Mathematics 101 — Midterm — 45 minutes

14 & 15 February 2019

• The test consists of 10 pages and 5 questions. Questions 1, 2 and 3 contain multiple independent sub-questions. Question 4 is a single question. Question 5 is split into 3 dependent sub-questions. The total number of sub-questions is 13, and is worth a total of 44 marks.

• No memory aids. No calculators. No communication devices or other electronic devices.

• Show all your work; little or no credit will be given for a numerical answer without the correct accompanying work.

<table>
<thead>
<tr>
<th>Student number</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preferred Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Given Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points:</td>
<td>12</td>
<td>8</td>
<td>12</td>
<td>4</td>
<td>8</td>
<td>44</td>
</tr>
<tr>
<td>Score:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This page has been left blank for your workings.
Indefinite Integrals

1. [12 marks] Each part is worth 4 marks. Please write your answers in the boxes.

(a) Calculate the indefinite integral \(\int \frac{\ln x}{\sqrt{x}} \, dx \) for \(x > 0 \).

Answer:

(b) Calculate the indefinite integral \(\int -2x\sqrt{3 + 2x} \, dx \) for \(x > -3/2 \).

Answer:
(c) (A Little Harder): Calculate the indefinite integral $\int \frac{x^2 + x + 3}{x^3 + 4x - x^2 - 4} \, dx$.

Answer:
Definite Integrals

2. [8 marks] Each part is worth 4 marks. Please write your answers in the boxes.

(a) Calculate \(\int_{-\pi/2}^{\pi/2} 3 \cos^3 x \, dx \).

\[
\text{Answer:} \\
\]

(b) Calculate \(\int_{-2}^{-1} \frac{x+2}{\sqrt{-4x^2-2x}} \, dx \).

\[
\text{Answer:} \\
\]
Riemann Sum and FTC

3. [12 marks] Each part is worth 4 marks. Please write your answers in the boxes.

(a) Which definite integral corresponds to \(\lim_{n \to \infty} \sum_{i=1}^{n} \frac{\sqrt{i^2+9n^2}}{i^2} \)?

(A) \(\int_{0}^{3} \frac{\sqrt{x^2+1}}{x^2} \, dx \)
(B) \(3 \int_{0}^{1} \frac{\sqrt{x^2+1}}{x^2} \, dx \)
(C) \(\frac{1}{3} \int_{0}^{1} \frac{\sqrt{x^2+1}}{x^2} \, dx \)
(D) \(\int_{0}^{1} \frac{\sqrt{x^2+9}}{x^2} \, dx \)
(E) \(\int_{0}^{3} \frac{\sqrt{x^2+9}}{x^2} \, dx \)

Answer:

(b) Define \(F(x) \) and \(g(x) \) by \(F(x) = \int_{2x}^{x} \cos^2 t \, dt \) and \(g(x) = x \, F(x) \). Calculate \(g'(\pi) \).

Answer:
(c) Let \(F(x) = \int_{x^3}^{x^2} 7e^{t^2} \, dt \). Find the equation of the tangent line to the graph of \(y = F(x) \) at \(x = 1 \). Tip: recall that the tangent line to the graph of \(y = F(x) \) at \(x = x_0 \) is given by the equation \(y = F(x_0) + F'(x_0)(x - x_0) \).

Answer:
Areas and volumes

Please write your answers in the boxes. **Do not use absolute values in your expressions, always work out**: (i) the outer function and the inner function for volumes or (ii) which function lies above the other function for areas.

4. [4 marks] Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between \(x = -(y - 4)^2 \) and \(x = -2 - y \) about the vertical line \(x = 1 \). **Do not evaluate the integral.**

\[
\text{Answer:}
\]

Midterm D: Page 8 of 10
5. (a) 2 marks Sketch by hand the finite area enclosed by \(y^2 = 3 - x \) and \(3y = x + 1 \)

Answer:

(b) 4 marks Write a definite integral with specific limits of integration that determines this finite area.

Answer:
(c) 2 marks Evaluate the integral to compute the area enclosed.

Answer: