 t} \, dk.$$

TO SATISFY $u(x, 0) = f(x) = \int_{-\infty}^{\infty} A(k) e^{ikx} \, dk$

THEN $A(k) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(s) e^{-iks} \, ds$.

HENCE $u(x, t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(s) \left(\int_{-\infty}^{\infty} e^{i(kx - s) - K^4 t} \, dk \right) ds$.
Let $u_t = - Du_{xx} - u_{xxxx}$, and substitute $u = e^{ikx + \sigma t}$.

We substitute to obtain $\sigma = Dk^2 - k^4$.

- For $0 < k < 1/\sqrt{D}$, long spatial wavelengths lead to $\sigma > 0$ and so they grow in time.
- For $k > 1/\sqrt{D}$, short wavelengths lead to $\sigma < 0$ and so they decay in time.

Consider the linearized KDV equation

$$u_t + u_x + u_{xxx} = 0, \quad -\infty < x < \infty, \quad t > 0$$

Then with $u(x, t) = e^{ikx + \sigma t} \rightarrow \sigma + ik + (ik)^3 = 0$.

This yields that $\sigma = -ik + ik^3$.

Or $u = e^{ikx - ikt + ik^3 t} = e^{ik(x - t + k^2 t)}$.

This is dispersion; the "speed" of individual parts of the wave depend on their local wavelength.

Now the superimposed solution is

$$u(x, t) = \int_{-\infty}^{\infty} A(k) e^{ikx - ikt + ik^3 t} \, dk.$$

We let $t = 0$ and $u(x, 0) = f(x) = \int_{-\infty}^{\infty} A(k) e^{ikx} \, dk$.

So that $A(k) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(s) e^{-iks} \, ds$.

This yields that $u(x, t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(s) \left(\int_{-\infty}^{\infty} e^{iks - ikt + ik^3 t} \, dk \right) ds$.