We talked about the differential dx of $\mathbb{R}^n \to \mathbb{R}^m$.

We now consider the differential of a map between surfaces.

Let S_1 and S_2 be regular surfaces and $\varphi : V \subset S_1 \to S_2$ be a smooth map. For $p \in V$ and any $v \in T_p(S_1)$, we choose

$$d : (-\varepsilon, \varepsilon) \to S_1, \quad \alpha(0) = p, \quad \alpha'(0) = v$$

and let $\beta(t) = \varphi \circ \alpha(t)$. Then $\beta'(0)$ is a tangent vector at $q = \varphi(p)$. We define the map

$$d \varphi_p : T_p(S_1) \to T_q(S_2),
\quad v \mapsto \beta'(0),$$

Prop 2 For given w, the vector $\beta'(0)$ does not depend on the choice of $d(t)$. The map $d \varphi_p$ is linear. It is called the differential of $\varphi : S_1 \to S_2$ at p.
Proof of Prop 2

Let \(\varphi: U_1 \subset \mathbb{R}^2 \to S_1 \) be parametrizations of \(S_1 \) of \(S_2 \) with \(p \in \varphi(U_1) \) and \(q = \varphi(p) \in \varphi(U_2) \).

We may take \(U_1 \) sufficiently small so that \(\varphi \circ \chi(U_1) \subset \varphi(U_2) \).

Let

\[\Psi = \varphi^{-1} \circ \varphi \circ \chi : U_1 \to U_2 \]

\(\Psi \) is smooth by the definition of \(\varphi \) being a smooth map. \(\Psi \)'s being a smooth map.

For any curve

\[\alpha : (-\varepsilon, \varepsilon) \to S_1, \quad \alpha(0) = p, \quad \alpha'(0) = w \]

let

\[\beta = \Psi \circ \alpha = \varphi \circ \varphi^{-1} \circ \chi \circ \alpha \]

Thus

\[\beta'(0) = \frac{d}{dt}_{t=0} \Psi \circ \alpha(t) = dy_{S_1} \cdot dy_{S_2} \cdot dx^1(w) \]

is uniquely defined, and is linear in \(w \).
Ex (Rotation of the sphere)

Let \(R_\theta : \mathbb{R}^3 \to \mathbb{R}^3 \) be the rotation of angle \(\theta \) about the z-axis.

\[
R_\theta(x^T) = \begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix} x^T, \quad x \in \mathbb{R}^3
\]

Consider its restriction to the unit sphere \(S^2 = \{ x \in \mathbb{R}^3, |x|^2 = 1 \} \).

Being the restriction of a smooth map,

\(R_\theta : S^2 \to S^2 \)

is a smooth map. We want to compute \((dR_\theta)_p(w) \) fn \(p \in S^2, \quad w \in T_p(S^2) \).

Choose \(\alpha : (-\varepsilon, \varepsilon) \to S^2 \),

\(\alpha(0) = p, \quad \alpha'(0) = w \)

Let \(\beta(t) = R_\theta(\alpha(t)) \)

\((dR_\theta)_p(w) = \beta'(0) = R_\theta \alpha'(0) = R_\theta w \)

\(\Rightarrow (dR_\theta)_p = R_\theta \)

\(\text{Rk} \quad 1. \text{This is true for any linear map } T : \mathbb{R}^3 \to \mathbb{R}^3 \)

2. If \(p = N = (0,0,1) \) north pole,

\(R_\theta p = p \)

\(T_p(S^2) = \{ (x,y,z) : x,y \in \mathbb{R}, z = 1 \} \)

\((dR_\theta)_N \) is a rotation on \(\mathbb{R}^2 \)
Consider the nonlinear map \(\Phi\) (double cover)

\[\Phi : S \rightarrow S \]

\[\Phi (\cos t, \sin t, z) = (\cos 2t, \sin 2t, z) \]

\(\Phi\) is well-defined: \(\Phi(\cos(t+2\pi), \sin(t+2\pi), z) = \Phi(\cos t, \sin t, z)\)

\(\Phi\) is continuous:

\[\Phi(\cos 0, \sin 0, z) = (1, 0, z) \]

\[\Phi(\cos 2\pi, \sin 2\pi, z) = (1, 0, z) \]

It covers \(S\) twice.

\[\Phi(\cos(t+2\pi), \sin(t+2\pi), z) = \Phi(\cos t, \sin t, z) \]

Q: \(d\Phi|_p = ?\)

\[e_z = (0, 0, 1), \quad e_\theta = (0, 1, 0) \]

If \(p = (1, 0, z_0)\), \(\Phi(p) = p\), \(d\Phi|_p(e_z) = e_z\), \(d\Phi|_p(e_\theta) = 2e_\theta\)

\(\alpha(t) = (1, 0, z_0 + t)\) and \(\beta(t) = (\cos t, \sin t, z_0)\); \(\gamma(t) = (1, 0, z_0 + t)\) and \(\delta(t) = (\cos t, \sin t, z_0)\)

For general \(p = (\cos \theta, \sin \theta, z)\), \(0 \leq \theta < 2\pi\)

\[e_z = (0, 0, 1) \]

\[e_\theta = (-\sin \theta, \cos \theta, 0) \]

\[T_p(S) = \text{span}\{e_\theta, e_z\} \]

\[d\Phi|_p : \begin{cases} e_z \rightarrow e_z, \\ e_\theta \rightarrow 2e_\theta \end{cases} \]

\[a e_\theta + b e_z \rightarrow 2a e_\theta + b e_z \]
Normal vector:

Given a pt \(p \) on a regular surface \(S \),

there are 2 unit vectors in \(\mathbb{R}^3 \) that are orthogonal to \(T_p(S) \).

They are the unit normal vectors at \(p \). The line

\[\alpha(t) = p + tN, \quad t \in \mathbb{R} \]

is the normal line at \(p \).

For any parametrization

\[\mathbf{x}: U \subset \mathbb{R}^2 \rightarrow S, \]

\[q = \mathbf{x}(u, v) \]

A unit normal vector at \(q \) is

\[N(q) = \frac{\mathbf{x}_u \times \mathbf{x}_v}{|\mathbf{x}_u \times \mathbf{x}_v|}(q) \]

\(|\mathbf{x}_u \times \mathbf{x}_v| \) is smooth as it stays away from 0.

This defines a smooth normal vector field \(N(q) \) on \(\mathbf{x}(U) \subset S \). This may be impossible on entire \(S \), such as on a Möbius band.
Chapter 2.5 First fundamental form

It enables us to compute length, angle & area on surfaces.

Defn Let \(S \subset \mathbb{R}^3 \) be a regular surface. The first fundamental form \(I_p \) of \(S \) at \(p \in S \) is

\[
I_p : T_p(S) \to \mathbb{IR}
\]

\[
I_p (w) = \langle w, w \rangle_p = |w|^2 .
\]

Here \(\langle , \rangle_p \) is the induced inner product on \(T_p(S) \) from that of \(\mathbb{R}^3 \):

\[
\langle w, v \rangle_p = w \cdot v
\]

In the future, we talk about surfaces not in \(\mathbb{R}^3 \) and we still want \(I_p \) and \(\langle , \rangle_p \).

Remark

1. \(\langle v, w \rangle_p \) is bilinear. (Linear in both \(v \) & \(w \)), \(I_p(aw) = a^2 I_p(w) \)
2. \(I_p(w+v) = \langle w+v, w+v \rangle_p \)

\[
= \langle w, w \rangle_p + \langle w, v \rangle_p + \langle v, w \rangle_p + \langle v, v \rangle_p
\]

\[
= I_p(w) + I_p(v)
\]

We defined \(I_p \) by \(\langle , \rangle \). But once we have \(I_p \), we can define \(\langle , \rangle \) by

\[
\langle w, v \rangle_p = \frac{1}{2} \left(I_p(w+v) - I_p(w) - I_p(v) \right)
\]

Thus \(I_p \) and \(\langle , \rangle_p \) give same info.
First fundamental form relative to a parametrization:

\[\vec{X} : U \subset \mathbb{R}^2 \rightarrow S, \quad p \in \vec{X}(U). \]

A basis of \(T_p(S) \) is \(\vec{X}_u, \vec{X}_v \).

Suppose \(\alpha : (-\varepsilon, \varepsilon) \rightarrow S \), \(\alpha(0) = p, \alpha'(0) = w \)

and assume

\[\alpha(t) = \vec{X}(u(t), v(t)). \]

\[w = \alpha'(0) = xu_u(0) + xv_v(0). \]

\[I_p(w) = \ ? \]

\[= \langle x_u w, x_v v \rangle \cdot \text{(itself)} \]

\[= \langle x_u, x_u \rangle_p w(0)^2 + 2 \langle x_u, x_v \rangle_p w(0)v(0) + \langle x_v, x_v \rangle_p v(0)^2 \]

\[= E(u_0, v_0) + F(u_0, v_0) + G(u_0, v_0) \]

\(E, F, G \ldots \) coefficients of \(I_p \)

Smooth functions in \(U \).