GREEN'S FUNCTIONS

Lecture (j): The maximum principle

We will start by formulating the theorem.

Let D be a region of \mathbb{R}^n bounded by a smooth surface ∂D.

Theorem: Maximum principle for harmonic functions

Let u be a harmonic function in D ($\nabla^2 u = 0$) and continuous on $\overline{D} = D \cup \partial D$, then

1. u attains its maximum and minimum values on the boundary ∂D
2. if u also attains its maximum or minimum value at an interior point of D, then u must be a constant function

Remarks:

1. u must attain its maximum and minimum values somewhere on ∂D since u is a continuous function on a closed and bounded region.
2. the maximum part of the theorem extends to subharmonic functions ($\nabla^2 u \geq 0$) and the minimum part to superharmonic functions ($\nabla^2 u \leq 0$)

We will give two proofs of the theorem.

Proof 1

Let's suppose that u has its maximum at an interior point $x_0 \in D$.

Let's consider a ball B_{r_0} of radius r_0 centered at x_0.

From the mean-value property of harmonic functions, we have

$$u(x_0) = \frac{1}{|B_{r_0}|} \int_{B_{r_0}} u \, ds$$ \hspace{1cm} (1)
(i) \(u_0 \) cannot be \(> u(x_0) \) \(\Rightarrow \) it contradicts the fact that \(u(x) \) is the max of \(u \)

(ii) \(u_0 \) cannot be \(< u(x_0) \) \(\Rightarrow \) because of (i), (ii) would then not be satisfied

(iii) \(u_{xx} = u(x_0) \) is the only possibility, and \(u \) is constant on \(\partial \Omega \).

Repeating that argument, we can fill all of \(D \) and conclude that \(u \) is constant on \(D \), and by continuity constant on \(\overline{D} \).

* Proof 2

Once again, let's suppose \(u \) has its maximum at \(x_0 \in \Omega \)

Hence we have \(\Delta u(x_0) \leq 0 \), which is almost a contradiction to \(\Delta u = 0 \), but not quite \((\leq \) rather \(<) \)

Let's introduce the function \(v(x) = u(x) + 3|x|^2, \ v \geq 0 \)

We have: \(\Delta v = \Delta u + 2 \Delta x, \ \Delta u = \Delta u + 2 \Delta p = 2 \Delta p > 0 \), where \(p \) is the space dimension.

Because \(\Delta u > 0 \), \(v \) cannot have a maximum at an interior point of \(D \). So for any \(x \in D \), we can write:

\[
u(x) \leq v(x) < \max_{y \in \Omega} v(y) = \max_{y \in \Omega} (u(y) + 3|y|^2) \leq \max_{y \in \Omega} u(y) + 3 \max_{y \in \Omega}|y|^2 \]

Taking \(\varepsilon \to 0 \), \(u(x) \leq \max_{y \in \Omega} u(y) \)

* Consequences of the maximum principle

1) Uniqueness of solutions of the Dirichlet BV Poisson's problem

Theorem: Let \(f \) be a continuous function of \(\Omega \) and \(g \) a continuous function on \(\partial \Omega \). There is at most one function \(u(x) \), twice continuously differentiable in \(\Omega \), continuous on \(\overline{\Omega} \), that solves
\[\begin{cases} \Delta u = f, & x \in D \\ u = g, & x \in \partial D \end{cases} \] (2)

Proof: Let's suppose that \(u_1(x) \) and \(u_2(x) \) are both solutions of problem (2), we have
\[\begin{cases} \Delta u_1 = f, & x \in D \\ u_1 = g, & x \in \partial D \end{cases} \quad \begin{cases} \Delta u_2 = f, & x \in D \\ u_2 = g, & x \in \partial D \end{cases} \]
so their difference \(v(x) = u_1(x) - u_2(x) \) solves
\[\begin{cases} \Delta v = 0, & x \in D \\ v = 0, & x \in \partial D \end{cases} \]

From the maximum principle (\(v \) is harmonic), \(v \) attains its maximum and minimum values on \(\partial D \). Since \(v = 0 \) on \(\partial D \), \(v = 0 \) in \(D \) and \(u_1 = u_2 \) in \(D \).

2) Uniqueness of the Dirichlet Green's function

Theorem: There is at most one Dirichlet Green's function for a given region \(D \).

Proof: If \(G(x,y) \) is a Dirichlet Green's function for \(D \), we have
\[G(x,y) = G^f(x,y) + H(x,y), \quad y \in D, \quad G(x,y) = 0, \quad y \in \partial D \] and \(H(x,y) \) solves:
\[\begin{cases} \Delta H(x,y) = 0, & y \in D \\ H(x,y) = -\frac{G^f(x,y)}{\partial}, & y \in \partial D \]

From the previous theorem, \(H(x,y) \) is unique.
Since \(G^f(x,y) \) is also unique, so is \(G(x,y) \).