Mathematics 101 - Midterm - 45 minutes

14 \& 15 February 2019

- The test consists of 10 pages and 5 questions. Questions 1,2 and 3 contain multiple independent sub-questions. Question 4 is a single question. Question 5 is split into 3 dependent sub-questions. The total number of sub-questions is 13 , and is worth a total of 44 marks.
- No memory aids. No calculators. No communication devices or other electronic devices.
- Show all your work; little or no credit will be given for a numerical answer without the correct accompanying work.

Question:	1	2	3	4	5	Total
Points:	12	8	12	4	8	44
Score:						

This page has been left blank for your workings.

Midterm C: Page 2 of 10

Indefinite Integrals

1. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate the indefinite integral $\int x^{2} \sin x d x$ for $x>0$.
Answer:
(b) Calculate the indefinite integral $\int 4 x \sqrt{3-4 x} d x$ for $x<3 / 4$.

> Answer:
(c) (A Little Harder): Calculate the indefinite integral $\int \frac{\sqrt{x^{2}-9}}{x^{2}} d x, x>3$. Use the following known result: $\int \sec x d x=\ln |\sec x+\tan x|+C$. Write your final answer without any trigonometric function.

Answer:

Midterm C: Page 4 of 10

Definite Integrals

2. 8 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate $\int_{0}^{\pi / 3} \sec ^{3 / 2} x \tan x d x$.

Answer:
(b) Calculate $\int_{-1}^{0} \frac{x+1}{\sqrt{-2 x+1-x^{2}}} d x$.

Answer:

Riemann Sum and FTC

3. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Which definite integral corresponds to $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{i}{n}+1\right) e^{-2 \frac{i^{2}}{n^{2}} \frac{2}{n}}$?
(A) $2 \int_{0}^{1} x e^{-2(x-1)^{2}} d x$
(B) $2 \int_{0}^{1}(x+1) e^{-2 x^{2}} d x$
(C) $\int_{1}^{2} x e^{-2(x-1)^{2}} d x$
(D) $\int_{1}^{2}(x+1) e^{-2 x^{2}} d x$
(E) $\int_{0}^{1}(x+1) e^{-2 x^{2}} d x$

Answer:
(b) Define $F(x)$ and $g(x)$ by $F(x)=\int_{0}^{x} \sin ^{2} t d t$ and $g(x)=x F\left(x^{3}\right)$. Calculate $g^{\prime}\left(\pi^{1 / 3}\right)$.

Answer:
(c) Let $F(x)=\int_{x^{2}}^{x^{3}} 3 e^{t^{2}} d t$. Find the equation of the tangent line to the graph of $y=F(x)$ at $x=1$. Tip: recall that the tangent line to the graph of $y=F(x)$ at $x=x_{0}$ is given by the equation $y=F\left(x_{0}\right)+F^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$.

Answer:

Areas and volumes

Please write your answers in the boxes. Do not use absolute values in your expressions, always work out: (i) the outer function and the inner function for volumes or (ii) which function lies above the other function for areas.
4. 4 marks Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between $y=(x-2)^{2}$ and $y=x+4$ about the horizontal line $y=10$. Do not evaluate the integral.

Answer:
5. (a) 2 marks Sketch by hand the finite area enclosed by $y^{2}-x=0$ and $x-3 y=10$

Answer:
(b) 4 marks Write a definite integral with specific limits of integration that determines this finite area.

Answer:

Midterm C: Page 9 of 10
(c) 2 marks Evaluate the integral to compute the area enclosed.
Answer:

