\[
\frac{Dw}{dt} = a' X_0 + b' X_\phi + a \frac{DX_0}{dt} + b \frac{DX_\phi}{dt}
\]
\[
= X_0 \left(a' + b \cot \phi \right)
+ X_\phi \left(b' - a \sin \phi \cos \phi \right)
\]

parallel \begin{align*}
& a' = -b \cot \phi \\
& b' = a \sin \phi \cos \phi
\end{align*}

let \(A = a \sin \phi \)
\begin{align*}
\begin{cases}
A' = -b \cos \phi \\
A(0) = \sin \phi
\end{cases}
& b' = A \cos \phi \\
b(0) = 0
\end{align*}

\[
A(t) = \sin \phi \cos(t \cos \phi)
\]
\[
\phi(t) = \sin \phi \sin(t \cos \phi)
\]

\[
w(t) = \cos(t \cos \phi) X_0 + \sin \phi \sin(t \cos \phi) X_\phi
\]
\[
|w(t)| = \sin \phi
\]

angle of \(w(t) \) with \(X_0 \): \(t \cos \phi \).

After one around, \(t = 2\pi \), angle = \(2\pi \cos \phi \)

Alternatively, consider the tangent cone. By RK3,
\(\frac{Dw}{dt} \) on tangent cone is the same.

Now, because \(\frac{Dw}{dt} \) is intrinsic,
we can remove a generator \(L \) of the cone,
and flatten it to fit in a plane.
\(\beta = \? \)

After 1 round, \(\beta = 2\pi \cos \phi \)

\[
\frac{\beta}{2\pi \cos \phi} = \frac{t}{2\pi}, \quad \beta = t \cos \phi
\]

Arc length \(S = \beta \tan \phi = t \sin \phi \)

Can be also seen as \(\sin \phi \) is the radius of the circle centered at \(Q \), for which we compute arc length.
A regular parametrized curve
\(y: I \rightarrow S \) is a geodesic if its tangent \(t'(t) \)
is parallel along \(y \), \(\frac{Dy'}{dt} = 0 \)

- A curve on \(S \) is a geodesic if its parametrization by
 arclength is. \(\text{RK} \quad \alpha'' = k \kappa \parallel N \)

Ex 3(a) On a plane \(y: I \rightarrow \mathbb{R}^2 \),
\[\frac{Dy'}{dt} = y'' = 0, \]
a straight line. (geodesic = straight line on surface.

- a circle of latitude

On a sphere, as shown in Ex 1, \(\phi = \text{const} + \phi_0 \)
satisfies \(\frac{Dy'}{dt} = 0 \) if and only if \(\phi_0 = \frac{\pi}{2} \).

It is the only great circle in this family, i.e., passing
the origin. Since we are free to choose the axis for
spherical coordinates,
A circle on a sphere is a geodesic if and only if
it is a great circle.

b). If \(L \subset S \) is a straight line, then \(L \) is a geodesic
of \(S \), as
\[\frac{Dy'}{dt} = \pi y'' = \pi 0 = 0 \]

Given \(p, q \in S^2 \), how many geodesics connect them?

- Case 1: \(p \neq -q \), exactly 1.
 (generic)
- Case 2: \(p = -q \), \(\infty \) many.
 uncountable
Rk. If the trace of $f: I \rightarrow S$ is a geodesic, x may not be a (param.) geodesic.

$$\dot{x}(t) = \dot{x}(s) \quad \text{arc length}$$

$$x'(t) = x'(s) \frac{ds}{dt}$$

$$x''(t) = x''(s) \left(\frac{ds}{dt} \right)^2 + x'(s) \frac{d^2{s}}{dt^2}$$

Being geodesic, $x''(s) = kn$

$$\frac{Dx'}{dt} = x'(s) \frac{d^2{s}}{dt^2} \neq 0 \quad \text{unless} \quad s = at + b$$

No contradiction to previous remark:

$$\frac{Dx'}{dt} = \frac{Dx'}{ds} \cdot \frac{ds}{dt} = 0$$

but $x'(s)$ is not $x' \frac{ds}{dt}$.
Ex4 Cylinder $S = x^2 + y^2 = 1$

- Any vertical line is a geodesic, by Ex3b.
- horizontal circles are geodesics,
 $$g'' = -\delta$$
 $$\therefore \pi \delta'' = 0$$

For other geodesics, we use the isometry $U = (0, 2\pi) \times \mathbb{R} \to S$

$$\phi(u, v) = (\cos u, \sin u, v)$$

All geodesics on \mathbb{R}^2 are straight lines

$$\begin{cases} u = a s \\ v = b s \end{cases}$$

$$a^2 + b^2 = 1 \quad \text{s.t.} \quad s \text{ is arc length.}$$

$a = 0$ line, $b = 0$ circle

$a \to 0$, $b \to ?$

On the cylinder,

$$d(s) = (\cos as, \sin as, bs)$$

a helix!

Given $p, q \in S$, how many geodesics connect them?

Case 1. $p_3 = q_3$, third component, exactly one, the horizontal circle

Case 2. $p_3 < q_3$ (countably) ω many (generic)
Straight lines are characterized by either
\[\alpha'' = 0, \quad \text{or} \]
\[k = 0 \]

Def. For a unit vector field \(W(t) \) along a parametric curve \(\alpha : I \rightarrow S \) on an oriented surface \(S \),
\[\frac{dW}{dt} \perp W, N \]
\[\frac{dW}{dt} = \lambda N \times W, \quad |N \times W| = 1 \]
\[\chi(t) = \left[\frac{dW}{dt} \right] \text{ represents the algebraic value of } \frac{dW}{dt}. \]
Its sign depends on the choice of orientation of \(C \) and \(S \).

Def. If \(C : \alpha : I \rightarrow S \) is parametrically defined by arc length \(s \), the geodesic curvature of \(C \) at \(P \) is
\[k_g = \left[D \frac{\alpha'}{ds} \right] \]
If \(C \) is a geodesic, then \(k_g = 0 \)

Recall \(\frac{d\alpha'}{ds} = \pi \alpha''(s) = \pi \kappa n \)
Orthogonal plane

\[k_n = \text{normal curvature along } \phi(0) = II(\phi''(0)) \]

\[
\begin{align*}
k_n &= k_n N + k_g (N \times t) \\
k^2 &= k_n^2 + k_g^2
\end{align*}
\]

Ex1 again

\[k = \frac{1}{\sin \phi}, \quad \sin \phi = \text{radius of circle} \]

\[k_n = -1, \quad l = \text{radius of sphere} \]

\[\frac{1}{\sin^2 \phi} = 1 + k_g^2 \]

\[k_g = \cot^2 \phi \]

\[k_g = 0 \iff \phi = \frac{\pi}{2} \]