Problem 1: Put the following two problems in Sturm-Liouville form, identify the weight function \(w(x) \) and calculate the eigenvalues and eigenfunction explicitly. Also, what is the orthogonality relation for the eigenfunction?

(i) \(\phi_{xx} + \phi_x + \lambda \phi = 0 \) in \(0 \leq x \leq 1 \); \(\phi(0) = \phi(1) = 0 \)

(ii) \(x \phi'' + \phi' + \lambda \phi/x = 0 \) in \(1 \leq x \leq e \); \(\phi(1) = 0, \phi'(e) = 0, e = 2.7128 \)

Problem 2: Consider the eigenvalue problem for \(\phi(\Gamma) \):

\[
\phi'' + \frac{2}{\Gamma} \phi' + \lambda \phi = 0 \quad \text{in} \quad 1 \leq \Gamma \leq a \text{ with } a > 1
\]

(i) Suppose \(\phi(1) = 0 \) and \(\phi(a) = 0 \). Prove in two distinct ways that any eigenvalue \(\lambda \) must satisfy \(\lambda > 0 \). (Hint: One way is finding the explicit solution).

(ii) Now suppose that \(\phi(1) = 0 \), \(\phi'(a) = -\h \phi(a) \) with \(\h > 0 \). Prove that any eigenvalue \(\lambda \) must satisfy \(\lambda > 0 \) using any method you prefer.

Problem 3: Consider the problem of finding the eigenstates \(\phi \) for

\[
\psi'' + \left(\frac{\lambda}{x} - x^2 \right) \psi = 0 \quad \text{in} \quad -\infty < x < \infty
\]

with \(\psi \rightarrow 0 \) as \(x \rightarrow \pm \infty \) with \(\int_{-\infty}^{\infty} \psi^2 \, dx < \infty \).

(i) Introduce \(\phi(x) \) by \(\psi = \phi e^{-x^2/2} \) to convert (\#) to

\[
\phi_{xx} - 2x \phi_x + (\lambda - 1) \phi = 0 \quad \text{with} \quad \int_{-\infty}^{\infty} \phi^2 e^{-x^2} \, dx < \infty.
\]
(ii) By substituting \(\phi(x) = \sum_{m=0}^{\infty} q_m x^m \) into (+) derive the recursion relation for \(q_m \) and show that there are polynomial solutions for \(\phi(x) \) when \(\lambda = 1 + 2n \) where \(n = 0, 1, 2, \ldots \).

For such solutions, \(\int_{-\infty}^{\infty} x^2 e^{-x^2} dx < \infty \).

"Normalize" these polynomial solutions by imposing that

\(\phi(0) = 1, \ \phi'(0) = 0, \ \text{for} \ n = 0, 2, 4, 6, \ldots \)

and \(\phi(0) = 0, \ \phi'(0) = 1, \ \text{for} \ n = 1, 3, 5, \ldots \).

Label the polynomial \(\phi_n(x) \).

Derive explicit formulae for \(\phi_n(x) \) for \(n = 0, 1, 2, 3, 4, 5 \).

Remark: These solutions \(\phi_n(x) \), which exist when \(\lambda = \lambda_n = (2n) \)

are proportional to the classic Hermite polynomial arising in the study of quantum-mechanical oscillators. There

\(\psi_n(x) = e^{-x^2/2} \phi_n(x) \).

(iii) What is the orthogonality relation for the \(\phi_n(x) \)?

(iv) The quantum mechanical oscillator problem is to find eigenstates \(E_n, \psi_n(x) \) of the Schrödinger equation

\[
\begin{align*}
(x^2) - \frac{\hbar^2}{2m} \frac{d^2 \psi}{dx^2} + \frac{1}{2} \kappa x^2 \psi &= E \psi, \\
-\infty < x < \infty \quad \text{with} \quad \int_{-\infty}^{\infty} \psi^2 dx < \infty.
\end{align*}
\]

By rescaling \(x \) to map (iv) into (i), and then using (ii), write explicit formulae for the first three excited states \(E_n, \psi_n(x) \) for \(n = 0, 1, 2 \).

Note: In (iv) \(\hbar, \kappa, \alpha \) are positive constants.
Problem 4 (Separation of Variables) Find the separation of variables solution \(u(r, t) \) for heat flow within two concentric spheres, modelled by (for \(D > 0, \ k > 0 \) constants)

\[
\frac{\partial u}{\partial t} = D \left[\frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} \right] - ku \quad \text{in} \quad 1 \leq r \leq 2
\]

with boundary condition \(u(1, t) = u(2, t) = 0 \)

and initial condition \(u(r, 0) = f(r) \).

(Hint: Problem 2 is useful here). (Here \(D \) and \(k \) positive constants.)

Problem 5 (Separation of Variables) Now consider diffusion in the full sphere of radius \(a \) with an impermeable wall at \(r = a \), modelled by

\[
\frac{\partial u}{\partial t} = D \left[\frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} \right] - ku \quad \text{in} \quad 0 < r < a, \quad t > 0
\]

\(u, u_r \) bounded \(\rightarrow 0 \) \(r \rightarrow 0 \); \(u_r(a, t) = 0 \) (no flux)

and initial condition \(u(r, 0) = f(r) \). Here \(a > 0 \), and \(k, D \) positive constants.

(i) Using separation of variables, find an infinite series representation for \(u(r, t) \). (Hint: be careful! \(\lambda = 0 \) is an eigenvalue of the Sturm-Liouville problem).

(ii) By integrating the PDE directly over the domain, derive and solve a simple ODE for the "mass" \(M(t) \) defined by \(M(t) = \int_0^a \int_0^a u(r, t) \, dr \). Is this result consistent with integrating your separation of variables solution?