Math 401: Assignment 2 (Due Wed, Jan27)

1. Let \(L := a_0(x) \frac{d^2}{dx^2} + a_1(x) \frac{d}{dx} + a_2(x) \).

 (a) Show that \(L = L^* \) if and only if \(a_0' = a_1 \).

 (b) Under what condition on the numbers \(\alpha \) and \(\beta \) is the problem
 \[(p(x)u')' + q(x)u = f(x), \quad 0 < x < 1, \quad u(0) = \alpha u(1), \quad u'(0) = \beta u'(1)\]
 self-adjoint?

2. The steady-state temperature along the rod \(0 \leq x \leq 1 \) is \(u(x) \). The thermal conductivity of the rod is \(e^x \). There is a heat source \(f(x) \). The left end of the rod is insulated, while the right end is held at temperature 1. Find \(u(x) \) - i.e., solve
 \[(e^x u')' = f(x), \quad 0 < x < 1, \quad u'(0) = 0, \quad u(1) = 1,\]
 by finding the Green’s function, \(G \), for the problem and expressing \(u \) in terms of \(G \) and \(f \).

3. Consider the problem
 \[u'' + u = f(x), \quad 0 < x < L, \]
 \[u(0) = 0, \quad u(L) = 0. \]

 (a) Find the Green’s function, and express the solution in terms of it.

 (b) Find the values of \(L \) for which this solution breaks down, and for these values, determine the solvability condition on \(f \), calculate the modified Green’s function, and (assuming the solvability condition is satisfied) find an integral representation for the solution.

4. Consider the equation
 \[-u'' + q^2 u = f(x) \]
 \((q > 0 \text{ a constant})\). Determine the Green’s function for this problem on the line \(-\infty < x < \infty \) associated with the “boundary conditions” \(u(x) \to 0 \) as \(|x| \to \infty \).

5. Find a solvability condition for the problem
 \[u'' + q^2 u = f(x), \quad 0 < x < 1, \]
 \[u(0) = u(1), \quad u'(0) = -u'(1) \]
 \((q > 0 \text{ a constant})\).

(Jan. 22)