Mathematics 101 — Midterm — 45 minutes

14 & 15 February 2019

- The test consists of 10 pages and 5 questions. Questions 1, 2 and 3 contain multiple independent sub-questions. Question 4 is a single question. Question 5 is split into 3 dependent sub-questions. The total number of sub-questions is 13, and is worth a total of 44 marks.

- No memory aids. No calculators. No communication devices or other electronic devices.

- Show all your work; little or no credit will be given for a numerical answer without the correct accompanying work.

<table>
<thead>
<tr>
<th>Student number</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preferred Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Given Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>12</td>
<td>8</td>
<td>12</td>
<td>4</td>
<td>8</td>
<td>44</td>
</tr>
</tbody>
</table>

Score:
Indefinite Integrals

1. [12 marks] Each part is worth 4 marks. Please write your answers in the boxes.

(a) Calculate the indefinite integral \(\int \arctan \left(\frac{1}{x} \right) \, dx \) for \(x > 0 \).

Answer:

(b) Calculate the indefinite integral \(\int -3x \sqrt{3 + 3x} \, dx \) for \(x < 1 \).

Answer:
(c) (A Little Harder): Calculate the indefinite integral \(\int \frac{x^2 + x + 4}{x^3 + 3x + 2x^2 + 3} \, dx \).

Answer:
Definite Integrals

2. [8 marks] Each part is worth 4 marks. Please write your answers in the boxes.

(a) Calculate \(\int_{1}^{e} \frac{1-\ln(x)}{x} \, dx \).

Answer:

(b) Calculate \(\int_{1}^{5} \frac{x-4}{\sqrt{8x-14-x^2}} \, dx \).

Answer:
Riemann Sum and FTC

3. [12 marks] Each part is worth 4 marks. Please write your answers in the boxes.

(a) Which definite integral corresponds to \(\lim_{n \to \infty} \sum_{i=1}^{n} \ln\left(\frac{3i}{n} - \frac{3}{n} + 1\right) \sin\left(\frac{6i}{n} - \frac{6}{n}\right) \frac{3}{n} \)?

 \(\begin{align*}
 (A) & \quad \int_{0}^{3} \ln(x + 1) \sin(2x) \, dx \\
 (B) & \quad 3 \int_{0}^{1} \ln(x + 1) \sin(2x) \, dx \\
 (C) & \quad \frac{1}{2} \int_{0}^{6} \ln(x + 1) \sin(2x) \, dx \\
 (D) & \quad \int_{0}^{6} \ln\left(\frac{x}{2} + 1\right) \sin(x) \, dx \\
 (E) & \quad 2 \int_{0}^{3} \ln\left(\frac{x}{2} + 1\right) \sin(x) \, dx \\
 \end{align*} \)

Answer:

(b) Define \(F(x) \) and \(g(x) \) by \(F(x) = \int_{-1}^{x} t^2 \, dt \) and \(g(x) = (F(x^2))^4 \). Calculate \(g'(1) \).

Answer:
(c) Let \(F(x) = \int_{x^2}^{x^3} 9e^{t^2} \, dt \). Find the equation of the tangent line to the graph of \(y = F(x) \) at \(x = 1 \). Tip: recall that the tangent line to the graph of \(y = F(x) \) at \(x = x_0 \) is given by the equation

\[
y = F(x_0) + F'(x_0)(x - x_0).
\]

Answer:
Areas and volumes

Please write your answers in the boxes. Do not use absolute values in your expressions, always work out: (i) the outer function and the inner function for volumes or (ii) which function lies above the other function for areas.

4. [4 marks] Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between $y = \sqrt{x - 1}$ and $x = 1 + \sqrt{y}$ about the horizontal line $y = -2$. Do not evaluate the integral.

Answer:
5. (a) 2 marks Sketch by hand the finite area enclosed by \(y^2 + x = 0 \) and \(2y - x = 15 \)

Answer:

(b) 4 marks Write a definite integral with specific limits of integration that determines this finite area.

Answer:
(c) [2 marks] Evaluate the integral to compute the area enclosed.

Answer: