Very short answer questions

1. 2 marks Each part is worth 1 mark.

 (a) Find \(\int x^7 + 4x^2 \, dx \).

 \[
 = \frac{x^8}{8} + \frac{4x^3}{3} + C
 \]

 (b) If \(f(x) \) is a positive function on \([1, 2]\), is \(\int_2^1 f(x) \, dx \) positive or negative?

 negative

Short answer questions — you must show your work

2. 4 marks Each part is worth 2 marks.

 (a) Write out the right Riemann sum for the function \(f(x) = \ln(x) \) given by the regular partition of \([1, 4]\) into \(n = 3 \) subintervals. Your answer needs only to be ‘calculator ready’.

 \[
 \text{partition} \quad 1 \quad 2 \quad 3 \quad 4 \quad \Delta x = 1
 \]

 \[
 \text{sum} = \ln(2) \cdot \Delta x + \ln(3) \cdot \Delta x + \ln(4) \cdot \Delta x
 \]

 \[
 = \ln(2) + \ln(3) + \ln(4) = \ln(24)
 \]

 (b) Use the fundamental theorem of calculus to differentiate \(F(x) = \int_5^{5x} \cos(t) \, dt \)

 \[
 u = 5x \quad F(u) = \int_5^u \cos(t) \, dt \quad \Rightarrow \quad \frac{dF}{du} = \cos(u) \ (\text{FTC})
 \]

 \[
 \frac{dF}{dx} = \frac{dF}{du} \cdot \frac{du}{dx} = \cos(u) \cdot 5 = 5 \cos(5x)
 \]
Long answer question — you must show your work

3. [4 marks] Using integration by substitution, evaluate \(\int_{0}^{\pi/4} \cos(x) \sin^3(x) \, dx \).

\[
\begin{align*}
 u &= \sin(x) \\
 du &= \cos(x) \, dx \\
 x &= 0 \quad u = \sin(0) = 0 \\
 x &= \frac{\pi}{4} \quad u = \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}
\end{align*}
\]

\[
\int_{0}^{\pi/4} \frac{\cos(x) \sin^3(x) \, dx}{\sqrt{2}} = \int_{0}^{\frac{1}{\sqrt{2}}} u^3 \, du
\]

\[
= \left. \frac{u^4}{4} \right|_{0}^{\frac{1}{\sqrt{2}}}
\]

\[
= \frac{\left(\frac{1}{\sqrt{2}}\right)^4}{4} - \frac{0^4}{4}
\]

\[
= \frac{1}{4} - \frac{1}{16}
\]

\[
= \frac{1}{4} \left[\frac{1}{16} \right] = \frac{1}{16}
\]