The remainder of this page has been left blank for your workings.
This page has been left blank for your workings.
Indefinite Integrals

1. [9 marks] Each part is worth 3 marks. Please write your answers in the boxes.

 (a) Calculate the indefinite integral $\int \frac{3x}{x+4} \, dx$.

 Answer:

 (b) Calculate the indefinite integral $\int \arctan(x) \, dx$.

 Answer:
(c) (A Little Harder): Calculate the indefinite integral $\int \frac{1}{x\sqrt{x^2-1}} \, dx$ for $x > 1$.

Answer:
Definite Integrals

2. [12 marks] Each part is worth 4 marks. Please write your answers in the boxes.

(a) Calculate \(\int_{0}^{\pi/4} \tan^2(x) \, dx \)

Answer:

(b) Calculate \(\int_{-\pi}^{\pi} (1 + x^3) \cos^2(x) \, dx \).

Answer:
(c) (A Little Harder): Calculate $\int_{0}^{\infty} e^{-x} \cos(x) \, dx$.

Answer:
Riemann Sum, FTC, and Volumes

3. **12 marks** Each part is worth 4 marks. Please write your answers in the boxes.
 (a) Calculate the infinite sum

 \[\lim_{n \to \infty} \sum_{i=1}^{n} \frac{6i}{n^2} \sqrt{1 + \frac{4i^2}{n^2}} \]

 by first writing it as a definite integral. Then, evaluate this integral.

 Answer:

 (b) Define \(F(x) \) and \(g(x) \) by \(F(x) = \int_{0}^{x} \cos^2(t) \, dt \) and \(g(x) = x \, F(x^2) \). Calculate \(g'(\sqrt{\pi}) \).

 Answer:
(c) Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between $y = x^2$ and $y = 9x$ about the horizontal line $y = -2$. **Do not evaluate the integral.**

Answer:
4. (a) [4 marks] Write a definite integral with specific limits of integration that determines the finite area enclosed by \(y^2 = 10 - x \) and \(x = (y - 2)^2 \).

(b) [2 marks] Evaluate the integral and so compute the area enclosed.
This page has been left blank for your workings.
5. A solid has as its base the region in the xy-plane between $y = 1 - x^2/16$ and the x-axis. The cross-sections of the solid perpendicular to the x-axis are semi-circles with the diameter of the semi-circle in the base.

(a) 4 marks Write a definite integral that determines the volume of the solid.

(b) 2 marks Evaluate the integral to find the volume of the solid.
This page has been left blank for your workings.