Mathematics 101 — Midterm — 45 minutes

14 & 15 February 2019

- The test consists of 10 pages and 5 questions. Questions 1, 2 and 3 contain multiple independent sub-questions. Question 4 is a single question. Question 5 is split into 3 dependent sub-questions. The total number of sub-questions is 13, and is worth a total of 44 marks.
- No memory aids. No calculators. No communication devices or other electronic devices.
- Show all your work; little or no credit will be given for a numerical answer without the correct accompanying work.

Student number				
Section				
Preferred Name				
Given Name				
Family Name				

Question:	1	2	3	4	5	Total
Points:	12	8	12	4	8	44
Score:						

This page has been left blank for your workings.

Indefinite Integrals

- 1. $\boxed{12 \text{ marks}}$ Each part is worth 4 marks. Please write your answers in the boxes.
 - (a) Calculate the indefinite integral $\int x^2 \sin x \, dx$ for x > 0.

Answer:

(b) Calculate the indefinite integral $\int 4x\sqrt{3-4x}\,dx$ for x<3/4.

Answer:

	c) (A Little Harder): Calculate the indefinite integral $\int \frac{\sqrt{x^2-9}}{x^2} dx, x > 3$ Use the following known result: $\int \sec x dx = \ln \sec x + \tan x + C$. Write				
your final answer without any trigonometric function.					
	Answer:				

Definite Integrals

- 2. 8 marks Each part is worth 4 marks. Please write your answers in the boxes.
 - (a) Calculate $\int_0^{\pi/3} \sec^{3/2} x \tan x \, dx$.

Answer:

(b) Calculate $\int_{-1}^{0} \frac{x+1}{\sqrt{-2x+1-x^2}} dx.$

Answer:

Riemann Sum and FTC

- 3. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
 - (a) Which definite integral corresponds to $\lim_{n\to\infty} \sum_{i=1}^n (\frac{i}{n}+1)e^{-2\frac{i^2}{n^2}} \frac{2}{n}$?
 - (A) $2\int_0^1 xe^{-2(x-1)^2} dx$
 - (B) $2\int_0^1 (x+1)e^{-2x^2} dx$ (C) $\int_1^2 xe^{-2(x-1)^2} dx$

 - (D) $\int_{1}^{2} (x+1)e^{-2x^2} dx$
 - (E) $\int_0^1 (x+1)e^{-2x^2} dx$

Answer:			

(b) Define F(x) and g(x) by $F(x) = \int_0^x \sin^2 t \, dt$ and $g(x) = x \, F(x^3)$. Calculate $g'(\pi^{1/3})$.

Answer:

(c)	Let $F(x) = \int_{x^2}^{x^3} 3e^{t^2} dt$. Find the equation of the tangent line to the graph
	of $y = F(x)$ at $x = 1$. Tip: recall that the tangent line to the graph of
	$y = F(x)$ at $x = x_0$ is given by the equation $y = F(x_0) + F'(x_0)(x - x_0)$.
	Answer:

Areas and volumes

Please write your answers in the boxes. Do not use absolute values in your expressions, always work out: (i) the outer function and the inner function for volumes or (ii) which function lies above the other function for areas.

4.	4 marks Write a definite integral, with specified limits of integration, for
	the volume obtained by revolving the bounded region between $y = (x-2)^2$
	and $y = x + 4$ about the horizontal line $y = 10$. Do not evaluate the
	integral.

Answer:			

. (a)	2 marks Sketch by hand the fin $x - 3y = 10$	ite area enclosed by $y^2 - x = 0$ and
	Answer:	
(b)	4 marks Write a definite integral determines this finite area.	with specific limits of integration that
	4000211111100 01110 01200	Answer:

(c)	2 marks	Evaluate the integral to compute the area enclosed.		
			Answer:	